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1 Introduction

Scattering amplitudes of ABJM theory [1] exhibit remarkable properties and hidden sym-

metries, in a similar fashion as the S-matrix of N = 4 SYM. This may sound rather

striking since ABJM is a three-dimensional theory equipped with two gauge groups with

Chern-Simons action and with bifundamental matter, which makes it quite different com-

pared to N = 4 SYM. Still, both theories are invariant under large superconformal groups,

they are dual to string theory at strong coupling via the AdS/CFT correspondence and

possess integrable structures, at least in the planar sector. Therefore the fact that some

notable features of the N = 4 SYM S-matrix seem to have a three-dimensional counterpart

in ABJM theory is not so surprising, after all.

Tree level amplitudes of ABJM can be packaged into superamplitudes of N = 3 super-

space on-shell superfields. Such superamplitudes have been shown to enjoy Yangian [2] and

dual superconformal invariance [3], mirroring the similar behaviour of N = 4 SYM [4, 5].

Yangian invariance calls for a possible description of the S-matrix of ABJM in terms of a

Grassmannian integral formalism [6, 7]. This was indeed shown to be the case as tree level

amplitudes can be generated from an orthogonal Grassmannian integral [8] and constructed

by means of on-shell graphs [9].

In ABJM theory dual superconformal invariance lacks a neat explanation at strong

coupling, in contrast to N = 4 SYM [10–12], albeit at weak coupling it seems to be an
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(anomalous [13, 14]) symmetry of the S-matrix. At loop level this symmetry is expected

to manifest itself as the possibility of expressing planar amplitudes in terms of a basis

of dual conformal invariant integrals [15]. Indeed the explicit result of the four-point

planar amplitude up to two loops confirms this expectation. In particular, the cut-based

construction of the amplitude [16] from a set of dual conformal invariant integrals coincides

with a direct Feynman diagram computation which does not assume this property from

the onset [17, 18].

Solving the integrals underlying the computation of the amplitude reveals further in-

teresting facts. At one loop the four-point amplitude is subleading when evaluated in

dimensional regularization [16, 19]. The expression of the two-loop amplitude is intriguing

in a number of aspects. After proper identifications it is identical to the expression for the

light-like Wilson loop with four cusps [20, 21]. This suggests that a duality between ampli-

tudes and Wilson loops [22–24] can hold in ABJM theory. Moreover the amplitude looks

strikingly similar to its one-loop counterpart of N = 4 SYM. Dual conformal symmetry

and the putative duality with the Wilson loop indicate that the amplitude should satisfy

anomalous conformal Ward identities, as in N = 4 SYM [23, 25]. This in turn suggests

that the four-point amplitude could exhibit exponentiation [16–18, 26] similarly as in the

BDS ansatz [27, 28]. Unfortunately no further results are available for loop amplitudes in

ABJM that could support or confute the alleged duality and exponentiation. Indeed the

six-point amplitude was computed at one [13, 14, 29, 30] and two loops [31], but, since it is

not MHV, it would require an extension of the duality to super Wilson loops [32]. Progress

on this has been recently achieved [33].

Restricting to four points, it is fair to affirm that the duality with Wilson loops has

been verified only at the lowest non-trivial order. Indeed, as recalled above, the one-loop

amplitude vanishes for ABJM to finite order in dimensional regularization. Although this

is in agreement with the vanishing of the corresponding Wilson loop [20, 34], it makes

the duality rather trivial at one loop. Moreover, the fact that the one-loop amplitude is

subleading does not tell us anything about its eventual role in an exponentiation ansatz,

which is therefore a quite conjectural statement at this stage.

In this paper we sharpen these ideas by investigating whether exponentiation could

survive at higher orders in perturbation theory and which role the one-loop amplitude plays

in it. In particular we study the four-point amplitude at three loops. We first analyze dual

conformal invariant integrals in three dimensions at three loops. Instead of constructing

an explicit basis we start with the topologies with the highest number of propagators: the

ladder and the tennis court. We fix their coefficients by imposing two-particle cuts. This

way we also determine integrals with a lower number of propagators, which are sensitive to

this cut, and their numerators which enforce dual conformal symmetry. Such an analysis

does not fix the complete amplitude, nevertheless we conjecture that the integrals we

find are sufficient to determine the amplitude or at least its maximally transcendental

contributions up to finite order in dimensional regularization. This is motivated in part by

analogy with lower order and N = 4 results and in part, a posteriori, by the remarkable

properties that our ansatz exhibits, once we spell out the Mellin-Barnes representation of

the relevant integrals in dimensional regularization. First, we find that infrared divergences
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exponentiate to three loops. In particular the singular part is given by 1/ε poles, coming

from the product of the two-loop and the (subleading in ε) one-loop corrections. This is

consistent with the absence of contributions to the cusp anomalous dimension of ABJM at

odd loop order. Including also the finite terms our three-loop ansatz can be written as

M(3)
4 =M(1)

4 ×M
(2)
4 +O(ε) (1.1)

where M(l)
4 is the 4-point l-loop amplitude ratio. To perform such a comparison, we

expand the one-loop amplitude up to order ε2, since the two-loop contribution has leading

ε−2 infrared poles. Therefore to three-loop order the logarithm of the amplitude coincides

with the two-loop result up to subleading terms in ε, such as the one-loop amplitude itself.

Of course, when exponentiating, the one-loop correction plays a crucial role in recovering

the three-loop complete result.

We interpret this remarkable finding as both a signal that our ansatz is sufficient to give

the whole three-loop amplitude (but not necessarily the integrand) and that the amplitude

could exponentiate. Indeed it is tempting to conjecture that this pattern could hold beyond

three-loop order and that the whole perturbative series exponentiates. The fact that this

is the case at three loops can be seen as an indirect test of dual conformal invariance and

duality with Wilson loops, since exponentiation can be interpreted as a consequence of a

(dual) conformal Ward identity.

The available two-loop results for amplitudes in ABJM exhibit uniform transcenden-

tality. This is true even for non-planar corrections [35, 36] and seems to be a property of

the ABJM S-matrix, at least at four points. Recently this intuition has been given an ex-

planation in terms of a construction of amplitudes using on-shell graphs [37] similar to that

for N = 4 SYM [38]. Accordingly, we expect the three-loop amplitude to be expressed in

terms of transcendental functions of uniform degree three. Indeed, by exploiting the iden-

tification with the higher order expansion of the one-loop amplitude, we are able to provide

an explicit form for our ansatz at three loops (and also for some symmetrized combinations

of ladder and tennis court integrals, respectively). Such an expression is indeed in terms

of classical polylogarithms with uniform degree of transcendentality. Their arguments are

in terms of square roots of ratios of kinematic invariants.

2 Dual conformal invariant integrals in three dimensions

Tree level superamplitudes in the ABJM model are Yangian [2, 5] and dual superconfor-

mal [3, 4, 39] invariant. This symmetry can be checked explicitly for lower multiplicity

amplitudes and proved to extend to arbitrary number of points via recursion relations [40],

generalizing the BCFW construction [41, 42] to ABJM. In this paper we only focus on the

four-point superamplitude. Its tree level expression reads

A(0)
4 (1̄, 2, 3̄, 4) = i

δ(6)(Q)δ(3)(P )

〈12〉 〈23〉
(2.1)

where P and Q are the total momentum and supercharge and the δ functions enforce

momentum conservation and supersymmetry. We follow the conventions of [29], which are
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reviewed in the appendix. Through unitarity dual conformal invariance propagates to loop

level corrections M(l)
4 in the planar limit, which will be assumed throughout this paper

A4 = A(0)
4

(
1 +

∞∑
l=1

M(l)
4

)
= A(0)

4

(
1 +

∞∑
l=1

λlM
(l)
4

)
(2.2)

where l stands for the loop order, λ ≡ N
4π k is the ’t Hooft coupling and M denotes ratios

between loop corrections and the tree level superamplitude.

