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1 Introduction

In the Standard Model (SM), the anomalous baryonic and leptonic currents lead to fermion

number non-conservation due to the instanton induced transitions between topologically

distinct vacua of SU(2) gauge fields [1, 2] and at zero temperature, the rate is of the order,

e−2π/αw , αw ∼ 1/30, which is irrelevant for any physical phenomena. However, there exists

a static unstable solution of the field equations, known as sphaleron [3–6], that represents

the top of the energy barrier between two distinct vacua and at finite temperature, because

of thermal fluctuations of fields, fermion number violating vacuum to vacuum transitions

can occur which are only suppressed by a Boltzmann factor, containing the height of

the barrier at the given temperature, i.e. the energy of the sphaleron [7]. Such baryon

number violation induced by the sphaleron is one of the essential ingredients of Electroweak

Baryogenesis [8–13] and therefore it has been extensively studied not only in the SM [14–

24] and but also in extended SM variants such as, SM with a singlet [25, 26], two Higgs

doublet model [27], Minimal Supersymmetric Standard Model [28], the next-to-Minimal

Supersymmetric Standard Model [29] and 5-dimensional model [30].

As many SM extensions involve non-minimal scalar sectors, it is instructive to de-

termine the behavior of the sphaleron for general SU(2) scalar representations. Although,

apart from some exceptions like Georgi-Machacek [31] and isospin-3 models [32], large Higgs

multiplets other than the doublet are stringently constrained by electroweak precision ob-

servables. In addition, the presence of scalar multiplets with isospin J ≥ 5 brings down

the Landau pole of the gauge coupling to about Λlandau ≤ 10TeV [33]. Moreover as shown

in [34, 35], by saturating unitarity bound on zeroth order partial wave amplitude for the
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2 → 2 scattering of scalar pair annihilations into electroweak gauge bosons, one can set com-

plex SU(2) multiplet to have isospin J ≤ 7/2 and real multiplet to have J ≤ 4. Therefore

it can be seen that large scalar representations of SM gauge group are generally disfavored.

Still, motivated by the dark matter content and baryon asymmetry of the universe, one

can assume a hidden or dark sector with its own gauge interactions. If the interaction be-

tween SM and hidden sector is feeble in nature, they may not equilibrate in the whole course

of the universe. Therefore, the hidden sector can be fairly unconstrained apart from its total

degrees of freedom such that the sector doesn’t change the total energy density of the uni-

verse in such way that the universe had a modified expansion rate in earlier times, specially

at the BBN and CMB era. With this possibility in mind, we can consider the hidden sector

to have SM-like gauge structure that contains scalar multiplets larger than doublet and

also has its own spontaneous symmetry breaking scale (the possibility of non-abelian gauge

structure in dark sector and non-SM sphaleron in symmetric phase for such models are also

addressed in [36, 37]). For this reason, it is interesting to ask what could be the nature of

the sphaleron in such SM-like SU(2) × U(1)X gauge group with general scalar multiplets.

Furthermore, as sphaleron is linked with nontrivial vacuum structure of non-abelian gauge

theory, it is relevant to see the effect of large scalar multiplets in hot gauge theories.

This paper is organized as follows. In section 2 we discuss the spherically symmetric

ansatz for larger scalar multiplets and consequently calculated the energy functional and

variational equations for scalar multiplet (J,X), give different numerical results. In sec-

tion 3 we investigate the effect of U(1)X field on sphaleron energy and study the sphaleron

energy dependence on the scalar vev. Section 4 is devoted to the conditions of the sphaleron

decoupling during the electroweak phase transition, and in section 5 we conclude. In ap-

pendix A, we have presented the asymptotic solutions and their dependence on the repre-

sentation (J,X).

2 Sphalerons in general scalar representation

2.1 Spherically symmetric ansatz

The standard way to find sphaleron solution in the Yang-Mills-Higgs theory is to construct

non-contractible loops in field space [5]. As the sphaleron is a saddle point solution of the

configuration space, it is really hard to find them by solving the full set of equations of

motion. Instead one starts from an ansatz depending on a parameter µ that characterizes

the non-contractible loop in the configuration space and corresponds to the vacuum for

µ = 0 and π while µ = π
2 corresponds the highest energy configuration, in other words, the

sphaleron.

