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1 Introduction

Integrability has proved a powerful tool in the study of the AdS/CFT correspondence [1],
and has greatly enhanced our understanding of N = 4 super-Yang Mills theory and of the
dual string theory in AdS5 × S5. More recently progress has been made in understanding
AdS3/CFT2 from an integrability perspective [2]. In particular type IIB string theory on
AdS3 × S3 × T4 and on AdS3 × S3 × S3 × S1 has been studied. An interesting feature of
these theories is that the backgrounds can be supported by a combination of Ramond-
Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS) fluxes. This provides us with a
family of string backgrounds, parametrised by the coefficients κ and χ sitting in front of
the respective flux terms.
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In the pure RR case (κ = 1, χ = 0) there has been a lot of progress in applying inte-
grability methods to AdS3/CFT2 [2–9]. The pure NSNS case (κ = 0, χ = 1), on the other
hand, is in principle solvable using CFT methods [10, 11]. String theory with mixed fluxes
is a useful tool for understanding the connections between these two limits, and provides
a unique opportunity to study the planar limits of different string backgrounds that are
related to each other by the non-perturbative S-duality using well-developed integrability
frameworks such as the Thermodynamic Bethe Ansatz.

In this paper we study classical and semi-classical type IIB string theory on an AdS3×
S3 × T4 background with mixed three-form fluxes using integrability methods. At the
level of classical string theory, integrability manifests itself through the existence of a
Lax representation of the equations of motions [12]. The basis of this construction is a
description of the background in terms of a supercoset with a Z4 automorphism [13]. A
sigma model action based on the coset was originally constructed for AdS5×S5 [14], and has
later been used for other backgrounds supported by RR flux, such as AdS4×CP3 [15, 16],
AdS3×S3×T4 and AdS3×S3×S3×S1 [2, 17]. In [18] this construction was generalised to
the case of mixed RR and NSNS fluxes by the inclusion of a topological Wess-Zumino (WZ)
term. Such a generalisation is only possible for certain backgrounds where the supercoset is
constructed by taking the quotient of a product of two identical supergroups by its diagonal
bosonic subgroup, called a permutation supercoset. These backgrounds include the AdS3
backgrounds mentioned above.

Remarkably, the mixed flux supercoset action introduced in [18] remains integrable
also outside of the pure RR limit, provided the coefficients of the Green-Schwarz (GS) and
WZ terms satisfy the relation χ2 + κ2 = 1. However, in the construction of [18], the WZ
term break the Z4 symmetry. This Z4 symmetry breaking obscures a generalisation of
integrability techniques developed in the context of the AdS/CFT correspondence where
the Z4 symmetry plays an essential role. One important example is the construction of an
algebraic curve and a set of finite-gap equations which has proven a powerful tool [19–26].
In this paper we generalize the action of the Z4 automorphism in a way that allows us to
apply standard techniques for deriving the finite-gap equations [2, 26].

To apply integrability beyond the semi-classical level requires the construction of
asymptotic Bethe ansatz equations. The tree-level S-matrix describing scattering of mas-
sive world-sheet excitations in uniform light-cone gauge was derived in [27]. Based on those
results a conjecture for the all-loop S-matrix was made in [28]. This S-matrix is very similar
to the S-matrix in the pure RR case, which has been studied both using perturbative string
theory [29–36] and using symmetry arguments [4–9]. We will use the proposed all-loop S-
matrix to write down a set of all-loop Bethe ansatz equations, which in the thermodynamic
limit can be used to rederive the finite-gap equations. Due to the similarities between the
S-matrix in the pure RR flux and mixed flux cases, the resulting Bethe ansatz equations
are essentially the same as in the pure RR case [6].

An important difference between the light-cone gauge actions of string theory in AdS5×
S5 and AdS3 × S3 ×T4 is that the latter contains fundamental massless excitations. Early
studies of integrability in the theory with only RR flux mostly concerned the massive
sector, since the application of standard integrability techniques to the massless modes
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was more subtle. Recently, there has been progress in taking into account the massless
modes of the theory both in the algebraic curve description [37] and in the study of the
all-loop world-sheet S-matrix [8, 9]. The massless modes were also studied in the spin-chain
picture in [38]. These analyses were made in the pure RR case. It would be interesting to
understand how the massless modes are affected by the NSNS flux. However, in this paper
we consider only the massive sector of the AdS3 × S3 × T4 theory with mixed fluxes.

The mixed flux two-particle S-matrix constructed in [28] contains two undetermined
factors known as the dressing phases. In the case of pure RR flux an all-loop expression of
the dressing phases was proposed in [7]. To the leading order at strong coupling both of
the dressing phases are the same as in AdS5 × S5, where the leading order dressing phase
is given by the Arutyunov-Frolov-Staudacher (AFS) phase [39]. At next-to-leading order
the phases of pure RR AdS3 × S3 × T4 [7, 32–35, 40, 41] differ from the Hernández-López
phase of AdS5 × S5 [42]. Until now little is known about the dressing phases in the mixed
flux case. In this paper we will conjecture leading order expressions for the phases, as
part of our derivation of the finite-gap equations from the Bethe ansatz. One of the two
phases that we conjecture differ from the AFS phase. We will further make a predication
for the one-loop correction to the phases by quantising the finite-gap equations. Similar
calculations have previously been performed in AdS5/CFT4 [23] and in pure RR settings
of AdS3/CFT2 [33, 41].

The plan of the paper is as follows. In section 2 we rewrite the action and Lax connec-
tion of [18] using a notation that allows us to employ the Z4 automorphism to construct
a set of finite-gap equations for the massive excitations through the algebraic method
of [2, 26]. In section 3 we write a set of Bethe ansatz equations from the conjectured
all-loop S-matrix of [28]. As part of this construction we give expressions for the lead-
ing order dressing phases at strong coupling. By taking a thermodynamic limit of the
Bethe equations at strong coupling we reproduce the finite-gap equations found in the
previous section. In section 4 we reformulate the finite-gap equations in terms of eight
quasi-momenta transforming in a particular representation of the symmetry group. In sec-
tion 5 we discuss the semi-classical quantisation of the resulting algebraic curve and derive
the spectrum of fluctuations around the ground state. In section 6 we use the quantisation
of the algebraic curve to make a prediction for the one-loop dressing phases appearing in
the S-matrix. We end with conclusions and a discussion in section 7. In appendix A we
provide technical details for the BMN string quantisation which appears in the main text.
In appendices B and C we provide two examples of applications of the methods derived
through the main text. In appendix B we derive the quasi-momenta for a classic circular
string in the mixed flux case. Finally, in section C we construct giant magnon solutions
and calculate the leading finite-size correction to their classical dispersion relation.

2 Integrability of supercosets with a B-field

In this section we review the construction of the permutation supercosets Green-Schwarz
sigma model action, carrying both RR and NSNS fluxes, introduced in [18]. The model is
shown to be classically integrable by constructing a flat connection which is used to define
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a monodromy matrix, which can be used to extract an infinite set of conserved charges.
We use the flat connection and monodromy matrix to derive a set of finite-gap equations
similarly to the construction used for the pure RR case in [2, 26]. We will write the action
in a slightly different notation than the one used in [18], such that the Z4 symmetry appears
to be manifest. We further use a different parametrisation for the spectral parameter which
will be shown to be more useful for the following analysis, as well as for comparison with
the finite-gap equations derived in the next section using the Bethe ansatz equations.

2.1 The action

Permutation supercosets are a special class of Z4 supercosets where the supergroup is a
direct sum of two identical supergroups, and the quotient is taken with respect to the
diagonal of the bosonic subgroup, namely (G×G) /Gdiag

0̄ . A Green-Schwarz sigma model
with only RR flux was constructed for such backgrounds in [2], e.g. for

AdS3 × S3 ' PSU(1, 1|2)2

SU(1, 1)× SU(2) , AdS3 × S3 × S3 ' D(2, 1;α)2

SU(1, 1)× SU(2)× SU(2) , (2.1)

see also [17]. It is well known that for any Z4 supercoset one can construct a Green-Schwarz
action [13, 14] which is integrable [12, 43–45]. Interestingly, for permutation supercosets
one can further add a WZ piece which carries NSNS flux, which leave the model integrable,
given that the relation between the coupling of WZ pieces carrying RR and NSNS fluxes
(κ and χ respectively) satisfies κ2 + χ2 = 1.

Before presenting the action, we introduce some notation. Lets us denote an element
x ∈ gL ⊕ gR of the superalgebra using the matrix natation

x =
(
xL 0
0 xR

)
(2.2)

with xL/R ∈ gL/R, thus a double line separates the two superalgebras gL/R. As discussed
above, for permutation supercosets gL = gR. The Z4 automorphism acts on g = gL ⊕ gR
as [2]

Ω4(x) =
(
xR 0
0 (−)FxL

)
, (2.3)

where (−)F equals 1 or −1 if the sub-superalgebra element xL is even or odd respectively.
We could avoid using the (−)F symbol by using

Ω4(x) = HxH−1, H =


0 +1 0

0 +1
+1 0
0 −1

0

 , (2.4)

where one line separates between the even and odd blocks of the supermatrix. Notice
that by definition, we have Ω4(AB) = Ω4(A)Ω4(B). The Maurer-Cartan one-form is
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defined by J = g−1dg, where g ∈ GL ×GR. The Maurer-Cartan decomposes under the Z4
automorphism such that

J = J0 ⊕ J1 ⊕ J2 ⊕ J3. (2.5)

More explicitly, using the notation introduced above we have

J0 = 1 + (−)F

4

(
JL + JR 0

0 JL + JR

)
,

J1 = 1− (−)F

4

(
JL − iJR 0

0 i(JL − iJR)

)
,

J2 = 1 + (−)F

4

(
JL − JR 0

0 −(JL − JR)

)
,

J3 = 1− (−)F

4

(
JL + iJR 0

0 −i(JL + iJR)

)
,

(2.6)

where JL,R = g−1
L,RdgL,R.

Before we write down the action, we introduce the matrix

W =
(

+1 0
0 −1

)
. (2.7)

This matrix acts on the superalgebra elements in an obvious way and has the properties
W 2 = 1 and Ω4(W ) = −W (namely, its grading is 2) so acting with W on an element of
the superalgebra would change the grading by 2. Furthermore, it commutes with all the
superalgebra elements. Note that we allow the Z4 generator to act on W even though it is
not a dynamic field.

Finally, we define the supertrace acting on an element x ∈ gL ⊕ gR as

Strx = StrxL + StrxR, (2.8)

where StrxL/R is the usual supertrace definition for the superalgebra [46]. This supertrace
preserves the Z4 automorphism structure, that is

Strx(i)x(j) = 0 (2.9)

if i+ j mod 4 6= 0, where i, j = 0, . . . 3 are the grading indices.
Using the notation introduced above, we write the mixed flux action [18]

S =1
2

∫
M

Str (J2 ∧ ∗J2 + κJ1 ∧ J3)

+ χ

∫
B

StrW
(2

3J2 ∧ J2 ∧ J2 + J1 ∧ J3 ∧ J2 + J3 ∧ J1 ∧ J2

)
.

(2.10)

By using the matrix W , we have written the action in a form where the Z4 automorphism
leaves it invariant. This is not a physical symmetry since the automorphism acts non-
trivially on the non-dynamic matrix W , which is equivalent to sending the coupling χ to
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−χ.1 Throughout the paper we will use this definition of the Z4 automorphism, including
the action on W , as it will be useful for studying the spectral problem. Moreover, we do
not have to introduce a special definition of the supertrace for the second integral as in [27].
The equations of motion are given by

d ∗K + ∗K ∧ J + J ∧ ∗K = 0 (2.11)

where K ≡ KGS +KWZ, and

∗KGS = − (∗2J2 + κ (J3 − J1)) ,
∗KWZ = −χW (2J2 + J1 + J3) .

(2.12)

In this form it is easy to see that k ≡ gKg−1 satisfies

d ∗ k = 0, (2.13)

so k is the Noether current.
In what follows, we assume that κ and χ are related by κ2 + χ2 = 1 which was shown

to be the condition for the theory to be integrable [18]. Thus, in some cases it will be
more convenient to use only one independent parameter. Throughout the paper we will
use intensively the parameter

s = s(χ) =
√

1 + χ

1− χ, (2.14)

for reasons which will become clear in the following sections. Sometimes we also find it
convenient to use the angle ψ such that κ = cosψ and χ = sinψ. The later convention is
useful in putting the action in a more compact form, which also unifies the two WZ terms
into one which takes a similar form to the well known pure RR WZ term [14]. Let us
introduce a new set of fermionic currents by rotating J1 and J3,(

Q1
Q3

)
=
(

cos ψW2 sin ψW
2

− sin ψW
2 cos ψW2

)(
J1
J3

)
. (2.15)

The presence of W guarantees that the gradings of Q1 and Q3 matches the grading denoted
by the subscripts. Using these currents we have∫

B
Str

(
J2 ∧ (Q1 ∧Q1 −Q3 ∧Q3)

)
= κ

2

∫
M

Str (J1 ∧ J3) + χ

∫
B

StrW (J1 ∧ J3 ∧ J2 + J3 ∧ J1 ∧ J2) , (2.16)

which is nothing but the “fermionic” part of the WZ terms. In order to get this result one
has to use the form of the GS WZ term before integrating the total derivative [14, 47]. In
this form the relation to the pure RR case is manifest. By further defining H0 = sin(Wψ)J2
we can rewrite the action as

S = 1
2

∫
M

Str (J2 ∧ ∗J2) +
∫
B

Str
(
J2 ∧

(2
3H0 ∧ J2 +Q1 ∧Q1 −Q3 ∧Q3

))
. (2.17)

1We thank Konstantin Zarembo for discussions on this point.
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2.2 Flat connection

The flat connection associated with the action (2.10) was found in [18]. However, as we shall
see below, the description in [18] is not complete. In this section we repeat the derivation
using our notations and using different parametrisation for the spectral parameter than the
one used in [18]. We shall also discuss the properties of the flat connection emphasising
the difference with the vanishing NSNS flux case.