For ABJM theory dual conformal invariance is still lacking a precise strong coupling

interpretation [43–48] in terms of a self duality of the dual sigma model under fermionic

T-duality, as occurs for N = 4 SYM [10–12]. Nevertheless explicit analysis of amplitudes

at weak coupling suggests that it is a (eventually broken by infrared divergences) symmetry

of the on-shell sector of ABJM in the planar limit. As a consequence we expect all planar

loop corrections to be expressible in terms of a basis of dual conformal invariant integrals.

Once such a basis is known, the coefficients can be fixed by (generalized) unitarity [49–51],

simplifying the determination of amplitudes extremely. This motivates the importance of

classifying dual conformal integrals in three dimensions.

Searching for such integrals is not as straightforward as in four dimensions, especially

at odd loops, where the number of integrations is odd [3]. An elegant way to describe

them exploits a five-dimensional formalism [16]. In this setting dual coordinates describing

momenta are embedded into five-dimensional variables X. External points are taken on the

light-cone of five-dimensional Minkowski space, and loop variables are projectively reduced

to three-dimensional integrals. Within this setting dual conformal invariance translates

into Lorentz symmetry and scale invariance of the integrand with respect to each point Xi,

both external and internal. At one loop this criterion uniquely determines the integral (in

five-dimensional formalism)

I(1) =

∫
DX5

ε (X5, X1, X2, X3, X4)

X2
51X

2
52X

2
53X

2
54

(2.3)

where we use the notation ε (. . . ), understanding contraction of Lorentz indices and DX5

for the projective integration measure [16]. This is the integral appearing in the one-loop

amplitude, as verified by a direct unitarity-based computation [16]

M
(1)
4 = i I(1) (2.4)

After projectively reducing it to three dimensions (as spelled out in [16]) and going to

momentum space it reads

I(1) ≡
∫

ddl

(2π)d
N(l)

l2 (l − p1)2 (l − p12)2 (l + p4)2
(2.5)

where p12 ≡ p1 + p2. Since it will appear several times in this paper, we define the

numerator as

N(l) ≡ sTr (l p1 p4) + l2 Tr (p1 p2 p4) (2.6)
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Figure 1. Two-loop dual conformal invariant integrals for four-point amplitudes.

where the trace Tr is over spinor indices and, e.g., Tr(p1 p2 p4) = 2 ε (p1, p2, p4). It is more

convenient to think at this numerator as the three-dimensional reduction of the unique five-

dimensional one. Since the reduction can be performed in four equivalent ways focusing

on the loop momentum flowing in each of the edges of the box, we have a set of alternative

manners of expressing it in three dimensions. These choices correspond to identities like

N(l) ≡ sTr (l, p1, p4) + l2 Tr (p1, p2, p4) = tTr (l, p1, p2) + (l − p1)2 Tr (p1, p2, p4) (2.7)

which can be derived from spinor algebra. In practice we use this freedom to select a form

of the numerator which fits the computation best.

The one-loop amplitude shows the ubiquitous presence of ε tensors appearing in dual

conformal invariant integrals in three dimensions. In the integral (2.5) we have set generic

dimension d, since we shall eventually perform its computation within dimensional regu-

larization d = 3− 2ε. This point is extensively discussed in section 5. Within this setting

the one-loop box integral (2.5) is subleading in the dimensional regularization parameter

and so is the one-loop amplitude.

At two loops there are four independent dual conformal invariant integrals for four-

particle scattering processes [16], whose topologies are depicted in figure 1. Though not

necessary, these integrals can be also identified in five-dimensional formalism. In this setting

it is natural to express the numerator of the double-box in terms of ε tensors. Explicitly

it reads

I
(2)
0,s ≡

∫
ddl

(2π)d
ddk

(2π)d
N(l1)N(l2)

t l21(l1 − p12)2(l1 − p1)2l22(l2 + p4)2(l2 − p12)2(l1 − l2)2
(2.8)

where again we have used the numerators (2.6). Of course the pairs of ε tensors contained

in the numerator of (2.8) can be reduced to scalar products, leading to more familiar

numerators [16]. Nevertheless the expression (2.8) appears simpler and more natural from

the point of view of unitarity. Indeed one can reconstruct the two-loop amplitude starting

by considering its two-particle cuts, separating it into a tree and a one-loop four-point

amplitudes. Such a construction has been explicitly performed in [36]. Using a Schouten

identity such a cut immediately coincides with that of the double-box (2.8), up to an

additional piece which is recognized as coming from the double-triangle I
(2)
1 of figure 1,

which reads

I
(2)
1,s ≡

∫
ddl1

(2π)d
ddl2

(2π)d
s2

l21(l1 − p12)2l22(l2 − p12)2(l1 − l2)2
(2.9)
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This cut analysis already excludes the integral I
(2)
2 of figure 1, which is sensitive to the

two-particle cut and would have been detected. The coefficient of the last integral I
(2)
3

cannot be fixed at this stage. One can then consider a three-particle cut. It has to vanish

since it separates the two-loop amplitude into two five-point tree level ones, which are zero

in ABJM. This condition entails that I
(2)
3 does not contribute to the amplitude. Henceforth

the two-loop expression of the four-point amplitude in terms of integrals reads

M
(2)
4 = I

(2)
0,s + I

(2)
0,t + I

(2)
1,s + I

(2)
1,t (2.10)

where integrals in the t-channel can be read from (2.8) and (2.9) after a cyclic permutation

of external momenta labels by one site. By computing the double-box and double-triangle

integrals in dimensional regularization one obtains the two-loop amplitude

M
(2)
4 = −(−s/µ′2)−2ε + (−t/µ′2)−2ε

(2ε)2
+

1

2
log2

s

t
+

2π2

3
+ 3 log2 2 +O(ε) (2.11)

where the dimensional regularization mass scale has been redefined as µ′2 = 8πe−γEµ2.

This expression strikingly resembles the one-loop amplitude in N = 4 SYM, up to straight-

forward identifications [16, 17, 26]. As for N = 4 SYM [22–25], it happens to coincide with

the expectation value of a light-like Wilson loop with four cusps [20, 21, 34]. This hints at

a possible amplitude/Wilson loop duality for ABJM. For the bosonic Wilson loop such a

relation would hold for four-point amplitudes only. Indeed, by analogy with N = 4 SYM

we expect such a duality to be valid for MHV amplitudes only, and in ABJM only four-

point amplitudes can be regarded as MHV in terms of the Grassmann variables of N = 3

superspace [2]. A possible extension to higher point amplitudes would require considering

super Wilson loops [32]. Progress in such a construction has been recently carried out

in [33].

It has to be noticed that the two-loop amplitude (2.11) is mostly given by the double-

box, which contains the leading infrared poles and the functions with highest degree of

transcendentality. Despite this integral fails to be uniformly transcendental by itself, all

its lower transcendentality terms are exactly cancelled by the double-triangle. In addition

the double-box and double-triangle integrals on their own suffer from unphysical off-shell

infrared divergences. This is the integrals are already divergent off-shell, as can be seen at

the integrand level because of the presence of internal three-point vertices. Since we expect

infrared divergences of the amplitude to be produced by soft and collinear regions of the

integration due to massless external particles, we want the aforementioned singularities

to drop off from the result. This is precisely the case, as spurious off-shell divergences

eventually cancel between the double-box and the double-triangle [18]. This suggests that

their combination is somehow the most natural integral to be considered. The fact that it

possesses uniform transcendentality would simplify its solution considerably, if one could

express it in terms of uniformly transcendental master integrals (as in [52] for form factors),

as occurs successfully in four dimensions [53].
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I
(3)
lad,s

p1 p4

p3p2

l1 l2 l3

l4l5

l7 l8 l9 l10

I
(3)
tc;1

p1 p4

p3p2

l1 l2

l3l4

l5

l6

l7 l8

l9
l10

Figure 2. Ladder and tennis court integrals.