Consider the scalar multiplet Q, charged under SU(2) × U(1)X group, is in J repre-

sentation and has U(1)X charge X. Here SU(2) and U(1)X can be applicable for both

standard model gauge group or SM-like gauge group of the hidden sector. The generators

in this representation are denoted as Ja such that, Tr[JaJb] = D(R)δab where D(R) is

the Dynkin index for the representation. As our focus is on the SM, we define the charge

operator, Q̂c = J3 +X and require the neutral component (J3 = −X) of the multiplet to

have the vacuum expectation value (vev).
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The gauge-scalar sector of the Lagrangian is

L = −1

4
F aµνF a

µν −
1

4
fµνfµν + (DµQ)†DµQ− V (Q), (2.1)

with scalar potential

V (Q) = −µ2
QQ

†Q+ λ1(Q
†Q)2 + λ2(Q

†JaQ)2. (2.2)

It was shown in [26] that the kinetic term of the scalar field makes larger contribution to the

sphaleron energy than the potential term. Therefore, for simplicity, we have considered CP-

invariant scalar potential involving single scalar representation to determine the sphaleron

solution. It is straightforward to generalize the calculation for the potential with multiple

scalar fields.1

Also for convenience we elaborate,

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gǫabcAb

µA
c
ν ,

fµν = ∂µaν − ∂νaµ,

DµQ = ∂µQ− igAa
µJ

aQ− ig′aµXQ, (2.3)

where, g and g′ are the SU(2) and U(1)X gauge couplings. The mixing angle θW is

tan θW = g′/g.

The scalar sector plays an essential role in constructing sphaleron and the symmetry

features of the ansatz partly depends on the SU(2) representation and U(1)X charge assign-

ment of the scalar that acquires a vev. The simplest possibility is to consider a spherically

symmetric ansatz because spherical symmetry enables one to calculate the solution and

the energy of the sphaleron without resorting into full partial differential equations. There-

fore one may ask, which scalar representation immediately allows the spherical symmetric

ansatz.

As pointed out in [16], spherically symmetric configurations are those for which an

O(3) rotation of spatial directions are compensated by the combination of SU(2) gauge

and SU(2) global transformation. The existence of this SU(2) global symmetry is manifest

for the Higgs doublet as the potential for the doublet has SO(4) ∼ SU(2) × SU(2) global

symmetry which is broken by the scalar vev to SU(2) ∼ SO(3) symmetry that leads to

the mass degeneracy of three gauge bosons of SU(2). One can immediately see that this

degeneracy will be lifted when the U(1)X is turned on. Following the same reasoning, one

can find other scalar multiplets that will lead to mass degeneracy of Aa
µ’s in SU(2) gauge

theory after the symmetry is broken.

In the case of many scalar representations Q(i) with J (i) and charge X(i), the corre-

sponding vev’s are 〈Q(i)〉 = vi√
2
(0, . . . , 1, . . . , 0)T , where the non-zero neutral component

1In fact, in the SM, one needs large couplings between Higgs and extra scalars to trigger a strong first

order phase transition.
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quantum numbers are (J (i), J
(i)
3 = −X(i)). Now from the scalar kinetic term,

L ⊃ 1

2
g2
∑

i

〈Q(i)†〉J (i)
a J

(i)
b 〈Q(i)〉Aa

µA
µb

=
1

2
g2
∑

i

v2i (J
(i)(J (i) + 1)−X(i)2)A+

µA
µ− +

1

2
g2
∑

i

v2iX
(i)2A3

µA
µ3. (2.4)

where A±
µ = A1

µ ∓ iA2
µ. So the condition for having equal coupling of three gauge fields to

the neutral component leads to the tree-level condition

ρ =

∑

i
v2i (J

(i)(J (i) + 1)−X(i)2)

2
∑

i
v2iX

(i)2
= 1. (2.5)

In the case of one scalar multiplet, this can be reduced to J(J +1) = 3X2. The multiplets

satisfying the above condition are (J,X) = (12 ,
1
2), (3, 2) . . .. Intuitively, one can consider

that the scalar multiplet enables the three gauge fields to scale uniformly like a sphere in

a three dimensional space.

