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Abstract: The AdS/CFT correspondence relates Wilson loops in N = 4 SYM theory to

minimal area surfaces in AdS space. If the loop is a plane curve the minimal surface lives

in hyperbolic space H3 (or equivalently Euclidean AdS3 space). We argue that finding the

area of such extremal surface can be easily done if we solve the following problem: given two

real periodic functions V0,1(s), V0,1(s+2π) = V0,1(s) a third periodic function V2(s) is to be

found such that all solutions to the equation −∂2
sφ+

[
V0 + 1

2(λ+ 1
λ)V1 + i

2(λ− 1
λ)V2

]
φ = 0

are anti-periodic in s ∈ [0, 2π] for any value of λ. This problem is equivalent to the

statement that the monodromy matrix is trivial. It can be restated as that of finding a one

complex parameter family of curves X(λ, s) where X(λ = 1, s) is the given shape of the

Wilson loop and such that the Schwarzian derivative {X(λ, s), s} is meromorphic in λ with

only two simple poles. We present a formula for the area in terms of the functions V0,1,2

and discuss solutions to these equivalent problems in terms of theta functions. Finally,

we also consider the near circular Wilson loop clarifying its integrability properties and

rederiving its area using the methods described in this paper.
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1 Introduction

The most fundamental operator in a gauge theory is the Wilson loop. It can distinguish

a confining from a non-confining phase, it determines the quark/anti-quark potential and

by expanding it at small distances one can obtain the expectation value of any local gauge

invariant operator. Thus, one of the first and most important results of the AdS/CFT

correspondence [1–3] was to give an alternative computation of the Wilson loop at strong

coupling in N = 4 SYM by relating it to a minimal area surface in AdS space [4, 5].

Much work has been devoted to the computation of explicit examples of Wilson loops.

For Euclidean curves, the most studied case is the circular Wilson loop [6–13] although

another cases have been considered [14–18]. In the case of Minkowski signature the light-

like cusp [19] turns out to be particularly interesting because of its relation to scattering
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amplitudes [20–27]. To find solutions in all those cases it is important to exploit the

integrability properties of the equations of motion which are the same as those of the

closed string. Recently, in the case of closed, Euclidean, plane Wilson loops (with constant

scalar) an infinite parameter family of analytical solutions was found using Riemann theta

functions [28, 29] following results from the mathematical literature [30, 31] and from

previous results for closed strings [32–41]. This integrability construction for the Wilson

loop was further discussed in [42] and also in [43–57]. More recently, certain integrability

properties of the near circular Wilson loop were explained in [58].

In this paper we study in detail the integrable structure that allows the computation of

those surfaces. Integrability of the string sigma model implies the existence of an infinite

number of conserved quantities given by the holonomy of a certain flat current along a

non-trivial loop. A standard application of integrability is to use the conserved quantities

to determine the evolution of a string once a complete set of initial data is given, namely

the initial position and velocity of the string. Instead, in the Euclidean case considered in

this paper, the world-sheet has the topology of a disk and all loops are trivial implying that

all the conserved quantities vanish. Equivalently, instead of a complete set of boundary

data we are only given half of it, in this case the position. If we choose the other half,

namely the radial derivative, arbitrarily, the solution we find will not correspond to a

surface that closes smoothly. The condition of vanishing charges is precisely equivalent to

the condition that the surface closes smoothly and allows to determine the other half of

the boundary data in order to set up the computation as an initial problem. Therefore,

we argue that the vanishing of the holonomy is the defining property of the Wilson loop

and should be used as the basis of constructing the surface and computing the area. The

problem is closely analogous to the one of solving the Laplace equation ∂∂̄φ(z, z̄) = 0 on a

disk |z| ≤ 1 given the value at the boundary |z| = 1. If we know the function and its radial

derivative at the boundary then, using the Laplace equation, all higher radial derivatives

are determined and the solution can be reconstructed, namely we would have an initial

value problem. But we are only given the value of the function. If we choose arbitrarily

the normal derivative, continuing the function to the interior will lead to a singularity. The

condition for the solution to be smooth is that the normal derivative and the function are

related by a dispersion relation which expresses the vanishing of all conserved quantities,

in this case qn =
¸
|z|=1 dzz

n∂φ = 0, ∀n ∈ Z≥0. Equivalently, qn≥0 = 0 establishes that

∂φ is holomorphic in the disk. Moreover, the problem of solving the Laplace equation is

directly related to the problem of finding a minimal area surface ending on a given contour

in flat space. That problem is obviously related to the one we discuss in this paper and for

that reason we summarize it briefly in the appendix.