3 Three-loop dual conformal invariant integrals

At three loops determining all dual conformal invariant integrals, is rather cumbersome,

even in the five-dimensional formalism. Moreover in some cases there are several inequiv-

alent numerators enforcing dual conformal invariance, for the same topology.

We shall not perform here a complete classification of three-loop dual conformal in-

variant integrals. Rather, we inspect some necessary condition they have to satisfy, and

use them to construct the dual conformal invariant integrals possessing the maximal num-

ber of propagators. These are constructed with trivalent vertices only and have 3L + 1

propagators, which is ten at three loops. Guided by analogy with the two-loop computa-

tion, it is possible that their maximally transcendental part could suffice to determine the

whole three-loop amplitude and that all other integrals just contribute to restore uniform

transcendentality and cancel unphysical divergences.

As recalled in the previous section, we can use a five-dimensional formalism where dual

conformal invariance translates into Lorentz symmetry and scale invariance with respect to

any dual space variable Xi. On the one hand at three loops there are nine integrations. On

the other hand the number of inverse powers of X from the propagators is even. Hence we

have to require an odd number of X’s in the numerator in order to ensure scale invariance.

This can be accomplished in a Lorentz invariant manner by contractions with an odd

number of ε tensors. The amount of such tensors is limited by how many powers of loop

variables are needed in the numerator in order to guarantee scale invariance. In turn, this

depends on the kind of sub-integral the given dual coordinate Xl is involved in. Bubble

sub-integrals have only two powers of the loop variable in the denominator but three in

the numerator due to the integration measure. They can not give scale invariance and

are therefore excluded on the grounds of dual conformal symmetry. Triangle sub-integrals

do not require any additional powers of their internal coordinate in the numerator, box

sub-integrals demand one power and pentagons two. At three loops and with four external

points these are the only sub-integrals we can construct. In particular the topologies with

trivalent vertices only are the ladder and the tennis court integrals, depicted in figure 2.

The former requires one power of each internal coordinate in the numerator. The latter

needs one additional power of the dual variable corresponding to the pentagon sub-integral.
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In both cases we can have either three or one ε tensors in the numerator, depending on

how contractions are performed. As anticipated, there is not a unique choice for such

numerators. We present here one particular choice, guided by intuition, which turns out to

be convenient for unitarity-based computation. Going to the more familiar representation

in three-dimensional momentum space our ladder integral reads

I
(3)
lad,s ≡

∫
ddl1d

dl2d
dl3

(2π)3d
N(l1)N(l2)N(l3)

t2 l21l
2
2l

2
3l

2
4l

2
5l

2
6l

2
7l

2
8l

2
9l

2
10

(3.1)

where momenta correspond to those of figure 2. Our tennis court is given by

I
(3)
tc,1 ≡

∫
ddl2d

dl4d
dl5

(2π)3d
N(l1)N(l2)N(l3 + p12) (l1 + p4)

2

s t2 l21l
2
2l

2
3l

2
4l

2
5l

2
6l

2
7l

2
8l

2
9l

2
10

(3.2)

where the numerators N were defined in (2.6) and we refer to the discussion below that

formula for explanations. The label indicates the position of external momenta as in

figure 2, where the index corresponds to the thick line.

We observe that the ladder integral we have defined exhibits a suggestive pattern

when compared to the box and double-box ones. This calls for proposing an L-loop dual

conformal invariant three-dimensional ladder∫ L∏
i=1

(
dd li

(2π)d
1

l2i (li − p12)2

) L−1∏
j=1

1

(lj − lj+1)2
1

(l1 − p1)2 (lL + p4)2
(3.3)

We shall comment more on this multi-loop ladder integral in the next section.

Unlike N = 4 SYM, there are several topologies with a lower number of propaga-

tors, which support numerators enforcing dual conformal invariance and which can also

contribute to the amplitude. Those which are sensitive to two-particle cuts will be auto-

matically identified performing such a cut on the ladder and tennis court and imposing

consistency with the same cut on the amplitude. With such an analysis, that we shall

carry out explicitly in the next section, we find the following integrals, which are depicted

in figure 3. The first two emerge contracting some edges of the ladder topology and their

expressions read (with momenta labelled as for the ladder integral (3.1))

I
(3)
1;1 ≡

∫
ddl1 d

dl2 d
dl3

(2π)3d
s2N(l3) (l2 + p4)

2

t l21l
2
2l

2
3l

2
4l

2
5l

2
6l

2
8l

2
9l

2
10

I
(3)
2,s ≡

∫
ddl1 d

dl2 d
dl3

(2π)3d
s2N(l2)

t l21l
2
2l

2
3l

2
4l

2
5l

2
6l

2
8l

2
9

(3.4)

The label in the I
(3)
1;a integral stands for the first external momentum pi,i+1 flowing out of

the four-fold vertex. The remaining ones can be seen to descend from the tennis court and

they are (with momenta labelled as in (3.2))

I
(3)
3;1 ≡

∫
ddl1 d

dl2 d
dl3

(2π)3d
N(l1) (l1 + p4)

2

l21l
2
4l

2
5l

2
6l

2
7l

2
8l

2
9l

2
10

I
(3)
4;1,4 ≡

∫
ddl1 d

dl2 d
dl3

(2π)3d
sN(l2) (l1 + p4)

2

t l21l
2
2l

2
3l

2
4l

2
6l

2
7l

2
9l

2
10

I
(3)
5;1 ≡

∫
ddl1 d

dl2 d
dl3

(2π)3d
sN(l1)

t l21l
2
2l

2
3l

2
4l

2
6l

2
7l

2
10

(3.5)
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I
(3)
1;1

p1

p4

p3

p2

I
(3)
2,s

I
(3)
3;1

p1 p4

p3p2

I
(3)
4;1,4

p1

p4

p3p2

I
(3)
5;1

p1 p4

p3p2

p1 p4

p3p2

Figure 3. Some dual conformal invariant integrals coming from eliminating propagators in the

ladder (I
(3)
1 and I

(3)
2 ) and the tennis court (I

(3)
3 , I

(3)
4 and I

(3)
5 ).

Again extra labels are used to fix the position of external legs in the integral, similarly to

the previous ones. In I
(3)
4;i,j , j is the momentum flowing into the box sub-integral and can

only take values i+ 2 or i− 1, producing two inequivalent integrals.

We stress that these are not all the dual conformal invariant three-loop integrals in

three dimensions. In particular the inspection of two-particle cuts overlooks those integrals

which do not possess this kind of cuts. These are identified by requiring that there are

no consecutive three-point vertices with an external line in their topology. This class of

integrals is a restricted subset of dual conformal invariant ones and one could attempt to

classify them all, however we shall not carry this out here.

4 Two-particle cuts

As discussed in the above section, the integrals with the largest number of propagators we

expect to contribute are the ladder and the tennis court. They can be both identified with

a two-particle cut, as in figure 4 for the s-channel. This separates the three-loop amplitude

into a tree level and a two-loop four-point amplitudes. We shall refer to the cut momenta

as k and k− p12, satisfying the cut conditions k2 = 0 and (k− p12)2. Hence the four-point

sub-amplitudes depend on the two invariants s and (k − p1)2. Considering the integral

topologies, we expect the part of the two-loop amplitude (2.10) containing integrals I
(2)
0,s

and I
(2)
1,s to give rise to the ladder topology, whereas the I

(2)
0,(k−p1)2 and I

(2)
1,(k−p1)2 part to

produce the tennis court, plus extra integrals with lower number of propagators.

– 9 –
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Figure 4. Two-particle cut, s-channel.

