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1 Introduction

Deformations of supersymmetric gauge theories have played an important role in theoretical

physics in recent years, see e.g. [1–11]. In this note we discuss a new family of deformed

N = 2 four-dimensional gauge theories. Our starting point is a flux background in M-theory

which was introduced in [12–14]. Compactification on different circles leads to different flux

backgrounds in type IIA string theory. By putting M-branes into these backgrounds we

obtain deformed versions of the familiar N = 2 gauge theories of [15] involving D-branes

suspended between NS-branes. For one choice of circle we find the Omega-deformation

but another, corresponding to a ‘9-11’ flip, leads to an S-dual deformation which we refer

to as the Alpha-deformation. Speaking in purely gauge theoretical terms, one can start

from a six-dimensional theory on R4 × T 2 where one of the circles is twisted over the R4.

The Omega-deformation is obtained by first compactifying on the decoupled S1 and then

on the twisted one, while the Alpha-deformed four dimensional gauge theory is obtained

by compactifying in the opposite order.

There are two ways to study the resulting four-dimensional gauge theory from here:

• The first approach is to analyze the type iia string theory and construct the non-

Abelian action for the resulting D/NS-brane system. Indeed a full SL(2,R) family
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of of deformed 4d non-Abelian gauge theories can be obtained in this way. The

resulting theories are not uv complete, but are rather truncations of the M-brane

uv theory in 6d, and are only valid for small gauge coupling. We refer to these as

the truncated theories.

• The second approach is to remain in M-theory where the branes are given by an

M-brane wrapped on a Riemann surface. On the Coulomb branch we can use the

equations of motion (eom) of the Abelian six-dimensional M-brane theory in order

to arrive at four-dimensional expressions of the low energy effective action as in,

e.g. [16]. These turn out to have Lagrangian descriptions as deformations of the

Seiberg-Witten (sw) action.

The results from the truncated theories can be compared to the deformed sw action

by taking a weak-coupling limit for the latter. We find the results of the two approaches

to be in agreement up to a field redefinition and a Q-exact term. In fact the only direct

relationship between the four-dimensional gauge theories obtained with the two different

approaches is that they all flow to the same infrared (ir) theory.

The first order deformation of the sw actions was obtained in [17] where the sw curve

was unaffected. In this paper we will examine the effect of the deformation on the sw

curve at second order. Our result is that the effective theory can be viewed as living on a

spacetime with a non-flat metric R4
ε with a non-constant coupling, i.e. a non-trivial dilaton.

However, the sw curve remains of the same form when expressed in terms of new variables

describing a complex structure that is non-trivially fibered over the four-dimensional space.

The plan of this note is as follows. We start by reviewing the Omega-deformation and

its realisation as a flux background in section 2. In section 3, we introduce general super-

symmetric M-brane embeddings at first order in the deformation parameter and later give

the full solution. In section 4, we deduce deformed gauge theory actions in four dimensions

via reduction of the M-theory set-up to type iia string theory. We discuss in particular the

special cases of the Omega- and the Alpha-deformation as well as the full SL(2,Z) family

of deformations. In section 5, we discuss sw actions in four dimensions obtained from

integration of the six-dimensional theory over the Riemann surface. We compare the first

order result obtained in an earlier paper with the result from the truncated theory and

then go on to the calculation in second order in ε. We end with conclusions and outlook in

section 6. Appendix A discusses the geometry of the gauge theories discussed in this article

and appendix B gives some details on the full non-linear supersymmetry of the background.

2 The Omega-deformation and flux backgrounds

The Omega-deformation of a gauge theory was originally constructed via a twisted

compactification. If we start with a periodic coordinate x9 ∼= x9 + 2πR9 then we perform

the twist {
x9 → x9 + 2πR9 ,

xm → xm +R9 ω
m
nx

n,
(2.1)
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where in general xm ranges over the remaining non-compact coordinates, i.e.

m = 0, 1, 2, . . . , 8, and ωmn is a constant element of so(1, 8) (but typically one just

takes ωmn ∈ so(4), ωmn ∈ so(6) or ωmn ∈ so(8) and considers gauge theories in Euclidean

space). A typical parameterization of ω is

ω =

 0 ε1 . . .

−ε1 0 . . .
...

...
. . .

 . (2.2)

In [14, 18] this twisted compactification was reinterpreted in String Theory as a flux

background by first finding coordinates that diagonalize the action and then performing

a T-duality along x9. This leads to a purely geometrical background, the fluxtrap, which

can also be lifted to M-theory if the original theory is type iib.

To engineer the Omega-deformation of a gauge theory one can then place branes into

this background. In particular for the classic case of four-dimensional gauge theories one

can first start in type iib with D5-branes along (x0, x1, x2, x3, x6, x9) suspended between

NS-branes along (x0, x1, x2, x3, x8, x9) located at x6 = 0 and x6 = l. The effective 4-

dimensional theory on the D5-branes (where now x6 ∈ [0, l] and x9 ∼= x9 + 2πR9) will

now have the the Omega-deformation. On the other hand the T-duality along x9 leads

to a type iia configuration of D4-branes along (x0, x1, x2, x3, x6) suspended between NS-

branes along (x0, x1, x2, x3, x8, x9), but in the presence of flux and background curvature.

Furthermore one can lift this solution to M-theory where there is just a single M5-brane,

wrapped on some non-compact two-dimensional surface in a flux background. This is

the familiar story of [15] but where the effect of the Omega-deformation is replaced by

a background flux. The first order contribution to the resulting Seiberg-Witten effective

action was computed in [17].

Let us consider this in more detail. If we write ω = dU with

Um = −1

2
ωmnx

n, (2.3)

then the M-theory supergravity solution that arises from the Omega-deformation is

ds2
11 = ∆2/3

[(
ηmn −

UmUn
∆2

)
dxm dxn +

(dx9)2 + (dx10)2

∆2

]
,

C =
1

∆2
dx9 ∧ dx10 ∧ U ,

(2.4)

where

∆ =
√

1 + UmUnδmn . (2.5)

The original construction of this metric started with the Omega-deformation in type iib

string theory followed by T-duality along x9 and an M-theory lift on x10 [14, 19]. However

given this solution we can ignore this connection and simply explore M5-branes in this

background. We can explore a range of gauge theories from here by compactifying on

different directions. This allows us in particular to construct the Alpha-deformation, which

can be viewed as an S-dual to the Omega-deformation.
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3 Supersymmetric flux backgrounds in M-theory

In this section, we introduce the deformed M-theory set-up. We will first discuss only the

first order deformation, where we can easily describe the supersymmetry condition and the

embedding of M-branes in detail. Further details of the full supersymmetric embedding

are given in appendix B.

Let us first look at the lowest order term in an expansion about small ε. Here the

background is flat as the metric only receives corrections of O(ε2) but there is a flux

G = ω ∧ dx9 ∧ dx10, (3.1)

where x9 and x10 are two orthogonal directions. However, we do not necessarily want

to think of x10 as being the circle direction used to reduce M-theory to type iia. The

supergravity Killing spinor equation reduces to (M,N = 0, 1, . . . , 10)

∂Mη +
1

288

(
ΓMNPQRG

NPQR − 8GMNPQΓNPQ
)
η = 0 . (3.2)

This can be solved by assuming ωmnΓmnη = O(ε) and taking

η = η0 −
1

3
UnΓnΓ910η0, (3.3)

where η0 is a constant spinor that satisfies

ωmnΓmnη0 = 0 . (3.4)

This last condition places constraints on which choices of ω are supersymmetric. In partic-

ular if ω ∈ so(4), it must be self-dual or anti-self-dual. In what follows we assume that ω

lies along the xµ, µ = 0, . . . , 3 directions and x0 has been Wick rotated to imaginary time.

