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1 Introduction and outline

In a series of recent papers, deformations of Yangian invariants in the context of N = 4

super-Yang-Mills (sYM) theory have been investigated [1–5]. As opposed to the unde-

formed situation, a deformed Yangian invariant allows for nonzero expectation values of

the central charge operator for each external leg — which amounts to shifting the helici-

ties of the external particles. Including the hypercharge as well, the underlying symmetry

algebra is extended from the Yangian Y[psu(2, 2|4)] to Y[u(2, 2|4)].

Yangian invariance, however, constrains the allowed deformations by linking the central

charges of the external legs to the evaluation parameters of an evaluation representation

of the Yangian algebra, thereby encoding a permutation as discussed in refs. [4, 5]. At tree

level, the permutation labels a Yangian invariant unambiguously and can be translated

into on-shell graphs [6] and R-operators [7].

The relation of deformed Yangian invariants to scattering amplitudes in N = 4 sYM

theory has been discussed in refs. [3–5]. All tree-level amplitudes in the maximally-helicity-

violating (MHV) sector are represented by a single Yangian invariant, and can thus be

deformed. For tree-level amplitudes of higher MHV degree this is not possible any more,

as those are composed from several Yangian invariants. The obstruction here is physicality,

which demands compatibility between all Yangian invariants contributing to the amplitude:

all external legs should have the same data associated to them.1

1The six-point NMHV amplitude is an exception, as will be explained in section 2 below.
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Deformations of the four-point one-loop amplitude have been considered in refs. [1–3].

In parallel to the tree-level situation, the integrand of the amplitude is a Yangian invariant

only for certain deformations. For deformations not leading to a Yangian invariant, one can

perform the integration and obtain a result which is reminiscent of the usual expression

for the undeformed four-point one-loop amplitude [1, 2]. This fact suggests to use the

deformation as a regulator similar to analytic regularization. Keeping Yangian invariance

in the integrand, that is, choosing a Yangian-invariant deformation, renders the integration

difficult and leads to a vanishing result except for very special deformations [3].

In this note, we investigate how to take deformations to the loop level in a natural way

by employing the R-operator formalism described in ref. [7]. We will discuss general features

of bubbles in on-shell diagrams in the language of R-operators, which allows to treat the

momentum-space properties as well as the Yangian properties simultaneously. From this

minimal example, which already exhibits all features of loop amplitudes, we will proceed to

deformations of the four-point one-loop integrand of ref. [6] in the language of R-operators.

In particular we compare this deformed amplitude with the four-point one-loop ampli-

tude discussed in refs. [1–3]. While both integrals lead to the same deformed momentum-

space integral, the R-operator language reveals an astonishing fact: they constitute different

eigenstates of the monodromy matrix. Thus, either the eigenvalues have to agree, which

will be shown to lead to the trivial deformation or the eigenstate has to vanish or diverge.

The vanishing result is in agreement with the conclusion drawn in ref. [3].

So the unregulated2 loop amplitude is a Yangian invariant: it is either zero or infinity.

Yangian invariance is only broken by regulating the integral: the infrared divergences aris-

ing during the regularization process introduce a scale and thus break conformal invariance.

After the discussion of the four-point one-loop case, we turn our attention to the five-

point one-loop amplitude. Based on the Britto-Cachazo-Feng-Witten (BCFW) construc-

tion [8, 9] of loop integrands introduced in ref. [10], we consider deformations of the three

contributing BCFW-channels in order to arrive at what seems to be a general statement:

for loop integrands constructed from several Yangian invariants, there is no consistent de-

formation if one requires physicality. This argument is analogous to the one used in ref. [5]

for tree-level amplitudes in the NMHV sector. For higher-loop amplitudes the situation

does not improve.

After a brief review of the necessary techniques for the investigation of deformed scat-

tering amplitudes in section 2 we collect previous results on four-point one-loop amplitudes

in section 3. Section 4 is devoted to the discussion of the integrals occurring in loop con-

structions on the simple example of a bubble-shaped on-shell graph. In section 5 we finally

use the R-operator formalism in order to build the four-point one-loop amplitude. We in-

vestigate the resulting integral and its branch cut structure in a deformed scenario in order

to show that the deformation renders the integral trivial. In section 6, we construct the

five-point one-loop amplitude following ref. [10] and comment on possible deformations.

2We will use the term loop amplitude below in order to label the Yangian invariant, that is, without

performing the integrations. Nevertheless, usually one would refer to the regulated result in a particular

regularization scheme as the loop amplitude.
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2 Amplitudes in N = 4 sYM theory, on-shell diagrams and R-operators

In this section we are going to review two descriptions of Yangian invariants relevant in the

context of scattering amplitudes in planar N = 4 sYM theory: on-shell diagrams and the

R-operator formalism. The relations between these two formulations and permutations,

which can be used to uniquely label tree-level Yangian invariants, have been thoroughly

investigated in refs. [4, 5]. Here we will be rather brief and refer the reader to these

references for further details.

Both descriptions of Yangian invariants, R-operators as well as on-shell diagrams, rely

on the on-shell superspace [11] with variables (λα, λ̃α̇, η̃
A), where Greek and upper case

Latin indices label the fundamental representations of SL(2) and SU(4) respectively.

