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1 Introduction

Studying phase structure in QCD theory is an important and challenging task. It is well

known that QCD is in the confinement and chiral symmetry breaking phase at low tem-

perature/density, while it is in the deconfinement and chiral symmetry restored phase at

high temperature/density. It is widely believed that there exists a phase transition between

these two phases. To obtain the phase transition boundary in the T − µ phase diagram

is a rather difficult task since the QCD coupling constant becomes very strong near the

phase transition region and the conventional perturbative method does not work at all.

Moreover, with the nonzero physical quark masses presented, part of the phase transition

line will weaken to a crossover for a range of temperature and chemical potential that

makes the phase structure of QCD more complicated. Locating the critical point where

the phase transition converts to a crossover is a crucial but rather difficult task. For a long

time, the technique of lattice QCD is the only reliable method to attack these problems.

Although lattice QCD works very well for zero density, it encounters the sign problem when

considering finite density or chemical potential, i.e. µ 6= 0. However, the most interesting

region in the QCD phase diagram is at finite density. The most concerned subjects, such

as heavy-ion collisions and compact stars in astrophysics, are all related to QCD at finite

density. Recently, lattice QCD has developed some techniques to solve the sign problem,

such as reweighting method, imaginary chemical potential method and the method of ex-

pansion in µ/T etc. Nevertheless, these techniques are only able to deal with the cases of

small chemical potentials and quickly lost control for the larger chemical potential. See [1]

for a review of the current status of lattice QCD.

On the other hand, using the recently developed idea of AdS/CFT correspondence

from string theory, one is able to study QCD in the strongly coupled region by studying

its weakly coupled dual gravitational theory, so called holographic QCD. Briefly speaking,

there are two types of holographic QCD models, i.e. top-down and bottom up models.

The models which are directly constructed from string theory are called top-down models.
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The most popular top-down models are D3-D7 [2–5] model and D4-D8 (Sakai-Sugimoto)

model [6, 7]. In these top-down holographic QCD models, confinement and chiral symmetry

phase transitions in QCD have been addressed and translated into geometric transforma-

tions in the dual gravity theories. Meson spectrums and their decay constants have also

been calculated and compared with the experimental data with surprisingly consistency.

Although the top-down QCD models describe many important properties in realistic QCD,

the meson spectrums obtained from those models can not realize the linear Regge trajec-

tories. To solve this problem, another type of holographic models have been developed, i.e.

bottom-up models, such as the hard wall model [8] and the later refined soft-wall model [9].

In the original soft-wall model, the IR correction of the dilaton field was put by hand to

obtain the linear Regge behavior of the meson spectrum. However, since the fields config-

uration is put by hand, it does not satisfy the equations of motion. To get a fields configu-

ration which is both consistent with the equation of motions and realizes the linear Regge

trajectory, dynamical soft-wall models were constructed by introduce a dilaton potential

consistently [10, 11]. On the other hand, the Einstein-dilaton and Einstein-Maxwell-dilaton

models have been widely studied numerically [12–16] to investigate the thermodynamical

properties and explore the phase structure in QCD. Recently, by the potential reconstruc-

tion method, analytic solutions have been obtained in the Einstein-dilaton model [17] as

well as in the Einstein-Maxwell-dilaton model [16, 18].

In this paper, we try to combine the techniques of the dynamical soft-wall model

and the potential reconstruction methods to study both QCD phase diagram and the lin-

ear Regge spectrum of mesons in a single model. We consider an Einstein-Maxwell-dilaton

system with an arbitrary kinetic gauge function and a dilaton potential as in [19]. A family

of analytic solutions are obtained by the potential reconstruction method. We then study

its holographic dual QCD model. The linear Regge trajectories of meson spectrums can

be realized by choosing an appropriate kinetic gauge function. By studying the thermody-

namics of the Einstein-Maxwell-dilaton background, we calculate the free energy to obtain

the phase diagram of our holographic QCD model. We compute the different equation of

states in our model and discuss their characters.