Let us now add M5-branes into this background extended along (x0, x1, x2, x3, xp, xq),

where xp and xq are fixed but as of yet unspecified directions. At O(ε0) supersymmetry

requires that

i Γ0123pqη0 = 0 . (3.5)

This is always compatible with the condition ωµνΓµνη0 = 0. To O(ε1) we find that

[Γ0123pq,Γ
νΓ910] = 0 . (3.6)

This tells us that {Γpq,Γ910} = 0 and hence one of p, q must be 9 or 10 but not both.

Adding additional M5-branes along (x0, x1, x2, x3, xp
′
, xq

′
) again has this restriction but

on top of that also that the two M5-branes are mutually supersymmetric: [Γpq,Γp′q′ ] = 0,

which in turn implies that p, q, p′, q′ are all distinct.

Thus we find that the following configuration of M5-branes will preserve 4 supersym-

metries:
M: 0 1 2 3 6 10

M: 0 1 2 3 8 9
(3.7)

(We restrict to configurations that do not extend along x4, x5.)
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The same M-theory configuration can lead to different truncated theories on D-branes

depending on which coordinate we use to reduce on to type iia string theory. To this

end assume for now that both x6 and x10 are periodic, with periods 2πR6 and 2πR10

respectively, and consider the torus generated by x6, x10. This is consistent with the so-

called elliptic models of [15]. However we may also decompactify one direction allowing for

more general models which we will return to later. A new basis { θ6, θ10 } is obtained by

acting with an SL(2,R) matrix Λ on the vector {x6, x10 }:(
θ6

θ10

)
=

(
d c

b a

)(
x6/R6

x10/R10

)
= Λ

(
x6/R6

x10/R10

)
, ad− bc = 1 . (3.8)

In terms of these new variables, the flux G takes the form

G = R10 ω ∧ dx9 ∧ (−bdθ6 + ddθ10). (3.9)

Compactifying on θ10 leads to the type iia configuration

D: 0 1 2 3 6

NS: 0 1 2 3 8 9
(3.10)

The D-branes are suspended between the NS-branes so that the 6-direction (∝ θ6) along

their worldvolume is an interval. In addition the boundary conditions project out the

worldvolume scalars X4, X5, X7.

However, although we find the same D-brane/NS-brane configuration, the four-form

flux now becomes {
Hnsns = dR10

R ω ∧ dx9 ,

F rr = bR10ω ∧ dθ6 ∧ dx9 ,
(3.11)

where R2 = d2R2
10 + c2R2

6. These fluxes appear differently in the worldvolume theory on

the D-branes and therefore give rise to different truncated theories. We will discuss these

in the next section.

We note that an SL(2,Z) subgroup of SL(2,R) is the modular group of the torus and as

such is a symmetry. Therefore we find the space of deformed ellpitic models is parameterised

by SL(2,R)/SL(2,Z) with SL(2,Z) acting as a duality group on the truncated theories.

4 Alpha- and Omega-deformed actions from M-theory

After having introduced the M-theory background, we want to describe the gauge theories

which encode the fluctuations of the embedded branes. A first approach consists in reducing

the M-theory on the circle θ10 and study the resulting system of D-branes suspended

between two parallel NS-branes. In doing this, we make two approximations. The first is

that we assume the compactification radius to be small. Secondly, we only consider the zero-

modes in the direction θ6 separating the two NS-branes. The resulting theories are thus

truncated and make sense for small radii and small gauge coupling (which itself depends

on the radii, as we will see). In the following, we will always consider the static embedding,

where the brane system preserves one quarter of the supersymmetries of the bulk.
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The first case we study corresponds to Λ = 1, where the resulting 4-dimensional gauge

theory is the Omega-deformation of N = 2 super Yang-Mills (sym). The other case of

interest corresponds to Λ = S. We will refer to the resulting gauge theory as the Alpha-

deformation of N = 2 sym, which is the S-dual of the Omega-deformed theory. Both cases

are special points in a whole SL(2,Z) of theories, which we will discuss at the end of this

section.

4.1 Omega-deformation

Let us start with the simplest case, namely Λ = 1, leading to the Omega-deformation.

After reduction on θ10 = x10/R10, the resulting type iia background is given by

ds2
10 =

[(
ηµν −

UµUν
∆2

)
dxµ dxν + (R6 dθ6)2 + (dx8)2 +

(dx9)2

∆2
+ (d~x⊥)2

]
,

B = − 1

∆2
dx9 ∧ U ,

e−Φ = ∆ ,

(4.1)

where (d~x⊥)2 = (dx4)2 + (dx5)2 + (dx7)2 denotes the directions orthogonal to the

brane that remain spectators in the dynamics. We study a single D-brane extended in

(x0, x1, x2, x3, θ6) between parallel NS-branes separated in θ6. The deformation to leading

order in ε comes from the pull-back of the B-field:

δΩSD4 =
1

g2
Ω

∫
d4xUµ ∂νX

9Fµν , (4.2)

where

g2
Ω = 2π

R10

R6
. (4.3)

Note that to obtain this we have used the fact that the D-brane coupling constant is

g2
4 = 4π2R10, where R10 is the radius of the M-theory circle. The extra factor of 2πR6 in

g2
Ω comes from further reducing the D-brane to four-dimensions. The D-brane is weakly

coupled when g2
Ω � 1. In the non-Abelian theory this is enhanced to

δΩSD4 =
1

g2
Ω

Tr

∫
d5xUµDνX

9Fµν − i[X8,X9]UµD
µX8. (4.4)

Here the second term arises following the discussion in [20] from imposing consistency with

T-duality. In particular consider a T-duality along x8. In this case, the second term simply

comes from UµD8X
9Fµ8 by identifying D8X

9 = − i[X8,X9] and Fµ8 = DµX8.

A single D-brane in the background eq. (4.1) thus has the truncated action (expanded

up to second order in the space-time derivatives)1

SΩ
D = − 1

g2
Ω

∫
d4x

[
1

4
FµνF

µν +
1

2
∂µX

8∂µX8 +
1

2
(∂µX

9 + FµλU
λ)(∂µX9 + FµρUρ)

+
1

2
(Uλ∂λX

8)2

]
, (4.5)

1In this paper we only consider the case where any hyper-multiplet fields have been set to zero.
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where we have compactified along the θ6 direction. To deduce the full non-Abelian action

we replace the Abelian fields in the Dirac-Born-Infeld (dbi) action with non-Abelian ones

and complete the squares in such a way as to reproduce the Abelian D-brane action and

first order non-Abelian action found above. This leads to

SΩ
D = − 1

g2
Ω

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2
DµX

8DµX8 +
1

2
(DµX

9 + FµλU
λ)(DµX9 + FµρUρ)

+
1

2
(− i[X8,X9] + UλDλX

8)2

]
. (4.6)

We note that the coefficient of the term ([X8,X9])2 is deduced by rescaling X9 (assuming

∆ is constant) to have a standard kinetic term. It then follows from T-duality that the

coefficient of −1
2([X8,X9])2 is the same as the coefficient of 1

4FµνF
µν . If we set Φ =

X8 + i X9, the action takes the familiar form of an Omega-deformation:

SΩ
D = − 1

g2
Ω

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2
(DµΦ + i FµλU

λ)(DµΦ̄− i FµρUρ)

+
1

8
([Φ, Φ̄] + UλDλ(Φ + Φ̄))2

]
, (4.7)

in agreement with the bosonic part of [21].

4.2 Alpha-deformation

Let us now consider instead the case Λ = S. We reduce on θ10 = x6/R6, so that in effect

the roles of x6 and x10 have been swapped with respect to the Omega-deformation. The

resulting type iia background is given by

ds2
10 = ∆

[(
ηµν −

UµUν
∆2

)
dxµ dxν +

(R10 dθ6)2

∆2
+ (dx8)2 +

(dx9)2

∆2
+ (d~x⊥)2

]
,

eΦ = ∆1/2 ,

C =
R10

∆2
dθ6 ∧ dx9 ∧ U .