Explicitly, performing the cut on the amplitude gives (after integrating over the Grass-

mann variables of the cut legs to account for all the particles which can run in the cut loop)

M
(3)
4 (1̄, 2, 3̄, 4)

∣∣∣
s−cut

= i
sTr(k p1 p4)

(k − p1)2(k + p4)2
M

(2)
4 (p1, p2,−k + p12,−k) (4.1)

The final term M
(2)
4 contains the two-loop integrals in the s- and (k − p1)2-channel. We

analyse the s part first, which gives

M
(3)
4

∣∣∣
s-cut, s-piece

= i
sTr(k p1 p4)

(k − p1)2(k + p4)2

[
I
(2)
0,s + I

(3)
1,s

]
(4.2)

The topology of the integrals indicates that the ladder I
(3)
lad,s should contribute to this part of

the cut, identifying k = l3 with reference to the internal momentum labels of figure 2. Dual

conformal invariance suggests that the ladder integral should appear with the numerator

in (3.1). Guided by this expectation, we act with Schouten identities on (4.2) in order to

reproduce this numerator. In particular we apply the identity (which holds for generic q,

l3 is the on-shell cut momentum)

ε (l3, p1, p4)

(l3 − p1)2
[
s ε (q, p1,−l3) + q2ε (p1, p2,−l3)

]
= (4.3)

=
ε (l3, p1, p4)

t

[
s ε (q, p1, p4) + q2ε (p1, p2, p4)

]
+ s (l3 + p4)

2(q − p1)2

twice, onto the numerators N coming from I
(2)
0 . Indeed, after some algebra, this procedure

gives rise to the desired term coming from the ladder, along with other extra pieces. These

can be further manipulated in such a way that they are recognized to emerge from the

cuts of the integrals I
(3)
1 and I

(3)
2 , which consistently are also dual conformal invariant. In

particular we obtain

− iM (3)
4

∣∣∣
s-cut, s-piece

= I
(3)
lad,s + I

(3)
1;1 + I

(3)
1;3 − I

(3)
2,s

∣∣∣
s-cut, s-piece

(4.4)

Acting similarly on the part of (4.1) containing two-loop integrals in the (k− p1)2-channel

we find

− iM (3)
4

∣∣∣
s-cut, (k − p1)2-piece

= I
(3)
tc,3 + I

(3)
3;3 + I

(3)
4;3,1 + I

(3)
4;3,2 − I

(3)
5;3

∣∣∣
s-cut, (k − p1)2-piece

(4.5)
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The procedure we applied, repeated on all the channels, fixes completely the integrals

appearing in the amplitude, possessing two-particle cuts.

At this level we can conclude that the part of the amplitude with such cuts reads

− iM (3)
4 =

1

2
I
(3)
lad,s + I

(3)
tc,1 + I

(3)
1;1 −

1

2
I
(3)
2,s + I

(3)
3;3 + I

(3)
4;1,4 + I

(3)
4;1,3 − I

(3)
5;1 + cyclic (4.6)

Extra factors take care of the symmetries of integrals under cyclic permutations. Of course

this does not tell us anything about integrals without two-particle cuts, which, as remarked

in the above section, are a considerable number.

We could try to infer their topologies (or exclude their presence) by performing other

cuts. For instance a four-particle cut isolating two tree level six-point amplitudes would

provide strong consistency checks. However they involve several contributions at the level

of the integrals and the nasty six-point amplitudes on the amplitude side. We shall not

perform such intricate cuts. Rather, as a further constraint, we can perform the easier

three-particle cuts suggested in [31]. Then we pragmatically conjecture that the ladder

and tennis court integrals provide the infrared divergent part of the amplitude and the

functions with highest degree of transcendentality and see if we obtain a consistent answer

for the amplitude.

Three-particle cuts. Cutting three internal legs of an integral topology, isolates a three-

point vertex which has to vanish in ABJM theory. This requirements provides a constraint

which is fulfilled only by certain combinations of integrals. Hence these cuts determine the

allowed relative coefficients of sets of integrals which can potentially appear in amplitudes.

This powerful technique was used to fix six-point amplitudes [31] and form factors in

ABJM [52].

Here we verify that such cuts are verified by our ansatz, providing further checks

in favour of it. We spell out the computation of the three particle cut obtained setting

l21 = l22 = l28 in the ladder topology of figure 2. All the integral topologies of the ansatz (4.6)

contribute to such a cut. In particular, the relevant permutation of external momenta are

shown in figure 5. Starting from the ladder topology, all contributions to the cuts cancel

pairwise between the integrals shown in figure 5. This fixes the relative coefficients of such

pairs, as we now explain. The ladder integral evaluated on the cut reads

I
(3)
lad,s

∣∣∣
3pt

=
s2 ε(l1, p1, p4) ε(l2, p1, p4)N(l3)

t2 l23l
2
4l

2
5l

2
6l

2
7l

2
9l

2
10

(4.7)

Conservation of momentum and the on-shell conditions imply that l1, l2 and l8 are collinear

and allow us to rewrite

ε(l1, p1, p4) ε(l2, p1, p4) = −t (l1 − p1)2(l2 + p4)
2 (4.8)

Substituting in the numerator of (4.7) we obtain the identity

I
(3)
lad,s

∣∣∣
3pt

= −I(3)1;1

∣∣∣
3pt

(4.9)
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Figure 5. Integrals contributing to the three-particle cut.

which means that the combination I
(3)
lad,s + I

(3)
1;1 appearing in the amplitude has vanishing

three-particle cut. The integral I
(3)
1;3 has cut

I
(3)
1;3

∣∣∣
3pt

=
s2 ε(l1, p1, p4) (l2 − p1)2N(l3)

t l23l
2
4l

2
5l

2
6l

2
7l

2
9

(4.10)

Proportionality and on-shellness of l1 and l2 imply that

ε(l1, p1, p4) (l2 − p1)2 = ε(l2, p1, p4) (l1 − p1)2 (4.11)

and hence

I
(3)
1;3

∣∣∣
3pt

= I
(3)
2,s

∣∣∣
3pt

(4.12)

The relative minus sign between these two integrals in the amplitude enforces a vanishing

contribution to their three-particle cuts. Identities such as (4.7) and (4.11) can be applied

to the numerators of the integrals I
(3)
tc,1, I

(3)
4;1,4 and I

(3)
tc,2,

I
(3)
tc,1

∣∣∣
3pt

= −I(3)4;1,3

∣∣∣
3pt

I
(3)
4;1,4

∣∣∣
3pt

= I
(3)
5;1

∣∣∣
3pt

I
(3)
tc,2

∣∣∣
3pt

= −I(3)3;2

∣∣∣
3pt

(4.13)

These relations imply that the required vanishing of the three-particle cut is indeed satisfied

by the combination of integrals (4.6).

Ladder integrals. We close this section with a remark on multi-loop ladder integrals.

As discussed in the previous section, we can provide an iterative construction for the

numerator of dual conformal invariant ladders. It remains to be checked whether this is

the correct numerator as appearing in L-loop amplitudes. In order to check this we can

generalize the two-particle cut construction above iteratively.