The paper is organized as follows. In section 2, we consider the Einstein-Maxwell-

dilaton system with a dilaton potential and a gauge kinetic function. By potential recon-

struction method, we obtain a family of analytic solutions with arbitrary gauge kinetic

function and warped factor. We then fix the gauge kinetic function by requesting the me-

son spectrums to realize the linear Regge trajectories. By choosing an appropriate warped

factor, we obtain the final form of our analytic solution. In section 3, we study the ther-

modynamics of our gravitational background and compute the free energy to get the phase

diagram of QCD. We summary and discuss our result in section 4.

2 Einstein-Maxwell-Dilaton system

We consider a 5-dimensional Einstein-Maxwell-dilaton system with probe flavor fields as

in [19]. The action of the system have two parts, the background part and the matter part,

S = Sb + Sm. (2.1)
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The background action includes a gravity field gµν , a Maxwell field Aµ and a neutral

dilatonic scalar field φ. The matter action includes two flavor fields
(
ALµ , A

R
µ

)
, representing

the left-handed and right-handed gauge fields, respectively. The Kaluza-Klein modes of

these 5d flavor gauge fields describe the degrees of freedom of mesons on the 4d boundary.

We will treat the matter fields as probe fields and do not consider their backreaction to

the background.

In Einstein frame, the background action and the matter action can be written as

Sb =
1

16πG5

∫
d5x
√
−g
[
R− f (φ)

4
F 2 − 1

2
∂µφ∂

µφ− V (φ)

]
, (2.2)

Sm = − 1

16πG5

∫
d5x
√
−g f (φ)

4

(
F 2
V + F 2

Ṽ

)
, (2.3)

where f (φ) is the gauge kinetic function and V (φ) dilaton potential. Moreover, we have

expressed the flavor fields AL and AR in terms of the vector meson field and pseudovector

meson field V and Ṽ ,

AL = V + Ṽ , AR = V − Ṽ . (2.4)

The equations of motion can be derived from the actions (2.2) and (2.3),

∇2φ =
∂V

∂φ
+

1

4

∂f

∂φ

(
F 2 + F 2

V + F 2
Ṽ

)
, (2.5)

∇µ [f(φ)Fµν ] = 0, (2.6)

∇µ
[
f(φ)FµνV

]
= 0, (2.7)

∇µ
[
f(φ)Fµν

Ṽ

]
= 0, (2.8)

Rµν−
1

2
gµνR =

f(φ)

2

(
FµρF

ρ
ν −

1

4
gµνF

2+
{
FV , FṼ

})
+

1

2

[
∂µφ∂νφ−

1

2
gµν (∂φ)2−gµνV

]
.

(2.9)

First, we will solve the gravitational background in the above Einstein-Maxwell-dilaton

system. We consider the following ansatz for the metric, the Maxwell field and the dilaton

field,

ds2 =
L2e2A(z)

z2

[
−g(z)dt2 +

dz2

g(z)
+ d~x2

]
, (2.10)

φ = φ (z) , Aµ = At (z) , (2.11)

where z = 0 corresponds to the conformal boundary of the 5d spacetime and we will set

the radial L of AdS5 space to be unit in the following of this paper. By turning off the

probe fields V and Ṽ in eqs. (2.5)–(2.9), the equations of motion for the background fields

become

φ′′ +

(
g′

g
+ 3A′ − 3

z

)
φ′ +

(
z2e−2AA′2t fφ

2g
−
e2AVφ
z2g

)
= 0, (2.12)

A′′t +

(
f ′

f
+A′ − 1

z

)
A′t = 0, (2.13)
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A′′ −A′2 +
2

z
A′ +

φ′2

6
= 0, (2.14)

g′′ +

(
3A′ − 3

z

)
g′ − e−2Az2fA′2t = 0, (2.15)

A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g
+
e2AV

3z2g
= 0. (2.16)

We should notice that only four of the above five equations are independent. In the

following, we will solve the equations (2.13)–(2.16), and leave the equation (2.12) as a

constraint for the consistent check.