(4.8)

Note that instead of the NS-NS field of the Omega-deformation, an RR-field appears in the

type iia background. This is in fact the graviphoton field which has been identified e.g.

in [21–26]. For a single D-brane extended in (x0, x1, x2, x3, θ6) between parallel NS-branes

separated in θ6, the deformation to leading order in ε comes from the Chern-Simons term:

δASD4 =
iR10

4πR6

∫
d4x εµνλρUµFνλ ∂ρX

9. (4.9)

Note that the factor of i arises because we consider Euclidean time.

To find the non-Abelian version of eq. (4.9) we follow the discussion above and consider

a T-duality along x8. However in this case, the three-form C becomes a four-form by picking

up an extra leg along x8. As a result, δASD4 is essentially unchanged and hence we simply

find that the non-Abelian version of (4.9) is

δASD4 =
iR10

2πR6
Tr

∫
d4xDµX

9Uν ? Fµν . (4.10)

– 7 –



J
H
E
P
1
1
(
2
0
1
4
)
1
6
2

From the point of view of the IIA theory, the Alpha- and Omega-deformations are related

by a “9-11” flip, corresponding to an S-duality transformation in type iib. After a double

integration by parts, the first order deformation can be rewritten as

δASD4 = − iR10

4πR6
Tr

∫
d5xX9ωµν ? Fµν

= − iR10

4πR6
Tr

∫
d5xX9 ? ωµνF

µν

= − iR10

2πR6
Tr

∫
d5xX9∂µ

∗Uν ? Fµν ,

(4.11)

where ?U is defined by the relation ?ω = d?U . If we integrate by parts again we find

δASD4 =
iR10

2πR6
Tr

∫
d5xDµX

9∗UνF
µν + X9∗UνDµF

µν

=
iR10

2πR6
Tr

∫
d5xDµX

9∗UνF
µν − i[X8,X9]∗UµD

µX8

+ X9∗Uν(DµF
µν − i[X9,DνX9]− i[X8,DνX8])

∼=
iR10

2πR6
Tr

∫
d5xDµX

9∗UνF
µν − i[X8,X9]∗UµD

µX9 ,

(4.12)

where in the last line we have used the equation of motion for Aν . Thus to first order in ε,

the Alpha deformation eq. (4.12) and the Omega-deformation eq. (4.4) agree on-shell (up

to the switch Uµ ↔ ∗Uµ and R6 ↔ R10). In particular one can map them to each other

via the field redefinition

Aν → Aν + i X9∗Uν . (4.13)

Next we need to look at the Alpha-deformation at higher orders. To this end consider

a single D-brane. The truncated action to all orders in ε (expanded up to second order in

the space-time derivatives) is given by

SAD = − 1

g2
A

∫
d4x

[
1

4
FµνF

µν +
1

2∆2

(
∂µX

9 + iUλ ? Fµλ

) (
∂µX9 + iUρ ? F

µρ
)

+
1

2
∂µX

8∂µX8 +
1

2∆2
(Uµ∂µX

9)2 +
1

2
(Uµ∂µX

8)2

]
, (4.14)

where

g2
A = 2π

R6

R10
=

4π2

g2
Ω

. (4.15)

This is weakly coupled when g2
A � 1, i.e. g2

Ω � 1. To obtain the non-Abelian action we

simply replace all fields by their non-Abelian version:

SAD = − 1

g2
A

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2∆2

(
DµX

9 + iUλ ? Fµλ

) (
DµX8 + iUρ ? Fµρ

)
+

1

2
DµX

8DµX8 +
1

2∆2
(UµDµX

9)2 +
1

2
(UµDµX

8)2 − 1

2∆2
([X8,X9])2

]
. (4.16)

Note that in the Omega-deformed action eq. (4.6), ε appears only up to quadratic

order, while in the Alpha-deformation, all orders are present. We see that the ε-expansion

is independent of the expansion in space-time derivatives.
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4.3 An SL(2,R) family of solutions

After having discussed the cases Λ = 1 and Λ = S, let us discuss the generic case which

interpolates between the two. After reducing on θ10, the resulting type iia background is

given by

g =
R(∆)

R

[(
δµν −

UµUν
∆2

)
dxµ dxν + (dx8)2 +

(dx9)2

∆2
+ (d~x⊥)2

]
+
R2

10R
2
6(dθ6)2

RR(∆)
,

B = d
R10

R

U ∧ dx9

∆2
, e−Φ=

(
R

R(∆)

)3/2

∆,

C1 = − R

R(∆)2

(
bdR2

10 + acR2
6 ∆2

)
dθ6, C3 = −bR10

U ∧ dx9 ∧ dθ6

∆2
,

(4.17)

where R2 = d2R2
10 + c2R2

6 and R(∆)2 = d2R2
10 + c2R2

6∆2.

Consider now the dbi-action of a single D-brane. As usual we can neglect the depen-

dence of the fields on the compact direction θ6 and the resulting effective action at second

order in the space-time derivatives is2

SΛ = − 1

g2
Λ

∫
d4x

[
1

4
FµνFµν +

1

2
(δµν + UµUν) ∂µX

8 ∂νX
8

+
g2

Λ

2∆g2
∆

(
∂µX

9 + d
gΩ

gΛ
FµνU

ν − i c
gA
gΛ
?FµνU

ν

)2

+ c2 g2
A

2∆g2
∆

(
Uµ ∂µX

9
)2]

+
i

4
Re[τ ]

∫
d4xFµν?Fµν , (4.18)

where

g2
Λ = c2g2

A + d2g2
Ω , g2

∆ = c2g2
A∆ +

d2g2
Ω

∆
, (4.19)

and

τ =
a(2π i /g2

Ω) + b

c(2π i /g2
Ω) + d

, τ(∆) =
a(2π i ∆/g2

Ω) + b

c(2π i ∆/g2
Ω) + d

, (4.20)

so that 2π/g2
Λ = Im[τ ] and 2π/g2

∆ = Im[τ(∆)]. We see that gΛ interpolates between gA and

gΩ but is rarely weakly coupled. Note that the F ∧F term is undeformed and corresponds

to the second Chern class of the four-dimensional space-time for any value of ε.

The non-Abelian version of the action eq. (4.18) is obtained following the same prin-

ciples of compatibility with T-duality used to arrive at Equation (4.4). The coefficient of

the term ([X8, X9])2 is obtained by completing the square. The action takes the form

SΛ = − 1

g2
Λ

Tr

∫
d4x

{
1

4
FµνFµν +

1

2
DµX8DµX

8

+
g2

Λ

2∆g2
∆

[(
DµX

9 + d
gΩ

gΛ
FµνU

ν − i c
gA
gΛ
?FµνU

ν

)2

2We used the identity 2 (UµFµν + Uµ?Fµν)2 =
(
∆2 − 1

)
(FµνFµν + Fµν?Fµν).

– 9 –



J
H
E
P
1
1
(
2
0
1
4
)
1
6
2

+

(
d
gΩ

gΛ
UµDµX

8 − i [X8, X9]

)2]
+
c2g2

A

g2
∆

(
∆(UµDµX

8)2 +
1

∆
(UµDµX

9)2

)}

+
i

4
Re[τ ] Tr

∫
d4xFµν?Fµν . (4.21)

The family of truncated gauge theories obtained by Λ ∈ SL(2,Z) lift by construction

all to the same (2, 0) theory in six dimensions. Therefore they all flow to the same infrared

fixed point. Alternatively, for Λ ∈ SL(2,R)/SL(2,Z) the truncated theories are not be

completed by the same (2, 0) theory in the uv and would not be equivalent in the ir.