We perform a cut separating the four-point L-loop amplitude M
(L)
4 into a tree and a

(L − 1)-loop amplitudes. Then we focus on the s-channel part of M
(L−1)
4 in the cut, as

in (4.4), which we expect to give rise to the ladder topology. We can straightforwardly

repeat the steps above, and apply (4.3) L−1 times on the numerator. This produces a term
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coming from the cut of the numerator of (3.3) and extra pieces. We do not have a general

prediction for such additional terms, though we can imagine they could correspond to

similar topologies as for the two- and three-loop cases. In order to achieve a deeper insight

into these integrals, we carry out the complete computation of the s-part of the cut for the

four-loop amplitude. First we act three times on the numerator with (4.3) to reproduce

the cut of a dual conformal invariant four-loop ladder of the form (3.3). We manipulate

the remainders in such a way that we can identify their topology and numerators as follows

M
(4)
4

∣∣∣
ladder part

∼ (N1 +N2)

l1 l2 l3 l4

+N3

l1 l2 l3 l4
+

+N4

l1
l2 l3 l4

+ (N5 +N6)
l1

l2 l3 l4
(4.14)

where the corresponding numerators have been defined as

N1 =
N(l1)N(l2)N(l3)N(l4)

t3
(4.15)

N2 =
s2

t2
N(l1)N(l4) (l2 − p1)2 (l3 + p4)

2 (4.16)

N3 =
s2

t2
N(l1)

[
N(l2) (l3 − p1)2 −N(l3) (l2 − p1)2

]
(4.17)

N4 =
s2

t2
N(l4)

[
N(l3) (l2 + p4)

2 −N(l2) (l3 + p4)
2
]

(4.18)

N5 =
s2

t2
N(l2)N(l3) (4.19)

N6 =
s4

t
(l3 − p1)2 (l2 + p4)

2 (4.20)

We observe in particular the appearance (4.15) of the four-loop ladder (3.3), along with

another four-loop ladder topology with a simpler numerator (4.16). A similar combination

seems to pop up for the last topology with numerators (4.19) and (4.20). Consistently all

these numerators make the corresponding integrals dual conformal invariant. It would be

interesting to check whether such a combination of integrals possesses uniform transcen-

dentality as occurs at two loops. Despite the numerators of the four-loop case turn out to

be a bit more composite than at lower order, once the ladder is constructed it looks like

the remaining pieces can be fixed in terms of integrals where only the extremal rungs are

removed (of course other topologies where other propagators are eliminated are present if

one expands numerators). It would be interesting to check whether such a pattern persists

at higher loop order.

5 Regularization

The loop integrals we have found in the previous section are in general infrared divergent

and have to be regularized. There are basically two strategies which have been proposed

for amplitudes in ABJM: dimensional and Higgs mechanism regularization. Dimensional
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regularization is subtle because of the ubiquitous presence of ε tensors which are in prin-

ciple defined in integral dimension only. Moreover, already at one loop, integrals exhibit

power-like divergences, and it is not immediate that dimensional regularization could treat

them properly. Nevertheless it has proved successful in the perturbative computation of

the known loop amplitudes in ABJM, as well as for various kinds of Wilson loops. In

particular it is crucial for unitarity to work properly, since the one-loop amplitude evalu-

ated in dimensional regularization is subleading in ε, rather than exactly vanishing, which

would pose serious problems for constructing amplitudes via cuts [19]. In particular the

determination of integrands which are consistent at any order in the ε expansion seems to

be pivotal for the application of unitarity in the computation of higher loop amplitudes.

In the following we solve the integrals identified in the previous section in dimensional

regularization in d = 3− 2ε dimensions. As anticipated, care has to be taken when dealing

with ε tensors. In order to fully exploit their antisymmetry property, we directly perform

tensor integrals. This has the advantage that several contributions can be discarded thanks

to the antisymmetry of ε tensors, already at the level of Feynman parametrization. The

disadvantage consists in possible errors introduced by continuing the dimension of loop

momenta but keeping the ε tensors in three dimensions.

The safest way to handle them would be to couple them in pairs, which can be trans-

formed into scalar products. Even if an odd number of them is present in our numerators,

we can always multiply and divide by ε (p1, p2, p4) and use this to write scalar products

involving loop momenta. These can be eventually translated into inverse propagators and

the resulting integrals can be solved directly or reduced to master integrals by integration

by parts identities. For the two-loop amplitude this was carried out with success by solving

the scalar integrals directly [16] and by reduction to master integrals [36]. Remarkably this

result coincides with that obtained by a Feynman diagram approach [17] which produces

completely different integrals without explicit ε tensors in their numerators. Even though

the route outlined above is doable in principle, for the three-loop ladder and tennis court

the expansion of the ε tensors into inverse propagators produces a rather large amount of

contributions with up to four powers of them in the numerators. We tried to manage them

by reduction to master integrals using the automatized FIRE routine [54], but this failed

to give an answer in a reasonable time (at least on our computer, which is soon made run

out of memory).

At two loops we checked that the result of the amplitude when ε tensors are previously

transformed to inverse propagators coincides with performing tensor integrals and applying

DRED rules for contracting metric tensors arising in the computation. This is pleasing

as DRED scheme is somehow the standard choice in supersymmetric theories and was

proved to preserve gauge invariance for Chern-Simons-matter theories up to two loops [55].

Remarkably this prescription also allows to derive a uniformly transcendental expression

for the expectation value of a light-like Wilson loop with four cusps, that exactly agrees

with the two-loop amplitude [21]. Also, when this scheme is used for the perturbative

computation of supersymmetric circular Wilson loops in ABJM it provides agreement with

exact results from localization [56–58]. In all such cases application of DRED rules in the

presence of ε tensors can be traded with an ε dependent correcting factor. When this
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multiplies some pole ε−a it then affects higher order terms O(ε−a+1) in the ε expansion, by

a contribution with lower degree of transcendentality.

For the scattering amplitude we do not expect three-loop integrals to exhibit severe

infrared divergences, as the following argument implies. In fact, part of this work is de-

voted to ascertain whether infrared divergences exponentiate in ABJM in a similar manner

to four dimensions. Assuming this is the case, we do not expect genuine three-loop sin-

gularities, since the cusp anomalous dimension does not receive corrections at odd loops.

In other words log Div(3) = 0. This means that potential infrared divergences should only

come from the exponentiation of lower order corrections. In particular at three loops such

contributions come from the product of the one- and two-loop amplitudes. Since the for-

mer is order ε and the latter possesses leading ε−2 poles, we expect simple poles at most

at three loops. This means that potential errors introduced by a sloppy treatment of ε

tensors would produce lower transcendentality terms in the finite part, which should be

easily identified and corrected. We shall follow this rather pragmatic strategy in the next

section and verify that it gives a reasonable answer. Of course an alternative analysis would

be helpful to check our results.

As an alternative scheme, regularizing by moving the theory away from the origin of

moduli space was proposed in four dimensions in [59]. It has the theoretical appeal of

preserving dual conformal invariance and the technical advantage of working in integral

dimension. It was first formulated for the ABJM theory in [31] and applied for solving the

relevant integrals for the four- and six-point two-loop amplitudes. In that article it was

shown how to implement it directly within the five-dimensional formalism, which offers

several practical benefits in the solution of integrals. At two loops it was shown that the

two regularizations provide rather different results for the individual integrals, but the same

final answer for the amplitude [31].

Regulating the integrals on the Higgs branch also provides a cleaner interpretation of

the ε in the numerators of integrals as dimension is fixed and not analytically continued.

Employing this method directly in five dimensions allows to work with five-dimensional ε

tensors [31]. The Higgs mechanism regularization then amounts (up to logarithmic accu-

racy) to a shift in one of the extra-dimensional coordinates of the external points, by a mass

parameter µ. Whenever an odd number n of ε tensors is present in the numerator, it is al-

ways possible to express n−1 of them in terms of scalar products. Hence, with four external

points, the final integral will always contain a numerator of the form ε(X,X1, X2, X3, X4).

Any integral depending on X1 . . .X4 only will inevitably evaluate to 0.

One could wonder whether the previous reasoning could also apply to the dimen-

sional regularization case leading to strictly vaninishing odd-loop integrals. This is nicely

explained in [31] where it was shown that a careful extension of the five dimensional for-

malism leads to extra contributions needed to mantain the projective invariance of the

integral which fall out of the previous logic of ε tensors contracting repeated vectors.