We impose the regular boundary conditions at the horizon z = zH and the asymptotic

AdS condition at the boundary z → 0 as follows,

At (zH) = g (zH) = 0, (2.17)

A (0) = −
√

1

6
φ (0) , g (0) = 1, (2.18)

where the condition (2.17) ensures that AµA
µ = gttA0A0 is finite at z = zH, and the

condition (2.18) guarantees that the metric is asymptotic to an AdS spacetime at z → 0.

Furthermore, at z → 0, the gauge field can be expanded as

At (0) = µ+ ρz2 + · · · , (2.19)

where µ is quark chemical potential and ρ is quark density.

Now, we are ready to solve the eqs. (2.13)–(2.16) with the boundary conditions (2.17),

(2.18). We are going to solve the equations by using the so called potential reconstruction

method. In this method, we regard the field A (z) as a given function but treat the potential

V (φ) as an unknown function to be solved consistently with other fields. Since φ (z) is

a function of z, we can treat the gauge kinetic function f (φ) and the dilaton potential

V (φ) as functions of z, i.e. f (z) and V (z), when we solve the equations of motion. In

summary, we will solve the fields {φ (z) , At (z) , g (z) , V (z)} in terms of two given functions

{f (z) , A (z)}.
We start from eq. (2.14), which is easy to be solved as

φ′ (z) =

√
−6

(
A′′ −A′2 +

2

z
A′
)
, (2.20)

provided we regard the field A (z) as a given function. Next, At (z) can be solved from

eq. (2.13),

At (z) = CAt

∫ z

zH

y

eA(y)f (y)
dy, (2.21)

where CAt is an integral constant and we have used the boundary condition At (zH) = 0

to fix the other integral constant, the lower limit of the integral, to be zH. Plug eq. (2.21)

into eq. (2.15), we can solve g (z) as

g (z) = 1 + C2
At

∫ z

0
y3e−3A(y)dy

∫ y

yg

x

eA(x)f (x)
dx, (2.22)
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where yg is another integral constant and we have used the boundary condition g (0) = 1

to fix the lower limit of the integral for y to be 0. Now we can use the boundary condition

g (zH) = 0 to fix the constant CAt as

CAt =

√
−1∫ zH

0 y3e−3Ady
∫ y
yg

x
eAf

dx
. (2.23)

Finally, the potential can be solved from the eq. (2.16) as

V (z) = −3z2ge−2A
[
A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g

]
. (2.24)

In summary, the analytic solutions of the equations of motion (2.13)–(2.16) are

φ′ (z) =

√
−6

(
A′′ −A′2 +

2

z
A′
)
, (2.25)

At (z) =

√
−1∫ zH

0 y3e−3Ady
∫ y
yg

x
eAf

dx

∫ z

zH

y

eAf
dy, (2.26)

g (z) = 1−

∫ z
0 y

3e−3Ady
∫ y
yg

x
eAf

dx∫ zH
0 y3e−3Ady

∫ y
yg

x
eAf

dx
, (2.27)

V (z) = −3z2ge−2A
[
A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g

]
, (2.28)

where we have used the boundary conditions (2.17) and (2.18) to fix most of the integration

constants except yg. In fact, the only undetermined constant yg is related to the chemical

potential µ in the following way. We first expand the field At (z) near the boundary at z = 0,

At (0) =

√
−1∫ zH

0 y3e−3Ady
∫ y
yg

x
eAf

dx

(
−
∫ zH

0

y

eAf
dy +

1

eA(0)f (0)
z2 + · · ·

)
. (2.29)

Comparing the above expansion to eq. (2.19), we obtain the chemical potential µ in term

of yg as

µ = −
√

−1∫ zH
0 y3e−3Ady

∫ y
yg

x
eAf

dx

∫ zH

0

y

eAf
dy. (2.30)

Using eq. (2.30), the integral constant yg can be solved in term of the chemical potential

µ once the explicit forms of f (z) and A (z) are given. Finally, putting the solution (2.25)–

(2.28) into the constraint (2.12), it is straightforward to verify that the above solutions are

satisfied with the constraint.