We start with the usual ansatz for the flat connection [12]

A = J0 + γ2J2 + γ∗ ∗ J2 + γ1J1 + γ3J3. (2.18)

Requiring dA+A ∧A = 0 yields the following set of equations

γ2
1 − γ2 + γ∗κ = 0,

−γ2 + γ2
3 − γ∗κ = 0,

−1 + γ1γ3 + γ∗χW = 0,
−1 + γ2

2 − γ2
∗ + 2γ∗χW = 0,

−γ1 + γ2γ3 − γ3γ∗κ+ γ1γ∗χW = 0,
γ1γ2 − γ3 + γ1γ∗κ+ γ3γ∗χW = 0,

(2.19)

where we have used the equations of motion and the Maurer-Cartan equations. Because of
the presence of the W matrix in the equations, in contrast to previous works we allow the
γi’s to be matrices such that γi = αiI + βiW , where I is the unit matrix (this is consistent
with the set of equations in (2.19)). In the upper-left block we get the same set of equations
as in (2.19) with W replaced by 1 and γi by αi + βi. In the lower-right block we get the
same set of equations as in (2.19) with W replaced by −1 and γi by αi− βi. The solutions
for the first set is [18]

δ∗(χ) = α∗ + β∗ = χ±
√
δ2

2(χ)− κ2,

δ1(χ) = α1 + β1 = ±
√
δ2(χ)− κδ∗(χ),

δ3(χ) = α3 + β3 = ±
√
δ2(χ) + κδ∗(χ),

(2.20)

given that κ2 = 1−χ2. Similarly, we have a solution to αi−βi with χ→ −χ. The signs in
the above equation are not necessarily synchronised. Thus, eventually the flat connection
can be written as follows

A(x) = 1
2 ((δi(χ) + δi(−χ))Ji + (δi(χ)− δi(−χ))WJi) (2.21)

where the index i runs over 0, 1, 2, 3, ∗, and δ0(χ) = 1. The flat connection is not unique,
since the flatness equation is invariant under the gauge transformation

A→ A′ = hAh−1 − dhh−1, (2.22)

for any h. We would like the flat connection to transform covariantly under gauge trans-
formations, in order to be able to read the Noether current. Choosing h = g will eliminate
the J0 dependence

A→ a = g(A− J)g−1. (2.23)
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Next, we would like to parameterise δ2 in terms of a spectral parameter x. In principle,
we can choose any function of δ2(x) (which could also depend on χ), however, we would
like the flat connection to have several properties which we list below. First, we would like
the flat connection to coincide with the “standard” flat connection used for the algebraic
curve analysis [22] when the NSNS flux is zero, i.e., δ2(x) → x2+1

x2−1 as χ → 0. We would
also like to keep the properties

a(x) ∼ k

x
+ · · · , (2.24)

as x→∞ and where k is the Noether current (2.13), as well as the Z4 symmetry relation

A

(1
x

)
= Ω4 (A(x)) . (2.25)

Finally, we require δ2 and δ∗ to be rational functions of the spectral parameter.
The following parametrisation gives the desired properties2

δ2 =
(
x2 + 1

)
κ

(x2 − 1)κ− 2xχ, δ1 = (x+ 1)
√

κ

(x2 − 1)κ− 2xχ,

δ∗ = − 2xκ
(xκ− χ)2 − 1 , δ3 = (x− 1)

√
κ

(x2 − 1)κ− 2xχ.
(2.26)

This parametrisation is not unique given the above requirements, another requirement we
used is that the poles coincide with the ones we get from the Bethe ansatz analysis below.
Notice that

δi

(1
x
,−χ

)
Ji = δi(x, χ)Ω4 (Ji) , Ω4(W ) = −W, (2.27)

so by using the representation (2.21) for the flat connection, equation (2.25) is obviously
satisfied. Comparing with (2.6), the flat connection can be written as

A(x) =
(
Â(x) 0

0 (−)F Â(1/x)

)
. (2.28)

One can check that indeed the x→∞ expansion gives the Noether current (2.13)

a(x→∞) ' − 1
κx
g (−2WχJ2 + 2 ∗ J2 − (κ+Wχ)J1 + (κ−Wχ)J3) g−1+O(1/x2). (2.29)

Notice that the Noether current is rescaled by 1/κ. This can be cured by rescaling x→ x/κ,
which also simplifies the coefficients of the flat connection.3 However, the price is that the
symmetry x→ 1/x is then modified to x→ κ2/x.

2This choice is different than the one given in [18]. Both choices reduce to the “standard” flat connection
when χ→ 0. However, expanding the flat connection of [18] at infinity does not yield the Noether current.

3Using this parametrisation the coefficient of the flat connection take the form

δ2 = 1 + x2 − χ2

(x− χ)2 − 1 , δ1 = x+ κ√
(x− χ)2 − 1

,

δ∗ = − 2x
(x− χ)2 − 1 , δ3 = x− κ√

(x− χ)2 − 1
.

(2.30)
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In the case where there is no NSNS flux the flat connection has poles at x = ±1. In
our case the poles are shifted such that Â(x) defined above has poles at

ŝ± = ±
√

1± χ
1∓ χ. (2.31)

Expanding around the poles ŝ± we get

A(x) '1
2 (I +W )

(
ŝ±

x− ŝ±
(J2 ± ∗J2) +

√
ŝ±

x− ŝ±

(
(1 + ŝ±)√
(1 + ŝ±2)

J1 + (−1 + ŝ±)√
(1 + ŝ±2)

J3

)

+
(
J0 + ŝ±

2

1 + ŝ±2J2 ∓
1

1 + ŝ±2 ∗ J2

)

+
√
x− ŝ±
ŝ±

((
2− ŝ± + ŝ±

2) ŝ±
2 (1 + ŝ±2) 3/2 J1 +

(
2 + ŝ± + ŝ±

2) ŝ±
2 (1 + ŝ±2) 3/2 J3

)

+ x− ŝ±
ŝ±

(
ŝ±

1 + ŝ±2

)
2(J2 ± ∗J2) + · · ·

)
. (2.32)

Because of the Z4 symmetry we also have poles at x = 1/ŝ±. Defining š± = ∓
√

1±χ
1∓χ , and

expanding around š± we get the same expansion as above with W → −W , ŝ± → −š± and
∗J2 → −∗J2. It will turn out to be convenient to define the poles in term of a new variable
s instead of χ such that

ŝ+ = s, ŝ− = −1/s, š+ = −s, š− = 1/s. (2.33)

Then, the residues are given by

A (x ' s) = 1
2 (I +W ) s

x− s
(J2 + ∗J2) + · · ·

A
(
x ' −s−1

)
= 1

2 (I +W ) −s
−1

x+ s−1 (J2 − ∗J2) + · · ·

A (x ' −s) = 1
2 (I−W ) −s

x+ s
(J2 − ∗J2) + · · ·

A
(
x ' s−1

)
= 1

2 (I−W ) s−1

x− s−1 (J2 + ∗J2) + · · ·

(2.34)

Let us also introduce the z variable by x = s+z2

1−sz2 , similar in spirit to the transformation
given in [22], which yields

dx

(x− s)(x+ s−1) = 2
s+ s−1

dz

z
. (2.35)

Using these variables, the flat connection coefficients are given by

δ2 =
(
1 + z4) cosψ

2z2 , δ1 =
√

cosψ
(
cos ψ2 − z

2 sin ψ
2

)
z

,

δ∗ =
(
z4 − 1

)
cosψ

2z2 + sinψ, δ3 =
√

cosψ
(
z2 cos ψ2 + sin ψ

2

)
z

.

(2.36)
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These coefficients satisfy ikδk(iz,−ψ) = δk(z, ψ), and the poles at s and s−1 are mapped
to 0 and ∞ respectively.

As a final comment, as is the case in [18], taking the pure NSNS limit by sending χ→ 1
(and κ→ 0), the flat connection degenerates, i.e., the only nontrivial coefficient of the flat
connection is δ∗ = 1. However, taking the limit for a general choice of a parametrisation
of δ2 yields the equations

Wδ∗ = 1− δ2, δ1 = δ3 = ±
√
δ2, or Wδ∗ = 1 + δ2, δ1 = −δ3 = ±

√
δ2. (2.37)

These equations do not generally yield a degenerate flat connection. An example of a
parametrisation that does not degenerate in the χ→ 1 limit is given in footnote 3.

2.3 Finite-gap integration

In this section we derive the finite-gap equations following [2, 26]. As will be shown below,
the construction requires some modifications, mainly because of the poles shift. Starting
with the flat connection given in (2.21) and using the coefficients introduced in (2.26), we
define the monodromy matrix

M(x, χ) = P exp
∫ 2π

0
Aσ(x, χ) = U−1(x, χ) exp(pi(x, χ)Hi)U(x, χ) (2.38)

where Hl is a Cartan basis of the superalgebra. pl(x, χ) is the quasi-momentum, it is
gauge invariant and defined up to Weyl group transformations and shifts of integers time
2π. By construction, the monodromy matrix is given by two blocks. We shall denote the
quasi-momenta in the upper-left block by p̂(x) and the quasi-momenta in the lower-right
block by p̌l(x). Un-hatted/checked quasi-momenta will denote either hatted or checked
quasi-momenta.

For large x we get (2.29)

A = g−1
(
d+ 1

κx
∗ k
)
g +O(1/x2), (2.39)

where k is the Noether current defined above, d ∗ k = 0. This implies that

pl(x) = 1
κx
ql +O(1/x2) (2.40)

since the quasi-momenta are gauge invariant and where ql are the global Noether charges.
As discussed in the previous section, the Lax connection has four poles at ŝ+ = s,

ŝ− = −1/s, š+ = −s and š− = 1/s with s =
√

1+χ
1−χ = 1+χ

κ = 1+sinψ
cosψ . The monodromy

matrix is a meromorphic function of x with possible singularities located at these poles.
Strictly speaking p̂(x) will have poles at ŝ± and p̌(x) at š∓.

The Weyl reflections of the superalgebra act on the quasi-momenta as

pl(x)→ pl(x)−Almpm(x), (2.41)

where A is the Cartan matrix. when encircling a branch point al,i on the complex plane
x, the quasi-momentum changes as

pl(x)→ pl(x)−Almpm(x) + 2πnl,i. (2.42)
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For fermionic roots All = 0, so pl → pl + · · · which implies a logarithmic branch point. For
bosonic roots All = 2, so pl → −pl + · · · which implies a square root branch point. Let us
denote the bosonic square root cuts as Cl,i so that

Alm/pm = 2πnl,i, x ∈ Cl,i. (2.43)

Close to the poles, the Lax-connection is given by (2.34), so the quasi-momenta is given by

p̂l(x ' ŝ±)→ ± ŝ±2
κ̂l ± 2πm̂l

x− ŝ±
+ · · · ,

p̌l(x ' š±)→ ∓ ŝ±2
κ̌l ∓ 2πm̌l

x+ ŝ±
+ · · · ,

(2.44)

where we have used (2.6) and (2.34) to show that the residues are the same for the ŝ± and
š± poles.

The Lax-connection has the Z4 symmetry property (2.25)

Ω4(A(x)) = A (1/x) , (2.45)

so using Ω4(AB) = Ω4(A)Ω4(B), we also have

Ω4(M(x)) = M (1/x) . (2.46)

Given
Ω4(Hl) = HmSml (2.47)

where the eigenvalues of Sml are ±1 since Ω2 = (−)F , we should also have

pl(1/x) = Slmpm(x). (2.48)

Finally, the Virasoro constraint are not modified by the WZ term, so the null condition is
the same as in [26]4

(κl ± 2πml)Alk(κk ± 2πmk) = 0. (2.49)

Next, we write the quasi-momenta using the spectral representation

p̂l(x) =
x
κ (2πχm̂l + κ̂l) + 2πm̂l

(x− s) (x+ s−1) +
∫
Cl

dy
ρ̂l(y)
x− y

+
∫

1/Cl
dy

ˆ̃ρl(y)
x− y

,

p̌l(x) =
x
κ (2πχm̌l − κ̌l)− 2πm̌l

(x+ s) (x− s−1) +
∫
Cl

dy
ρ̌l(y)
x− y

+
∫

1/Cl
dy

ˇ̃ρl(y)
x− y

,

(2.50)

where ρl(y) are the discontinuities at the cuts. Thus, we have

p̂l(1/x) =
x
κ (2πχm̂l − κ̂l)− 2πm̂l

(x− s−1) (x+ s) − 2πm̂l

+
∫

1/Cl
dy
ρ̂l(1/y)
y

+
∫
Cl

dy
ˆ̃ρl(1/y)
y

+
∫

1/Cl
dy
ρ̂l(1/y)
x− y

+
∫
Cl

dy
ˆ̃ρl(1/y)
x− y

,

(2.51)

and similarly for p̌l(1/x).
4Here we consider only the massive sector. In [37] it was shown that in the case of pure RR flux the

massless modes can be included by relaxing the Virasoro constraint (2.49), which allows the contribution
from other fields which are not included in the coset to be taken into account [26, 37]. We expect that a
similar procedure works in the mixed flux case, but the detailed study of these modes is outside the scope
of the current paper.
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Up to this point the treatment is general for any direct sum of two identical super-
groups. From now on we are going to assume a specific grading for the superalgebra as
given in [6]. Writing S = σ1⊗Slk with l, k = 1, . . . ,dim(GL), and using (2.48) we find that

κ̂l = Slmκ̌m, m̂l = Slmm̌m,

2πm̂l = −
∫
Cl

dy
ρ̂l(y)
y

+ Slm
∫
Cm

dy
ρ̌m(y)
y

, (2.52)

2πm̌l = +
∫
Cl

dy
ρ̌l(y)
y
− Slm

∫
Cm

dy
ρ̂m(y)
y

,

and

p̂l(x) =
x
κ (2πχm̂l + κ̂l) + 2πm̂l

(x− s) (x+ s−1) +
∫
Cl

dy
ρ̂l(y)
x− y

− Slm
∫
Cm

dy

y2
ρ̌m(y)
x− y

p̌l(x) = Slm
x
κ (2πχm̂m − κ̂m)− 2πm̂m

(x+ s) (x− s−1) +
∫
Cl

dy
ρ̌l(y)
x− y

− Slm
∫
Cm

dy

y2
ρ̂m(y)
x− y

.