As we recalled above, three-loop dual conformal invariance forces an odd number of

ε tensors in the numerators of integrals. Hence in massive regularization the three-loop

four-point amplitude has to vanish. Nevertheless the integrand is still non-trivial, and, as

at one loop, it is crucial for unitarity at higher loop order.
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It should be stressed that the simple recipe of shifting one of the extra coordinates in

the five dimensional formalism to implement the Higgs regularization is only valid up to

logarithmic accuracy. This means that the actual Higgs-regularized integral at one-loop

(and in general odd-loops) may also receive O(µ2 logµ2) subleading contributions which are

analogous to the O(ε) terms of dimensional regularization. Even if these subleading terms

are present also in the Higgs regularization, the way they combine in the exponentiation

of divergences is completely different. In dimensional regularization the O(ε) terms of

the one-loop amplitude multiply the O(ε−2) pole of the two-loop amplitude to give non-

trivial O(ε−1) contributions in the three-loop amplitude, consistently with exponentiation

of divergences. Instead, within Higgs regularization sub-logarithmic contributions at one-

loop can not combine with the two-loop logarithmic ones to produce leading logarithms

at three loops. Therefore, the fact that the one-loop amplitude is sub-logarithmic in the

Higgs regularization and exponentiation of divergences imply that all odd-loop amplitudes

are sub-logarithmic.

6 The amplitude in dimensional regularization

We evaluate the integrals contributing to the two-particle cut within dimensional regu-

larization. We use Mellin-Barnes representation and perform it directly on the tensor

integrals. As explained in the previous section care has to be taken due to the ε tensors

in the numerators, which can introduce incorrect terms in the finite part of divergent in-

tegrals, if treated improperly. On the other hand, their presence reduces significantly the

number of integrals since they make some terms vanish thanks to their antisymmetry.

For instance the ladder integral can be handled as follows. First we can rewrite some

factors N(l) in an equivalent and more convenient form using identities (2.7) such as

s ε(l1, p1, p4) + l21 ε(p1, p2, p4) = t ε(l7, p1, p2) + l27 ε(p1, p2, p4) (6.1)

Then we can split the numerators in (3.1) to give rise to four different kinds of integrals,

e.g. corresponding to the pieces

N(l1)N(l2)N(l3) = t2 ε(l7, p1, p2)N(l2) ε(l10, p3, p4)︸ ︷︷ ︸
a)

+ t l27 ε(p1, p2, p4)N(l2) ε(l10, p3, p4)︸ ︷︷ ︸
b)

+ t ε(l7, p1, p2)N(l2) l
2
10 ε(p1, p2, p4)︸ ︷︷ ︸

c)

+ l27 l
2
10 ε

2(p1, p2, p4)N(l2)︸ ︷︷ ︸
d)

(6.2)

We observe that the last numerator d) yields a contribution which is proportional to I
(3)
2 ,

therefore we defer its evaluation. Moreover the second and third integrals b) and c) are

equal and each of them can only give rise to two contributions, after making a Feynman

parametrization and exploiting the antisymmetry of ε tensors. The first integral a) is

the most complicated. Nevertheless the three-tensor part from the first piece of N(l2)

containing a vector l2 only produces four non-vanishing terms, whereas the two-tensor

piece containing l22 only gives two. Each of these contributions involves up to seven Mellin-

Barnes integrations. We perform analytic continuation and ε expansion using the package
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MB [60]. The output of the continuation routine is commonly a rather large list of multiple

Mellin-Barnes integrals. These are four-fold at most, but can always be reduced to one-fold

integrals by means of repeated application of Barnes lemmas, by hand. In some cases we

find faster and more convenient to use the alternative routine MBresolve [61].

Remarkably we can combine all the Mellin-Barnes representations of the different pieces

of the ladder, into quite a compact integral. Only a few contributions generate infrared

divergences. Inspecting the corresponding tensor structure we see that they all come from

pieces of the form

η̃µ1µ2 ε
µ1ν1ρ1 εµ2ν2ρ2 pi ν1 pj ρ1 pk ν2 pl ρ2 (6.3)

leading to a contraction between two ε tensors. Since the metric comes from a tensor

integral, we understand it as (3− 2ε)-dimensional, which we denote by η̃. Then we express

the ε tensors in terms of three-dimensional metrics and we use the DRED rule

η̃µν ηµν = 3− 2ε (6.4)

to contract them. Effectively this is equivalent to performing all algebra in three-dimensions,

provided a correction factor (1 − 2ε) is introduced. Taking into account this subtlety we

can write the complete Mellin-Barnes representation of the ladder integral as

I
(3)
lad,s = − i π

(4π)9/2−3ε
ε (p1, p2, p4)

∫ +i∞

−i∞

dz

2πi
(−s)z+1(−t)−z−

5
2 Γ2 (−z − 3/2) Γ(−z − 1)

Γ2(z + 2)Γ (z + 5/2)

[
2

ε
− 8γE + 8 log 2− log(−s)− 5 log(−t)+

− 2ψ (−z − 3/2)− 3ψ(−z − 1)− 2ψ(z + 2) + 5ψ (z + 5/2)

]
+O(ε) (6.5)

The other integrals emerging from this part of the two-particle cut, I
(3)
1 and I

(3)
2 , turn out

to be subleading in the dimensional regularization parameter.

For the tennis court the evaluation turns out to be considerably much more involved.

Even exploiting the antisymmetry of ε tensors we are still left with a plethora of integrals.

Summing all contributions and after many simplifications we arrive again at a rather simple

Mellin-Barnes integral. This already appears like a miracle, considering the huge expression

one has to start with. Explicitly we find

Itc,s = − i π

(4π)9/2−3ε
ε (p1, p2, p4)

6π3/2

(−s)
1
2 t

+

+
i π

(4π)9/2−3ε
ε (p1, p2, p4)

∫ +i∞

−i∞

dz

2πi
(−s)z+1(−t)−z−5/2 Γ (−z − 3/2)2 Γ(−z − 1)

Γ(z + 2)2Γ (z + 5/2)

[
− 1

ε
+ 4γE + 14 + 2 log(−s) + log(−t)+

− 2ψ (−z − 3/2) + 4ψ(z + 2)− ψ (z + 5/2)

]
+O(ε) (6.6)

We can observe the presence of terms with lower transcendentality. Still we have to combine

this with the other integrals originating from the two-particle cut, according to (4.6). Their
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evaluation is simpler and gives respectively

I
(3)
3;1 = − 16 i π

(4π)9/2−3ε

∫ +i∞

−i∞

dz

2πi
(−s)z+1(−t)−z−

5
2 Γ2 (−z − 3/2) Γ(−z − 1)

Γ2(z + 2)Γ (z + 5/2) +O(ε)

I
(3)
4;1,4 = I

(3)
5;1 +O(ε) =

6 i π
5
2

(4π)9/2−3ε
ε (p1, p2, p4)

(−s)
1
2 t

+O(ε). (6.7)

Considering the combination dictated by the cut condition (4.5), we see that part of the

terms of lower transcendentality cancels out. Still we are left with a lower transcendentality

piece in the Mellin-Barnes integral. Although we do not have a clean argument to justify

it as for the ladder integral, we see that an extra factor (1 − 2ε) would provide a perfect

cancellation of this last piece of lower transcendentality. We therefore postulate this to be

the correct prescription and write

I
(3)
tc,1 + I

(3)
3;1 + I

(3)
4;1,3 + I

(3)
4;1,4 − I

(3)
5;1 = − i π

(4π)9/2−3ε
ε (p1, p2, p4)

∫ +i∞

−i∞

dz

2πi
(−s)z+1(−t)−z−

5
2

Γ (−z − 3/2)2 Γ(−z − 1)Γ(z + 2)2Γ (z + 5/2)

[
1

ε
− 4γE − 2 log(−s)− log(−t)+

+ 2ψ (−z − 3/2)− 4ψ(z + 2) + ψ (z + 5/2)

]
+O(ε). (6.8)

It would be interesting to check this result against a different solution of the integrals,

getting rid of ε tensors from the onset.