There are different ways of interpreting the expression eq. (4.21) for the action. On

the one hand, it can be understood as a deformation of flat space with extra couplings;

on the other hand it can be interpreted as an action in curved space. In this spirit one

observes that the gauge part of the action can be written also as

L Λ
gauge = −

√
G

4g2
∆

FµνFµ′ν′G
µµ′Gνν

′
, (4.22)

where

Gµν = δµν −
UµUν
∆2

. (4.23)

When ε1 = ±ε2 this is the metric of a cigar interpolating between R4 at the origin and

R3 × S1 at infinity; this geometry is the underlying reason of the localization properties of

the Omega-deformed action. A more detailed analysis of the Riemannian properties of G

is presented in appendix A.

If we limit ourselves to terms up to first order in ε in the action eq. (4.18) we find

SΛ = − 1

g2
Λ

∫
d4x

[
1

4
FµνFµν +

1

2
∂µX

8 ∂µX
8 +

1

2
∂µX

9 ∂µX
9+

+

(
d
gΩ

gΛ
Fµν − i c

gA
gΛ
?Fµν

)
∂µX

9Uν

]
− i

4
Re[τ ]

∫
d4xFµν?Fµν +O(ε2) , (4.24)

which can also be put in a more suggestive form:

iSΛ = −(τ − τ̄)

∫
d4x

[
1

4
FµνFµν +

1

2
∂µX

8 ∂µX
8 +

1

2
∂µX

9 ∂µX
9 + eiϕ?Fµν ∂µX

9Uν

]
− i

4
(τ + τ̄)

∫
d4xFµν?Fµν +O(ε2) , (4.25)

where ϕ = arg(d gΩ ± i c gA) = arg(dR10 ± i cR6).

In the non-Abelian case, the first-order action has an extra contribution from the

commutator [X8,X9]:

iSΛ = −(τ − τ̄) Tr

∫
d4x

[
1

4
FµνFµν +

1

2
DµX

8DµX
8 +

1

2
DµX

9DµX
9 − 1

2
[X8,X9]2
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+

(
d
gΩ

gΛ
Fµν − i c

gA
gΛ
?Fµν

)
DµX

9Uν − i d
gΩ

gΛ
[X8,X9]UµDµX

8

]
− i

4
(τ + τ̄) Tr

∫
d4xFµν?Fµν +O(ε2) . (4.26)

A nicer form is obtained if we partially integrate the ?F term and use the eom for A as

was done earlier in eq. (4.12). On-shell,

Tr[?FµνUνDµX
9] ∼= Tr[Fµν

∗UνDµX9 − i[X8,X9]∗UµDµX
8] , (4.27)

resulting in

iSΛ = −(τ − τ̄) Tr

∫
d4x

[
1

4
FµνFµν +

1

2
DµX

8DµX
8 +

1

2
DµX

9DµX
9 − 1

2
[X8,X9]2

+

(
d
gΩ

gΛ
Uµ − i c

gA
gΛ

∗Uµ
)(

FµνD
νX9 − i[X8,X9]DµX

8
)]

− i

4
(τ + τ̄) Tr

∫
d4xFµν?Fµν +O(ε2) . (4.28)

In a more suggestive form,

iSΛ = −(τ − τ̄) Tr

∫
d4x

[
1

4
FµνFµν +

1

2
DµX

8DµX
8 +

1

2
DµX

9DµX
9 − 1

2
[X8,X9]2

+ eiϕ d−1? dUµ
(
FµνD

νX9 − i[X8,X9]DµX
8
)]

− i

4
(τ + τ̄) Tr

∫
d4xFµν?Fµν +O(ε2) , (4.29)

where we used the fact that ∗U = d−1? dU and (d−1? d)2U = U .

The formulae above show that in the Abelian (and in the non-Abelian on-shell) case

the first order deformation remains essentially the same for any choice of Λ and it only

depends on a phase ϕ = arg(d gΩ ± i c gA) = arg(dR10 ± i cR6) generalizing what we had

already observed for the cases of the Alpha- and Omega-deformations. The SL(2,Z) acts

as a rotation of the ε-parameters in the complex plane.3

To summarize, let us review some special choices of the SL(2,Z) element Λ:

• when Λ is the identity, g2
Λ = g2

Ω and g2
∆ = g2

Ω/∆, and we recover directly the Omega-

deformation of eq. (4.5);

• when Λ is S =
(

0 −1
1 0

)
, g2

Λ = g2
A = 1/g2

Ω, g2
∆ = ∆g2

A = ∆/g2
Ω. We find the Alpha-

deformation of eq. (4.14);

• when Λ is Tn = ( 1 n
0 1 ), g2

Λ = g2
Ω and g2

∆ = g2
Ω/∆, and we recover the Omega-

deformation plus a topological term STn = SΩ + n i
4

∫
F ∧ F .

3In this paper, the εi are real for Λ = 1. The SL(2,Z) rotates their phases together, thus leaving their

ratio real. This is to be contrasted with the more general case of complex εi for which two independent

deformations must be introduced, see the discussion in [13].
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• when Λ is STn =
(
n −1
1 0

)
, g2

Λ = g2
A = 1/g2

Ω, g2
∆ = ∆g2

A = ∆/g2
Ω, and we recover the

Alpha-deformation plus a topological term SSTn = SA + n i
4

∫
F ∧ F .

The SL(2,Z) elements Λ = Tn are the only ones that cause ∆ to drop out from the action.

In this case (i.e. the Ω-deformation), therefore, there are no corrections of order higher

than ε2. The interpretation of extra couplings added to the flat space action is now the

more natural one (notice that
√
G/g2

∆ = 1/g2
Ω).

So far the discussion has focused on the case where both x6 and x10 are periodic,

leading to the so-called elliptic models on the D-branes. However we can easily extend

the results to the case where one direction is non-compact. To this end, instead of (3.8)

we introduce the coordinates (
y6

y10

)
=

(
d c

b a

)(
x6

x10

)
. (4.30)

We can write down the metric and find an SL(2,R) family of truncated theories by reducing

on y10 ∼= y10 + 2πR′. In this case the D-branes are extended along y6 but terminate on

the NS-branes that are located at fixed values of y6, say y6 = 0 and y6 = l. From the

point of view of the D-branes this is effectively a compactification along y6. The result

for a single D4-brane is

SΛ = − l

2πR′

∫
d4x

[
1

4

1

c2 + d2
FµνFµν +

1

2
(δµν + UµUν) ∂µX

8 ∂νX
8

+
1

2

c2 + d2

c2∆ + d2

(
∂µX

9 +
d

c2 + d2
FµνU

ν − i
c

c2 + d2
?FµνU

ν

)2

+
1

2

c2

c2∆2 + d2

(
Uµ ∂µX

9
)2]

+
i l

8πR′
bd+ ac

c2 + d2

∫
d4xFµν?Fµν . (4.31)

Following previous arguments we see that the non-Abelian version is

SΛ = − l

2πR′
Tr

∫
d4x

{
1

4

1

c2 + d2
FµνFµν +

1

2
DµX8DµX

8

+
1

2

c2 + d2

c2∆ + d2

(
DµX

9 +
d

c2 + d2
FµνU

ν − i
c

c2 + d2
?FµνU

ν

)2

+
1

2

1

c2∆ + d2

(
dUµDµX

8 − i [X8, X9]
)2

+
1

2

c2

c2∆2 + d2

(
∆2(UµDµX

8)2 + (UµDµX
9)2
)}

+
i l

8πR′
bd+ ac

c2 + d2
Tr

∫
d4xFµν?Fµν . (4.32)

However here one cannot argue that the SL(2,Z) subset of SL(2,R) is a duality group.

5 Seiberg-Witten actions from M-theory

Until now, we have arrived at the gauge theory actions by first reducing to type iia string

theory, which has resulted in truncated actions which were exact in the deformation param-
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eters εi. In the following, we will take the different approach of using directly the eom of

the M-brane in six dimensions and integrating them over the compact two-cycle that the

M is wrapping to arrive at a four-dimensional result. The resulting gauge theory action

in four dimensions is exact at the quantum level, as it is independent of the compactifi-

cation radius that fixes the gauge coupling in type iia. It is however difficult to treat the

deformation to all orders, so we must proceed order by order.