(2.53)

Using (2.43) we get

2πn̂k,i =Akl
x
κ (2πχm̂l + κ̂l) + 2πm̂l

(x− s) (x+ s−1)

+ Akl −
∫
Cl

dy
ρ̂l(y)
x− y

− AklSlm
∫
Cm

dy

y2
ρ̌m(y)
x− 1/y ,

(2.54)

2πňk,i =− AklSlm
x
κ (2πχm̂m − κ̂m)− 2πm̂m

(x− s−1) (x+ s)

− Akl −
∫
Cl

dy
ρ̌l(y)
x− y

+ AklSlm
∫
Cm

dy

y2
ρ̂m(y)
x− 1/y ,

(2.55)

where we used A = σ3 ⊗ A.5 We are going to use the psu(1, 1|2) Cartan matrix

A =

 0 −1 0
−1 2 −1
0 −1 0

 (2.56)

and

S =

1 −1 0
0 −1 0
0 −1 1

 . (2.57)

The vectors κ̂, m̂ and m̌ are given by

κ̂ = 2πE(1, 0, 1),

m̂ = −2(P̂ − SP̌) = 2
(
−P̂1 + P̌1 − P̌2,−P̂2 − P̌2,−P̂3 + P̌3 − P̌2

)
m̌ = +2(P̌ − SP̂) = 2

(
−P̂1 + P̌1 + P̂2,+P̂2 + P̌2,−P̂3 + P̌3 + P̂2

)
,

(2.58)

5Here we use different gradings for the two copies of the psu(1, 1|2) algebra. In the semi-classical level
the choice of grading is arbitrary, and the finite-gap equations can be written in a more symmetric form
by using the same grading for both copies of the algebra. However, the construction of the all-loop Bethe
ansatz equations picks out certain preferred gradings [6]. Hence, the choice of a mixed grading here is made
to facilitate comparison with the semi-classical limit of the Bethe ansatz equations in section 3.
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with Pi = 1
4π
∫
dy ρi(y)

y . The level matching condition is P̂2 + P̌2 = 0. Using these explicit
matrices and vectors, the finite-gap equations are given by

2πn̂1,i = −
∫
dy
ρ̂2(y)
x− y

−
∫
dy

y2
ρ̌2(y)
x− 1

y2
, (2.59)

2πn̂2,i = 2 −
∫
dy
ρ̂2(y)
x− y

−
∫
dy
ρ̂1(y)
x− y

−
∫
dy
ρ̂3(y)
x− y

+
∫
dy

y2
ρ̌1(y)
x− 1

y

+
∫
dy

y2
ρ̌3(y)
x− 1

y

− 4πx
(x− s)(x+ s−1)

(1
κ
E − χ

κ
M
)

+ 4π
(x− s)(x+ s−1)M,

(2.60)

2πn̂3,i = −
∫
dy
ρ̂2(y)
x− y

−
∫
dy

y2
ρ̌2(y)
x− 1

y2
, (2.61)

2πň1,i = +
∫
dy
ρ̌2(y)
x− y

+
∫
dy

y2
ρ̂2(y)
x− 1

y2
, (2.62)

2πň2,i = −2 −
∫
dy
ρ̌2(y)
x− y

+
∫
dy
ρ̌1(y)
x− y

+
∫
dy
ρ̌3(y)
x− y

−
∫
dy

y2
ρ̂1(y)
x− 1

y

−
∫
dy

y2
ρ̂3(y)
x− 1

y

− 4πx
(x+ s)(x− s−1)

(1
κ
E + χ

κ
M
)

+ 4π
(x+ s)(x− s−1)M,

(2.63)

2πň3,i = +
∫
dy
ρ̌2(y)
x− y

+
∫
dy

y2
ρ̂2(y)
x− 1

y2
, (2.64)

where

M = P̂1 − P̌1 + 2P̌2 + P̂3 − P̌3. (2.65)

The integration contour is defined along the cuts associated with the density in the inte-
grand, and x ∈ Ĉl,i/Čl,i in the n̂l,i/ňl,i equations.

3 Finite-gap equations from the Bethe equations

In this section we will write down a set of Bethe equations based on the S-matrix presented
in [28], and compare the finite-gap limit of those equations with the construction in the
previous section.

3.1 The Hoare-Tseytlin S-matrix

An S-matrix for the massive sector of light cone gauge string theory on AdS3×S3×T4 with
mixed RR and NSNS flux was proposed in [28]. This S-matrix can be obtained from the
S-matrix in the pure RR case [6] by generalising the dispersion relation. After gauge fixing
the superisometry algebra of the string theory background is broken to psu(1|1)4 n u(1)4.
Here the u(1)4 factor indicates four central charges, which are related to the energy, mo-
mentum and the mass of the world-sheet excitations. The excitations form two irreducible
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representations of this algebra, and their dispersion relation are given by6

E =
√
M2 + 16h2κ2 sin2 p

2 . (3.1)

where κ2 = 1 − χ2 and the NSNS flux is proportional to χ. In the χ = 0 case the two
representations both describe excitations of mass M2 = 1. For non-zero χ the two masses
are different. In [49] it was proposed that they take the form7

M̂2 = (1 + 2χhp)2, M̌2 = (1− 2χhp)2. (3.4)

The all-loop S-matrix of [6] is expressed in terms of a set of spectral parameters x± which are
parametrising the central charges carried by the excitations. For χ 6= 0 there are excitations
with two different masses. We will denote the corresponding spectral parameters by x̂±

and x̌±. They are related to the world-sheet momentum by

x̂+

x̂−
= e+ip,

x̌+

x̌−
= e+ip. (3.5)

The spectral parameters further satisfy shortening conditions of the form

x̂+ + 1
x̂+ − x̂

− − 1
x̂−

= iM̂

κh
= i

κh

(
1 + 2χ

κ
P̂

)
,

x̌+ + 1
x̌+ − x̌

− − 1
x̌−

= iM̌

κh
= i

κh

(
1− 2χ

κ
P̌

)
,

(3.6)

where
P̂ = κhp, P̌ = κhp. (3.7)

The dispersion relations (3.1) can be expressed in terms of x̂± and x̌± as

Ê = −iκh
((
x̂+ − x̂−

)
−
( 1
x̂+ −

1
x̂−

))
,

Ě = −iκh
((
x̌+ − x̌−

)
−
( 1
x̌+ −

1
x̌−

))
.

(3.8)

To expand this in the near BMN limit [50] we take h large and keep P̂ and P̌ fixed.

6The coupling constant h is related to the string tension λ by h =
√
λ

4π + O(1). In the pure RR case it
is known that there is no O(1) correction to h [29, 31, 41]. We expect this to be true in the case of mixed
fluxes as well [48].

7A different set of masses was proposed in [28],

M2 =
(

1± 4hχ sin p2

)2
. (3.2)

In the near-BMN limit, where p� 1� h with hp kept fixed, the two mass terms both give

M2 ≈ (1± 2χhp)2 + · · · , (3.3)

in agreement with the tree-level calculation of [27]. The finite-gap limit is only sensitive to the near-BMN
part of the dispersion relation so we are free to use any of the two expressions above for the mass.
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The matrix elements of the S-matrix of [28] takes the same form as those in [6], but
expressed in terms of the deformed spectral parameters. The S-matrix also contains scalar
factors that give the overall normalisation. Since the massive excitations transform in two
different representations of the symmetry algebra, there are four such scalar factors — one
for each combination of two representation. However, the phases are pairwise related by
discrete symmetries8 and can be expressed in terms of two different functions. The phase
σ(p1, p2) gives the phase when scattering two excitations from the same multiplet, while
the phase for scattering excitations from different representations is given by σ̄(p1, p2). The
two phases are related by the crossing equations [6, 7]9

σ2(x±, y±) σ̄2(x±, 1/y±) =
(
x+

x−

)2 (x− − y+)2

(x− − y−)(x+ − y+)
1− 1

x−y+

1− 1
x+y−

, (3.9)

σ2(x±, 1/ȳ±) σ̄2(x±, ȳ±) =
(
x+

x−

)2
(
1− 1

x−ȳ−

) (
1− 1

x+ȳ+

)
(
1− 1

x+ȳ−

)2
x− − ȳ+

x+ − ȳ−
. (3.10)

Here x± and y± indicate two spectral parameters of the same kind (either x̂± or x̌±), while
ȳ± is a spectral parameter of the opposite kind (x̌± or x̂±). As we will see later some care
is needed in order to find a good form for these scalar factors in the finte gap limit.

3.2 Bethe ansatz equations

The Bethe equations in the pure RR case were constructed in [6] by diagonalising the
S-matrix. Since the S-matrix takes the same form when expressed in term of the spectral
parameters also for mixed fluxes, the same construction is valid in that case as well. For
completeness we write out these equations here. In total there are six equations. There
are two sets of momentum carrying Bethe roots x̂±2,k and x̌±2,k, with k = 1, . . . , K̂2 and
k = 1, . . . , Ǩ2. In addition there are four sets of auxiliary roots x̂1,k, x̂3,k, x̌1,k and x̌3,k.
We denote the corresponding excitation numbers by K̂1, K̂3, Ǩ1 and Ǩ3.

The Bethe equations take the form10

1 =
K̂2∏
j=1

x̂1,k − x̂+
2,j

x̂1,k − x̂−2,j

Ǩ2∏
j=1

1− 1
x̂1,kx̌

−
2,j

1− 1
x̂1,kx̌

+
2,j

, (3.11)

8The two representations in which the massive excitations transform are related by simultaneously
exchanging the two copies psu(1|1)2 inside the centrally extended algebra and sending χ → −χ. This is
the mixed flux equivalent to the LR-symmetry discussed in [4, 9]. We expect the dressing phases to respect
this symmetry. The phases are further restricted by the unitarity of the S-matrix.

9Due to the momentum dependence on the right hand side of the shortening conditions (3.6), the
analytical structure of the spectral parameters is more complicated for χ 6= 0 than for χ = 0 and it is
not obvious how the analytical continuation in the crossing equations should be performed. However, in
this paper we only need the leading part of the phases at strong coupling, and in that limit the crossing
equations take the same form for any χ.

10The pure RR flux Bethe equations can be constructed from an integrable spin-chain [3, 6]. The linear
dependence of p in M̂ and M̌ discussed in the last section makes the dispersion relation in the mixed flux
case non-periodic in the momentum. Hence, a spin-chain interpretation of the Bethe ansatz equations does
not seem very natural here.
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(
x̂+

2,k

x̂−2,k

)L
=

K̂2∏
j=1
j 6=k

x̂+
2,k − x̂

−
2,j

x̂−2,k − x̂
+
2,j

1− 1
x̂+

2,kx̂
−
2,j

1− 1
x̂−2,kx̂

+
2,j

σ2(x̂2,k, x̂2,j)
K̂1∏
j=1

x̂−2,k − x̂1,j

x̂+
2,k − x̂1,j

K̂3∏
j=1

x̂−2,k − x̂3,j

x̂+
2,k − x̂3,j

(3.12)

×
Ǩ2∏
j=1

1− 1
x̂+

2,kx̌
+
2,j

1− 1
x̂−2,kx̌

−
2,j

1− 1
x̂+

2,kx̌
−
2,j

1− 1
x̂−2,kx̌

+
2,j

σ̄2(x̂2,k, x̌2,j)
Ǩ1∏
j=1

1− 1
x̂−2,kx̌1,j

1− 1
x̂+

2,kx̌1,j

Ǩ3∏
j=1

1− 1
x̂−2,kx̌3,j

1− 1
x̂+

2,kx̌3,j

,

1 =
K̂2∏
j=1

x̂3,k − x̂+
2,j

x̂3,k − x̂−2,j

Ǩ2∏
j=1

1− 1
x̂3,kx̌

−
2,j

1− 1
x̂3,kx̌

+
2,j

, (3.13)

1 =
Ǩ2∏
j=1

x̌1,k − x̌−2,j
x̌1,k − x̌+

2,j

K̂2∏
j=1

1− 1
x̌1,kx̂

+
2,j

1− 1
x̌1,kx̂

−
2,j

, (3.14)

(
x̌+

2,k

x̌−2,k

)L
=

Ǩ2∏
j=1
j 6=k

x̌−2,k − x̌
+
2,j

x̌+
2,k − x̌

−
2,j

1− 1
x̌+

2,kx̌
−
2,j

1− 1
x̌−2,kx̌

+
2,j

σ2(x̌2,k, x̌2,j)
Ǩ1∏
j=1

x̌+
2,k − x̌1,j

x̌−2,k − x̌1,j

Ǩ3∏
j=1

x̌+
2,k − x̌3,j

x̌−2,k − x̌3,j
(3.15)

×
K̂2∏
j=1

1− 1
x̌−2,kx̂

−
2,j

1− 1
x̌+

2,kx̂
+
2,j

1− 1
x̌+

2,kx̂
−
2,j

1− 1
x̌−2,kx̂

+
2,j

σ̄2(x̌2,k, x̂2,j)
K̂1∏
j=1

1− 1
x̌+

2,kx̂1,j

1− 1
x̌−2,kx̂1,j

K̂3∏
j=1

1− 1
x̌+

2,kx̂3,j

1− 1
x̌−2,kx̂3,j

,

1 =
Ǩ2∏
j=1

x̌3,k − x̌−2,j
x̌3,k − x̌+

2,j

K̂2∏
j=1

1− 1
x̌3,kx̂

+
2,j

1− 1
x̌3,kx̂

−
2,j

. (3.16)

The Bethe roots further satisfy the level matching condition

K̂2∏
i=k

x̂+
2,k

x̂−2,k

Ǩ2∏
i=k

x̌+
2,k

x̌−2,k
= 1. (3.17)

The local charges Qn are given by

Qn =
K̂2∑
k=1
Q̂n(x̂±2,k) +

Ǩ2∑
k=1
Q̌n(x̌±2,k), (3.18)

where each Bethe root gives a contribution

Q̂n(x̂±) = i

n− 1

( 1
(x̂+)n−1 −

1
(x̂−)n−1

)
,

Q̌n(x̌±) = i

n− 1

( 1
(x̌+)n−1 −

1
(x̌−)n−1

)
.