Yangian invariants with n external legs are functions defined on the n-fold tensor

product of on-shell superspace and are annihilated by all generators of the Yangian algebra

(see ref. [3] for a short review of Yangian algebras in this context). Extending the algebra

psu(2, 2|4) — which is the algebra underlying planar N = 4 sYM theory — with the

central charge operator C and the hypercharge B yields3 the algebra u(2, 2|4). Up to

reality conditions, the algebra u(2, 2|4) is equal to gl(4|4), which we will be concerned with

below. Choosing furthermore an evaluation representation for Y[u(2, 2|4)] with evaluation

parameters ui leads to a set (λαi , λ̃iα̇, η̃
A
i , ci, ui) of external data for each leg, where ci is the

eigenvalue of the central charge operator Ci. The total number of η’s in a n-point Yangian

invariant determines the variable k labeling the MHV-sector via k = #η’s
4 [11].

On-shell diagrams representing invariants for Y[u(2, 2|4)] are composed by gluing two

types of deformed three-point vertices [1, 2]

A• =
δ4(P )δ8(Q)

〈12〉1+c3〈23〉1+c1〈31〉1+c2
, A◦ =

δ4(P )δ4(Q̃)

[12]1−c3 [23]1−c1 [31]1−c2
, (2.1)

where P :=
∑3

i=1 λ
α
i λ̃

α̇
i denotes the total four-momentum, whereas Q :=

∑
i λ

α
i η̃

A
i and

Q̃ := [12]η̃A3 + [23]η̃A1 + [31]η̃A2 . Each of the building blocks A• and A◦ is a Yangian

invariant if and only if the following equations are satisfied:

A• : c1 = u1 − u3, c2 = u2 − u1, c3 = u3 − u2 ; (2.2)

A◦ : c1 = u1 − u2, c2 = u2 − u3, c3 = u3 − u1 , (2.3)

which implies
∑

i CiA• =
∑

i CiA◦ = 0. Combining several of those building blocks in a

Yangian-invariant way by gluing leg V to leg W requires (see ref. [3] for a derivation4)

cV = −cW as well as uV −
1

2
cV = uW −

1

2
cW . (2.4)

An on-shell graph represents a Yangian invariant if and only if the system of equations

composed from all vertex conditions (cf. eqs. (2.2) and (2.3)) at the vertices as well as

the gluing conditions (eq. (2.4)) for each internal edge is satisfied. This system leads to

3At the level of the Yangian, the hypercharge B is a symmetry [12].
4Notice, however, that we are using the conventions of ref. [5] here.
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Figure 1. Square move and merger.

relations between evaluation parameters and central charges. Generally, solutions to this

system of equations are of the form [3–5]

ci = ui − uσ(i) (2.5)

where σ(i) is the permutation encoded by the on-shell diagram. Instead of solving the

linear system, the permutation can also be deduced graphically, by dressing each external

leg by two lines: one starting there and the other one ending there. Drawing the lines

through the diagram by turning right at each black vertex and left at each white vertex

will connect leg i with its image σ(i), for example

1

5

4

3

2

(
1 2 3 4 5

↓ ↓ ↓ ↓ ↓
3 4 5 1 2

)
. (2.6)

While a unique permutation is associated to each on-shell diagram, there are several dif-

ferent on-shell diagrams encoding the same permutation. Those diagrams are related by

square moves and the merger operation depicted in figure 1. The third operation men-

tioned in ref. [6], bubble reduction, however, modifies the permutation. The meaning of this

operation will become apparent in section 4.

The main players in the R-operator formalism [7] are the Lax operator L and the

R-operator R. While the precise relation between those and Yangian algebras is explained

in detail in refs. [4, 5], let us stick with the action of the R-operator on a function defined

on several copies of the on-shell superspace, which reads

Rab(u)f(λa, λ̃a, η̃a, λb, λ̃b, η̃b) :=

∫ ∞
0

dz

z1+u
f(λa − zλb, λ̃a, η̃a, λb, λ̃b + zλ̃a, η̃b + zη̃a) . (2.7)

In terms of these R-operators, an ansatz for a n-point tree-level Yangian invariant with

MHV-degree k reads

Y = Ra1b1(v1) . . .Ra2n−4b2n−4(v2n−4)Ω , (2.8)

where Ω is a product of (n− k) δai ’s and k δ-ai ’s which are defined as

δa := δ2(λa), δ-a := δ2|4(λ̃a) := δ2(λ̃a)δ
4(η̃a) . (2.9)

– 4 –
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The integrations originating from 2n−4 R-operators leave four bosonic δ-functions uninte-

grated, which will combine into momentum conservation δ(P ) later on. As pointed out in

section 5 below, loop-level amplitudes can be constructed by applying a different number

of R-operators to a vacuum state.

The second important object in the R-operator formalism is the Lax operator L. While

rigorously defined in ref. [7], here it will be sufficient to note its fundamental relation with

R-operators (uab = ua − ub)

R21(u12)L1

(
u1 +

1

2
C1

)
L2

(
u2 +

1

2
C2

)
=L1

(
u2 +

1

2
C1y

)
L2

(
u1 +

1

2
C2

)
R21(u12), (2.10)

R12(u12)L1

(
u1 −

1

2
C1

)
L2

(
u2 −

1

2
C2

)
=L1

(
u2 −

1

2
C1

)
L2

(
u1 −

1

2
C2

)
R12(u12), (2.11)

which is implied by the Yang-Baxter equation [5]. The equation is to be understood as an

operator equation, in which the operators Ci measure the central charges on their right-

hand side via

[Ca,Rab(u)] = −uRab(u), [Cb,Rab(u)] = uRab(u) and Caδ±a = 0 . (2.12)

The n-point monodromy matrix Tn is then defined as a product of Lax-operators

Tn := L1

(
u1 −

C1

2

)
. . .Ln

(
un −

Cn
2

)
. (2.13)

Only for certain choices of the parameters v1 . . . v2n−4 the ansatz eq. (2.8) will yield a

Yangian invariant: the condition analogous to solving the linear system for on-shell graphs

is that the ansatz eq. (2.8) has to be an eigenstate of the monodromy matrix Tn defined

in eq. (2.13) above:

T({ui})Y = Λ({ui})Y . (2.14)

Commuting the monodromy matrix Tn through the chain of R-operators by means of

eqs. (2.10) and (2.11) will fix all parameters vi in the ansatz eq. (2.8) and furthermore

imply eq. (2.5).