2.2 The energy functional and variational equations

In the following we will address the energy functional and the variational equations of the

sphaleron. The classical finite energy configuration are considered in a gauge where the

time component of the gauge fields are set to zero. Therefore the classical energy functional

over the configuration is

E(Aa
i , ai, Q) =

∫

d3x

[

1

4
F a
ijF

a
ij +

1

4
fijfij + (DiQ)†(DiQ) + V (Q)

]

. (2.6)

The non-contractible loop (NCL) in configuration space is defined as map S1 × S2 ∼ S3

into SU(2) ∼ S3 using the following matrix U∞ ∈ SU(2) [19],

U∞(µ, θ, φ) = (cos2 µ+ sin2 µ cos θ)I2 + i sin 2µ(1− cos θ)τ3

+ 2i sinµ sin θ(sinφτ1 + cosφτ2), (2.7)

where µ is the parameter of the NCL and θ, φ are the coordinates of the sphere at infinity.

Also, τa are the SU(2) generators in the fundamental representation. We also define the

following 1-form

i(U∞−1)dU∞ =
∑

a

Faτ
a, (2.8)

which gives

F1 = −[2 sin2 µ cos(µ− φ)− sin 2µ cos θ sin(µ− φ)]dθ

− [sin 2µ cos(µ− φ) sin θ + sin2 µ sin 2θ sin(µ− φ)]dφ,

F2 = −[2 sin2 µ sin(µ− φ) + sin 2µ cos θ cos(µ− φ)]dθ

+ [sin2 µ sin 2θ cos(µ− φ)− sin 2µ sin θ sin(µ− φ)]dφ,

F3 = − sin 2µ sin θdθ + 2 sin2 θ sin2 µdφ. (2.9)
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As shown in [19], the NCL starts and ends at the vacuum and consists of three phases

such that in first phase µ ∈ [−π
2 , 0] it excites the scalar configuration, in the second phase

µ ∈ [0, π] it builds up and destroys the gauge configuration and in the third phase µ ∈ [π, 3π2 ]

it destroys the scalar configuration.

The field configurations in the first and third phases, µ ∈ [−π
2 , 0] and µ ∈ [π, 3π2 ] are

gAa
i τ

adxi = g′aidx
i = 0, (2.10)

and

Q =
v(sin2 µ+ h(ξ) cos2 µ)√

2

(

0 . . . 1 . . . 0
)T

, (2.11)

with ξ = gΩr is radial dimensionless coordinate and Ω is the mass parameter used to scale

r−1, which we choose in what follows as Ω = mW /g. In the second phase µ ∈ [0, π], the

field configurations are

lgAa
i τ

adxi = (1− f(ξ))(F1τ
1 + F2τ

2) + (1− f3(ξ))F3τ
3,

g′aidx
i = (1− f0(ξ))F3, (2.12)

and

Q =
vh(ξ)√

2

(

0 . . . 1 . . . 0
)T

. (2.13)

Here, f(ξ), f3(ξ), f0(ξ) and h(ξ) are the radial profile functions. From eq. (2.12), one can

see that in the spherical coordinate system, for the chosen ansatz, the gauge fixing has led

to, Aa
r = ar = aθ = 0. Moreover, similar to eq. (2.12), the gauge fields acting on the scalar

field Q can be written as

gAa
i J

adxi = (1− f)(F1J
1 + F2J

2) + (1− f3)F3J
3. (2.14)

Finally the energy over the NCL for the first and third phases is,

E(h, µ) =
4πΩ

g

∫ ∞

0
dξ

[

cos2 µ
v2

Ω2

1

2
ξ2h′2 + ξ2

V (h, µ)

g2Ω2

]

, (2.15)

and for second phase,

E(µ, f, f3, f0, h) =
4πΩ

g

∫ ∞

0
dξ

[

sin2 µ

(

8

3
f ′2 +

4

3
f ′
3
2
)

+
8

ξ2
sin4 µ

{

2

3
f2
3 (1− f)2

+
1

3
{f(2− f)− f3}2}+

4

3

(

g

g′

)2{

sin2 µf ′
0
2
+

2

ξ2
sin4 µ(1− f0)

2

}

+
v2

Ω2

{

1

2
ξ2h′

2
+

4

3
sin2 µh2{(J(J + 1)− J2

3 )(1− f)2 + J2
3 (f0 − f3)

2}
}

+
ξ2

g2Ω4
V (h)

]

. (2.16)

From eq. (2.16), the maximal energy is attained at µ = π
2 which corresponds to the

sphaleron configuration.
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If there are multiple representations J (i) with non-zero neutral components J
(i)
3 , Q(i) =

vihi(ξ)√
2

(0, . . . , 1 . . . , 0)T , the energy of the sphaleron can be parameterized as

Esph=E

(

µ=
π

2

)