We note that the solutions (2.25)–(2.28) depend on two arbitrary functions, i.e. the

gauge kinetic function f (z) and the warped factor A (z). Different choices of the functions

f (z) and A (z) will give different physically allowed backgrounds. Thus we obtain a family

of analytic solutions for the Einstein-Maxwell-dilaton system. We will use the freedom of

choosing functions f (z) and A (z) to satisfy some extra important physical constraints.

– 5 –
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After solving the background, we consider the 5d probe vector field V whose equation

of motion has been derived in (2.7),

∇µ
[
f (φ)FµνV

]
= 0. (2.31)

With the gauge Vz = 0, the equation of motion of the transverse vector field Vµ (∂µVµ = 0)

in the above gravitational background becomes

1

g
∇2V + V ′′ +

(
g′

g
+
f ′

f
+A′ − 1

z

)
V ′ = 0, (2.32)

where the prime is the derivative respect to z. By expanding the vector field V for discrete

values of 4d momentum kn = (ωn, ~pn),

V (x, z) =
∑
kn

eikn·xXψn (z) , X =

(
z

eAfg

)1/2

, (2.33)

we bring the equation of motion (2.32) into the form of the Schrödinger equation,

− ψ′′n + U (z)ψn = m2
n (z)ψn, (2.34)

with the potential function and the “energy dependent” mass,

U (z) =
2X ′2

X2
− X ′′

X
, mn (z) =

√
ω2
n

g2 (z)
− ~p2n
g (z)

. (2.35)

In the limit of zero temperature and zero chemical potential, such that g (z) ≡ 1, we expect

that the discrete spectrum of the vector mesons obeys the linear Regge trajectories. In this

case, the above Schrödinger equation reduces to

− ψ′′n + U (z)ψn = m2
nψn, (2.36)

where m2
n = ω2

n − ~p2n. To get the potential to be the form

U (z) =
3

4z2
+ c2z2, (2.37)

as in [9], we choose f (z) = e±cz
2−A(z). The Schrödinger equations (2.36) with the above

potential (2.37) have the discrete eigenvalues

m2
n = 4cn, (2.38)

which is linear in the energy level n as we expect for the vector spectrum at zero temperature

and zero density.

Once we fixed the gauge kinetic function f (z) = e±cz
2−A(z), the eq. (2.30) can be

solved to get the integration constant yg in term of the chemical potential µ explicitly as

ecy
2
g =

∫ zH
0 y3e−3Aecy

2
dy∫ zH

0 y3e−3Ady
+

(
1− ecz2H

)2
2cµ2

∫ zH
0 y3e−3Ady

. (2.39)

– 6 –
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Put the integration constant yg back into the solution (2.25)–(2.28), we finally write down

the completed solution as

φ′ (z) =

√
−6

(
A′′ −A′2 +

2

z
A′
)
, (2.40)

At (z) = µ
ecz

2 − ecz2H
1− ecz2H

, (2.41)

g (z) = 1+
1∫ zH

0 y3e−3Ady

 2cµ2(
1−ecz2H

)2
∣∣∣∣∣
∫ zH
0 y3e−3Ady

∫ zH
0 y3e−3Aecy

2
dy∫ z

zH
y3e−3Ady

∫ z
zH
y3e−3Aecy

2
dy

∣∣∣∣∣−
∫ z

0
y3e−3Ady

 ,
(2.42)

V (z) = −3z2ge−2A
[
A′′ + 3A′2 +

(
3g′

2g
− 6

z

)
A′ − 1

z

(
3g′

2g
− 4

z

)
+
g′′

6g

]
. (2.43)

Note that our final solution (2.40)–(2.43) still depends on the warped factor A (z). The

choice of A (z) is arbitrary provided it satisfies the boundary condition (2.18).

3 Phase structure

To proceed, we need to choose a warped factor A (z) first. In [19], a simple form of the

warped factor has been studied,

A (z) = − c
3
z2 − bz4. (3.1)

The parameters c ' 1.16GeV 2 and b ' 0.273GeV 4 were determined by fitting the lowest

two quarkonium states, mJ/ψ = 3.096GeV and mψ′ = 3.685GeV , as well as comparing the

phase transition temperature at µ = 0 to the lattice QCD simulation of THP ' 0.6GeV

in [20]. With these parameters, the authors of [19] argued that the system is to describe

the heavy quarks with the deconfinement phase transition. However, in this work, we will

consider another parameters regime of b and c to study the light quarks with the chiral

symmetry breaking phase transition.