The permutation encoded in a tree-level on-shell graph is the key to expressing a Yan-

gian invariant in the language of R-operators [5, 7]. In order to do so, one has to decompose

the permutation into a series of successive swaps and identify the sites to swap with the

indices of R-operators Rab. Naturally, there are many different ways of decomposing a per-

mutation into a series of successive swaps. For the tree-level invariants we need to consider

series of minimal length. Only after restricting to the shortest possible decompositions one

can map a permutation to a class of on-shell diagrams (and thus R-chains) unambiguously.

For loop-level invariants, one has to allow for non-minimal decompositions, which obscure

the relation between on-shell graphs and permutations.

Finally, let us comment on how to build scattering amplitudes in N = 4 sYM theory

from Yangian-invariant building blocks. While tree-level amplitudes are sums of Yangian

invariants themselves, for loop amplitudes only the integrands exhibit Yangian invariance.

– 5 –
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As we will see, however, the R-operator formalism provides unregulated, integrated expres-

sions. Since on the one hand those expressions are manifestly Yangian invariant and on the

other hand Yangian invariance is broken for loop amplitudes due to infrared divergences,

regularization needs to be responsible for breaking Yangian invariance.

As loops will be dealt with in the sections below, let us collect here some facts on tree

amplitudes, which have been thoroughly discussed in refs. [1–5]: in the MHV-sector (k = 2),

any scattering amplitude is directly related to a single Yangian invariant. Imposing the

equations ensuring Yangian invariance for this on-shell graphs exactly leads to the relation

eq. (2.5).

For other MHV-sectors (k > 2), however, there are generically several diagrams con-

tributing to the scattering amplitude. While one can easily determine the permutation

associated to each of them, it is unphysical to assign different eigenvalues ci to the same

external leg. Imposing equality of all external parameters for all contributing on-shell

graphs generically forces all eigenvalues ci to be zero.5 Thus a deformation is possible only

in the MHV sector.

3 Four-point one-loop review

The four-point one-loop MHV gluon amplitude in N = 4 sYM theory was first computed

in ref. [14] as the low-energy limit of the corresponding string theory result. Later, all one-

loop MHV gluon amplitudes have been determined via unitarity in ref. [15]. The result

can be expressed as

A
(1)
4;2 = s tAtree

4;2 I4 (3.1)

where I4 is the massless box integral

I4 =

∫
d4q

q2(q + p1)2(q + p1 + p2)2(q − p4)2
, (3.2)

pi, i = 1, . . . , 4 are the null external momenta and s = (p1 + p2)2, t = (p2 + p3)2 are

Mandelstam variables. Using a supersymmetry-preserving regulator such as dimensional

reduction, the result is (see ref. [15])

A
(1)
4;2 = −cΓA

tree
4;2

{
− 2

ε2

[(
µ2

−s

)ε
+

(
µ2

−t

)ε]
+ log2

(
−s
−t

)
+ π2

}
(3.3)

where

cΓ =
(4π)ε

16π2

Γ(1 + ε)[Γ(1− ε)]2

Γ(1− 2ε)
. (3.4)

3.1 On-shell diagrams and all-loop BCFW

In ref. [6], the authors re-derived the four-point one-loop integrand within the on-shell

diagram formalism. The amplitude is represented by the highly symmetric diagrams in

figure 2, which has been obtained by starting from the forward limit of the six-point

5The six-point NMHV amplitude is a notable exception. However, while a deformed amplitude can still

be defined, the famous six-term identity [13] is not valid for this deformed amplitude.

– 6 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
1

1

2 3

4 1

2 3

4

Figure 2. On-shell diagram corresponding to the four-point one-loop amplitude.

NMHV amplitude using the methods of ref. [10] and applying several square moves and

mergers afterward.6 The resulting integrand is expressed as a dlog-form and reads

A
(1)
4;2

A
(tree)
4;2

= dlog
(

α1〈31〉
α1〈31〉+〈34〉

)
dlog

(
α2〈13〉

α2〈13〉+〈23〉

)
dlog

(
α3〈13〉

α3〈13〉+〈12〉

)
dlog

(
α4〈31〉

α4〈31〉+α4〈41〉

)
, (3.5)

where the integration variables αi are BCFW-shifts not fixed by momentum conservation

and the on-shell conditions. Alternatively, the above expression can be rewritten in terms

of an off-shell integration variable q, which denotes the momentum flowing in the loop of

the corresponding Feynman diagram. The result reads

A
(1)
4;2

A
(tree)
4;2

=dlog

(
q2

(q−q∗)2

)
dlog

(
(q+p1)2

(q−q∗)2

)
dlog

(
(q+p1+p2)2

(q − q∗)2

)
dlog

(
(q−p4)2

(q−q∗)2

)
, (3.6)

where q∗ = 〈12〉
〈42〉λ4λ̃1 is a solution of the quadruple-cut equation for the box integral [16].

This integrand is equal to

d4q
s t

q2 (q + p1)2 (q + p1 + p2)2 (q − p4)2
, (3.7)

which is exactly the integrand appearing in eq. (3.1).