=
4πΩ

g

∫ ∞

0
dξ

[ [

8

3
f ′2 +

4

3
f ′
3
2
+

8

3ξ2
{2f2

3 (1− f)2

+ (f(2−f)−f3)
2}+4

3

(

g

g′

)2{

f ′
0
2
+

2

ξ2
(1−f0)

2

}

+
∑

i

{

1

2

v2i
Ω2

ξ2h′i
2

+
4

3
h2i [2αi(1− f)2 + βi(f0 − f3)

2]

}

+ ξ2
V (vihi)

g2Ω4

]

, (2.17)

where the parameters

αi =
(J (i)(J (i) + 1)− J

(i)2
3 )v2i

2Ω2
, βi =

J
(i)2
3 v2i
Ω2

, (2.18)

refer to the scalar field couplings to the charged and neutral gauge fields respectively.

The energy functional, eq. (2.17) will be minimized by the solutions of the following

variational equations

f ′′ +
2

ξ2
(1− f)[f(f − 2) + f3(1 + f3)] +

∑

i

αih
2
i (1− f) = 0,

f ′′
3 − 2

ξ2
[3f3 + f(f − 2)(1 + 2f3)] +

∑

i

βih
2
i (f0 − f3) = 0,

f ′′
0 +

2

ξ2
(1− f0)−

g′2

g2

∑

i

βih
2
i (f0 − f3) = 0,

h′′i +
2

ξ
h′i −

8Ω2

3v2i ξ
2
hi[2αi(1− f)2 + βi(f0 − f3)

2]− 1

g2viΩ2

∂

∂φi
V (φ)

∣

∣

∣

∣

φk=vkhk

= 0, (2.19)

with the boundary conditions for eq. (2.19) are given by: f(0) = f3(0) = h(0) = 0, f0(0) = 1

and f(∞) = f3(∞) = f0(∞) = hi(∞) = 1. For g′ → 0, we have, f0(ξ) → 1 and for repre-

sentations satisfying eq. (2.5), f3(ξ) → f(ξ). The behavior of the field profiles eq. (2.19) at

the limits ξ → 0 and ξ → ∞ are shown in appendix A. According to the last term in both

first and second lines in eq. (2.19), it seems that the couplings of the scalar to gauge compo-

nents, i.e. eq. (2.18) will play the most important role in the profile’s shape as well as in the

sphaleron energy. The equality between the parameters αi and βi leads to the case eq. (2.5)

and any difference between αi and βi will characterize a splitting between the functions f

and f3, and therefore a departure from the spherical ansatz that was defined in [5].

2.3 Numerical results

Here we are interested in investigating the properties of the field profiles for different scalar

representations and vevs. First we have studied the field profiles for only SU(2) with scalar

representation (J,X) where g′ is taken to be zero and consequently f0 → 1. The scalar

representations are taken as (J,X) = {(1/2, 1/2), (1, 0), (1, 1), (3/2, 1/2), (3/2, 3/2), (2, 0),
(2, 1), (2, 2)} and two scalar vevs: v = 50 GeV and v = 350 GeV. Here we are focusing

– 6 –
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on the sphaleron solution in a generic SU(2) × U(1)X case; therefore, we have chosen

representative values of the vev which also contain the SM case, v = 246 GeV within

the range. Moreover, for each representation, the quartic coupling is set to be 0.12 and

the mass parameter µ2
Q is determined by coupling and the scalar vev. For this parameter

set, the mass of the scalar field remains smaller than 12mW so there is no appearance of

bisphalerons in our case. The field profiles are given in figure 1.

According to figure 1, one can make the following remarks:

• Comparing the cases of small vev, v = 50 GeV and large vev, v = 350 GeV, it can

be seen that all field profiles tend quickly to the unity as the vev gets larger. This

could explain the dependence of sphaleron energy eq. (2.17) on the scalar vev.

• When the scalar representation is large (large J so that large α), the profile for

charged gauge field (i.e., f(ξ)) tends to 1 faster with ξ, in contrast with the scalar

field profile, h(ξ).

• For the neutral gauge field profile f3(ξ), it is identical to f(ξ) for the representation

(1/2, 1/2) because it satisfies ρ = 1 (or J(J + 1) = 3X2) condition.