In order to compare the results obtained this way with the truncated theories that we

have obtained in the last section, we can take a weak-coupling limit of the effective theory

we will be discussing in the following. Since all the truncated theories lift to the same (2, 0)

theory on the M-brane, they also all flow to the same ir theory. We can therefore choose

any representative of the SL(2,Z) for our comparison.

5.1 Comparison with the first order result

The low energy effective action for an M5-brane in the flux background corresponding to

the Alpha-deformation was computed to linear order in ε in [17], where the M-brane still

wraps a Riemann surface Σ:4

iS = −
∫

d4x (τ − τ̄)

[
1

2
∂µa ∂µā+ FµνF

µν +
i (a+ ā)

4
?ωµνF

µν + ∂µ
i (a− ā)

2
?Fµν?Uν

]
− (τ + τ̄)

[
Fµν?F

µν +
i (a+ ā)

4
ωµνF

µν + ∂µ
i (a+ ā)

2
?Fµν?Uν

]
, (5.1)

where a is the sw scalar (for simplicity, we are considering the SU(2) case):

a =

∮
A
λSW , aD =

∮
B
λSW , τ =

daD
da

, λ =
∂λSW
∂u

, (5.2)

where u is the modulus of Σ, A, B are the A- and B-cycles of Σ, and λSW the sw one-form.

In order to compare this result with the truncated theories, we need to go to the weak

coupling limit. In this language, this corresponds to the large u-limit, where

τ(a) = i /g2 (5.3)

is a real constant. In the self-dual case ω = ?ω, the action reduces to

S = − 2

g2

∫
d4x

[
1

2
∂µa ∂µā+ FµνF

µν +
i

2
ā Fµνωµν

]
. (5.4)

Let us compare with the truncated action from the D-brane given in Eq. (4.7) in the

Omega-background at first order in ε:

SD = − 1

g2
Ω

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2
DµΦ DµΦ̄ +

1

8
[Φ, Φ̄]2 +

1

2i
Dµ

(
Φ− Φ̄

)
FµρUρ

]
.

(5.5)

4Note that we have rescaled ω → 1
4
ω and performed a field redefinition a→ i ā in the results of [17] to

agree with the conventions of this paper.
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The two actions are different, since one was obtained by integrating out the high energy

modes and the other by truncating them. They are however related by a field redefinition

and the addition of a Q-exact term. The field redefinition corresponds to a different gauge

choice for the B-field in type iia.

The truncated action is the bosonic part of a supersymmetric action [21] which is

invariant under the action of the operator Q̄Ω defined by

Q̄ΩAµ = Ψµ ,

Q̄ΩΨµ = DµΦ + i FµνU
ν ,

Q̄ΩΨ̄ = [Φ, Φ̄] + iUµDµΦ̄ ,

Q̄ΩΨ̄µν = 2Hµν ,

Q̄ΩΦ = iUµΨµ ,

Q̄ΩΦ̄ = Ψ̄ ,

Q̄ΩHµν = i
2

(
Uλ ∂[λΨ̄µν] + ∂[µ(UλΨ̄λν]) + [Φ, Ψ̄µν ]

)
,

(5.6)

where Ψ are the fermions (after a topological twist) and Hµν is an anti-self dual auxiliary

field. This charge squares to the Lie derivative5 in the direction of the vector iUµ ∂µ:

Q̄2
Ω = iLU . (5.9)

Adding a term proportional to Q̄Ω(ΨµF
µνUν), the linear term DµΦFµνUν can be elimi-

nated from the Ω-deformed action:

S′D = SD +
i

2g2
Ω

Tr

∫
d4x Q̄Ω(ΨµF

µνŪν)

= − 1

g2
Ω

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2
DµΦ DµΦ̄ +

1

8
[Φ, Φ̄]2 − 1

2 i
DµΦ̄FµνUν

]
. (5.10)

Consider now the field redefinition A→ A− 1
2 iUΦ̄. After integrating by parts, the action

becomes

S′D = − 1

g2
Ω

Tr

∫
d4x

[
1

4
FµνF

µν +
1

2
DµΦ DµΦ̄ +

1

8
[Φ, Φ̄]2 +

1

4 i
Φ̄Fµνωµν

]
. (5.11)

This action matches with the weak coupling limit of the ir theory if we take

1/g2
Ω = Im(τ) , Φ = −aσ3 , Aµ = 2Aµσ3 . (5.12)

5Note that even though Q̄2
Ω = iLU 6= 0 it still follows that adding a Q̄Ω-exact term Q̄ΩΛ to the action

does not change the partition function if Λ is invariant under the action of LU . The argument is similar to

the standard one: consider the action S + tQ̄ΩΛ, then

d

dt

∫
DΦ exp[S + tQ̄ΩΛ] =

∫
DΦ Q̄ΩΛ exp[S + tQ̄ΩΛ] =

∫
DΦ Q̄Ω

[
Λ exp[S + tQ̄ΩΛ]

]
= 0 , (5.7)

since Q̄Ω is a functional differential for the path integral. This holds for any scalar Λ, since i ∂µU
µ = 0

turns the Lie derivative into a total derivative:

LUΛ = Uµ ∂µΛ = ∂µ(UµΛ). (5.8)
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5.2 Second order SW action for the scalar sector

To first order in ε the resulting low energy sw effective action receives source terms from

the background flux but the underlying geometrical structure is unchanged. Therefore it is

interesting to determine whether or not the geometry of the sw curve is altered at higher

orders in ε. The main difference is that at second order in ε, the metric receives corrections,

however the four-form flux remains the same as at order ε. In particular, the metric is no

longer flat and as we now show it has the structure of a C2-bundle over R7
ε , where the

metric of R7
ε is conformally equivalent to Gµν = δµν − UµUν

∆2 . For simplicity, we will limit

ourselves in the following to the selfdual case ε1 = ε2.

To proceed we introduce new, adapted, complex coordinates. For any Λ ∈ SL(2,R),

we can introduce complex coordinates v, s. For Λ ∈ SL(2,Z), the complex structures are

all equivalent. In the following section, we will remain with Λ = 1 as this leads to the

simplest result for the metric. Let us define{
v = ∆1/2x8 + i x9

∆1/2 ,

s = x6 + i x
10

∆ .
(5.13)

The bulk metric now becomes

ds2 = ∆2/3

[(
δµν −

UµUν
∆2

)
dxµ dxν +

(
ds+

s− s̄
2

d log ∆

)(
ds̄− s− s̄

2
d log ∆

)
+

1

∆

(
dv − v̄

2
d log ∆

)(
dv̄ − v

2
d log ∆

)]
. (5.14)

This is precisely a C2-bundle over R7 with connection

As =
s− s̄

2
d log ∆ , Av =

v

2
d log ∆ . (5.15)

The background field now takes the form

G4 = −1

8
(dD ∧ ω + 2 d(D ∧ U) ∧ log ∆) , (5.16)

where D = (s− s̄) dv̄ + v d(s− s̄).

BPS embedding at second order. The natural guess is that at second order, the M-

brane is still a holomorphic object, ∂̄s = 0, but now with respect to the bundle in eq. (5.14).

To check this, we calculate the Killing spinors preserved by the M-brane and show that

they are the same as the ones preserved by both the lifts of the NS- and D-branes when

taken separately. It follows that Witten’s construction still applies and the NS/D system

is lifted to a single M-brane wrapped on a Riemann surface in the new complex bundle.