We finally sum up all contribution (4.6) to obtain a Mellin-Barnes integral represen-

tation for the amplitude, which reads

M
(3)
4 =

1

(4π)1/2−3ε
ε (p1, p2, p4)

∫ +i∞

−i∞

dz

2πi
(−s)z+1(−t)−z−5/2Γ (−z − 3/2)2 Γ(−z − 1)

Γ(z + 2)2Γ (z + 5/2)

[
2

ε
− 8γE + 4 log 2− 3 log(−s)− 3 log(−t)+

− 2ψ (−z − 3/2) + ψ (−z − 1)− 2ψ(z + 2) + ψ (z + 5/2)

]
+O(ε). (6.9)

7 The ε expansion of the one-loop amplitude

The one-loop contributions to the ABJM four-point amplitude is known to be subleading

in ε when evaluated in dimensional regularization. Here we provide an explicit expression

for its expansion in the dimensional regularization parameter ε up to order ε2. Since the

two-loop amplitude has leading ε2 poles, this is the order required to evaluate completely

the logarithm of the amplitude logM up to finite order at three loops.

By contraction with ε (p1, p2, p4) we can decompose the one-loop box function into a

scalar box and two triangles. Both can be given an all-order expression in ε. For the box

this can be done borrowing four-dimensional results and performing the shift ε→ ε+ 1/2.

The result is expressed in terms of 3F2 hypergeometric functions, which can be in principle
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expanded in ε. Such an expansion, however, is not straightforward. As an alternative path

we can write down the Mellin-Barnes representation of the box-function and expand it up

to order O(ε2)

M
(1)
4 = ε2

2 e−2γEε

(4π)1/2−ε
ε (p1, p2, p4)

∫ +i∞

−i∞

dz

2πi
(−s)z+1 (−t)−z−

5
2 Γ2 (−z − 3/2) Γ (−1− z)

Γ2 (z + 2) Γ (z + 5/2)

[
− (−s)−ε + (−t)−ε

ε
+ 2ψ (−z − 3/2)− ψ (−z − 1) +

+ 2ψ (z + 2)− ψ (z + 5/2) +O(ε)

]
(7.1)

in a form which is manifestly invariant under s↔ t, which is equivalent to the shift of the

integration variable by z → −z−7/2. This property and the presence of the ε tensor make

the complete amplitude antisymmetric under a cyclic permutation, as is expected from a

parity argument [13].1 For the order ε term we can directly pick residues up and sum the

corresponding series. In order to explicitly evaluate the Mellin-Barnes integral at order

ε2 we went back to the Feynman parametrized form of the box integral and expanded it

to such order. The resulting integral can be solved in terms of classical polylogarithms.

We did not find closed expressions in terms of polylogarithms for the individual series

underlying the ε2 expansion of (7.1).

Before presenting the result, we introduce some convenient variables x ≡
√

s+t
s ,

y ≡
√

s+t
t and remark that we shall focus on the Euclidean region s < 0, t < 0. The

overall factor ε (p1, p2, p4) can also be expressed in terms of Mandelstam variables as

±1
2

√
−s t (s+ t), where the sign depends on the kinematics. We fix the minus sign and use

the above identification to get finally rid of such factors. In this step we are also ignoring

a sign depending on the order of the external momenta, following from the antisymmetry

of the ε tensor. This sign is crucial for the symmetry properties of the amplitude under

a cyclic permutation of the external momenta, but will not play any role in the following

and we shall omit it to avoid clutter in the formulae. Finally the O(ε2) order expansion of

the one-loop box function reads

M
(1)
4 = 2π

(
16 e−γE π

)ε {
ε
[
(−s)−εArcTanh y−1 + (−t)−εArcTanhx−1

]
+ (7.2)

− ε2
[
Li2(1− x) + Li2(−x) + Li2(1− y) + Li2(−y)

+ log(x− 1) log x+ log(y − 1) log y − π2

3

]}
+O

(
ε3
)

(7.3)

We observe that the functions appearing in this expansion exhibit uniform degree of tran-

scendentality.

1We thank Yu-tin Huang for comments on this point.
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8 Conclusions: exponentiation and polylogarithms

In light of the results of the previous section we comment on the properties of our conjec-

tural expression for the three-loop four-point amplitude (6.9).

• We can easily ascertain from the Mellin-Barnes representations (6.9), (7.1) and the

infrared divergences of the two-loop amplitude (2.11) that

M(3)
4

∣∣∣
div

= M(1)
4 × M(2)

4

∣∣∣
div

(8.1)

In particular we can verify that infrared divergences exponentiate to this perturba-

tive order. This is because there is no three-loop contribution to the cusp anomalous

dimension and therefore we expect all three-loop infrared divergences to be caused by

lower order corrections. These should therefore cancel out when considering log M,

as (8.1) shows it is the case. Moreover all the pieces in the finite part of the am-

plitude (see (8.6)) of the form log(−s) can be finally packaged into dipole variables

(−s)lε. These are the same natural objects appearing in exponentiation of infrared

divergences in four dimensions.

On the one hand this exponentiation can sound rather expected, by analogy with what

occurs in four dimensions. On the other hand any previous computation of amplitudes

in ABJM was confined to the lowest perturbative order where divergences turn up,

and consequently does not provide sufficient hints in favour of such an exponential

behaviour. If we believe that infrared divergences have to exponentiate, for instance

following the arguments of [37], this suggests that our result (6.9) could in fact give

the whole three-loop amplitude (at least up to subleading order O(ε) contributions),

despite it was derived only from integrals possessing a two-particle cut. Indeed the

fact that all physical infrared divergences are captured by our ansatz excludes other

divergent contributions to the amplitude. Since functions with highest degree of

transcendentality usually appear within divergent integrals, we suspect that at least

the highest transcendentality part of the amplitude is covered by our result. Of course

some extra divergent integrals could conspire in such a way that their divergent parts

cancel out, leaving some additional contributions. We can not exclude their presence

at this stage, but the consistency of the results and analogous lower loop computations

give strong evidence this is probably not the case.

A remark is in order: even if our conjecture for the three-loop amplitude was correct,

this would not necessarily mean that its integrand coincides with that found in (4.6).

With our two-particle cut analysis and assuming that the amplitude possesses dual

conformal invariance, we can only assert to have completely determined the part of

the integrand which is sensitive to such cuts. This does not exclude the possibility

that finite dual conformal invariant integrals without such a cut can appear in the

integrand. We have seen that already in our expression (4.6) two integrals are sub-

leading in ε. Henceforth any other subleading integral or combination thereof could

be present at the level of the integrand without modifying (6.9) to finite order. Such
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integrands would however play an important role if the three-loop amplitude is used

as an input for a higher order unitarity-based computation.

• Including finite terms, we obtain the remarkable result that

M(3)
4 = M(1)

4 ×M(2)
4 +O(ε) (8.2)

This result is compatible with an exponentiation ansatz for the four-point amplitude

in the spirit of [28]. Indeed to the order we are working we can write

log M4 =M(2)
4 +O(ε) +O

(
λ4
)

(8.3)

As proposed in [16, 17, 26] one can extend this formula to higher order and conjecture

a BDS ansatz for the four-point amplitude

log M4 =

∞∑
l=1

λ2l f
(2l)
CS (ε)M

(2)
4 (lε) + C(l) +O(ε) (8.4)

where fCS is a function whose ε-independent part gives the coefficients of the scal-

ing function of ABJM theory [62–65], and C(l) are possible constant non-iterating

contributions [28].