3.2 Deformation of the four-point one-loop amplitude

As pointed out in the previous subsection, the four-point one-loop amplitude corresponds

to a single on-shell diagram. Therefore it is possible to deform it without taking care for

physicality constraints arising from the compatibility of deformations of several Yangian

invariants. This was first done in refs. [1, 2] starting from the on-shell graph in figure 3.7

6Notice that the two diagrams in figure 2 are related by simple mergers: the first one is obtained from

the second one by merging the vertices near the corners.
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Figure 3. The on-shell diagram corresponding to the deformed one-loop four-point amplitude.

The Yangian-invariant deformation of the amplitude reads

A(1)
4;2 = s tAtree

4;2 Ĩ4(ai; s, t) , (3.8)

where Ĩ4(ai; s, t) is a box integral with the propagators raised to arbitrary complex powers,

Ĩ4(ai; s, t) =

∫
d4q

1

[(q)2]1+a1 [(q + p1)2]1+a2 [(q + p1 + p2)2]1+a3 [(q − p4)2]1+a4
. (3.9)

This form of the integrand is reminiscent of analytic regularization.

Imposing Yangian invariance for the on-shell diagram implies that
∑

i ai = 0 [3]. The

explicit computation of this integral (with the Yangian invariance condition enforced) is

subtle. If however one does not enforce Yangian invariance, the computation can lead to a

finite answer. With a specific choice of external central charges c1 = c2 = −c3 = −c4 = 4ε

(equivalent to choose all ai = ε), the explicit computation leads to [1, 2]

A
(1)
4;2 = A

(tree)
4;2

(
[34]

[12]

)4ε[ 1

ε2

(
s

t

)−2ε

− 1

2

(
log

s

t

)2

− 7π2

6
+O(ε)

]
, (3.10)

which bears a striking resemblance with the dimensionally regulated version in eq. (3.3).

As pointed out before, Yangian invariance for the on-shell diagram is equivalent to

demanding
∑

i ai = 0. This condition makes the computation of the integral less straight-

forward. The result seems to be a distribution with support on the surface a1 − a3 =

0, a1 + a2 = 0 [3]:

A
(1)
4;2 = s tA

(tree)
4;2 f(a1, a2, a3) , where

f(a1, a2, a3) = −δ(a1 + a2)δ(a2 + a3)
1

s t

(
t

s

)a1 sin(πa1)

a1
.

(3.11)

That is, for almost all deformations, the integral vanishes.

7Notice that the diagrams of figure 3 and figure 2 are not related by mergers or square moves. Never-

theless, they lead to the same integrand. They also correspond to the same permutation, but it is not clear

if the concept of a permutation associated to a non-reduced on-shell graph has any useful application.

– 8 –
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4 Bubbles

Among the configurations appearing in on-shell diagrams, the bubble takes a special rôle.

It reflects the double lines:

a b . (4.1)

In the R-operator language, the above diagram will be produced by the Yangian invariant:

Rab(uab)Rab(uba)δaδ-b . (4.2)

The very same trivial permutation, however, is represented by Rba(uba)Rba(uab)δ-aδb, which

corresponds to the following diagram:

a b . (4.3)

Employing the definition of the R-operator eq. (2.7) in the first case eq. (4.2) leads to∫
dz1

z1+uab
1

∫
dz2

z1+uba
2

δ2(λa + (z1 + z2)λb)δ
2(λ̃b − (z1 + z2)λ̃a) . (4.4)

Changing variables to w = z1 + z2 and z = z1 − z2, performing the integration over w and

substituting the remaining variable then leads to∫
dz

z1+uab(D − z)1−uab
δ(〈ab〉)δ2

(
λ̃b −

λ1
a

λ1
b

λ̃a

)
, (4.5)

where D is some function of the external kinematics. The above integral exhibits several

important features:

• the kinematics is constrained by δ(〈ab〉). While this renders the kinematics special

in the situation of an isolated bubble, it is nothing to worry about, if the bubble is

part of a larger on-shell diagram.

• the integration over z means that momentum conservation does not constrain the

kinematics completely: the parameter z measures, which part of the momentum

flows along the upper and which part along the lower line in the bubble.

• the integration variable z does not appear in the arguments of the δ-function: this

allows to consider the integration separately. In fact, this is exactly the situation de-

scribed by the bubble deletion operation introduced in ref. [6] and mentioned already

in section 2: one can replace the bubble by a line after factoring out an integration.

The link to the integral is provided by the function D of the external kinematics.

a b → a b (4.6)

Note, however, that the operation does not preserve the permutation encoded by the

on-shell diagram and thus the Yangian structure, e.g. the flow of the central charges

and evaluation parameters is modified by deleting a bubble.

– 9 –
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32

.

Figure 4. Yet another representation of the four-point one-loop amplitude.

Below we will see that the integral eq. (4.5) encoded in the bubble is important for

investigating deformations of one-loop amplitudes. The close relation of bubbles with loop

diagrams becomes apparent in particular by considering the diagram in figure 4, which is

another form of representing the four-point one-loop amplitude. Using the square moves

and mergers, it can be transformed into the diagrams in figure 2. It is not difficult to see

that all these diagrams (as well as the diagram figure 3) encode the trivial permutation(
1 2 3 4
↓ ↓ ↓ ↓
1 2 3 4

)
. (4.7)

Contour of integration. Leaving the Grassmann variables aside for a moment, the

R-operator as defined in eq. (2.7) reads

Rij(u) · F ({λ, λ̃, η̃}) :=
i

2 sin(πu)

∫
Γ

dz

z1+u
F (λi − zλj , λ̃j + zλ̃i) , (4.8)

Here the contour Γ encircles the branch cut of the integrand (chosen to lie on the positive

real axis) going around zero; this open contour is known as the Hankel contour. Already

here we encounter a problem, since the Hankel contour does not take into account possible

branch cuts from the integrated function F itself. We are going to see below that this is

indeed a problem for defining an integration contour for loop amplitudes. However, even

for the action of only a single R-operator the situation is not completely clear. One could

guess that the Hankel contour is the correct choice in general, since one acts always on

single-valued functions; this is however a bit misleading. In order to see this, we study

the integral over z in eq. (4.5). Even though one could argue that this integral represents

a degenerate situation (a deformed on-shell diagram with one single bubble), we will see

that the same integral appears in the deformed four-point one-loop amplitude below.