• For the same value of the vev and the isospin J , the field profile f3(ξ) tends to 1

faster for larger values of J3, i.e. larger values of β.

• The scalar field profiles h(ξ) seem to be not sensitive to the values of J3.

Therefore, it is seen that the gauge field profiles tend to unity faster in contrast to the

scalar field profiles with radial coordinate for large couplings of the scalar to charged gauge

boson, α and neutral gauge boson, β. In the next section, we will see the impact of this

feature on the sphaleron energy.

3 The effect of U(1)X field and the Sphaleron energy

In the presence of a non-zero U(1)X gauge coupling g′ or non-zero Weinberg angle θW ,

the U(1)X gauge field will be excited and the spherical symmetry will be reduced to axial

symmetry. In [22], it was shown for the SM with one Higgs doublet that when the mixing

angle is increased, the energy of the sphaleron decreases and it changes the shape from

a sphere at θW = 0 to a very elongated spheroid at large mixing angle. However, for

the physical value of the mixing angle, the sphaleron differs only little from the spherical

sphaleron. On the other hand, for multiplets not satisfying eq. (2.5), the shape of the

corresponding sphaleron will be spheriodal instead of spherically symmetric in the SU(2)

case. In such cases, the large value of the mixing angle may be significant for the energy

and shape of the sphaleron for large multiplet [38]. In the following, we have adopted the

small mixing angle scenario so that SU(2)×U(1)X sphalerons are not so different than the

SU(2) case; and we will work at first order of small θW value.

In figure 2, we have presented the field profile f0(ξ) for different values of vev (v =

50, 350 GeV) and different representations (J,X).
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Figure 1. The field profiles f(ξ), f3(ξ) and h(ξ) as the function of the radial coordinate. In the left

figures, we set the vacuum expectation value to be v = 50GeV and in the right, it’s v = 350GeV.
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Figure 2. The field profile f0(ξ) as a function of the radial coordinate. In the left figure, we set

the vacuum expectation value to be v = 50GeV and in the right, it’s v = 350GeV.

In the case of a SU(2) × U(1)X sphaleron, we have presented only the field profile

f0(ξ) since the other profiles (f(ξ), f3(ξ) and h(ξ)) are very close to the case of vanishing

Weinberg angle shown in the previous section. In figure 2, one can notice that the field

profile f0(ξ) is just a deviation from unity similar to the singlet scalar profile in models

with singlets [26] and it gets closer to unity as the X values becomes smaller and smaller.

Indeed, it is exactly one for the representations (1, 0) and (2, 0) which means that in those

cases the sphaleron energy is not affected by the existence of U(1)X gauge field.

When we have θW 6= 0, even when one starts with ai = 0, the following U(1)X current

ji will induce ai,

ji =
i

2
g′[Q†DiQ− (DiQ)†Q], (3.1)

In the leading order approximation of θW , we can neglect the ai contribution in the

covariant derivative. Therefore the non-zero component of the U(1)X current in the chosen

ansatz is [5]

jφ =
g′ sin θ

r

∑

i

v2i J
(i)
3 h2i (1− f). (3.2)

Because of induced field ai, there will be a dipole contribution to the energy,

Edipole =

∫

d3xaiji

= − 16π

3gΩ

∑

i

v2i J
(i)
3

∫ ∞

0
dξ(1− f0)(1− f)h2i , (3.3)

and the sphaleron energy will be

Esph|θW 6=0 = Esph|θW=0 + Edipole. (3.4)
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Figure 3. The relative difference in the sphaleron energy between the non-zero and zero mixing

cases versus the scalar vev for different scalar representations, where the difference is estimated:

exactly (left), using the dipole approximation with U(1) gauge field effect neglected, eq. (3.3) (right),

and the case with U(1) gauge field effect considered, eq. (3.5) (down).