3.1 Meson spectrum

In this work, we consider the same form (3.1) of the warped factor A (z) as in [19], but

with the difference parameters regime of b and c. We will determine the parameter c

first by fitting our mass formula (2.38) to the experimental data of the meson spectrum.

In [19], we studied confinement/deconfinement phase transition in QCD for heavy quarks.

The phase diagram we obtained for heavy quarks is quite different from the one for light

quarks, which is consistent with the lattice QCD prediction. In this work, we are going to

study the opposite situation, namely the phase diagram for light quarks, which is a more

interested subject. Therefore, instead of fitting the quarkonium states made up of heavy

quarks in [19], we now consider vector mesons made up of light quarks, specifically the

ρ (1−) mesons. We take the experimental data of the lowest six excitations of ρ (1−) vector

– 7 –
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Figure 1. the squared masses of the lowest six excitations of ρ(1−) mesons versus their consecutive

number n.

n 1 2 3 4 5 6

Experimental 0.77 1.45 1.70 1.90 2.15 2.27

Model fitting 0.95 1.35 1.65 1.90 2.13 2.34

Table 1. The mass specturm (in GeV) of the lower excitations of ρ (1−−) meson from PDG2007 [22]

and their model fitting values. . .

mesons from PDG2007 [22], which are listed in table 1. To be more complete, beside the well

confirmed three vector mesons ρ (770), ρ (1450) and ρ (1700), we also include ρ (1900) and

ρ (2150) as two confirmed mass resonances and ρ (2270) as a yet confirmed mass resonance.

From the data, we fit the parameter c ' 0.227GeV 2 in the mass formula (2.38) by using

the standard χ2 fit [23, 24]. Our model fitting values are also listed in table 1, which

are consistent with the experimental data reasonably well. Figure 1 shows the squared

masses of the lowest six excitations of ρ (1−) mesons versus their consecutive number n.

The straight line is our model fitting m2
n = 4cn.

3.2 Black hole thermodynamics

Using the black hole solution we obtained in the previous section,

ds2 =
e2A(z)

z2

[
−g(z)dt2 +

dz2

g(z)
+ d~x2

]
, (3.2)

it is easy to calculate the Hawking-Bekenstein entropy

s =
e3A(zH)

4z3H
, (3.3)

– 8 –
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and the Hawking temperature

T =
z3He

−3A(zH)

4π
∫ zH
0 y3e−3A(y)dy

1−
2cµ2

(
ecz

2
H

∫ zH
0 y3e−3A(y)dy −

∫ zH
0 y3e−3A(y)ecy

2
dy
)

(
1− ecz2H

)2
 . (3.4)

To continue, we need to fix the parameter b in the warped factor (3.1) for our black hole

background.

In principle we could fix the parameter b by fitting the phase transition temperature

T0 ≈ 170MeV at the vanishing chemical potential obtained from lattice QCD. However, it

is well known that, for QCD with quark mass, the phase transition becomes a crossover at

low chemical potential. There is no realizing order parameter to describe a crossover so that

we can fit the order parameter to fix the parameter b. In this case, people usually define

a quasi-transition temperature by looking at a rapid change for certain observable (as a

quasi-order-parameter). In [25], the authors argued that the quasi-transition temperature

for a crossover is not uniquely defined and therefore depends on the observable used to

define it. Basically any observable that exhibits a non-differentiable behavior at the critical

temperature (the temperature at which the phase transition becomes a crossover) can be

used to define a quasi-transition temperature for a crossover. It is not surprised that the

quasi-transition temperature might be different with the different observables used to define

it. In this case, people use the transition region [26], in which different observable may have

their characteristic points at different temperature values. Nevertheless, the purpose of this

paper is not to discuss what the best way is to define the quasi-transition temperature for

a crossover. We are going to simply choose an observable with appropriate property to

define our quasi-transition temperature. The observable we will use to define the quasi-

transition temperature for a crossover in this paper is the speed of sound because it is

non-differentiable at the critical temperature and becomes a rapid change for a crossover

at lower temperature. The speed of sound is defined as

c2s =
∂ lnT

∂ ln s
. (3.5)