This paper is organized as follows. In the next section we introduce the notation

and define the problem. In the following section we show that given two real function

at the boundary of the disk, the area can be easily computed. In analogy with the

Laplace equation, one of those functions is given by the data of the problem whereas

the other follows from a consistency condition. This is analyzed in the subsequent sec-

tion where the consistency condition is seen to be that all conserved quantities vanish.

This problem is equivalent to the following one: given two real periodic functions V0,1(s),
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z = r e iθ

σ

τ

θ
r=1

Z

X, X

Figure 1. The unit disk |z| < 1 on the left is mapped to a surface X(z, z̄), X̄(z, z̄), Z(z, z̄) on

the right. The objective is to find the surface of minimal area ending on a given boundary contour

X(s), namely Z(r = 1, θ) = 0 and X(r = 1, θ) = X(s(θ)) for some reparameterization s(θ).

V0,1(s+2π) = V0,1(s) a third periodic function V2(s) is to be found such that all solutions to

the equation −∂2
sφ+

[
V0 + 1

2(λ+ 1
λ)V1 + i

2(λ− 1
λ)V2

]
φ = 0 are anti-periodic in s ∈ [0, 2π]

for any value of λ. Equivalently, one can try to find a one complex parameter family of

curves X(λ, s) such that X(λ = 1, s) is the shape of the Wilson loop and the Schwarzian

derivative {X(λ, s), s} is meromorphic in λ with only two simple poles. Finding the relation

between those problems and the minimal area problem is the main result of this paper.

Unfortunately we were not able to find a straight-forward and general analytic or numerical

solution to those problems leaving that for future work. Instead we find particular solu-

tions based on theta-functions and also perturbatively around the circular solution. Those

cases reproduce known solutions and provide an illustration of the techniques described in

this paper.

2 Statement of the problem and notation

Consider Euclidean AdS3 or equivalently hyperbolic H3 space parameterized by a real Z

and a complex X coordinate with metric given by

ds2 =
dZ2 + dXdX̄

Z2
, (2.1)

and an R2 ≡ C conformal boundary parameterized by X and located at Z = 0. We are

looking for a minimal area surface in this space ending on a given boundary curve X(s).

More precisely, as depicted in figure 1, given a complex coordinate

z = σ + iτ = r eiθ , (2.2)

we look for a minimal area embedding X(r, θ), Z(r, θ) of the unit disk |z| = r ≤ 1 into

H3 such that Z(r = 1, θ) = 0 and X(r = 1, θ) = X(s(θ)) for the given curve X(s). At

this point we allow for a boundary reparameterization s(θ) since we want to preserve the

freedom to choose conformal coordinates in the unit disk.

To write the condition of minimal area, it is convenient to describe H3 as a subspace

of R3,1 defined by the constraint

X2
0 −X2

1 −X2
2 −X2

3 = 1 , (2.3)
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with an obvious SO(3, 1) ≡ SL(2,C) global invariance. This space has an S2 boundary at

infinity. The relation to the Poincare coordinates is straight-forward:

Z =
1

X0 −X3
, X =

X1 + iX2

X0 −X3
, X̄ =

X1 − iX2

X0 −X3
. (2.4)

The area in the conformal parameterization of the surface is given by

S =
1

2

ˆ (
∂Xµ∂̄X

µ + Λ(XµX
µ − 1)

)
dσ dτ (2.5)

where Λ is a Lagrange multiplier, the µ indices are raised and lowered with the R3,1 metric

and ∂, ∂̄ denote derivative with respect to z, z̄. A minimal area surface is given by real

functions Xµ(z, z̄) obeying the equations:

∂∂̄Xµ = ΛXµ , (2.6)

where Λ, is given by

Λ = −∂Xµ∂̄X
µ. (2.7)