In the current eq. (3.2) the contribution of the U(1)X gauge field is generally neglected

in the literature and when we consider it, the current and the dipole energy become

jφ =
g′ sin θ

r

∑

i

v2i J
(i)
3 h2i (f0 − f3),

E′
dipole = − 16π

3gΩ

∑

i

v2i J
(i)
3

∫ ∞

0
dξ(1− f0)(f0 − f3)h

2
i , (3.5)

Therefore the dipole contribution eq. (3.3) is expected to be almost equal to the difference

between eq. (2.17) and the same quantity with g′ = 0, i.e., Edipole ≃ ∆Esph = Esph(g
′ 6=

0)−Esph(g
′ = 0). In order to probe this, we estimate the difference between the sphaleron

energy in the non-zero and zero mixing cases in three different ways: (A) ∆Esph = Esph(g
′ 6=

0) − Esph(g
′ = 0) with Esph is given in eq. (2.17); (B) ∆Esph = Edipole with U(1)X field

neglected as given in eq. (3.3); and (C) ∆Esph = E′
dipole as shown in eq. (3.5). These three

quantities are presented in function of the scalar vev in figure 3.

Figure 3 shows the relative difference between the sphaleron energy with the mixing

angle θW 6= 0 and θW = 0 and also the (negative) dipole energy of the sphaleron. It turns

– 10 –
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Figure 4. The sphaleron energy versus the scalar vev for different scalar representations.

out that for any scalar representation, the relative difference between the sphaleron energy

with θW 6= 0 and θW = 0 is always less than 1% and remains constant for different values

of scalar vev. However, when considering the U(1)X gauge field effect on the dipole energy

eq. (3.5), it becomes closer to the exact difference.

Now we present the sphaleron energy eq. (2.17) as a function of the scalar vev for

different scalar representations as shown in figure 4.

In figure 4 we can see that the sphaleron energy depends on the scalar vev with a slope

that depends on scalar isospin J and hypercharge X (or J3). This allows us the write the

scaling law as

Esph(v, J,X) = Z(J,X) v, (3.6)

where the function Z(J,X) represents the slope in figure 4.

4 Sphaleron decoupling condition

Before the electroweak phase transition T > Tc, the classical background scalar field, φc,

is zero and the Universe is in the symmetric phase. In this phase, the sphaleron processes2

are in full thermal equilibrium and are given as [39–42]

Γsym ∼ α5
wT

4 ln(1/αw), (4.1)

with αw = g2/4π is the weak coupling. Therefore any generated baryon asymmetry due to

the sphaleron processes will be erased by the inverse process. Once the temperature drops

below the critical one T < Tc, bubbles of true vacuum (φc 6= 0) start to nucleate where the

rate is suppressed as Γ ∼ exp (−Esph/T ).

The sphaleron decoupling condition indicates that the rate of baryon number violation

must be much smaller than the the Hubble parameter [8, 9, 43, 44] and therefore, the

2The term “sphaleron processes” is used in the literature to refer to the baryon number violating processes

which also have the CP violating feature.
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condition on the sphaleron rate is [10, 15, 45, 46]

− 1

B

dB

dt
≃ 13Nf

128π2

ω−
α3
w

κNtrNrote
−Esph/T < H(T ), (4.2)

where B is the baryon number density, the factors Ntr and Nrot come from the zero mode

normalization, ω− is the eigenvalue of the negative mode [47]. The factor κ is the functional

determinant associated with fluctuations around the sphaleron [13]. It has been estimated

to be in the range: 10−4 . κ . 10−1 [18, 48, 49]. The Hubble parameter is given as

H(T ) ≃ 1.66
√

g∗(T )T
2/Mpl, (4.3)

where Mpl and g∗ are the Planck mass and the effective number of degrees of freedom that

are in thermal equilibrium.

It was shown in [23] for the doublet case (J,X) = (1/2, 1/2) that the sphaleron energy

at a given temperature can be well approximated by the following relation

Esph(v(T ), T )

v(T )
=

Esph(v0)

v0
, (4.4)

where v(T ) is the vev of the scalar field at temperature T and v0 is its zero temperature

value. Eq. (4.4) shows that a straightforward estimation of the sphaleron energy at finite

temperature is possible by determining its energy at zero temperature. This means that

the scaling law eq. (3.6) is valid also at finite temperature case, where the function Z(J,X)

is temperature-independent. Because of similar linear scaling shown by higher scalar rep-

resentations in figure 4, we can use the scaling law eq. (3.6) for other representations.