The question now is how to choose the integration contour; a naive guess would be

simply to generalize the Hankel contour to the closed contour encircling the branch cut,

so that the integral picks up the discontinuity of the integrand along the cut. With the

change of variables z = Dζ, the integral becomes proportional to (here α = −uab)∮
Γ

dζ

ζ1−α(1− ζ)1+α
, (4.9)
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γ0
ε γ1

ε

γ−

γ+

0 1

Figure 5. Contour around the branch cut in the ζ plane.

where Γ is the contour encircling the branch cut between 0 and 1. Specifically, Γ =

γ0
ε ∪ γ+ ∪ γ1

ε ∪ γ−, where (see figure 5)

• γ0
ε , γ

1
ε are semicircles around the two branch points 0, 1 of radius ε;

• γ± are line segments from 0± iε to 1± iε (with the correct orientation).

The integrand has no pole at infinity, therefore the evaluation via residue theorem gives

zero. Notice, however, that the vanishing of the integral is nontrivial when we consider

the single contributions, due to the fact that for Re(α) > 0 the integral around γ1
ε and the

contributions from γ+∪γ− diverge (and similarly for Re(α) < 0 with γ0
ε )8. Obviously, even

defining the integral purely as the discontinuity around the branch cut (i.e. consider only

the contributions along γ+∪γ−) leads to an ill-defined answer, therefore it seems nontrivial

to define an open contour generalizing the Hankel contour.

Notice that the situation considered in the present paragraph is qualitatively different

from the one considered in refs. [1, 2], since in these references the scaling of the deformed

integrands depends on the deformation parameters. In our simple case eq. (4.9), the fact

that the exponents of the denominator of the integrand sum to zero implies that z = ∞
is a regular point and thus the branch-cut can be chosen to lie on the real axis between

0 and 1. However, if the exponents sum to a noninteger value, then the integrand would

behave as z2−β for some β ∈ C as |z| → ∞. The branch-cut would then lie along R\(0, 1).

In that case, the simple integral we consider could be evaluated exactly as a real integral

between 0 and 1, and would lead to a finite and well-defined answer in a definite region of

the space of deformation parameters.

This discussion is done to stress the fact that when considering tree-level amplitudes the

contour can be chosen a priori due to the knowledge that all the integrals will be localized

on the support of delta functions, but the situation is not as clear when considering integrals

beyond tree-level.

As stated at the beginning of this paragraph, we will see that integrals of the form

in eq. (4.9) appear in the computation of the deformed four-point one-loop amplitude.

Specifically, eq. (5.11) from the following section reads∫
dz1 dz2 dz3 dz4

z1−u14
1 z1−u21

2 z1−u32
3 z1−u43

4

×

×
[

〈34〉
〈34〉−z1〈31〉

]1+u14[ 〈23〉
〈23〉−z2〈13〉

]1+u21[ 〈12〉
〈12〉−z3〈13〉

]1+u32[ 〈41〉
〈41〉−z4〈31〉

]1+u43
(4.10)

8In this case we can simply evaluate directly the real integral
∫ 1

0
dζ

ζ1−α(1−ζ)1+α = zα

(1−z)α
∣∣1
0
, which of

course diverges unless Re(α) = 0.

– 11 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
1

The four integrals are completely independent, so we can consider one at a time, for example∫
dz

z1−a(〈41〉 − z〈31〉)1+a
, (4.11)

where the integrand has a single branch cut between z = 0 and z = z∗ := 〈41〉
〈31〉 . Each of the

integrals in eq. (4.10) is of the type of eq. (4.9).

Summing up, it seems then that the deformation leads to well-defined integrands, but

the contours of integration are somewhat tricky to define. This fact is immaterial at tree

level, since all the integrals are localized on the support of the delta functions. However,

at loop level this ambiguity should be resolved in order to attempt to explicitly compute

the result.

There are various possible solutions to the contour problem. It is possible to work at

the level of the integrand and find a coordinate transformation that leads to a deformed

box integral, and then define the usual domain of integration in the loop momentum space,

analogous to the computation of refs. [1, 2]; this will be the approach implicitly followed in

the following sections. It is also conceivable to define a different contour that crosses the

branch cuts of the integrands. The knowledge a priori of the position of the branch cuts

of the integrand is then crucial to define such a contour [17].

5 Four-point one-loop calculation

In this section we will discuss the derivation of the deformed one-loop four-point amplitude

in the language of R-operators. We will investigate the eigenstates of the monodromy that

correspond to figure 2 and figure 3 under the dictionary given in [5]. The evaluation of these

eigenstates yields integrals which we will map to the deformed box-integral of eq. (3.9).