(3.19)

To obtain the finite-gap equations we need to know the leading order expansion of
the dressing phase [26]. The phase σ appears in the S-matrix element corresponding to
scattering between two excitations in the same representation. As we will see below, in the
semi-classical limit the expansion of the corresponding terms in the Bethe ansatz equations
are essentially the same in the mixed flux case as in the pure RR case. Hence it seems
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natural to assume that the dressing phase σ to the leading order is given by the Arutyunov-
Frolov-Staudacher (AFS) phase [39]11

− i

κh
log σAFS(x±, y±) = χ(x+, y+)− χ(x+, y−)− χ(x−, y+) + χ(x−, y−), (3.20)

where
χ(x, y) =

(
y + 1

y
− x− 1

x

)
log

(
1− 1

xy

)
. (3.21)

We also need an expression for the phase σ̄, which describes scattering between exci-
tations in two different representations. The crossing equations describe how the phases
σ and σ̄ behave under analytical continuation outside the physical region. Hence, they
relate the two phases on different sheets of a Riemann surface, and can in general not be
used to express the phase σ̄ in terms of σ. However, by inserting the above phase into the
crossing equation (3.10) and performing a semi-classical expansion in the manner discussed
in section 3.3 below we obtain an algebraic equation for the phase σ̄, which can be directly
solved.12 The resulting phase can be written in an expansion in local charges as

− i

κh
log σ̄(x̂±, y̌±) = +

∞∑
n=2

(
Q̂n(x̂±)Q̌n+1(y̌±)− Q̂n+1(x̂±)Q̌n(y̌±)

)
+χ

κ

(
Q̂1(x̂±)Q̌1(y̌±)− 2

∞∑
n=2
Q̂n(x̂±)Q̌n(y̌±)

)
.

(3.22)

The first line here is the same as for the AFS phase, but the second line contains two new
features. Firstly, it contains the first charges Q̂1 and Q̌1, while the AFS phase only involves
charges Q̂n and Q̌n with n ≥ 2. Secondly, the second line is symmetric under the exchange
of x̂± and y̌±. This is not in contradiction with unitarity. The inverse scattering phase
is obtained by additionally sending χ → −χ which gives an additional minus sign in the
second line. By performing the sums we again obtain an expansion of the form

− i

κh
log σ̄(x̂±, y̌±) = χ̄(x̂+, y̌+)− χ̄(x̂+, y̌−)− χ̄(x̂−, y̌+) + χ̄(x̂−, y̌−). (3.23)

The function χ̄(x̂, y̌) takes the form

χ̄(x̂, y̌) =
(
y̌ + 1

y̌
− x̂− 1

x̂

)
log

(
1− 1

x̂y̌

)
− χ

κ

(
2 Li2

( 1
x̂y̌

)
− log x̂ log y̌

)
, (3.24)

where Li2 is the dilogarithm.
As we will see below, the above expressions for σ and σ̄ ensure that the semi-classical

limit of the all-loop Bethe ansatz matches the finite-gap equations derived in section 2.3.
11In equation (5.29) of [28] a different form of the AFS phase was given for the mixed flux S-matrix.

For χ = 0 that expression is equivalent to (3.21) provided we impose the shortening condition satisfied
by x±. For non-zero χ the shortening condition is deformed in a momentum dependent way, as shown in
equation (3.6), and the two forms for the AFS phase is no longer equal. However, the expressions differ only
at higher orders of the large h expansion, so either form can be used to reproduced the tree-level S-matrix
of [27].

12When inserting the phase σ into the crossing equations we assume that crossing at the semi-classical
order corresponds to the transformation x± → 1/x±.
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Moreover, to leading order in the near-BMN expansion they give a tree-level S-matrix that
matches the perturbative results of [27]. However, in deriving the phase σ̄ we solved the
crossing equations only in the semi-classical limit. In principle both σ and σ̄ could contain
additional terms that vanish in both the semi-classical limit and in the near-BMN limit.
Such terms would completely vanish in the calculations below.

By expanding the Bethe equations at large x we can obtain the global charges of the
corresponding solution. Here we derive those charges in the semi-classical limit. Denoting
the angular momenta on S3 by J and K, the angular momentum on AdS3 by S and the
global AdS energy by D we find

D = +Ǩ2 + 1
2
(
K̂1 + K̂3 − Ǩ1 − Ǩ3

)
+ L+ δD, (3.25)

J = −K̂2 + 1
2
(
K̂1 + K̂3 − Ǩ1 − Ǩ3

)
+ L, (3.26)

K = −K̂2 + 1
2
(
K̂1 + K̂3 + Ǩ1 + Ǩ3

)
− 2χ

κ
(P̂ + P̌ ), (3.27)

S = −Ǩ2 + 1
2
(
K̂1 + K̂3 + Ǩ1 + Ǩ3

)
. (3.28)

In deriving these expressions there is an essential contribution from the phase σ̄, which
arises due to the presence of the charges Q̂1 and Q̌1 in (3.22). Without this term the
global charges would depend separately on P̂ and P̌ . In the above expression for the
charges these parameters only appear in a combination proportional to the total world-
sheet momentum p. For a physical state we have p = 2πm for some integer m. Moreover,
quantisation of the WZ coupling can be expressed as 4πhχ = k with k ∈ Z [18, 49]. Hence
the combination

2χ
κ

(P̂ + P̌ ) = 2χhp = mk (3.29)

is also an integer, and the angular momentum K is quantised as expected.
The anomalous dimension is given by

δD = 2κhQ2 + 2χ
κ

(P̂ − P̌ ). (3.30)

This gives the worldsheet Hamiltonian

D − J = K̂2 + Ǩ2 + δD. (3.31)

Since the dispersion relations of the excitations are given by (3.8), the total energy can
also be written as

D − J =
K̂2∑
k=1

Êk +
Ǩ2∑
k=1

Ěk. (3.32)

To see that the above expressions are equal we can use the shortening conditions (3.6) to
rewrite the sums above. For the first sum this gives

K̂2∑
k=1

Êk = −iκh
K̂2∑
k=1

((
x̂+

2,k − x̂
−
2,k

)
−
( 1
x̂+

2,k
− 1
x̂+

2,k

))
(3.33)

= +
K̂2∑
k=1

(
2iκh

( 1
x̂+

2,k
− 1
x̂+

2,k

)
+ 1 + 2χ

κ
P̂

)
= K̂2 + δD̂, (3.34)
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where δD̂ is the contribution to the charge δD from the K̂2 roots. Rewriting the second
sum in a similar way we see that (3.32) and (3.31) agree.

Another useful combination of charges is

M = S −K = K̂2 − Ǩ2 + 2χ
κ

(P̂ + P̌ ), (3.35)

which gives the mass M2 appearing in the dispersion relations (3.8).
We have derived the global charges by expanding in the semi-classical limit. In this

limit only the leading part of the dressing phase contributes. At higher loops the global
charges can in principle receive corrections from higher corrections to the dressing phase.
Such corrections have to be compatible with the quantisation of the compact charges J
and K. Already in the pure RR case this seems quite subtle since the one-loop phase has
a non-trivial expansion at large x [7]. The same is true for the one-loop phase we find in
section 6. At the moment we are no aware of a resolution to this puzzle.

3.3 Scaling limit of the Bethe equations

To obtain the finite-gap equations we consider a solution to the Bethe equations with large
angular momentum and a large number of excitations, so that L ≈ Ki � 1. We further
take the strong coupling limit h � 1. The Bethe roots then condense and form a set of
cuts in the complex plane [19]. We will denote the collection of cuts which arise from the
condensation of the roots x̂i,k and x̌i,k by Ĉi and Či, respectively.

At large coupling we can solve the shortening conditions (3.6) by setting

x̂± = x± i

2 α̂(x) +O(1/h2), x̌± = x± i

2 α̌(x) +O(1/h2), (3.36)

where we have introduced the functions

α̂(x) = 1
κh

x2

(x− s)(x+ s−1) , α̌(x) = 1
κh

x2

(x+ s)(x− s−1) , (3.37)

and

s =
√

1 + χ

1− χ. (3.38)

We further introduce the densities

ρ̂i(x) =
∑
k

α(x̂i,k)δ(x− x̂i,k), ρ̌i(x) =
∑
k

α̌(x̌i,k)δ(x− x̌i,k) (3.39)

along the cuts formed by the condensed Bethe roots. The finite-gap equations can now be
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found by taking the logarithm of the Bethe equations in the above limit. This gives

2πn̂1 = −
∫
dy
ρ̂2(y)
x− y

−
∫
dy

y2
ρ̌2(y)
x− 1

y2
, (3.40)

2πn̂2 = 2 −
∫
dy
ρ̂2(y)
x− y

−
∫
dy
ρ̂1(y)
x− y

−
∫
dy
ρ̂3(y)
x− y

+
∫
dy

y2
ρ̌1(y)
x− 1

y

+
∫
dy

y2
ρ̌3(y)
x− 1

y

− 4πx
(x− s)(x+ s−1)

(1
κ
E − χ

κ
M
)

+ 4π
(x− s)(x+ s−1)M,

(3.41)

2πn̂3 = −
∫
dy
ρ̂2(y)
x− y

−
∫
dy

y2
ρ̌2(y)
x− 1

y2
, (3.42)

2πň1 = +
∫
dy
ρ̌2(y)
x− y

+
∫
dy

y2
ρ̂2(y)
x− 1

y2
, (3.43)

2πň2 = −2 −
∫
dy
ρ̌2(y)
x− y

+
∫
dy
ρ̌1(y)
x− y

+
∫
dy
ρ̌3(y)
x− y

−
∫
dy

y2
ρ̂1(y)
x− 1

y

−
∫
dy

y2
ρ̂3(y)
x− 1

y

− 4πx
(x+ s)(x− s−1)

(1
κ
E + χ

κ
M
)

+ 4π
(x+ s)(x− s−1)M,

(3.44)

2πň3 = +
∫
dy
ρ̌2(y)
x− y

+
∫
dy

y2
ρ̂2(y)
x− 1

y2
. (3.45)

The integrals above should be taken over the cuts along which the densities in the integrand
are defined. The parameters x appearing on the right hand sides of the above equations
take values along the cuts, so that the first (last) three equations should be evaluated for
x on Ĉ1, Ĉ2 and Ĉ3 (Č1, Č2 and Č3), respectively. Note that this means that the first
and third (and fourth and sixth) are not actually identical even though they take the same
form as written here.

In order to write down the coefficients E and M we introduce

P̂m = 1
4π

∫
dy

y
ρ̂m(y), Êm = κ

4π

∫
dy

y2 ρ̂m(y),

P̌m = 1
4π

∫
dy

y
ρ̌m(y), Ěm = κ

4π

∫
dy

y2 ρ̌m(y).
(3.46)

The residues appearing in the finte gap equations are then given by

M = +P̂1 + P̂3 − P̌1 + 2P̌2 − P̌3, (3.47)

and
E = L − Ê1 + 2Ê2 − Ê3 + Ě1 + Ě3 − χ

(
P̂1 − 2P̂2 + P̂3 + P̌1 + P̌3

)
, (3.48)

with L = L/
√
λ. The finite-gap equations obtained from the Bethe ansatz agree with the

results of section 2. For s = 1 the above expressions exactly agree with the results of [6],
as expected. The anomalous dimension is given by

δD√
λ

= 2(Ê2 + Ě2) + 2χ(P̂2 − P̌2), (3.49)
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while the total worldsheet momentum is13

ptotal = 4π(P̂2 + P̌2). (3.50)

For a physical string state ptotal ∈ 2πZ.

4 Quasi-momenta in the fundamental representation

In this section we use the finite-gap equations derived in the previous sections to write
down the quasi-momenta in an explicit representation, and to find the quasi-momenta
asymptotics. This representation will be used in the next section to formulate the semi-
classical quantisation of the algebraic curve which will be further used to calculate the one
loop correction to the dressing phase.