Hence, for general scalar representation, the decoupling of baryon number violation

eq. (4.2) implies the following relation [45, 46]

v(Tc)

Tc
>

1

Z(J,X)

[

42.97 + ln(κNtrNrot) + ln
ω−
mW

− 1

2
ln

g∗
106.75

− 2 ln
Tc

100 GeV

]

. (4.5)

Most of the parameters in the r.h.s. of eq. (4.5) are logarithmically model-dependent and

therefore one can safely use the SM values. In the case of SM, we have NtrNrot ≃ 80.13 [10]

and for λ/g2 = 1, ω2
− ≃ 2.3m2

W [15, 18, 47]. It can be noted that the contributions of model

dependent quantities in v(T )/T are smaller than Z(J,X), for example, in the SM [45, 46]

zero mode contribution is around 10% and the contributions from the negative mode,

relativistic degrees of freedom and critical temperature are about 1%. For this reason we

can consider the dominant contribution is coming from Z(J,X). In conjunction, using

κ = 10−1 (or 10−4), g∗ ≃ 106.75 and Tc ≃ 100 GeV, we have from eq. (4.5),

v(Tc)

Tc
> ηJ,X , (4.6)

where ηJ,X is given for each scalar representation in table-1.

It is clear that as the representation becomes larger, the strong first order phase transi-

tion criterion gets relaxed. Generally, the case of κ = 10−4 is the commonly used criterion
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J X Z(J,X) ηJ,X
(

κ = 10−4
)

ηJ,X
(

κ = 10−1
)

1/2 1/2 36.37 1.0601 1.2500

1 0 44.64 0.8639 1.0186

1 45.37 0.8500 1.0023

3/2 1/2 50.89 0.7577 0.8934

3/2 50.42 0.7648 0.9018

2 0 53.58 0.7197 0.8486

1 55.22 0.6984 0.8235

2 53.80 0.7167 0.8451

Table 1. The values for the parameters Z(J,X) and ηJ,X for different scalar representations.

in the literature. In a general case of a multi-scalars model with representations (J (i), X(i)),

the criterion eq. (4.6) can be generalized as

Θ(Tc)

Tc
> 1, (4.7)

with

Θ(Tc)
2 =

∑

i

vi(Tc)
2

η2
J(i),X(i)

, (4.8)

with vi(T ) is the temperature dependent scalar vev of the multiplet Q(i). In order to check

the criterion eq. (4.8), we consider the case of a model with two scalar representations and

estimate the ratio Esph/Θ for different values of J1, J2, X1, X2, v1 and v2 while keep the W

gauge boson mass constant. The ratio Esph/Θ versus the ratio v2/v1 is shown in figure 5.

From figure 5, it is clear that the sphaleron energy scales like Θ for different repre-

sentations and vevs within the error less than 5.7 %; and if the values of the two vevs are

comparable, this error is reduced to 2.7 %. Therefore, one can safely use eq. (4.8) as a

criterion for a strong first order phase transition in any model with multiscalars.

5 Conclusion

We have constructed the energy functional and relevant variational equations of the

sphaleron for general scalar representation charged under SU(2) × U(1)X gauge group

and shown that the sphaleron energy increases with the size of the multiplet. Furthermore,

it has been shown that at a fixed value of the vev, the sphaleron energy is large for larger

representation and for each representation, it linearly scales with the vev. As the energy

of the sphaleron increases with the size of the scalar representation, the criterion for the

strong first order phase transition is relaxed for larger representation. We have presented

a representation dependent criterion for strong phase transition which is relevant for the

electroweak baryogenesis.

We have also found that the dipole approximation (with or without consider-

ing ai in the U(1)X current, ji) does not correspond exactly the energy difference
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Figure 5. The sphaleron energy versus the scalar vev for different scalar representations. The self

quartic couplings of scalar multiplet Q1(J1, X1) (Q2(J2, X2)) is set to 0.12 (0.06) while the mixing

quartic coupling is set to 0.02.

Esph(g
′ 6= 0) − Esph(g

′ = 0) and that is less than 2% for any scalar representation. In

this case the U(1)X field profile is just a deviation from unity and therefore just playing

a relaxing role similar to singlet seen in [26].

However, as we have seen in figure 3 that the dipole contribution to the sphaleron

energy is negative, its coupling with the external magnetic field produced in the bubbles of

first order phase transition through the dipole moment would lower the sphaleron energy

and thus strengthen the sphaleron transition inside the bubble and wash out the baryon

asymmetry more efficiently as pointed out in [50]. A more careful analysis on this aspect

for the sphaleron with higher scalar representation will be carried out in [38].