Tree level. Let us start by considering the four-point tree-level amplitude. As shown

in [5], the four-point tree-level Yangian invariant can be represented as an eigenfunction of

the monodromy matrix of the form

A(0)
4;2 = R23(u32)R34(u42)R12(u31)R23(u41)Ω++−−. (5.1)

It has eigenvalue (u1 + 1
2)(u2 + 1

2)(u3− 1
2)(u4− 1

2). Its central charges are readily computed

to be

c1 = u1 − u3, c2 = u2 − u4, c3 = u3 − u1, c4 = u4 − u2, (5.2)

which, using eq. (2.5), can be directly translated into the permutation that defines this

tree-level Yangian invariant. It is simply a shift by two:(
1 2 3 4
↓ ↓ ↓ ↓
3 4 1 2

)
. (5.3)

Employing the definition of the R-operator eq. (2.7) and the vacuum (2.9) we can evaluate

eq. (5.1) explicitly in terms of spinor-helicity variables

A(0)
4;2({ui}) =

δ4(
∑

i pi)δ
8(
∑

i λiηi)

〈12〉1+u32〈23〉1+u43〈34〉1+u14〈14〉1+u21
, (5.4)

For uij = 0 this expression reduces to the well-known MHV tree-level amplitude for N = 4

sYM theory.

– 12 –
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One-loop eigenstate. As discussed around eq. (4.7), the permutation corresponding to

the one-loop diagrams in figure 2 and figure 3 is the trivial one. At tree level, the trivial

permutation clearly corresponds to the ground state Ω. Nevertheless, we can generate

non-trivial Yangian invariants that are associated with these diagrams.

In ref. [5] the explicit map between R-operators and on-shell diagram has been dis-

cussed. It is easy to check that the following two states

A(1)
4;2 =R41(u14)R21(u21)R23(u32)R43(u43)R23(u23)R34(u13)R12(u24)R23(u14)Ω++−−, (5.5)

B(1)
4;2 =R14(u14)R21(u24)R23(u32)R43(u13)R23(u23)R34(u43)R12(u21)R23(u41)Ω++−− (5.6)

exactly give rise to the two on-shell diagrams in figure 2 and figure 3 respectively. Notice

that the tree-level invariant eq. (5.1) is represented in the above expressions manifestly by

the four rightmost R-operators (up to a redefinition of the spectral parameters).

It can be readily shown that both states are eigenstates of the monodromy matrix with

eigenvalues9

TA(1)
4;2 =

(
u1 +

1

2

)(
u2 −

1

2

)(
u3 +

1

2

)(
u4 −

1

2

)
A(1)

4;2, (5.7)

TB(1)
4;2 =

(
u1 −

1

2

)(
u2 −

1

2

)(
u3 +

1

2

)(
u4 +

1

2

)
B(1)

4;2. (5.8)

The eigenvalues are simply related by interchanging u1 and u4. Furthermore, it is quickly

seen that the central charges vanish

ci = 0, (5.9)

indicating that eqs. (5.5) and (5.6) indeed correspond to the trivial permutation.

In other words, we have identified Yangian invariants that correspond to the four-point

one-loop amplitude. At this point we would like to note that both A(1)
4;2 and B(1)

4;2 are valid

deformations of the one-loop amplitude. If these integrals are well-defined, the fact that

they have different eigenvalues implies that they either need to be inequivalent or trivial.

Notice furthermore, that apart from applying the parity flip to particles one and four, we

could also have applied a flip to any other set of neighboring particles, leading to different

deformations. We will come back to this important point at the end of this section.

Integral A. Having established the relation between the two one-loop eigenstates and

their on-shell diagrams, let us evaluate the loop integrals they generate. We will show that

both, eqs. (5.5) and (5.6), give rise to the integral eq. (3.8). We will first treat eq. (5.5) in

great detail and then briefly discuss the derivation of the integral corresponding to eq. (5.6)

afterward.

The Yangian invariant eq. (5.5) naturally contains eight integrations. The four right-

most R-operators generate the tree-level Yangian invariant and consequently it is conve-

nient to first perform these integrations. This will remove four δ-functions from the vacuum

and leaves us with an expression of the form

A(1)
4;2 = (−1)1+u41A(0)

4;2({0}) I4({ui}), (5.10)

9Details are given in appendix A.

– 13 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
1

where the integral I4({ui}) is four-dimensional and depends on the integration variables

z1, z2, z3, z4 from the remaining R-operators. We would like to stress that the factorization

in (5.10) can only be done after the application of all R-operators. At the algebraic level,

there does not seem to be a way to factor the amplitude into the tree-level amplitude times

an integral. Equation (5.10) can be derived straightforwardly by applying eq. (2.7) to the

four-point result eq. (5.4) . This yields for the integral I4({ui}) (cf. [10])

∫ 〈34〉
〈31〉 dz1

z1−u14
1

[
〈34〉
〈31〉−z1

]1+u14

〈23〉
〈13〉 dz2

z1−u21
2

[
〈23〉
〈13〉−z2

]1+u21

〈12〉
〈13〉 dz3

z1−u32
3

[
〈12〉
〈13〉−z3

]1+u32

〈41〉
〈31〉 dz4

z1−u43
4

[
〈41〉
〈31〉−z4

]1+u43
.

(5.11)

This integral should match the deformed box integral eq. (3.9). We see that the integrations

of the R-operator will play the role of the loop momentum. In order to match this to

eq. (3.9), we have to define what the loop momentum is in our integral. The BCFW

recursion relation for loops (or the forward limit) provides a natural candidate: it can be

obtained by summing the momenta flowing along the red lines in figure 2 and figure 3.