Let us introduce the resolvents

Gã(x) =
Kã∑
k=1

α̃(xã,k)
x− xã,k

, Hã(x) =
Kã∑
k=1

α̃(x)
x− xã,k

, Ḡã(x) = Gã(1/x), H̄ã(x) = Hã(1/x),

(4.1)
where tilde stands for hat or check. These are related to the integrals appearing in the
finite-gap equations by the relations∫

dy
ρ̂a(y)
x− y

= +Gâ = +Hâ −
Gâ(0) + xG′â(0) + 2xχκGâ(0)

(x− s)(x+ s−1) , (4.2)∫
dy
ρ̌a(y)
x− y

= +Gǎ = +Hǎ −
Gǎ(0) + xG′ǎ(0)− 2xχκGǎ(0)

(x+ s)(x− s−1) , (4.3)∫
dy

y2
ρ̂a(y)
x− 1

y

= −Ḡâ +Gâ(0) = −H̄â −
Gâ(0) + xG′â(0)
(x+ s)(x− s−1) (4.4)

∫
dy

y2
ρ̌a(y)
x− 1

y

= −Ḡǎ +Gǎ(0) = −H̄ǎ −
Gǎ(0) + xG′ǎ(0)
(x− s)(x+ s−1) (4.5)

G̃a(0) = −4πP̃a, G̃a(0)′ = −4π
κ
Ẽa, (4.6)

Inserting this into the finite-gap equations we find

2πn1̂ =−H2̂ + H̄2̌ +
G2̂(0)

(
1 + 2χκx

)
+G′2̂(0)x

(x− s)(x+ s−1) +
G2̌(0) +G′2̌(0)x
(x− s)(x+ s−1) ,

2πn2̂ = + 2H2̂ −H1̂ −H3̂ − H̄1̌ − H̄3̌

− 2
G2̂(0) +G2̌(0)

(x− s)(x+ s−1)

(
1 + χ

κ
x

)
−

4π
κ Lx

(x− s)(x+ s−1) ,

2πn3̂ =−H2̂ + H̄2̌ +
G2̂(0)

(
1 + 2χκx

)
+G′2̂(0)x

(x− s)(x+ s−1) +
G2̌(0) +G′2̌(0)x
(x− s)(x+ s−1) , (4.7)

2πn1̌ = +H2̌ − H̄2̂ −
G2̌(0)

(
1− 2χκx

)
+G′2̌(0)x

(x+ s)(x− s−1) −
G2̂(0) +G′2̂(0)x
(x+ s)(x− s−1) ,

13The factor 4π appears because we are taking the finite-gap limit by scaling the momentum by 1/κh
rather than by 1/

√
λ.
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2πn2̌ =− 2H2̌ +H1̌ +H3̌ + H̄1̂ + H̄3̂

+ 2x
χ
κ

(
G2̂(0)−G2̌(0)

)
+
(
G′2̂(0) +G′2̌(0)

)
(x+ s)(x− s−1) −

4π
κ Lx

(x+ s)(x− s−1) ,

2πn3̌ = +H2̌ − H̄2̂ −
G2̌(0)

(
1− 2χκx

)
+G′2̌(0)x

(x+ s)(x− s−1) −
G2̂(0) +G′2̂(0)x
(x+ s)(x− s−1) .

If we define the eight quasi-momenta

p̂A1 (x) = + H̄2̌ −H1̂ − H̄1̌

+ x

χ
κ (G2̂(0)−G2̌(0)) +G′2̂(0) +G′2̌(0)

(x− s)(x+ s−1) − 1
2

4π
κ Lx

(x− s)(x+ s−1) ,

p̂S1 (x) = +H2̂ −H1̂ − H̄1̌

−
G2̂(0) +G2̌(0)

(x− s)(x+ s−1)

(
1 + χ

κ
x

)
− 1

2

4π
κ Lx

(x− s)(x+ s−1) ,

p̂S2 (x) =−H2̂ +H3̂ + H̄3̌

+
G2̂(0) +G2̌(0)

(x− s)(x+ s−1)

(
1 + χ

κ
x

)
+ 1

2

4π
κ Lx

(x− s)(x+ s−1) ,

p̂A2 (x) =− H̄2̌ +H3̂ + H̄3̌

− x
χ
κ (G2̂(0)−G2̌(0)) +G′2̂(0) +G′2̌(0)

(x− s)(x+ s−1) + 1
2

4π
κ Lx

(x− s)(x+ s−1) ,

p̌S2 (x) =− H̄2̂ +H3̌ + H̄3̂

−
G2̂(0) +G2̌(0)

(x+ s)(x− s−1)

(
1− χ

κ
x

)
− 1

2

4π
κ Lx

(x+ s)(x− s−1) ,

p̌A2 (x) =−H2̌ +H3̌ + H̄3̂

+ x

χ
κ (G2̂(0)−G2̌(0)) + (G′2̂(0) +G′2̌(0))

(x+ s)(x− s−1) − 1
2

4π
κ Lx

(x+ s)(x− s−1) ,

p̌A1 (x) = +H2̌ −H1̌ − H̄1̂

− x
χ
κ (G2̂(0)−G2̌(0)) + (G′2̂(0) +G′2̌(0))

(x+ s)(x− s−1) + 1
2

4π
κ Lx

(x+ s)(x− s−1) ,

p̌S1 (x) = + H̄2̂ −H1̌ − H̄1̂

+
G2̂(0) +G2̌(0)

(x+ s)(x− s−1)

(
1− χ

κ
x

)
+ 1

2

4π
κ Lx

(x+ s)(x− s−1) ,

(4.8)

the six finite-gap equations are given by

p̂A1 − p̂S1 = 2πn1̂, p̌S2 − p̌A2 = 2πn3̌,

p̂S1 − p̂S2 = 2πn2̂, p̌A2 − p̌A1 = 2πn2̌,

p̂S2 − p̂A2 = 2πn3̂, p̌A1 − p̌S1 = 2πn1̌.

(4.9)

The superscripts A and S indicate whether the quasi-momentum components is related to
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the AdS or to the sphere’s subspace respectively. The quasi-momenta satisfy the relations

p̂A1 (1/x) = p̌A1 (x), p̂S1 (1/x) = p̌S1 (x) +G2̂(0) +G2̌(0),
p̂A2 (1/x) = p̌A2 (x), p̂S2 (1/x) = p̌S2 (x)−G2̂(0)−G2̌(0).

(4.10)

The large x asymptotics gives

p̂A1 (x) ' 1
κhx

(
−1

2(D + S)− 1
2B̂
)
, p̌S2 (x) ' 1

κhx

(
−1

2(J −K)− 1
2B̌
)
,

p̂S1 (x) ' 1
κhx

(
−1

2(J +K)− 1
2B̂
)
, p̌A2 (x) ' 1

κhx

(
−1

2(D − S)− 1
2B̌
)
,

p̂S2 (x) ' 1
κhx

(
+1

2(J +K)− 1
2B̂
)
, p̌A1 (x) ' 1

κhx

(
+1

2(D − S)− 1
2B̌
)
,

p̂A2 (x) ' 1
κhx

(
+1

2(D + S)− 1
2B̂
)
, p̌S1 (x) ' 1

κhx

(
+1

2(J −K)− 1
2B̌
)
.

(4.11)

The charges B̂ = K1̂−K3̂ and B̌ = K1̌−K3̌ are central in psu(1, 1|2)2 and hence unphysical.

5 Semi-classical analysis

The spectrum of small fluctuations around a classical solution can be found by adding
poles to the quasi-momenta, in a way which is consistent with the analytical properties of
the quasi-momenta [51]. Next we adapt the procedure for our case. The perturb quasi-
momenta is given by pi(x) + δpi(x), where pi(x) is the quasi-momenta corresponding to
a classical string solutions. The new quasi-momenta will have new microscopic cuts (i.e.
poles) and macroscopic cuts of poles condensation (related to the classical solution). The
new poles positions are fixed to leading order by the classical quasi-momenta, however
these poles will backreact and shift the macroscopic cuts. More precisely, along the all the
cuts of the Riemann surface Cij we have

(pi + δpi)+ − (pj + δpj)− = 2πn, x ∈ Cij , (5.1)

where the superscript ± denotes above and below the cut. This equation fixes the position
of the microscopic cuts to leading order by

pi(xijn )− pj(xijn ) = 2πn, |xijn | > 1, (5.2)

where |x| > 1 is the physical domain, where the quasi-momenta at |x| < 1 is related by the
Z4 symmetry. Then, along the macroscopic cuts the perturbation must satisfy

(δpi)+ − (δpj)− = 0, x ∈ Cijn . (5.3)

As in [51], we denote the number of excitations with mode number n between the sheets pi
and pj by N ij

n and Nij =
∑
nN

ij
n . The different possible excitations are given by connecting

the following sheets (see figure 1)

AdS3 : (p̂A1 , p̂A2 ), (p̌A2 , p̌A1 )
S3 : (p̂S1 , p̂S2 ), (p̌S2 , p̌S1 )

Fermionic : (p̂A1 , p̂S2 ), (p̂S1 , p̂A2 ), (p̌A2 , p̌S1 ), (p̌S2 , p̌A1 ). (5.4)
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Figure 1. The quasi-momenta form two sets of four-sheeted Riemann surfaces, corresponding
to the hatted and checked quasi-momenta. Classical solutions correspond to cuts connecting the
different sheets (of the same type, namely hatted or checked). The physical excitations correspond
to poles connecting the sheets which contain the middle node root. Totally there are eight bosonic
and fermionic physical excitations with different polarisations which are depicted in the figure by
blue and red wiggly lines respectively. The lines contain different Dynkin nodes which correspond to
the excited Bethe roots. The two Riemann surfaces are related by the inversion x→ 1/x symmetry.
The ±1 to the left of the Dynkin diagrams correspond to the grading of the superalgebra, these are
the su(2) (left digram) and sl(2) (right diagram) gradings. The dashed lines separate the AdS and
sphere’s sheets.

The energy shift coming from the poles is given by

δD = δ∆ +
∑

AdS3

Nij + 1
2

∑
fermions

Nij , (5.5)

where we have extracted the non-trivial piece δ∆ from the bare part. It is then useful to
write the asymptotics of the quasi-momenta as

δ



p̂A1
p̂A2

p̂S1
p̂S2

p̌A1
p̌A2

p̌S1
p̌S2


= 1
κhx



−1
2δ∆−N

AA
1̂2̂ −N

AS
1̂2̂

+1
2δ∆ +NAA

1̂2̂ +NSA
1̂2̂

+NSS
1̂2̂ +NSA

1̂2̂
−NSS

1̂2̂ −N
AS
1̂2̂

+1
2δ∆ +NAA

2̌1̌ +NAS
2̌1̌

−1
2δ∆−N

AA
2̌1̌ −N

SA
2̌1̌

−NSS
2̌1̌ −N

SA
2̌1̌

+NSS
2̌1̌ +NAS

2̌1̌


. (5.6)

The filling fractions N ij
n are related by

∑
n

n
∑
i,j

N ij
n = 0. (5.7)
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The signs of the residues are given by

res
x=x12

n

p̂Ai = −(δ1i − δ2i)α̂(x12
n )N12

n ,

res
x=x12

n

p̂Si = +(δ1i − δ2i)α̂(x12
n )N12

n ,

res
x=x12

n

p̌Ai = +(δ1i − δ2i)α̌(x12
n )N12

n ,

res
x=x12

n

p̌Si = −(δ1i − δ2i)α̌(x12
n )N12

n .

(5.8)

The perturbed quasi-momenta also have to satisfy the Z4 inversion symmetry, so that

δp̂A1 (1/x) = δp̌A1 (x), δp̂S1 (1/x) = δp̌S1 (x),
δp̂A2 (1/x) = δp̌A2 (x), δp̂S2 (1/x) = δp̌S2 (x).

(5.9)

Finally, the poles at ±s and ±1/s are synchronised in the following way

δ(p̂A1 , p̂A2 |p̂S1 , p̂S2 ||p̌A1 , p̌A2 |p̌S1 , p̌S2 ) '



+s (δα+,δβ+|δα+,δβ+||0,0,0,0)
x−s

−1
s

(δα−,δβ−|δα−,δβ−||0,0,0,0)
x+1/s

+s (0,0,0,0||δα−,δβ−|δα−,δβ−)
x+s

−1
s

(0,0,0,0||δα+,δβ+|δα+,δβ+)
x−1/s

(5.10)

where we have used (2.34) and (2.6).

5.1 BMN string quantisation

Next we apply the above procedure to the simplest case of the BMN string solution where
the classical solution has no cuts. The analysis is similar to the one in [51]. In this section
we will give a sketch of the procedure as well as the result for the energy fluctuations, while
saving the details for appendix A. The classical quasi-momenta is given by

pl(x) = (p(x),−p(x)|p(x),−p(x)||p(1/x),−p(1/x), p(1/x),−p(1/x)) (5.11)

with
p(x) = 2πxJ

κ(x− s)(x− s−1) , (5.12)

where J is the angular momentum of the BMN ground state. Using (5.2) we fix the
position of the poles

xı̂̂n = J + χn+
√
J 2 + 2χJ n+ n2

κn
(5.13)

for the hatted quasi-momenta, which correspond to the AdS excitations, and similarly to
the sphere’s and fermionic excitations. Next we make an ansatz for the perturbed quasi-
momenta, such that it has the desired pole structure according to (5.8) and (5.10) and
satisfies the Z4 inversion symmetry. The only unknowns are the residues at poles (5.10)
which however are synchronised, and an overall additive constant to the quasi-momenta.
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These unknowns are later fixed by using the large x asymptotics (5.6), and yield the energy
fluctuations to be

δ∆ =
∑

all ij

∑
n

N̂n
ij

√ n2

J 2 + 2χ n
J

+ 1− 1

+ Ňn
ij

√ n2

J 2 − 2χ n
J

+ 1− 1

 . (5.14)

This result is consistent with previous results for quantisation of the BMN string with
mixed flux [50].