We have presented in eq. (4.8) a general criterion for the strong first order phase

transition in a model with multiple scalars of different representations (J,X) and we have

shown that this approximate criterion is valid with an error less than 5%.
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A Asymptotic solutions

To capture the dependence of solutions on (J,X), in this section we have included the

analytical estimates of solutions for the asymptotic region ξ → 0 and ξ → ∞. For the
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energy functional eq. (2.17) to be finite, the profile functions should be f(ξ) → 0, f3(ξ) → 0,

f0(ξ) → 1 and h(ξ) → 0. Therefore, at ξ ∼ 0, the equations eq. (2.19) are reduced into

ξ2f ′′ − 4f + 2f3 + αξ2h2 = 0, (A.1)

ξ2f ′′
3 − 6f3 + 4f + βξ2h2 = 0, (A.2)

f ′′
0 + 2(1− f0)−

(

g′

g

)2

βξ2h2 = 0, (A.3)

ξ2h′′ + 2ξh′ − 8m

3
h = 0, (A.4)

where

m =
Ω2

v2
(2α+ β). (A.5)

The solution of eq. (A.4) which leads to finite energy of the sphaleron is

h(ξ) ∼ Aξ−
1
2
(1−p), (A.6)

with

p =

√

1 +
32

3
m. (A.7)

Now at ξ ∼ 0, f(ξ) ∼ f3(ξ), so using this approximation, from eq. (A.1) we have,

f(ξ) ∼ Bξ2 − 4Aαξ
1
2
(3+p)

(p2 − 1)(p2 + 5)
. (A.8)

On the other hand, we have considered f(ξ) as a perturbation in eq. (A.2). Therefore, we

have

f3(ξ) ∼ Cξ3 +Bξ2 −Kξ
1
2
(3+p). (A.9)

Here, K is defined as follows

K =
3A{3α(3p− 8m+ 3) + 8mβ(4m− 9)}

4m(4m− 9)(8m+ 3p− 15)
. (A.10)

Finally from eq. (A.3), we have

f0(ξ) ∼ 1 +Dξ2 +
3Aβg′2ξ

1
2
(3+p)

g2(3p− 8m+ 3)
, (A.11)

and A, B, C and D are integration constants.

On the other hand, for asymptotic region, ξ ∼ ∞, all the profile functions must

approach unity to have finite energy of the sphaleron. So we consider the functions to be the

small perturbation to unity as follows. Taking, f(ξ) = 1+δf(ξ), f3(ξ) = 1+δf3(ξ), f0(ξ) =

1+ δf0(ξ) and h(ξ) = 1+ δh(ξ) and keeping only the linear terms of the variation, we have

δf ′′ − αδf = 0,

δf ′′
3 + β(δf0 − δf3) = 0,
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δf ′′
0 − g′2

g2
β(δf0 − δf3) = 0,

ξ2δh′′ − 2ξδh− 3
λv2

g2Ω2
ξ2δh = 0. (A.12)

The asymptotic solutions at ξ ∼ ∞ are,

f(ξ) ∼ 1 + Ee−
√
αξ,

f3(ξ) ∼ 1 + Fe−
√
βξ,

f0(ξ) ∼ 1 +Ge−
√
βξ,

h(ξ) ∼ 1 +
He

−
√

3λv
gΩ

ξ

ξ
, (A.13)

where E, F , G and H are again integration constants. The constants from A to H

depend on (J,X) and couplings and they are determined by matching the corresponding

asymptotic solutions and their first derivatives at ξ = 0. Therefore after the matching,

the integration constants are,v1 and v2

H = −
1
2(p− 1)e

v
Ω
n

1
2(p+ 1) + v

Ωn
, A = 1 +He−

v
Ω
n,

E = − e
√
α

√
α+ 2

(

2 +
2Aα(1− p)

(p2 − 1)(p2 + 5)

)

, B = 1 + Ee−
√
α +

4Aα

(p2 − 1)(p2 + 5)
,

B = 1 + Ee−
√
α +

4Aα

(p2 − 1)(p2 + 5)
, F =

e
√
β

√
β + 3

(

− 3 +B − 1

2
(3− p)K

)

,

C = 1 + Fe−
√
β −B +K, G =

e
√
β

√
β + 2

3Aβn2
1(1− p)

2(3p+ 8m− 3)
,

D = Ge−
√
β − 3Aβn2

1

3p+ 8m− 3
, (A.14)

where n =
√
3λ/g, where λ is the scalar quartic coupling.
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