The momentum propagating along the various BCFW bridges clearly is a function of the

integration parameters zi corresponding to the R-operators that generate the loop integral

(the left-most four R-operators). Let us define the shifted momenta [10]

λ1̂ = λ1, λ̃1̂ = λ̃1 + z2λ̃2 + z1λ̃4,

λ2̂ = λ2 − z2λ1 − z3λ3, λ̃2̂ = λ̃2,

λ3̂ = λ3, λ̃3̂ = λ̃3 + z3λ̃2 + z4λ̃4,

λ2̂ = λ2 − z1λ1 − z4λ3, λ̃2̂ = λ̃2. (5.12)

These expressions can be easily reproduced by acting with the relevant R-operators in

eq. (5.5) on the momentum and removing the measure and integration, i.e. by only con-

sidering the shift part from eq. (2.7). Let us denote such a shift corresponding to the

R-operator Rab by Sab(z), then

λâ = S41(z1)S21(z2)S23(z3)S43(z4)λa, λ̃â = S41(z1)S21(z2)S23(z3)S43(z4)λ̃a. (5.13)

By momentum conservation this results in the following natural expression for the loop

momentum

q :=
〈1̂2̂〉
〈2̂4̂〉

λ4̂λ̃1̂ + z1λ1λ̃4. (5.14)

This defines the coordinate transformation between the shift variables zi and the loop

momentum. Given this transformation, it is now straightforward to show that

I4(ai; s, t)=

∫
d4q

s t

[(q)2]1+u41 [(q + p1)2]1+u12 [(q + p1 + p2)2]1+u23 [(q − p4)2]1+u34
, (5.15)

which exactly matches eq. (3.9).
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Integral B. Let us now briefly indicate what happens for the eigenstate eq. (5.6). The

integrand is again of similar type as the integrand of A. Next, we define shifted spinor

helicity variables according to the R-operators associated to eq. (5.6) as

λǎ = S14(z1)S21(z2)S23(z3)S43(z4)λa, λ̃ǎ = S14(z1)S21(z2)S23(z3)S43(z4)λ̃a, (5.16)

and the corresponding expression for the loop momentum is this time given by

q :=
〈1̌2̌〉
〈2̌4̌〉

λ4̌λ̃1̌ − z1λ4λ̃1. (5.17)

Remarkably, this coordinate transformation maps the integral corresponding to eq. (5.6)

to eq. (5.15) as well. In other words, eqs. (5.5) and (5.6) correspond to the same function

in momentum space but originate from different Yangian invariants.

Summary. We have shown that both eqs. (5.5) and (5.6) give rise to the same Yangian-

deformed box integral. This means that the deformed amplitude is the same for both

on-shell diagrams figure 2 and figure 3. However, as pointed out in eq. (5.7), both states

have different eigenvalues under the monodromy matrix. This can only happen if either

the corresponding states vanish, are ill-defined or if their eigenvalues coincide.

For these two states, the eigenvalues agree exactly when u1 = u4. However, as was

indicated in the beginning of this section, we could have chosen any two adjacent particles

and construct the analogue of B(1)
4;2. In other words, in order for all these eigenvalues to

coincide, we need that ui = ui+1. This can only be accomplished when the deformation is

trivial, i.e. uij = 0, which renders the integral the usual, unregulated box integral.

Indeed in [3] it was shown that the integration of (5.15) on R4 leads to a vanishing

result for generic values of the deformation parameters. Furthermore, in [3] the integral

seems to have singular support, but we find that even in those particular cases the integral

will either vanish or be ill-defined (i.e. divergent). We find that the unregulated integral

follows from a manifestly Yangian invariant procedure. However, due to the fact that

different Yangian invariants give rise to the same integral, this Yangian invariant seems to

be either 0 or divergent.

Finally, as remarked in [5], the eigenvalue of a Yangian invariant corresponds to the

hypercharge and its Yangian partners. It is easy to see that the hypercharge of the in-

variants will start to differ at the second Yangian level only. In turn, this means that our

conundrum is closely related to the fact that we extended our algebra not only by the

central charge operators C but as well by the hypercharge B.

It is also conceivable that the manipulations of the two expressions in eq. (5.5) and (5.6)

are valid at the level of the integral and therefore we should carefully consider the trans-

formation of the contours under the change of variables, as well. However, due to the lack

of a precise definition of the contour for the general action of R-operators, we are not able

to make any conclusive statement yet.

6 Five-point one-loop amplitude

In this section we discuss the five-point one-loop amplitude. This amplitude is obtained

from three on-shell diagrams. We will show that each of these diagrams corresponds to
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Figure 6. Three channels contributing to the five-point one-loop amplitude.

Yangian invariants. However, they have different central charges. It turns out that this

implies that they can only be added if the deformation is trivial.

Following the BCFW-recursion relation for loop amplitudes, we find that the diagrams

in figure 6 contribute. The first two diagrams correspond to a forward limit of a seven-point

amplitude. The last diagram is an inverse soft limit of the four-point one-loop amplitude

discussed in the previous section. The permutations associated to each of the diagrams are(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
3 1 2 4 5

)
,
(

1 2 3 4 5
↓ ↓ ↓ ↓ ↓
4 2 1 3 5

)
and

(
1 2 3 4 5
↓ ↓ ↓ ↓ ↓
5 2 3 1 4

)
, (6.1)

respectively, which can be quickly derived using the double-line notation introduced in

ref. [3].

Let us now spell out the chains of R-operators generating these on-shell diagrams.

Define the following three states

A(1)
5;2 = R51(u15)R45(u41)R54(u54)R12(u52)R51(u24)R34(u13)

R15(u34)R45(u23)R42(u52)R32(u21)Ω+−++− (6.2)

B(1)
5;2 = R51(u15)R12(u25)R34(u43)R45(u13)R51(u23)R21(u24)

R15(u25)R41(u31)R31(u14)R21(u45)Ω−+++− (6.3)

C(1)
5;2 = R51(u15)R54(u41)R41(u54)R23(u32)R43(u43)R23(u23)

R34(u53)R13(u54)R23(u52)R23(u52)Ω++−−+. (6.4)

It can be shown that they indeed are eigenstates of the monodromy matrix in a way similar

to the discussion in appendix A. Furthermore, it follows directly that these three Yangian

invariants generate the on-shell diagrams listed in figure 6.