6 One-loop corrections to the dressing phase

As discussed in section 3, the two-particle S-matrix contain two undetermined scalar factors
σ and σ̄. In that section we also gave a proposal for the leading order expressions for these
phases. Here we will calculate the one-loop correction to the phases by quantising the
algebraic curve around a generic classical solution. This method was first used in the
AdS5 × S5 setting in [23], and has also been used to calculate the one-loop phases in
AdS3 × S3 × T4 with only RR flux [41].

To see how the dressing phases enter in the algebraic curve calculation, let us con-
sider the Bethe equations (3.12) for the Bethe roots x̂±2,k. The phase factors enter in the
combination

K̂2∏
j=1
j 6=k

σ2(x̂±2mk, x̂
±
2,j)

Ǩ2∏
j=1

σ̄2(x̂±2,k, x̌
±
2,j). (6.1)

It is useful to express σ and σ̄ in terms of actual phases by introducing two functions θ
and θ̄ by

σ(x̂±, ŷ±) = exp
(
iθ(x̂±, ŷ±)

)
, σ̄(x̂±, y̌±) = exp

(
iθ̄(x̂±, y̌±)

)
. (6.2)

The phases θ and θ̄ are functions of the coupling constant h and can be expanded at large
coupling

θ(x̂±, ŷ±) = h θ(0)(x̂±, ŷ±) + θ(1)(x̂±, ŷ±) +O(1/h),

θ̄(x̂±, y̌±) = h θ̄(0)(x̂±, y̌±) + θ̄(1)(x̂±, y̌±) +O(1/h),
(6.3)

where the superscript indicates the order in the large h expansion. The leading terms θ(0)

and θ̄(0) were discussed in section 3.2 and are already included in the finite-gap equations.
To also include the one-loop phase we can add potentials −2V̂(x) and −2V̌(x) to the right
hand sides of equations (3.41) and (3.44), with

V̂(x̂) =
K̂2∑
j=1

θ(1)(x̂, x̂2,j) +
Ǩ2∑
j=1

θ̄(1)(x̂, x̌2,j),

V̌(x̌) =
Ǩ2∑
j=1

θ(1)(x̌, x̌2,j) +
K̂2∑
j=1

θ̄(1)(x̌, x̂2,j).

(6.4)

By expressing the finite-gap equations in terms of quasi-momenta p̂i and p̌i we see that
the result of the one-loop phases is to shift the quasi-momenta by plus or minus the above
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potentials. These shift originates in the leading quantum corrections to the string state.
Following [23], we find the one-loop correction to the dressing phase by first considering a
more general setting where we add different potentials V̂i and V̌i to each quasi-momentum.
These potentials are obtained from the one-loop shift of the energy of a generic string
state, which we get as a graded sum over all fluctuations. It is useful to distinguish the
contribution to the potentials coming from hatted and checked excitations. If we add a
pole at position xı̂̂n between the sheets ı̂ and ̂ we get

V̂A1
V̂S1
V̂S2
V̂A2


ı̂̂

= α̂(x)
x2


−xd̂

+
(
1 + χ

κx
)
ĉ

−
(
1 + χ

κx
)
ĉ

+xd̂

+ α̂(x)
x− xı̂̂n


−δı̂,1̂A
+δı̂,1̂S
−δ̂,2̂S
+δ̂,2̂A

 ,

V̌S2
V̌A2
V̌A1
V̌S1


ı̂̂

= α̌(x)
x2


+
(
1− χ

κx
)
ĉ

−xd̂
+xd̂

−
(
1− χ

κx
)
ĉ

+ α̂(1/x)
1
x − x

ı̂̂
n


−δ̂,2̂S
+δ̂,2̂A
−δı̂,1̂A
+δı̂,1̂S

 ,
(6.5)

where
d̂ = α̂(xı̂̂n )

(xı̂̂n )2

(
1 + χ

κ
xı̂̂n
)
, ĉ = α̂(xı̂̂n )

xı̂̂n
. (6.6)

Similarly an additional pole between sheets ı̌ and ̌ gives
V̌S2
V̌A2
V̌A1
V̌S1


ı̌̌

= α̌(x)
x2


+
(
1− χ

κx
)
č

−xď
+xď

−
(
1− χ

κx
)
č

+ α̌(x)
x− xı̌̌n


+δı̌,2̌S
−δı̌,2̌A
+δ̌,1̌A
−δ̌,1̌S

 ,

V̂A1
V̂S1
V̂S2
V̂A2


ı̌̌

= α̂(x)
x2


−xď

+
(
1 + χ

κx
)
č

−
(
1 + χ

κx
)
č

+xď

+ α̌(1/x)
1
x − x

ı̌̌
n


+δ̌,1̌A
−δ̌,1̌S
+δı̌,2̌S
−δı̌,2̌A

 ,
(6.7)

with
ď = α̌(xı̌̌n )

(xı̌̌n )2

(
1− χ

κ
xı̌̌n
)
, č = α̌(xı̌̌n )

xı̌̌n
. (6.8)

The full potentials are then given by a graded sum over all fluctuations. Let us consider

V̂k = 1
2

+∞∑
n=−∞

(∑
ı̂̂

(−1)F V̂ ı̂̂k +
∑
ı̌̌

(−1)F V̂ ı̌̌k

)
. (6.9)

We can rewrite the sums over n as the integrals

V̂k = 1
4i

∫
Ĉ
dn cot(πn)

(∑
ı̂̂

(−1)F V̂ ı̂̂k

)
+ 1

4i

∫
Č
dn cot(πn)

(∑
ı̌̌

(−1)F V̂ ı̌̌k

)
, (6.10)
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n+

n−

−N +N

n

(a)

+i

−i

χ/κ 1/κ
−1/s +s

x

(b)

Figure 2. Integration contours in the n and x planes. The blue wavy lines indicate the two
square root branch cuts with brach points n = n± and x = ∓i. The solid red line is the integration
contour, which in the n plane is taken along a circle that has been deformed to avoid the branch
cuts. This picks up the poles of the cot function, indicated in the figure by purple crosses along the
real axis. For large N the contour in the x plane approaches the branch cuts from the outside.

where the integration contours Ĉ and Č encircle all the poles of cot. To understand these
contours let us consider the BMN frequencies from the previous section,

Ên =

√(
n

J

)2
+ 2χ n

J
+ 1− 1, Ěn =

√(
n

J

)2
− 2χ n

J
+ 1− 1. (6.11)

The function Ên has two branch cuts starting at the points n± = ±iJ (κ± iχ) and running
off to infinity. The sum over frequencies from −N to +N can be obtained by integrating
over a circle of radius N with two deformations to avoid the branch cuts, see figure 2a.
Using the relation

pi(xijn )− pj(xijn ) = 2πn (6.12)

we can map this contour to the x plane, see figure 2b. The branch points n± are then
mapped to ∓i and the cuts form a circle passing through these points as well as +s and
−1/s. As N approaches infinity the integration contour Ĉ encircles the cuts, avoiding the
simple poles at +s and −1/s. For the checked fluctuations frequencies Ěn we find the same
structure as for Ên, except we need to replace χ → −χ, which shifts the branch cuts in
figure 2a from the negative to the positive half plane.

For large N , cot(πn) quickly approaches ∓i in the upper/lower half plane. For the
potential V̂k we then find

V̂k = +1
2
∑
ı̂̂

(−1)F
+s∫

−s−1

dy

2π (p̂′ı̂ − p̂′̂)V̂ ı̂̂ + 1
2
∑
ı̌̌

(−1)F
+s−1∫
−s

dy

2π (p̌′ı̌ − p̌′̌)V̂ ı̌̌ (6.13)
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n+

n−

−N +N

n

(a)

+i

−i

χ/κ 1/κ
−1/s +s

x

(b)

Figure 3. For large N we can use cot(πn) ≈ ∓i to rewrite the integrals so that the contour
splits into two parts, one in the upper and one in the lower half plane. Compared to the contours
depicted in figure 2 the direction of integration is reversed in the upper (lower) half of the n (x)
plane. Following [23] we denote this integral by

∫ +s

−1/s = 1
2
∫
D̂+

+ 1
2
∫
D̂−

, where D̂± indicates the two
halves of the contour shown in the figure.

where the integrals are to be taken in the upper and lower half planes along the contour in
figure 3b.14 Writing out the sums, the contribution from the first term in V̂ ij completely
cancels. For the potential V̂A1 we are left with

V̂A1 = +1
2

+s∫
−s−1

dy

2π ((p̂A2 )′ − (p̂S2 )′) α̂(x)
x− y

+ 1
2

+s−1∫
−s

dy

2π ((p̌A2 )′ − (p̌S2 )′) α̌(1/x)
1
x − y

(6.14)

It is easy to check that the potentials added to the other hatted quasi-momenta are the
same as the above up to a sign, as expected from the discussion in the beginning of this
section. To perform the integrals above we use the relations

(p̂A2 )′ − (p̂S2 )′ = +∂(G2̂(y)−G2̌(1/y)), G2̂(y) = −
∞∑
n=0
Q̂n+1y

n,

(p̌A2 )′ − (p̌S2 )′ = −∂(G2̌(y)−G2̂(1/y)), G2̌(y) = −
∞∑
n=0
Q̌n+1y

n.

(6.15)

After factoring out a factor α̂(x) we can expand the integrand at large x and perform the

14Note that this means we reverse the direction of the contour in the lower half plane. This sign change
comes from the sign difference in the cot(πn) in the two half planes.
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integrals to obtain

V̂A1 =− α̂(x)
2π

∞∑
m=1

∞∑
n=2

Q̂n
xm

(
n− 1

m+ n− 2 −
δm,1

2

) (
sm+n−2 − (−1/s)m+n−2)

+ α̂(x)
2π

∞∑
m=1

∞∑
n=2
n 6=m

Q̌n
xm

(
n− 1
n−m

− δm,1
2

) (
(1/s)n−m − (−s)n−m

)

− α̂(x)
2π

∞∑
n=2

(n− 1)Q̌n
xn

log(s2)

(6.16)

Note that the diagonal terms with n = m are excluded in the summation in the second
line. These terms are instead taking into account separately in the last line.

Setting s = 1, the coefficients in the first line above agree with the result in equation
(4.22) of [41]. As discussed in that paper those coefficients are not anti-symmetric. This
is in contradiction with unitarity of the dressing phase. In [41, 52] it was argued that
the symmetric terms appear due to the implicit choice of regulator in the algebraic curve
approach. To compensate for the missmatch we will extract the part from the above result
that is compatible with unitarity. From the first line above we obtain the correction to the
phase σ, which we will denote by θ(1)(x, y). Since unitarity requires this function to be
anti-symmetric in its arguments we will write

θ(1)(x, y) = 1
2(ϑ(1)(x, y)− ϑ(1)(y, x)), (6.17)

where

ϑ(1)(x, y) = − 1
2π

∞∑
m=1

∞∑
n=2

α̂(x)α̂(y)
xmyn

(
n− 1

m+ n− 2 −
δm,1

2

) (
sm+n−2−(−1/s)m+n−2). (6.18)

Performing the anti-symmetrisation the phase θ(1)(x, y) can then be written as

θ(1)(x, y) = − 1
4π

∞∑
m=1

∞∑
n=m+1

cm,n

(
α̂(x)α̂(y)
xmyn

− α̂(x)α̂(y)
xnym

)
, (6.19)

cm,n =
(

n−m
n+m− 2 −

δm,1 − δn,1
2

) (
sm+n−2 − (−1/s)m+n−2). (6.20)

For s = 1 we recognise the coefficients in the phase of equation (5.10) of [7].
The one-loop correction to σ̄ can be extracted from the second line of equation (6.16).

We will denote this by θ̄(1)(x̂, y̌), where the hat and check on the arguments are there to
point out that this is the phase appearing in the S-matrix between one hatted and one
checked excitation. In this case unitarity requires the phase to satisfy

θ̄(1)(x̂, y̌) + θ̄(1)(y̌, x̂) = 0. (6.21)

Since θ̄ describes scattering between two different excitations the above equation does not
imply that this phase is anti-symmetric, because when exchanging the two particles we
should also send χ→ −χ. Hence, we write

θ̄(x̂, y̌) = 1
2(ϑ̄(1)

s (x̂, y̌)− ϑ̄(1)
1/s(y̌, x̂)), (6.22)
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where we have indicated the s-dependence. From equation (6.16) we find

ϑ̄(1)
s (x̂, y̌) = + 1

2π

∞∑
m=1

∞∑
n=2
n6=m

α̂(x)α̌(y)
xmyn

(
n− 1
n−m

− δm,1
2

) (
(1/s)n−m − (−s)n−m

)

− 1
2π

∞∑
n=2

α̂(x)α̌(y)
xnyn

(n− 1) log(s2).

(6.23)

After imposing unitarity this leads to

θ̄(1)(x̂, y̌) = + 1
4π

∞∑
m=1

∞∑
n=1

c̄m,n
α̂(x)α̌(y)
xmyn

, (6.24)

c̄m,n =


(
n+m− 2
n−m

− δm,1 − δn,1
2

) (
(1/s)n−m − (−s)n−m

)
for n 6= m

−2(n− 1) log s2 for n = m.
(6.25)

Again setting s = 1 we get back the coefficients in the pure RR case from eq. (5.10) of [7].
To derive another expression for the phases we directly perform the integrals in (6.16)

and impose unitarity to obtain

θ(1)(x, y) = − α̂(x)α̂(y)
4π

[
1
κ

(x+ y)
(
1− 1

xy

)
− 4χ

κ

(x− s)(x+ s−1)(y − s)(y + s−1)
x+ y

x− y

+ 2
(x− y)2 log

(
y − s
x− s

x+ s−1

y + s−1

)]
,

θ̄(1)(x, y) = − α̂(x)α̌(y)
4π

[
1
κ

(x− y)
(
1 + 1

xy

)
− 4χ

κ

(x− s)(x+ s−1)(y + s)(y − s−1)
1 + xy

1− xy

+ 2
(1− xy)2 log

(
x+ s−1

x− s
y − s−1

y + s
s2
)]
.