At µ = 0, the Hawking temperature (3.4) reduces to

T (zH) =
z3He

−3A(zH)

4π
∫ zH
0 y3e−3A(y)dy

, (3.6)

and the speed of sound can be calculated as

c2s =
z4He

−3A(zH)

3 [1− zHA′ (zH)]
∫ zH
0 y3e−3A(y)dy

− 1.

In figure 2, we plot the squared speed of sound v.s. temperature at vanishing chemical

potential for several values of parameter b in the warped factor (3.1). We can see that,

for each curve, there is a rapid change at a temperature around 150 ∼ 200MeV , which

we can use to define the quasi-transition temperature T0 of the crossover at µ = 0. For

different values of the parameter b, quasi-transition temperature T0, i.e. the position of

the minimum value, changes as shown in figure 2. By taking the commonly used value

T0 ≈ 170MeV , we can fix the parameter as b = −6.25× 10−4GeV 4.

– 9 –
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(a) (b)

Figure 2. The squared speed of sound v.s. temperature at µ = 0 for different values of parameter

b. Curves from top to bottom correspond to b = −0.0005,−0.0007,−0.0009,−0.0011GeV 4. We

enlarge a rectangle region in (a) into (b) to see the detailed structure. For different values of the

parameter b, the corresponding quasi-transition temperature T0, i.e. the position of the minimum

value, changes.

3.3 Phase diagram

For different chemical potentials, the temperature dependence on the horizon zH is showed

in figure 3. For vanishing or small chemical potential 0 ≤ µ ≤ µc = 0.23148GeV , the

temperature decreases monotonously to zero; while for µ > µc, the temperature bends

up and goes down again to zero. Therefore, for certain range, the same temperature

corresponds to three different horizons as indicated in (b) of figure 3. This temperature

behavior implicates that a phase transition happens at certain temperature for µ > µc.

To determine the thermodynamically stability, we plot specific heat CV v.s. tempera-

ture T in figure 4, where the specific heat CV is defined as

CV = T

(
∂s

∂T

)
µ

. (3.7)

In the CV −T diagram, the negative value of the specific heat corresponds to the ther-

modynamically instability. For 0 ≤ µ ≤ µc, the specific heat is always positive. CV > 0

implies that the black hole with any temperature is thermodynamically stable. While for

µ > µc, CV could be negative for a range of T where the black hole is thermodynamically

unstable. Thus one of the three horizons corresponding to the same temperature is ther-

modynamically unstable and the black hole would never take that state. However, there

still left two horizons which are both thermodynamically stable and are possible realistic

states. To determined which one is physically preferred out of the two thermodynamically

stable states, we need to compare their free energies.

The first law of thermodynamics in a grand canonical ensemble can be written as,

F = U − Ts− µρ, (3.8)

– 10 –
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Figure 3. The temperature v.s. horizon at different chemical potentials µ = 0, 0.15, 0.231, 0.3GeV .

We enlarge a rectangle region in (a) into (b) to see the detailed structure. For 0 < µ < µc,

the temperature decreases monotonously to zero; while for µ > µc, the temperature has a local

minimum. At µc ' 0.231GeV , the local minimum reduces to a inflection point.

0.10 0.15 0.20 0.25 0.30 0.35 0.40

T
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(a)
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Μ=0.3
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Μ=0.15
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(b)

Figure 4. The specific heat v.s. temperature at different chemical potentials µ = 0, 0.15, 0.231,

0.3GeV . We enlarge a rectangle region in (a) into (b) to see the detailed structure. For 0 ≤ µ ≤ µc,

the specific heat is always positive, CV > 0 implies that the black hole with any temperature is

thermodynamically stable. While for µ > µc, CV could be negative for a range of T where the

black hole is thermodynamically unstable.

where U is the internal energy of the system and F is the corresponding free energy.