In presence of the M-brane, the physical quantity is not the flux G but the pullback

of the three-form Ĉ that appears explicitly in the Bogomol’nyi-Prasad-Sommerfield (bps)

condition. In this case, the supersymmetry condition selects the choice of gauge C =

−1
8D ∧ ω, where D is given in eq. (5.16). Note that in this gauge, the three-form C

depends explicitly on x10 and cannot be reduced to type iia.
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The embedding for the M is obtained by requiring that the preserved supersymmetries

are the same as in the string theory D-brane realization in terms of Ds suspended between

NSs. In other words, we require that

ΠM
+ ΠNS

− ΠD
− η = 0 , (5.17)

where ΠNS and ΠD are the projectors for the M-branes obtained by lifting respectively

the NSs and the Ds. In our choice of vielbein (see eq. (B.1)), these projectors are written

in terms of the following gamma matrices:

ΓNS = − i γ012389, (5.18)

ΓD =
i

∆2
γ026(10)

[
γ13 − ε

√
(x0)2 + (x1)2 γ93 − ε

√
(x2)2 + (x3)2 γ19

]
, (5.19)

where the lower-case γ-matrices are in the tangent frame.

The expression for the projector ΠM depends on the selfdual three-form h3 which at

this order in ε satisfies the condition

dh3 = −1

4
Ĝ4. (5.20)

It follows that our ansatz for the complete embedding has to include both the gauge choice

for h3 and the geometry of the M-brane.

Let us consider a brane extended in {x0, . . . , x3 } and wrapping a Riemann surface Σ =

{ s = s(z), v = z } in the complex bundle geometry described in eq. (5.14). The pullback

of the four-form flux is given by

Ĝ4 =
1

2

(
∂s− ∂̄s̄

)
dz ∧ dz̄ ∧ ω , (5.21)

and using the result of [17] we make the following ansatz for the selfdual three-form:

h3 = −1

4

(
Ĉ3 + i ?Ĉ3

)
= −1

8

(
s− s̄− z ∂̄s̄

)
dz̄ ∧ ω . (5.22)

After some straightforward but tedious computations involving large matrix products, we

find that this ansatz satisfies the bps condition ΠM
+ ΠNS

− ΠD
− η = 0 and the M is indeed

holomorphically embedded in the C2-bundle.

The scalar equation. Now that we have found a supersymmetric embedding for the M5-

brane, we want to study the effective theory describing the oscillations around the ground

state, following [16, 17, 27]. This will describe the ir limit of the Ω-deformed sw theory.

In this paper we concentrate on the scalar fluctuations around the supersymmetric

configuration and set the fluctuations of the worldvolume three-form to zero. That this is

a consistent solution to the equations of motion follows from the first order action computed

in (5.1) which admits the solution Fµν = (a − ā)ωµν and this corresponds in turn to no

fluctuations of the three-form (Fµν = 0 in the notation of [17]). If we only consider scalar

fields, the M5-brane is a generalized minimal surface, i.e. the action is simply given by the

square root of the determinant of the pullback of the metric plus terms that come from the
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background flux. While the purely metric terms come from a six-dimensional action, the

flux terms do not seem to. Nevertheless reducing the system on the Riemann surface does

lead to a system with a four-dimensional action that corresponds to the usual sw action

but with an R4
ε metric as we now show.

In the ground state, the M5-brane is wrapped on the direct product of R4
ε and a

Riemann surface Σ = {s = s(z), v = z}. We consider fluctuations in which the M is

wrapped on a fibration of the same Riemann surface Σ over R4
ε where the moduli ui of Σ

depend on the spacetime coordinates xµ. In this paper we will restrict ourselves to the

SU(2) case in which there is a single modulus u. We expect that our result will simply

generalise in the obvious way for more complicated cases. In other words, the M5-brane is

wrapping the manifold

{xµ = xµ, µ = 0, . . . , 3; v = z; s = s(z | u(xµ)) } , (5.23)

so that ∂µs = ds
du ∂µs.

The scalar equation of motion for a single M5-brane is given by [28]

(ĝmn − 16hmpqhnpq)∇m ∂nXM = −2

3
GMmnph

mnp. (5.24)

Our aim is to derive a four-dimensional deformed action S4 from here. To do so, we

will treat the l.h.s.and the r.h.s.of eq. (5.24) differently. The l.h.s.directly corresponds to

an action Sl.h.s.
6 in six dimensions (which is only possible since we are considering only

the scalar sector) which can be straight-forwardly reduced to four dimensions. On the

other hand the r.h.s.does not seem to arise from an action in six dimensions. So we will

integrate the r.h.s.over Σ, which will result in an eom in four dimensions, from where we

can reconstruct L r.h.s.
4 . The end result will be L4 =

∫
Σ L l.h.s.

6 dz ∧ dz̄ −L r.h.s.
4 .

Let us first consider the l.h.s.. The pullback of the bulk metric given in eq. (5.14)

takes the form

d̂s
2

=
∆2/3

2

[(
δµν −

UµUν
∆2

+ ∂µs ∂ν s̄+ 2Âsµ ∂νs

)
dxµ dxν + 2

(
Âsµ ∂s+ Âvµ

)
dxµ dz

+ (1 + |∂s|2) dz dz̄

]
+ c.c. (5.25)

In order to study the fluctuations, we limit ourselves to terms up to second order in the

spacetime derivatives (note that the two-form ω = ωµν dxµ ∧ dxν contains one spacetime

derivative). This implies that the generalized metric including terms in ε and ∂µ up to

second order is given by

g̃mn = (ĝmn − 16hmpqhnpq)
−1 = ĝmn + 16hmpqh

pq
n +O(ε3)

= ĝmn + 2ε2
(
s− s̄− z ∂̄s̄

)2
dz̄2 +O(ε3) +O(∂3

µ). (5.26)

Since the covariant derivative appearing in eq. (5.24) is taken with respect to the metric

g̃, the l.h.s.has the form of the eom for a minimal surface with metric g̃ at second order

in the derivatives. As such it descends from the action

Sl.h.s.
6 =

∫
d6x

√
det g̃. (5.27)
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The bundle in the bulk being non-trivial we expect the presence of a covariant derivative

in the action. In fact it is convenient to write explicitly the result of the expansion at

second order in ε and ∂µ:

√
det g̃ = (δµν + UµUν) ∂µs ∂ν s̄+

ε2

2
xµ
(
z̄ ∂s ∂µs̄+ z ∂̄s̄ ∂µs

)
− ε2

2
(s− s̄)xµ ∂µ(s− s̄) .

(5.28)

Having obtained a six-dimensional Lagrangian corresponding to the l.h.s.of the eom we can

write the corresponding four-dimensional one by integrating over the Riemann surface Σ:

L l.h.s.
4 =

∫
Σ
L l.h.s.

6 dz ∧ dz̄ . (5.29)

Thus to evaluate the reduction of the l.h.s.over the Riemann surface we encounter three

integrals, I1, . . . , I3 coming from the three terms in (5.28).

The first is the integral of ∂µs ∂ν s̄. Since the field s depends on xµ via the modulus u

we find ∂µs = (∂s/∂u)∂µu. The corresponding integral was already evaluated in [27]:

I1 =

∫
Σ
∂µs ∂ν s̄ = − 1

2 i
(τ − τ̄) ∂µa ∂µā , (5.30)

where τ is the period function of Σ and a is the sw scalar.