A striking difference with respect to the four-dimensional case is that the logarithm

of the amplitude would be expressed in terms of the two-loop amplitude instead of

the one-loop contribution, as for N = 4 SYM. We recall that the main ingredient

of (8.4), namely the two-loop amplitude in ABJM, coincides with the N = 4 SYM

one-loop amplitude, up to terms which can be reabsorbed in a redefinition of f and

C and subleading contributions in ε. Henceforth (8.4) is actually strikingly similar

in form to the BDS ansatz for the four-point amplitude of N = 4 SYM.

We stress that taking the logarithm of the amplitude hides considerable information

in the O(ε) terms, which are crucial for recovering higher loop results when exponen-

tiating. In particular the whole one-loop amplitude falls into the subleading pieces

and disappears from the ansatz (8.4), although we have seen that it plays a cru-

cial role for finding the three-loop correction from it. This observation considerably

sharpens previous proposals for a BDS exponentiation [26], where possible order ε

terms correcting the two-loop amplitude where included in the exponential. Here

we discover that such terms are precisely given by the one-loop amplitude. It would

be interesting to further check this exponentiation proposal at higher order, where

the second term in the perturbative expansion of the cusp anomalous dimension fCS
appears.

In N = 4 SYM the BDS ansatz for the four-point amplitude can be interpreted as

the result of an anomalous conformal Ward identity descending from dual conformal

invariance. The hints of an exponential structure for the four-point amplitude in

ABJM provides further support in favour of this symmetry to hold at higher order

in perturbation theory, despite strong coupling objections.
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Since at four points conformal Ward identities are extremely constraining for ampli-

tudes and Wilson loops, it is likely that a duality between amplitudes and Wilson

loops also holds beyond two loops

log 〈W4〉 = log M4 +O(1/N) (8.5)

At three loops this implies that the light-like Wilson loop should vanish, since the one-

loop correction is zero and hence no contributions can emerge from the exponentiation

of lower order terms. This strong prediction is a result of the conformal properties of

light-like Wilson loops and the structure of cusp divergences in ABJM. It would be

interesting to test this via a direct computation of the Wilson loop at three loops.

• Tree level amplitudes in ABJM have been given a description in terms of contour

integrals in an orthogonal Grassmannian space [8] and on-shell graphs [9]. Recently

this description has been extended to loop corrections [37]. This formulation entails

exponentiation of infrared divergences in a similar way as in four dimensions. We have

verified that this is the case for our conjecture on the three-loop amplitude. Another

remarkable feature of the Grassmannian integral formulation is that the four-point

amplitude can be expressed in a d log form which implies that its l-loop corrections are

given by functions of uniform degree of transcendentality l. Using (8.2) we can provide

a check of this statement at three loops, as the amplitude can be clearly expressed

in terms of classical polylogarithms with uniform degree of transcendentality

M
(3)
4 =π

(
−s/µ′2

)−3ε
+
(
−t/µ′2

)−3ε
2

[
− 1

ε

(
ArcTanhx−1 + ArcTanh y−1

)
− log 2

(
ArcTanhx−1 + ArcTanh y−1

)
+ log

x

y

(
ArcTanhx−1 −ArcTanh y−1

)
+ Li2(1− x) + Li2(−x) + Li2(1− y) + Li2(−y)

+ log(x− 1) log x+ log(y − 1) log y − π2

3

]
+O(ε) (8.6)

where µ′2 = 8πe−γEµ2 is the same scale as defined after (2.11) and x and y are the

square roots of invariant ratios appearing in the expansion of the one-loop amplitude.

In fact we are not able guarantee that the three-loop ladder and tennis court can be

expressed in terms of polylogarithms as well. This would require solving explicitly

their Mellin-Barnes representations (6.5) and (6.6). This task looks challenging, due

to the polygamma functions in the integrand and the fact that residues are taken at

half-integer points. This produces rather intricate series which we shall not attempt

to solve. Still, we can observe that symmetrizing these integrals under s ↔ t yields

considerable simplification, as the integrands involving polygamma functions take

the same combination as that appearing in (7.1). Exploiting this identification and

the solutions (7.2) and (7.3) we can straightforwardly extract explicit results for

I
(3)
lad,s + I

(3)
lad,t and I

(3)
tc,1 + I

(3)
tc,2 in terms of polylogarithms.
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A Notation and conventions

We work with the Minkowski metric gµν = diag{1,−1,−1} and the totally antisymmetric

tensor εµνρ, defined by ε012 = ε012 = 1. Spinor indices are raised and lowered as λα = εαβλ
β

with ε12 = ε12 = 1.

On-shell solutions of the fermionic equations of motion are expressed in terms of

SL(2,R) commuting spinors λα. The same quantities allow one to write on-shell mo-

menta as

pαβ = (γµ)αβ pµ (A.1)

where the set of 2× 2 gamma matrices are chosen to satisfy

(γµ)αγ (γν)γβ = −gµν δαβ − εµνρ (γρ)
α
β (A.2)

An explicit set of matrices is (γµ)αβ = {σ0, σ1, σ3}.
We define spinor contractions as

〈i j〉 = −〈j i〉 ≡ λαi λαj = εαβλ
α
i λ

β
j (A.3)

They obey the Schouten identity

〈ab〉 〈cd〉+ 〈ac〉 〈db〉+ 〈ad〉 〈bc〉 = 0 (A.4)

Thus for any pair of on-shell momenta we write

p2ij ≡ (pi + pj)
2 = 2 pi · pj = pαβi (pj)αβ = 〈i j〉2 (A.5)

For positive energy spinors are real, whereas for negative energy they are imaginary.

Traces:

〈ij〉 〈ji〉 = −2 pi · pj (A.6)

〈ij〉 〈jk〉 〈ki〉 = Tr(pi pj pk) = 2 ε(i, j, k) (A.7)

〈ij〉 〈jk〉 〈kl〉 〈li〉 = Tr(pi pj pk pl) =

2 [pi.pj pk.pl + pi.pl pj .pk − pi.pk pj .pl] (A.8)

For definiteness we will choose a regime where

〈12〉 = 〈43〉 〈23〉 = 〈41〉 〈13〉 = 〈24〉 (A.9)

We will use the four-point superamplitude

A4 = i
δ(3)(P )δ(6)(Q)

〈12〉 〈23〉
(A.10)

At loop level our integrals are normalized with the measure∫
d3−2εk

(2π)3−2ε
(A.11)

for each loop integration.
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B Mellin-Barnes integrals solutions

We review here the solutions of the relevant Mellin-Barnes integrals for the expansion of

the one-loop amplitude up to order ε2. In particular we have∫ +i∞

−i∞

dz

2πi
yz Γ2 (−z − 3/2) Γ(−z − 1)Γ2(z + 2)Γ (z + 5/2) =

=
2π3/2

y
√
y(y + 1)

(
ArcTanh

√
1

y−1 + 1
+ ArcTanh

√
1

y + 1

)
(B.1)

and ∫ +i∞

−i∞

dz

2πi
yz Γ2 (−z − 3/2) Γ(−z − 1)Γ2(z + 2)Γ (z + 5/2)

[2ψ (−z − 3/2)− ψ(−z − 1) + 2ψ(z + 2)− ψ (z + 5/2)] =

=
2π3/2

y
√
y(y + 1)

[
2 Li2

(
1−

√
1 + y−1

)
+ 2 Li2

(
−
√

1 + y−1
)

+

+ 2 Li2

(
−
√
y + 1

)
+ 2 Li2

(
1−

√
y + 1

)
+

+ 2 log
(√

y−1 + 1− 1
)

log
√
y−1 + 1 + 2 log

√
y + 1 log

(√
y + 1− 1

)
− (2γE + 4 log 2)

(
ArcTanh

√
1

y−1 + 1
+ ArcTanh

√
1

y + 1

)
+

+ log y

(
ArcTanh

√
1

y + 1
−ArcTanh

√
1

y−1 + 1

)
− 2π2

3

]
(B.2)
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