Changes in the free energy of a system with constant volume are given by

dF = −sdT − ρdµ. (3.9)

At fixed values of the chemical potential µ, the free energy can be evaluated by the inte-

gral [19, 27]

F = −
∫
sdT. (3.10)

Directly integrating shows that the absolute value of the free energy goes to infinity and

needs to be regularized. However, since we only care about the differences between the free
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(a) (b)

Figure 5. The free energy v.s. temperature at different chemical potentials µ is plotted in (a)

and the phase diagram in T and µ plane is plotted in (b). For 0 ≤ µ ≤ µc, the free energies are

single-valued and smooth, the system undergoes a crossover. While for µ > µc, the free energies

become multi-valued and take swallow-tailed shapes with a first-order phase transition happens

at the self-crossing point. At µ = µc, the free energy curve is single-valued but not smooth. A

second-order phase transition happens at the non-smooth point (µc, Tc) ' (231MeV, 121MeV ),

which is the critical point where the phase transition mildens to a crossover.

energies, the absolute values of the free energy are not important for our analysis. Thus

we can simply regularize the free energy by fixing the integration constant in the above

integral (3.10). Considering the vanishing chemical potential case, we set the free energy

at the quasi-transition temperature T0 ≈ 170MeV to be zero. By requesting F (T0) = 0

at µ = 0, we finally are able to calculate the free energy as

F =

∫ zH(T0)

zH

s
dT

dzH
dzH. (3.11)

The free energy F v.s. temperature T and the phase diagram are plotted in figure 5.

As we expected, for 0 ≤ µ ≤ µc, the free energies are always single-valued; while for

µ > µc, the free energies become multi-valued and take swallow-tailed shapes. A first-order

phase transition happens at the self-crossing point of each free energy curve with a fixed

chemical potential. At µ = µc, the free energy curve is continues but not smooth. A

second-order phase transition happens at the non-smooth point, which is the critical point

where the phase transition mildens to a crossover.

3.4 Equations of state

Figure 6 plots the squared of speed of sound c2s v.s. the temperature T for different chemical

potentials.

For 0 < µ < µc, the speed of sound behaves as a sharp but smooth crossover. At

the critical point µ = µc, a second order phase transition happens where c2s goes to 0 at

the critical temperature Tc. For µ > µc, the squared of speed of sound becomes negative,

i.e. the speed of sound is imaginary, for a range of temperature. The imaginary speed

of sound indicates a Gregory-Laflamme instability [28, 29]. This is related to the general
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Figure 6. The squared speed of sound v.s. temperature at different chemical potentials µ = 0,

0.15, 0.231, 0.3GeV . We enlarge a rectangle region in (a) into (b) to see the detailed structure.

For 0 < µ < µc, the speed of sound behaves as a smooth crossover. At the critical point µ = µc,

a second order phase transition happens where c2s goes to 0 at the critical temperature Tc. For

µ > µc, the squared of speed of sound undergoes a first order phase transition at the self-crossing

point. At high temperature, c2s approaches the conformal limit 1/3 as expected.

version of Gubser-Mitra conjecture [30–32], i.e. the dynamical stability of a horizon is

equivalent to the thermodynamic stability. In our system, the negative specific heat implies

thermodynamically unstable. While the imaginary speed of sound implies the amplitude

of the fixed momentum sound wave would increase exponentially with time, reflecting the

dynamical instability. Roughly speaking, CV < 0 is equivalent to c2s < 0 in our system. In

all the case, c2s approaches the conformal limit 1/3 at very high temperature as expected.

We plot equations of state for entropy in figure 7. For 0 < µ < µc, the entropy is

single-valued and there is no phase transition. For µ ≥ µc, the entropy is multi-valued

for a region of temperature which indicates a phase transition between high entropy and

low entropy black holes. The similar phase behaviors have been discussed in [12] for a

holographic QCD model with different values of parameters tuned by hand.