Next we consider the second term which involves

I2 =
ε2

2
xµ
∫

Σ
z̄ ∂s ∂µs̄ =

ε2

2
xµ ∂µū

∫
Σ
z̄ ∂s

∂s̄

∂ū
dz ∧ dz̄ . (5.31)

Using the explicit expression of s(z|u) for SU(2) (see [15]) one sees that ∂s/∂z =

−2z(∂s/∂u), and hence

I2 = −ε
2

4
xµ ∂µū

∫
Σ
|∂s|2 dz ∧ dz̄ . (5.32)

We now observe that this integral over Σ does not depend on the modulus u. To this end

we first write it as a total derivative: I2 = ε2

2 x
µI ′2 with

I ′2 =

∫
Σ
|∂s|2 dz ∧ dz̄ =

∫
Σ

d(s ∂̄s̄ dz̄) (5.33)

so that it reduces to an integral on the boundary of Σ:

I ′2 =

∮
∂Σ
s ∂̄s̄ dz̄ . (5.34)

Since there are no poles only the contribution at infinity remains. At infinity we have

s ∼ ln(2z2) +O(1/z2) and ∂̄s̄ ∼ 1/z̄ +O(1/z̄2). Thus the integral is

I ′2 =

∫
ln(2z2)

z̄
dz̄ (5.35)

plus terms that vanish at large z. So the integral is divergent but the divergence does not

depend on u or ū and hence it does not depend on xµ. It turns out that it will be canceled
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by the r.h.s.. Therefore, up to a ∂µ derivative6 it follows that

I2 = ε2ū

∫
Σ
|∂s|2 dz ∧ dz̄ . (5.36)

The third term appearing in the reduction of the l.h.s.is, up to a ∂µ derivative, simply

I3 = −ε
2

2
xµ
∫

Σ
(s− s̄) ∂µ(s− s̄) dz ∧ dz̄ = ε2

∫
Σ

(s− s̄)2 dz ∧ dz̄ . (5.37)

In summary, the contribution of L l.h.s.
4 to the four-dimensional action is given by

L l.h.s.
4 = (δµν + UµUν) I1 + I2 + Ī2 + I3

= − 1

2 i
(τ − τ̄) (δµν + UµUν) ∂µa ∂ν ā

+ ε2 (u+ ū)

∫
Σ
|∂s|2 dz ∧ dz̄ + ε2

∫
Σ

(s− s̄)2 dz ∧ dz̄ .

(5.38)

Let us next consider the r.h.s.in the equation of motion (5.24), −2
3G

M
mnph

mnp. For

consistency with the l.h.s.we consider only variations which keep Σ holomorphic and discard

the factor (1 + |∂s|2)−1 [27]. Of the resulting expressions, only the cases XM = s, s̄ are

non-trivial and take the form (i.e. see [17])

E :=

(
−2

3
Gsmnph

mnp

)
(1 + |∂s|2) = 2ε2

(
s− s̄− z ∂̄s̄

)
. (5.39)

This is related to the variation of the four-dimensional action L r.h.s.
4 with respect to the

sw scalar a:7
δ

δa
L r.h.s.

4 =
du

da

∫
Σ
E λ ∧ dz̄ . (5.40)

This can in turn be expressed in terms of a variation of L r.h.s.
4 with respect to the

modulus u:
δ

δu
L r.h.s.

4 =

∫
Σ
E λ ∧ dz̄. (5.41)

Explicitly, this is given by∫
Σ
E λ ∧ dz̄ = 2ε2

∫
Σ

(s− s̄)λ ∧ dz̄ − 2ε2
∫

Σ
z ∂̄s̄λ ∧ dz̄

= 2ε2
∫

Σ
(s− s̄) ∂s

∂u
dz ∧ dz̄ − 2ε2

∫
Σ
z ∂̄s̄

∂s

∂u
dz ∧ dz̄

= ε2
∂

∂u

∫
Σ

(s− s̄)2 dz ∧ dz̄ + ε2
∫

Σ
|∂s|2 dz ∧ dz̄ . (5.42)

Hence

L r.h.s.
4 = ε2

∫
Σ

(s− s̄)2 dz ∧ dz̄ + ε2u

∫
Σ
|∂s|2 dz ∧ dz̄ + F (ū) , (5.43)

6As usual we assume that the fields vanish quickly at infinity in the directions xµ.

7If L r.h.s.
6 were to exist, then

∫
Σ
E λ∧dz̄ =

∫
Σ

δLr.h.s.
6
δs

∂s
∂u

dz∧dz̄ = ∂
∂u

∫
Σ
L r.h.s.

6 dz∧dz̄ = ∂
∂u

L r.h.s.
4 .
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where F (ū) is an arbitrary function that we can fix requiring the action to be real:

F (ū) = ε2ū

∫
Σ
|∂s|2 dz ∧ dz̄ . (5.44)

Combining the l.h.s.with the r.h.s.we find that the final expression for the four-dimensional

action for the scalar sector of the deformed sw action at second order in ε is

Sscal =

∫
R4
ε

d4x
(
L l.h.s.

4 −L r.h.s.
4

)
= −

∫
R4
ε

d4x Im(τ)
(
δµν + ε2UµUν

)
∂µa ∂ν ā

= −
∫
R4
ε

d4x Im(τ(∆))
√

detGGµν ∂µa ∂ν ā , (5.45)

where Gµν is the metric of R4
ε and τ(∆) = ∆τ as in eq. (4.20) for Λ = 1. Note that τ

remains the same as in the undeformed case albeit expressed in terms of new variables

reflecting the modified complex structure. Despite having treated only the scalar sector

to avoid technical complications, important quantities such as the period function τ can

be read off directly from our final result.

6 Conclusions and outlook

In this note we have introduced a new family of deformed supersymmetric gauge theories

with four supercharges which include the Omega-deformation and its S-dual that we chris-

ten the Alpha-deformation. Since they are obtained via dimensional reduction from the

same six dimensional (2, 0) theory, they are all completed by the same theory in the uv and

flow to the same point in the ir. This latter can be described explicitly as a deformation of

the standard sw theory in terms of membrane dynamics. In the self-dual case (ε1 = ε2), at

first order in ε, the type iia brane construction lifts to a single M5-brane wrapped on a Rie-

mann surface as in Witten’s undeformed result, but with a background flux [17]. At second

order in the deformation, we still have the same spectral curve of the undeformed sw theory

but in terms of different variables that describe a different complex structure coinciding with

the standard one only for ε = 0. Geometrically, this corresponds to the fact that, even in the

ground state, the M-brane wraps a Riemann surface which is non-trivially fibered over R4
ε .

A number of interesting open problems present themselves at this point.

• Calculating the deformed sw theory to all orders in ε, including quantities such

as the susy transformations, the embedding of the M-brane and the prepotential,

would substantially improve our understanding which is currently based only on the

quadratic order of the deformation. The calculation of scattering amplitudes and

correlation functions of the deformed sw theory would then also come into reach.

• Exploring the non-selfdual deformation ε1 6= ε2 is another important next step. It

is currently unclear whether Witten’s construction extends to this case as it is not

obvious that a single M would realize the possible Coulomb branch of this theory.

• In the case of the truncated theories we have constructed the bosonic part of su-

persymmetric gauge theories and have explicit expressions for the preserved Killing

spinors. It would be instructive to add the fermionic sectors to the resulting actions.
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• As the deformed theories studied in this article are examples of supersymmetric theo-

ries on curved spaces, it would be interesting to compare our results to recent advances

in the literature on this topic [10, 11]. While we start from the full eleven-dimensional

supergravity solution, we are studying the dynamics of the branes neglecting the back-

reaction. In this sense, the pull-backs of the bulk fields are frozen and do not need to

satisfy any equations of motion.
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A The geometry of R4
ε

All the gauge theories realized in this paper are based on geometries which are conformally

equivalent to the one of the Omega-deformation R4
ε . In order to study this geometry it is

convenient to introduce a coordinate system in which flat space is written as

ds2 =
1

r

[
dr2 + r2(dω2 + sin2 ω dψ2)

]
+ r(dθ + cosω dψ)2 . (A.1)

The coordinate change to rectangular is given by
r = (x0)2 + (x1)2 + (x2)2 + (x3)2,

ω = 2 arctan
√

(x2)2+(x3)2

(x0)2+(x1)2 ,

ψ = arctan x1

x0 − arctan x3

x2 ,

θ = arctan x1

x0 + arctan x3

x2 .

(A.2)

This coordinate system is familiar from the study of Taub-Newman-Unti-Tamburino

(Taub-nut) spaces, which are usually put in the form

ds2 =

(
1

r
+

1

λ2

)[
dr2 + r2(dω2 + sin2 ω dψ2)

]
+

1
1
r + 1

λ2

(dθ + cosω dψ)2 , (A.3)

where λ is the asymptotic radius in the direction θ for large r (i.e. far away from the center

of the Taub-nut).