In order to study the permutation corresponding to these Yangian invariants, we com-

pute the central charges

cA = {u1 − u3, u2 − u1, u3 − u2, 0, 0},
cB = {u1 − u4, 0, u3 − u1, u4 − u3, 0}, (6.5)

cC = {u1 − u5, 0, 0, u4 − u1, u5 − u4}.

According to eq. (2.5) we find that these agree with the permutations listed in eq. (6.1).

– 16 –



J
H
E
P
1
1
(
2
0
1
4
)
0
9
1

Similar to NMHV amplitudes at tree level, we need to combine several terms to form

the full amplitude. Obviously we can only add terms that belong to the same eigenspace,

i.e. the central charges must agree. This imposes conditions on the evaluation parameters

ui and it is readily checked that implies that uij = 0. In other words, there is no deformed

five-point one-loop amplitude if one insists on compatibility of the Yangian invariance of

the individual terms.

7 Conclusions

In this paper we have constructed and evaluated one-loop diagrams in the language of

R-operators. We find that for four points, the same loop integral can be recovered from

different on-shell diagrams. However, since formally these two diagrams correspond to

different Yangian invariants, it turns out that the integrals either evaluate to zero or diverge.

Except for the four-point one-loop amplitude, there is no consistent deformation for

loop amplitudes. The reason is the same, which ruled out the deformed tree amplitudes: if

there are several Yangian invariants contributing to a loop-integrand, demanding the same

central charges for the external legs of each diagram constrains to the trivial permutation.

Another argument pointing at the subtlety of defining deformed loop amplitudes orig-

inates in the complicated branch-cut structure of the integrands. The naive generalization

of the Hankel contour leads to ill-defined integrals, as discussed in section 4.

Without deformation, however, the R-operator formalism leads to exactly the inte-

grands written in ref. [6], which is demonstrated in section 5.

Furthermore, we would like to point out that the correspondence between Yangian

invariants and permutations will break down at loop level. Indeed, for four points there

are only 4! = 24 permutations and clearly at a loop level high enough, this will be smaller

than the amount of terms comprising the amplitude.

Finally, we would like to remark that the spectral parameters in the R-operators do not

seem to provide a straightforward regularization of loop integrals; not even if we break Yan-

gian invariance only mildly by keeping the arguments of the R-operators general. This is

due to the fact that the R-operators have no mass dimension and consequently do not pro-

vide an immediate tool to regulate the IR behavior of loop amplitudes. This argument could

be circumvented by considering an appropriate contour of integration (as remarked in [17]).

Nevertheless, it would be very useful to further investigate the issue of loop amplitudes

in an algebraic language: modifications of the monodromy matrix could still pave the way

towards an understanding of the regularization of loop amplitudes.
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A Eigenvalue property

In this section we prove that eqs. (5.5) and (5.6) are eigenstates of the monodromy matrix

with eigenvalues given in (5.7). In [5, 7] it was shown that eigenstates of the monodromy

matrix respect dihedral symmetry. We will use this and prove that the aforementioned

states are eigenstates of T by showing that they are eigenstates of the shifted monodromy

matrix

Ts = L2(u2)L3(u3)L4(u4)L1(u1). (A.1)

We will discuss the procedure for eq. (5.5) in detail; the computation for eq. (5.6) is

completely analogous. First, we use the rule that two R-operators commute for appropriate

indices

Rab(u)Rcd(v) = Rcd(v)Rab(u), if a 6= d and b 6= c, (A.2)

to rewrite eq. (5.5) as

A(1)
4;2 = R41(u14)R23(u32)R43(u43)R23(u23)R34(u24)R21(u21)R12(u24)R23(u14)Ω++−−.

(A.3)

It is quickly checked from eqs. (2.10) and (2.11) that Ts can be commuted through the

R-operators up to the last three. There we encounter the problem that indices one and

two are not adjacent for the shifted monodromy matrix. However, we can use one of the

so-called RRδ-rules from [5]

Rab(u)Rbc(v)δaδbδ-c = Rbc(v − u)Rca(−u)δ-aδbδc, (A.4)

together with eq. (A.2) to find the following way of expressing eq. (5.5)

A(1)
4;2 = R41(u14)R23(u32)R43(u43)R23(u23)R34(u24)R13(u14)R23(u12)R23(u21)Ω++−−.

(A.5)

Since to the right of R13 there is no R-operator with index four, we find that all operators

have neighboring indices and consequently this is an eigenstate of the monodromy matrix.

In particular we find

TsA(1)
4;2 =

(
u1 +

1

2

)(
u2 −

1

2

)(
u3 +

1

2

)(
u4 −

1

2

)
A(1)

4;2. (A.6)

The exact same considerations work for eq. (5.6) as well since they only differ by a parity-

flip of the first R-operator, which does not spoil the property that it is an eigenstate of

shifted monodromy matrix. This results in

Ts B(1)
4;2 =

(
u1 −

1

2

)(
u2 −

1

2

)(
u3 +

1

2

)(
u4 +

1

2

)
B(1)

4;2. (A.7)

We see that the eigenvalues are simply related by interchanging u1 ↔ u4. Because the

central charges are vanishing for both states, we find that the eigenvalues of Ts and the

normal monodromy matrix T coincide. This proves eq. (5.7).
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