The pressure p = −F and the energy ε = F + sT can be calculated from the free

energy and are plotted in figure 8. We see that both pressure and energy increases with

the chemical potential, that pushes the phase transition temperature to the smaller values

for growing µ. Our results are consistent to the recent lattice results with finite chemical

potential [33].

We finally plot the trace anomaly ε− 3p v.s. T in figure 9. With the growing chemical

potential µ, the peak of trace anomaly decreases. From (b) in figure 9, we clearly see that,

for 0 < µ < µc, the trace anomaly is single-valued with finite slope through all the curve.

For µ ≥ µc, the slope of the trace anomaly becomes infinite at the certain temperature

indicating a phase transition happened there.

4 Conclusion

In this paper, we studied a Einstein-Maxwell-dilaton system with a gauge kinetic function

and a dilaton potential. We consistently solved the equations of motion for the system by
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Figure 7. The entropy v.s. temperature at different chemical potentials µ = 0, 0.15, 0.231, 0.3GeV .

We enlarge a rectangle region in (a) into (b) to see the detailed structure. For 0 < µ < µc, the

entropy is single-valued and there is no phase transition. For µ ≥ µc, the entropy is multi-valued for

a region of temperature which indicates a phase transition between high entropy and low entropy

black holes.
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Figure 8. The equations of state at different chemical potentials µ = 0, 0.15, 0.231, 0.3GeV . The

pressure v.s. temperature is plotted in (a) and the energy v.s. temperature is plotted in (b).

the potential reconstruction method. A family of analytic black hole solutions is obtained.

We then studied the thermodynamic properties of the black hole backgrounds. We com-

puted the free energy to get the phase diagram of the black hole backgrounds. In its dual

holographic QCD theory, we are able to realized the Regge trajectory of the vector mass

spectrum by fixing the gauge kinetic function. We then calculated the equations of state

in our holographic QCD model. We found that our dynamical model captures many prop-

erties in the realistic QCD. The most remarkable feature of our model is that, by changing

the chemical potential, we are able to see the conversion from the phase transition to a

crossover dynamically. We identified the critical point in our holographic QCD model and

calculated its value with (µc, Tc) ' (0.231GeV, 0.121GeV ). As the authors knowledge,

our model is the first holographic QCD model which could both dynamically describe the
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Figure 9. The trace anomaly v.s. temperature at different chemical potentials µ = 0, 0.15, 0.231,

0.3GeV . We enlarge a rectangle region in (a) into (b) to see the detailed structure. For 0 < µ < µc,

the trace anomaly is single-valued with finite slope through all the curve. For µ ≥ µc, the slope

of the trace anomaly becomes infinite at the certain temperature indicating a phase transition

happened there.

transformation from the phase transition to the crossover by changing the chemical poten-

tial and realize the linear Regge trajectory for meson spectrum. However, in this paper,

we only studied the linear Regge trajectory for meson spectrum at zero temperature and

zero density. At finite temperature or finite density, g (z) 6= 1, the masses of the vector

mesons solved from the eq. (2.36) will depend on the temperature and density. For the case

of small enough temperature or density, eq. (2.36) can be solved perturbatively to get the

mass shift from the linear Regge trajectories [10, 34, 35]. For large temperature or density,

the method of spectral functions is useful. It was showed that increasing temperature or

density would modify the spectral function with the width of mass peak increasing, which

implies the mesons become unstable. Eventually, the mass peak disappears above certain

temperature/density indicating the mesons melt to free quarks. In addition, it was also

showed that excited states melt at lower temperature/density respect to the ground state

due to their peaks disappear earlier. The study of temperature and density dependent

vector mass spectrum in our model is in progress.

There are many future directions are worth to be studied. For example, one can

introduce a open string in the black hole background and compute the linear quark-

antiquark potential and expectation value of Polyakov loop to incorporate the confinement-

deconfinement phase transition. One can also compute the various transport coefficients

like shear viscosity, bulk viscosity and so on. It is also interesting to compute the critical

exponents of various physical quantities near the critical point. Some of these issues are in

progress.
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