The metric for R4
ε in the case ε1 = ε2 = ε is easily expressed using the generator of the

rotation U that takes the form

U = Uµ dxµ = ε gθµ dxµ =
ε

V (r)
(dθ + cosω dψ) , (A.4)

∆2 = 1 + Uµg
µνUν = 1 + ε2r =

V + ε2

V
(A.5)
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It follows that the metric Gµν is given by

Gµν dxµ dxν =

(
gµν −

UµUν
∆2

)
dxµ dxν

= V (r)
[
dr2 + r2(dω2 + sin2 ω dψ2)

]
+

(dφ+ cosω dψ)2

V (r) + ε2
.

(A.6)

where V (r) = 1/r. Thus R4
ε can visualized by writing R4 as a cone over S3 and then writing

S3 as a S1 Hopf fibration over S2. Near the origin R4
ε looks like R4. However whereas the

radii of both the S2 and S1 grow without bound in R4, in R4
ε the S1 fibre only grows to a

finite radius at infinity.

Symmetries. In the form (A.6) it is easy to describe the symmetries of the space. Let

J1, J2, J3 be the generators of su(2),
J1 = sinω sinφ dψ + cosφ dω ,

J2 = sinω cosφ dψ − sinφ dω ,

J3 = dφ+ cosω dψ .

(A.7)

The metric of R4
ε is written as

ds2 = V (r)
[
dr2 + r2(J2

1 + J2
2 )
]

+
1

V (r) + ε2
J2

3 , (A.8)

and since J2
1 + J2

2 is the metric of a two-sphere of unit radius, it is immediate to see that

the space has isometry SU(2)×U(1). The four corresponding Killing vectors are given by
K1 = cosψ ∂ω − sinψ

tanω ∂ψ + sinψ
sinω ∂φ ,

K2 = sinψ ∂ω + cosψ
tanω ∂ψ −

cosψ
sinω ∂φ ,

K3 = ∂ψ,

K4 = ∂φ.

(A.9)

Just like the Taub-nut geometry interpolates between flat R4 and R3×S1 with radius 2λ,

also R4
ε interpolates between the same geometries, the only difference being that the asymp-

totic radius of the S1 is 2/ε.

• For r → 0, V (r) + ε2 ' 1/r so the metric becomes

ds2 =
1

r

[
dr2 + r2(J2

1 + J2
2 )
]

+ rJ2
3 = dρ2 +

ρ2

4
(J2

1 + J2
2 + J2

3 ) , (A.10)

which is flat space written as a cone over a three-sphere.8

• For r →∞ we find V (r) + ε2 ∼ ε2 and the limit geometry is R3 × S1:

ds2 = dr2 + r2(J2
1 + J2

2 ) +
1

ε2
dφ2 . (A.11)

In analogy with the two-dimensional geometry described in [19], we find that R4
ε is a four-

dimensional cigar of asymptotic radius 2/ε.

8The factor 4 accounts for the fact that J2
1 + J2

2 + J2
3 is a three-sphere of radius 2.
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r
φ 2

ε

R4

R3 × S1

Figure 1. The geometry of R4
ε interpolates between flat R4 at the origin and R3 × S1 at infinity

in the radial direction.

Hypercomplex structure. The similarity between the metric of R4
ε and the one for

a Taub-nut space can be used to prove that our manifold is hypercomplex (but not hy-

perkähler). Rewrite the metric in the form

ds2 = V (du2
1 + du2

2 + du2
3) +

1

V + ε2
J2

3 (A.12)

where 
u1 = r sinω cosψ ,

u2 = r sinω sinψ ,

u3 = r cosω ,

(A.13)

V = (u2
1 + u2

2 + u2
3)−1/2. (A.14)

In terms of these coordinates one can define the following complex structure:

I du1 = −du2 , I du3 = −
√
V (V + ε2)J3 = −∆V J3 . (A.15)

One shows that I is integrable and that it is preserved by the metric:

g(IX, IY ) = g(X,Y ) , ∀X,Y ∈ ΛR4
ε . (A.16)

The associated Kähler form is given by

ωI =

√
V

V + ε2
du3 ∧ J3 + V du1 ∧ du2 = ∆−1 du3 ∧ J3 + V du1 ∧ du2 . (A.17)

Using the fact that dJ3 = ∗ dV we find that the differential of ωI is

dωI = d[(∆−1 − 1) du3 ∧ J3] , (A.18)

and does not vanish for ε 6= 0, so that the manifold is not Kähler. Finally one finds that

there is a (2, 0) form ΩI:

ΩI = (du1 + i du2) ∧ (du3 + i ∆V J3) . (A.19)

Using the SU(2) symmetry discussed above we can define two more complex structures

that are preserved by the metric g:

J du2 = −du3 , J du1 = −∆V J3 , (A.20)

K du3 = −du1 , K du2 = −∆V J3 , (A.21)
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and their associated Kähler forms

ωJ = ∆−1 du1 ∧ J3 + V du2 ∧ du3 , (A.22)

ωK = ∆−1 du2 ∧ J3 + V du3 ∧ du1 . (A.23)

The three complex structures anticommute and generate an action for the algebra of quater-

nions IJK = −1 on R4
ε which acquires a hypercomplex structure.

Riemannian geometry. We conclude this appendix with the expressions of the volume

element, the scalar curvature and the Ricci tensor for R4
ε :

vol = ωI ∧ ωI =
V

∆
J3 ∧ du1 ∧ du2 ∧ du3 =

r sinω

∆
dr ∧ dφ ∧ dψ ∧ dω, (A.24)

R =
3ε2

2∆2

(
1 +

1

∆2

)
, (A.25)

Ricµν ∂µ dxν =
3ε2

4∆2

[
∂r dr

∆2
+ ∂ω dω + ∂ψ dψ +

∂φ dφ

∆2
−
(

1− 1

∆2

)
∂φ dψ

]
. (A.26)

B Non-linear supersymmetry

For completeness let us give the preserved supersymmetries of the deformed background

with the four-form flux given in eq. (5.16). The analysis of the Killing spinors preserved in

the bulk for finite values of ε is more complicated, but follows along the same lines as the

one in the first order case discussed above. The sixteen Killing spinors η preserved by the

bulk are most conveniently expressed using the following (inverse) vielbein [14]:

e0 =
1

∆1/3

(
x0 ∂0 + x1 ∂1

)
, (B.1a)

e1 =
1

∆1/3

(
−x1 ∂0 + x0 ∂1 + ε

√
(x0)2 + (x1)2 ∂9

)
, (B.1b)

e2 =
1

∆1/3

(
x2 ∂2 + x3 ∂3

)
, (B.1c)

e3 =
1

∆1/3

(
−x3 ∂2 + x2 ∂3 + ε

√
(x2)2 + (x3)2 ∂9

)
, (B.1d)

eA =
1

∆1/3
∂A , A = 4, . . . , 8 , (B.1e)

e9 =
1

∆1/3

(
ε x1 ∂0 − ε x0 ∂1 + ε x3 ∂2 − ε x2 ∂3 + ∂9

)
, (B.1f)

e10 = ∆2/3 ∂10. (B.1g)

In this basis, the spinors η are given by

η =

{
∆1/6 (1 + γ10) exp[φ1γ01] exp[φ2γ23] (γ01 + γ23) η0,

∆1/6 (1− γ10) Γ9 exp[φ1γ01] exp[φ2γ23] (γ01 + γ23) η1,
(B.2)

where η0 and η1 are constant real spinors, γA are gamma matrices satisfying {γA, γB} =

2δAB, Γ9 = ε∆−1(γ1ρ1 + γ3ρ2), ρ1 exp[iφ1] = x0 + ix1 and ρ2 exp[iφ2] = x2 + ix3.
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