(6.26)

Using these expressions it is straight forward to check that

θ(1)(x, y) + θ̄(1)(x, 1/y) = − i2
α̂(x)α̂(y)
(x− y)2 . (6.27)

The right hand side of the above equation perfectly matches the one-loop term in the
crossing equation (3.9). This serves as a non-trivial check that the expressions for the
one-loop phase that we obtain are correct. Still it would be interesting to work out the
phase in an independent way, for example from the scattering of giant magnons [33, 53]
where unitarity is manifest from the start.

The log terms of the dressing phases were derived in [34] using unitarity cut tech-
niques.15 By expressing the spectral parameters x̂ and x̌ in terms of the BMN momenta p̂
and p̌ using the relations

p̂ = x̂

(x̂− s)(x̂+ s−1) , p̌ = x̌

(x̌+ s)(x̌− s−1) , (6.28)

we find that the log terms in (6.26) agree with the results of [34].
15We thank Radu Roiban for pointing us to this reference.
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7 Conclusions

We have constructed a set of finite-gap equations for the massive sector of string theory
on AdS3 × S3 × T4 with mixed RR and NSNS fluxes. Although the topological Wess-
Zumino term, which carries the NSNS flux, breaks the Z4 symmetry, we have used the
Z4 automorphism in an algebraic way such that the Lax connection satisfies standard Z4
relations. This is an essential part of our derivation of the finite-gap equations. The
resulting equations are similar to the case of pure RR flux but the position of the poles
in the source terms of the equations move away from ±1 for non-zero NSNS flux. We
have also constructed a set of all-loop Bethe ansatz equations using the conjecture S-
matrix of [28]. In the thermodynamic limit the Bethe equations reproduce the finite-gap
equations derived from the world-sheet action. This serves as a check of the consistency
between the conjectured S-matrix and the integrable world-sheet model.

Employing the same methods as in this paper it should be possible to construct finite-
gap equations for other string theory backgrounds with mixed fluxes, such as AdS3 × S3 ×
S3×S1. The corresponding action should be the same as the action considered in section 2 of
this paper but with the superalgebra d(2, 1;α) replacing psu(1, 1|2). Some other classically
integrable AdS3 and AdS2 backgrounds with mixed fluxes were also constructed in [54].

The all-loop S-matrix for massive excitations was constructed based on the symmetry
preserved by the ground state [28]. In the pure RR case this algebra was recently derived
directly from the gauge fixed world-sheet theory [8, 9]. This derivation was essential for
understanding how to obtain the full S-matrix including the massless modes. In the mixed
flux case such a derivation could again be used for understanding how to include the
massless modes in the integrability machinery. However, even for the massive sector such
a derivation would be very interesting since it could help clarify the form of the dispersion
relation of the world-sheet excitations, and in particular the origin of the momentum-
dependent “mass-term”.

The massive S-matrix further contains two undetermined scalar factors known as the
dressing phases. In this paper we conjectured the form of the tree-level and one-loop part
of these phases. To do this we imposed unitarity and crossing invariance, as well as the
one-loop quantisation of the algebraic curve. In the pure RR case the all-loop dressing
phase was found in [7] by solving the crossing equations. As an important part of that
derivation the dispersion relation was written in a uniform way by introducing a rapidity
torus (see also [55] as well as the reviews [47, 56] for the AdS5×S5 case). In the mixed flux
case such a derivation seems more complicated since the shortening condition satisfied by
the spectral parameters x± is non-algebraic. It therefore seems that the rapidities naturally
live on a Riemann surface with an infinite number of cuts rather than on a torus. It would
be very interesting to understand the nature of this Riemann surface.

In our derivation of the one-loop dressing phases we manually impose unitarity. The
origin of the regularisation ambiguity was discussed in [41, 52], but it would be good to
further clarify how it can be resolved in the mixed flux case. It would also be interesting
to confirm our results for the phases using a method where unitarity is mainfest from the
start [33], and to confirm our results for the rational terms in the phase using perturbation
theory [29–36].
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In the parametrisation we are using the Lax connection becomes degenerate in the
pure NSNS limit. However, there are other choices of coefficients where the connection
does not degenerate. It would be very interesting to study this limit more carefully and
to understand how to construct the Lax connection directly in the pure NSNS theory. We
further note that the shortening conditions (3.6) satisfied by the spectral parameters x̂±

and x̌± become degenerate when the parameter χ is sent to 1. In order to study the pure
NSNS limit of the S-matrix and the all-loop Bethe ansatz we would therefore need to either
introduce a different parametrisation of the energy and momentum of the excitations, or
take the χ → 1 limit while rescaling x̂± and x̌± in an appropriate way. One way to
understand what the natural spectral parameters in the pure NSNS case are would be to
directly study the S-matrix of the light-cone gauge fixed string theory supported only by
NSNS flux. Such a study would be very interesting and could help in further clarifying the
relation between integrability and conformal symmetry in AdS3/CFT2.

Note added. After this paper was originally put on arXiv the article [57] was announced.
Among other things, the authors calculate the dressing phases for the mixed flux string
theory on AdS3 × S3 × T4 using generalised unitarity cut techniques. The results they
obtain confirm the form of the one-loop corrections to the dressing phases reported here.
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A Details of the BMN string quantisation

In this appendix we give the details of the BMN string solution quantisation using the
algebraic curve following [51]. The general procedure is explained in section 5, and the
main result for the BMN solution quantisation is given in 5.1. We start by describing the
quantisation of fluctuations in the AdS sector, which is relatively simple and allows us to
check the consistency of the procedure in the sense that the residues of the fluctuation poles
are not imposed, but rather emerge by requiring consistency of the analytical structure and
symmetries. After that we turn to the quantisation of the full spectrum of eight bosonic
and fermionic fluctuations which yields to general energy fluctuations.

A.1 AdS excitations

For the AdS excitations we start with the following ansatz for the perturbed quasi-momenta

δp̂A1 (x) = + sδα

x− s
− (1/s)δα
x+ 1/s −

∑
n

Nn
1̂2̂
α̂(xn1̂2̂)
x− xn1̂2̂

+
∑
n

Nn
1̌2̌

α̌(xn1̌2̌)
1/x− xn1̌2̌

+ âA1 ,

δp̂S1 (x) = sδα+
x− s

− (1/s)δα+
x+ 1/s ,

(A.1)
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and
δp̂A2 (x) = −δp̂A1 (x), δp̌Ai (x) = δp̂Ai (1/x),
δp̂S2 (x) = −δp̂S1 (x), δp̌Si (x) = δp̂Si (1/x).

(A.2)

The residues follow (5.8) and (5.10), while the constant should cancel the other constants
in the large x limit where we expect to find (5.6). The positions xn1̂2̂ and xn1̌2̌ are determined
by the conditions (5.2)

p̂A1 (xn1̂2̂)− p̂A2 (xn1̂2̂) = 2πn p̌A2 (xn1̌2̌)− p̌A1 (xn1̌2̌) = 2πn. (A.3)

Notice that the overall minus sign in the last summation in (A.1) comes from (5.8) and
not from the inversion relation as in the AdS5 × S5 case [51]. (Since there are no sphere
excitations we do not use the AdS superscripts.) By requiring that the large x expansion
of the quasi-momenta starts at order 1/x we find the two conditions

âA1 = +
∑
n

Nn
1̂2̂
α̂(xn1̂2̂)
xn1̂2̂

, âA1 = −
∑
n

Nn
1̌2̌
α̌(xn1̌2̌)
xn1̌2̌

. (A.4)

This leads to the consistency condition

∑
n

Nn
1̂2̂
α̂(xn1̂2̂)
xn1̂2̂

+
∑
n

Nn
1̌2̌
α̌(xn1̌2̌)
xn1̌2̌

= 2π
hJ

(∑
n

Nn
1̂2̂n+

∑
n

Nn
1̌2̌n

)
= 0, (A.5)

which is just the level matching condition.
The next order in the large x expansion leads to

δα± = 0, (A.6)

and to two expressions for δ∆

1
2δ∆ =

∑
n

Nn
1̂2̂
(
α̂(xn1̂2̂)− 1

)
+
∑
n

Nn
1̌2̌
α̌(xn1̌2̌)
(xn1̌2̌)2 ,

1
2δ∆ =

∑
n

Nn
1̌2̌
(
α̌(xn1̌2̌)− 1

)
+
∑
n

Nn
1̂2̂
α̂(xn1̂2̂)
(xn1̂2̂)2 ,

(A.7)

The sum of these expressions gives

δ∆ =
∑
n

Nn
1̂2̂

√( n
J

)2
+ 2χ n

J
+ 1− 1

+
∑
n

Nn
1̌2̌

√( n
J

)2
− 2χ n

J
+ 1− 1

 , (A.8)

For consistency the two expressions for δ∆ in (A.7) have to be equal. This gives the relation

∑
n

Nn
1̂2̂

(
α̂(xn1̂2̂)

(
1− 1

(xn1̂2̂)2

)
− 1

)
−
∑
n

Nn
1̌2̌

(
α̌(xn1̌2̌)

(
1− 1

(xn1̌2̌)2

)
− 1

)
= 0. (A.9)

It is enough for these sums to vanish when we impose level matching. This can be achieved
by setting

α̂(xn1̂2̂) = 1 + Cn

1− 1
(xn

1̂2̂
)2
, α̌(xn1̌2̌) = 1− Cn

1− 1
(xn

1̌2̌
)2
, (A.10)
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for some constant C. Using (A.3) this gives us two expressions for the functions α̂(x) and
α̌(x). If we further require these have only two poles in the x plane we find that there
are two possible values for the constant C. For C = 0 both α̂(x) and ǎ(x) are equal to
x2/(x2−1). This is the function used when quantising the algebraic curve in AdS5×S5 [51].
If we instead set C = χ/J we get back the expressions from (3.37). Only in the second
case is the level matching condition in (A.5) is satisfied.

A.2 Full excitations spectrum

Allowing all eight bosonic and fermionic excitations we start with the ansatz

δp̂A1 (x) = sδα+
x− s

− (1/s)δα−
x+ 1/s −

∑
n

(NAA
1̂2̂ )n

α̂((xAA1̂2̂ )n)
x− (xAA1̂2̂ )n

−
∑
n

(NAS
1̂2̂ )n

α̂((xAS1̂2̂ )n)
x− (xAS1̂2̂ )n

+
∑
n

(NAA
1̌2̌ )n

α̌((xAA1̌2̌ )n)
1/x− (xAA1̌2̌ )n

+
∑
n

(NAS
1̌2̌ )n

α̌((xAS1̌2̌ )n)
1/x− (xAS1̌2̌ )n

+ âA1 ,

δp̂A2 (x) = sδβ+
x− s

− (1/s)δβ−
x+ 1/s +

∑
n

(NAA
1̂2̂ )n

α̂((xAA1̂2̂ )n)
x− (xAA1̂2̂ )n

+
∑
n

(NSA
1̂2̂ )n

α̂((xSA1̂2̂ )n)
x− (xSA1̂2̂ )n

−
∑
n

(NAA
1̌2̌ )n

α̌((xAA1̌2̌ )n)
1/x− (xAA1̌2̌ )n

−
∑
n

(NSA
1̌2̌ )n

α̌((xSA1̌2̌ )n)
1/x− (xSA1̌2̌ )n

+ âA2 ,

δp̂S1 (x) = sδα+
x− s

− (1/s)δα−
x+ 1/s +

∑
n

(NSS
1̂2̂ )n

α̂((xSS1̂2̂ )n)
x− (xSS1̂2̂ )n

+
∑
n

(NSA
1̂2̂ )n

α̂((xSA1̂2̂ )n)
x− (xSA1̂2̂ )n

−
∑
n

(NSS
1̌2̌ )n

α̌((xSS1̌2̌ )n)
1/x− (xSS1̌2̌ )n

−
∑
n

(NSA
1̌2̌ )n

α̌((xSA1̌2̌ )n)
1/x− (xSA1̌2̌ )n

+ âS1 ,

δp̂S2 (x) = sδβ+
x− s

− (1/s)δβ−
x+ 1/s −

∑
n

(NSS
1̂2̂ )n

α̂((xSS1̂2̂ )n)
x− (xSS1̂2̂ )n

−
∑
n

(NAS
1̂2̂ )n

α̂((xAS1̂2̂ )n)
x− (xAS1̂2̂ )n

+
∑
n

(NSS
1̌2̌ )n

α̌((xSS1̌2̌ )n)
1/x− (xSS1̌2̌ )n

+
∑
n

(NAS
1̌2̌ )n

α̌((xAS1̌2̌ )n)
1/x− (xAS1̌2̌ )n

+ âS2 .

(A.11)

The rest of the quasi momenta perturbations are given by the reflection relation, δp̌(x) =
δp̂(1/x). The position of the fermionic poles are found using the equations

p̂A1 (xn1̂2̂)− p̂S2 (xn1̂2̂) = 2πn

p̂S1 (xn1̂2̂)− p̂A2 (xn1̂2̂) = 2πn

p̌S2 (xn1̌2̌)− p̌A1 (xn1̌2̌) = 2πn

p̌A2 (xn1̌2̌)− p̌S1 (xn1̌2̌) = 2πn.

(A.12)
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Using all the properties given above we find all the coefficients entering the quasi momenta

âA1 = + 2π
hJ

∑
n

((NAA
1̌2̌ )n + (NSA

1̌2̌ )n)n,

âA2 =− 2π
hJ

∑
n

((NAA
1̌2̌ )n + (NAS

1̌2̌ )n)n, (A.13)

âS1 =− 2π
hJ

∑
n

((NSS
1̌2̌ )n + (NAS

1̌2̌ )n)n,

âS2 = + 2π
hJ

∑
n

((NSS
1̌2̌ )n + (NSA

1̌2̌ )n)n,

δα+ + δα− = + 2π
h

∑
n

(
(NSS

1̌2̌ )n + (NAS
1̌2̌ )n + (NSA

1̂2̂ )n + (NSS
1̂2̂ )n

− ((NAS
1̌2̌ )n + (NSS

1̌2̌ )n)

√(
n

J

)2
− 2χ n

J
+ 1

− ((NSA
1̂2̂ )n + (NSS

1̂2̂ )n)

√(
n

J

)2
+ 2χ n

J
+ 1

)
,

δα+ − δα− = + π

h

∑
n

(
(NAA

1̌2̌ )n − (NAS
1̌2̌ )n + (NSA

1̌2̌ )n − (NSS
1̌2̌ )n

+ (NAS
1̂2̂ )n + (NAA

1̂2̂ )n − (NSA
1̂2̂ )n − (NSS

1̂2̂ )n
)
, (A.14)

δβ+ + δβ− = + π

h

∑
n

(
− (NAA

1̌2̌ )n − (NAS
1̌2̌ )n + (NSA

1̌2̌ )n + (NSS
1̌2̌ )n

− (NAS
1̂2̂ )n + (NAA

1̂2̂ )n − (NSA
1̂2̂ )n + (NSS

1̂2̂ )n
)
,

δβ+ − δβ− =− 2π
h

∑
n

(
(NAA

1̌2̌ )n + (NSA
1̌2̌ )n + (NAS

1̂2̂ )n + (NAA
1̂2̂ )n

− ((NSA
1̌2̌ )n + (NSS

1̌2̌ )n)

√(
n

J

)2
− 2χ n

J
+ 1

− ((NAS
1̂2̂ )n + (NSS

1̂2̂ )n)

√(
n

J

)2
+ 2χ n

J
+ 1

)
,

which finally yields

δ∆ =
∑

all ij

∑
n

N̂n
ij

√ n2

J 2 + 2χ n
J

+ 1− 1

+ Ňn
ij

√ n2

J 2 − 2χ n
J

+ 1− 1

 . (A.15)

B Classical circular string solutions

In this appendix we provide an example for classical circular string solutions in a mixed
flux background. We give their explicit quasi-momenta which in principle can be used for
semi-classical analysis of the spectrum, and compare it to the pure RR case.
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Throughout this section we use the gauge gL ⊕ gR = g ⊕ 1, where g ∈ psu(1, 1|2). We
parameterise g following the notation of [58] (used for the analog solution in AdS5 × S5).

g =



√
E
κe

iκτ
√
S
we

i(wτ+kσ) 0 0√
S
we
−i(wτ+kσ)

√
E
κe
−iκτ 0 0

0 0
√
J1
ω1
ei(ω1τ+m1σ)

√
J2
ω2
ei(ω2τ+m2σ)

0 0
√
J2
ω2
e−i(ω2τ+m2σ)

√
J1
ω1
e−i(ω1τ+m1σ)

 . (B.1)

The parameters have to satisfy the following relations

1 = E
κ
− S
w

= J1
ω1

+ J2
ω2
,

kS = m1J1 +m2J2,

ω2
i −m2

i + 2χ
2∑
j=1

ωi(σ1)ijmj = ν2, (B.2)

w2 = κ2 + k2 − 2κkχ,

E
κ
κ2 − S

w

(
k2 + w2

)
=

2∑
i=1

Ji
ωi

(
ω2
i +m2

i

)
.

By sending χ→ 0, the equations reduce the known equations given in [58].
It is easy to find the quasi-momenta using the method given in [59, 60]. However, let

us consider some simple cases. The simplest solution is the BMN solution where S = J2 =
m1 = 0 and ω1 = J1 = E = κ. In this case the flat connection is constant (with respect to
the worldsheet variables), and is given by

Aσ(x) = i

κ

xE
(x− s)

(
x− 1

s

)diag(1,−1, 1,−1)⊕ i

κ

xE
(x+ s)

(
x− 1

s

)diag(−1, 1,−1, 1). (B.3)

Thus, the quasi-momenta is given by the eigenvalues of −2πiAσ which can be easily read
from the above expression. The only difference with the pure RR case where s = 1 is
the position of the poles and the residues which are rescaled by a factor equal to the pole
position (i.e. s or 1/s). The quasi-momenta can be written as

pl(x) = (p(x),−p(x)|p(x),−p(x)||p(1/x),−p(1/x), p(1/x),−p(1/x)) (B.4)

with
p(x) = 2πxE

κ(x− s)
(
x− 1

s

) . (B.5)

The next case we are going to consider is a one cut solution with the excitation on the
sphere. We take m1 = −m2 = m and J1 = J2 = J̃ /2, κ = E , ω2 − χm2 = ω1 − χm1 (we
use the notation J̃ rather than J in order to distinguish J̃ from the angular momentum
charge which we denote by J ). At this point it is convenient to introduce a new variable
which can be interpreted as the average angular momentum on the sphere

Ω = 1
2

(
J̃ +

√
J̃ 2 + (2mχ)2

)
, (B.6)
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where in the pure RR case Ω→ J̃ is the angular momentum. Using the new variable, the
angular momenta are given by

ωi = Ω±mχ, (B.7)

and the classical energy is given by

E2 = m2κ2 + Ω2. (B.8)

The flat connection matrix is given by four 2 × 2 blocks, where it is enough to consider
for the moment only the first two blocks. The “AdS” block is identical to the BMN case
described above. The sphere’s block is given by

ÂSσ(x) = ix

(x− s)
(
x+ 1

s

)
 m

(χ
κ − x

)
e2im(σ−τχ)

√
Ω2−(mχ)2

κ

e−2im(σ−τχ)
√

Ω2−(mχ)2

κ −m
(χ
κ − x

)
 . (B.9)

Next, we want to extract the quasi-momenta. However, the flat connection depends on σ

which might complicate things because of the path ordering integral. Fortunately, we can
use a simple gauge transformation in order to trivialise the integrations [59, 60]. Notice that

S(σ)ÂSσ(τ, σ;x)S−1(σ) (B.10)

is sigma independent if S = e−imσσ3 . Thus, a Lax connection which yield an algebraic
curve is given by

L̂ = ÂSσ − ∂σSS−1. (B.11)

Explicitly, the monodromy matrix is given by

Ω̂S(x) = S−1(2π)e
∫ 2π

0 S(σ)L̂S−1(σ)S(0) = e
∫ 2π

0 S(σ)L̂S−1(σ), (B.12)

where we used the fact that S(2π) = S(0) = 1 since m is an integer. So finally, we only have
to consider the eigenvalues of 2πL̂. Using ∂σSS−1 = −imσ3 the eigenvalues are given by

p̂S1 (x) = −p̂S2 (x) = 2πxK(1/x)
κ(x− s)

(
x+ 1

s

)
p̌S1 (x) = −p̌S2 (x) = − 2πxK(x)

κ(x+ s)
(
x− 1

s

) + 2πm,
(B.13)

where K(x) =
√
m2xκ(xκ+ 2χ) + Ω2. The function K(x) has branch points at −χ

κ ±
i
mκ

√
Ω2 − (mχ)2. Hence, the branch cut is still parallel to the imaginary axis, but is

shifted along the real axis by −χ/κ. The length of the cut also gets bigger compared to
the pure RR case where it is rescaled by

√
Ω2−m2χ2

J 2κ2 . The large x expansion gives

pl(x) ' 2π
xκ

(E ,−E|Ω,−Ω|| − E , E|mχ,−mχ) . (B.14)

Comparing with the general algebraic curve asymptotics in terms of the global charges we
find J = 1

2 (Ω +mχ), K = 1
2 (Ω−mχ) so that E2 = m2κ2 + (J +K)2.
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C The finite size giant magnon

In this appendix we will calculate the leading finite size correction to the classical energy
of the giant magnon [61] and its dyonic generalisation [62]. Finite size giant magnon
solutions were first studied in AdS5× S5 [63], and the corresponding energy correction has
been computed using various methods [63–70]. The corresponding finite size solution in
AdS3 × S3 × T4 with a non-vanishing B-field was recently studied in [71].

To construct giant magnons we consider the finite-gap equations in the su(2) sector.
The quasi-momenta can then be written in terms of a single resolvent G(x) and take
the form

−p̂A2 (x) = +p̂A1 (x) = −1
2

xD
(x− s)(x+ s−1) ,

−p̂S2 (x) = +p̂S1 (x) = −1
2

xD
(x− s)(x+ s−1) +Gmag(x),

−p̌S2 (x) = +p̌S1 (x) = +1
2

xD
(x+ s)(x− s−1) +Gmag(1/x)−Gmag(0),

−p̌A2 (x) = +p̌A1 (x) = +1
2

xD
(x+ s)(x− s−1) .

(C.1)

The giant magnon can be constructed from the resolvent [72, 73]

Gmag(x) = +i log x−X
+

x−X−
, (C.2)

which describes a single logarithmic branch cut between the branch points X+ and X−,
which we will take to be complex conjugates of each other. A single giant magnon is
an unphysical string state carrying a world-sheet momentum, which is generically not an
multiple of 2π,

p = −Gmag(0) = −i log X
+

X−
. (C.3)

Note that p is the world-sheet momentum of the magnon, which should not be confused
with the quasi-moment p̂i and p̌i. By expanding the quasi-momenta at large x we find that
the magnon carries Noether charges

M = S −K = −iκh
(
X+ + 1

X+ −X
− − 1

X−

)
,

E = D − J = −iκh
(
X+ − 1

X+ −X
− + 1

X−

)
.

(C.4)

Using the above expressions we find the dispersion relation

D − J =
√
M2 + 16κ2h2 sin2 p

2 . (C.5)

In [49] it was shown that in the mixed flux case the mass of the giant magnon takes the form

M2 = (Q + 2χhp)2, (C.6)

where Q is the bound state number of the dyonic magnon.
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The derivation of the leading finite size corrections to the classical energy of the giant
magnon in AdS3 × S3 × T4 with mixed fluxes is almost identical to the corresponding
calculation in AdS5× S5. Hence, we keep the description here pretty brief and refer to the
literature for the full details. To calculate the correction to the energy we need to deform
the resolvent Gmag(x). Such a deformation was found for the AdS5 × S5 giant magnon
in [67, 74] and takes the form16

Gfin(x) = +2i log
√
x−X+ +

√
x− Y +

√
x−X− +

√
x− Y −

. (C.7)

Here we have introduced two short square root branch points between the points X± and
Y ±, where the latter points are shifted a short distance δ � 1 away from the original
branch points

Y ± = X±(1± iδe±iφ). (C.8)

When we add the extra square root branch cuts there is a back-reaction on the original
branch points, which we take into account by making a further expansion

X± = X±(0) +X±(1)δ +X±(2)δ
2. (C.9)

We parametrise the finite size magnon using the undeformed mass M and the momentum
p. By requiring that M and p receive no corrections we find that the energy of the magnon
up to quadratic order in δ takes the form

D − J =
√
M2 + 16κ2h2 sin2 p

2 −
κ2h2 sin2 p

2√
M2 + 16κ2h2 sin2 p

2

cos(2φ) δ2. (C.10)

To express the parameters δ and φ in terms of the global charges we impose the finite-gap
equation along the cut between X+ and Y +. In other word we solve the condition

p̂S1 (x+ ε)− p̂S2 (x− ε) = 2πn, (C.11)

where x is a point on the cut and ±ε implies that the quasi-momenta should be evaluated
right above and below the cut. From this equation we obtain

δ = 8 sin p2 exp

− 2 sin2 p
2

√
M2 + 16κ2h2 sin2 p

2

16h2 sin4 p
2 + (M − 2χh sin p)2D

 (C.12)

and
φ = −p2 + πn− 1

8κh
M cot p2 − 4χh

16h2 sin4 p
2 + (M − 2χh sin p)2 . (C.13)

Hence, the energy of the finite size magnon takes the form

D − J =
√
M2 + 16κ2h2 sin2 p

2

−
64κ2h2 cos(2φ) sin4 p

2√
M2 + 16κ2h2 sin2 p

2

exp

− 2 sin2 p
2

√
M2 + 16κ2h2 sin2 p

2

16h2 sin4 p
2 + (M − 2χh sin p)2D

 . (C.14)

16The same resolvent was applied to finite size giant magnons in AdS4 × CP3 in [75, 76].
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Note that the charge D in the exponential on the right hand side should be taken is the
AdS3 energy of the original magnon, and is a measure of the size of the magnon. In
the strict giant magnon limit D goes to infinity and the exponential factor vanishes. For
large but finite D the second term above gives an exponentially suppressed correction to
the energy. This expression is very similar to the AdS5 × S5 result [63, 66, 67]. After
identifying the mass M as in (C.6) the above expression for the energy of the finite size
magnon perfectly matches the result of [71], up to some simple difference in notation.

The angle φ is a remnant of the missing momentum needed to construct a physical
closed string state. As shown in [67], it is possible to construct physical string states
consisting of multiple fundamental giant magnons. For such states the integer n can be
chosen in such a way that the φ-dependent factor disappears. For more general multi
particle solutions involving dyonic magnons φ is related to the relative angle between
consecutive magnons.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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for AdS3 × S3 × T 4, Phys. Rev. Lett. 113 (2014) 131601 [arXiv:1403.4543] [INSPIRE].

[9] R. Borsato, O. Ohlsson Sax, A. Sfondrini and B. Stefański, jr., The complete AdS3 × S3 × T 4
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