Finally, we should additionally impose the Virasoro or conformal constraints which read

∂Xµ∂X
µ = 0 = ∂̄Xµ∂̄X

µ. (2.8)

These equations can be rewritten using the matrix

X =

(
X0 +X3 X1 − iX2

X1 + iX2 X0 −X3

)
= X0 +Xiσ

i , (2.9)

where σi denote the Pauli matrices. Notice also that the Poincare coordinates are simply

given by

Z =
1

X22
, X =

X21

X22
. (2.10)

The matrix X satisfies

X† = X, detX = 1, ∂∂̄X = ΛX, det(∂X) = 0 = det(∂̄X) , (2.11)

as follows from the definition of X, the constraint (2.3), the equations of motion (2.6) and

the Virasoro constraints (2.8). We can solve the constraint X† = X by writing

X = AA†, detA = 1, A ∈ SL(2,C). (2.12)

The equations of motion have a global SL(2,C) ≡ SO(3, 1) symmetry under which

X→ UXU †, A→ UA, U ∈ SL(2,C). (2.13)

In the new variable there is an SU(2) gauge symmetry

A→ AU , U(z, z̄) ∈ SU(2) , (2.14)
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since this leaves X invariant. It is useful to define the current

j = A−1dA = Jdz + J̄dz̄ , (2.15)

which is invariant under the global symmetry and, under the local symmetry transforms as

j → U†j U + U†dU . (2.16)

Using the local symmetry and the equations of motion, this current can be put in the form

(see for example [28, 29])

J =

−1
2∂α f(z)e−α

λeα 1
2∂α

 , J̄ =

 1
2 ∂̄α

1
λe

α

−f̄(z̄)e−α −1
2 ∂̄α

 , (2.17)

where f(z) is an arbitrary holomorphic function ∂̄f = 0, α is a real function in the unit

disk |z| = r < 1 such that

∂∂̄α = e2α + ff̄e−2α, (2.18)

and λ in eq. (2.17) is an arbitrary parameter known as the spectral parameter. Under these

conditions, the current

j = Jdz + J̄dz̄ , (2.19)

satisfies

dj + j ∧ j = 0 , (2.20)

for all values of λ. As an aside, notice also the validity of the reality condition[
j

(
− 1

λ̄

)]†
= −j(λ) . (2.21)

Therefore, a way to solve the equations of motion is to first solve eq. (2.18) then plug α

into the definitions for J , J̄ , namely eq. (2.17), and solve for A:

∂A = AJ , (2.22)

∂̄A = AJ̄ . (2.23)

Finally, the surface is determined as X = AA†. This procedure, in fact, defines a one

parameter family of surfaces, one for each value of λ. The only ones that are solutions of

the equations of motion are those corresponding to |λ| = 1 and they turn out to have all

the same area. For concreteness, we take the solution we are interested in to be the one

for λ = 1.

In any case, the equation for α is non-linear but the ones for A are linear since J , J̄ are

known once α is known. This is the main idea of the Pohlmeyer reduction [59] which we

rederive here as it applies to our particular problem. Similar considerations in the context

of string theory are well-known, for example see [32–41, 43–57] and [60].
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Notice that, TrJ = TrJ̄ = 0 implies that detA is constant independent of z, z̄. Since

we need detA = 1 we can just normalize A dividing by a constant. Furthermore it is

convenient to write

A =

(
ψ1 ψ2

ψ̃1 ψ̃2

)
, (2.24)

where the vectors ψ = (ψ1, ψ2) and ψ̃ = (ψ̃1, ψ̃2) are linearly independent and satisfy

∂ψ = ψJ, ∂̄ψ = ψJ̄ , (2.25)

and the same for ψ̃. They have to be linearly independent and are normalized such that

the (constant) determinant detA = ψ1ψ̃2 − ψ2ψ̃1 = 1. There is still a certain ambiguity in

choosing ψ, ψ̃ but those correspond to SL(2,C) ≡ SO(3, 1) transformations of X.

In [28, 29] it was shown, following [30, 31] how to find an infinite parameter family

of solutions to the equations in terms of theta functions. In what follows we are going

to discuss how the integrability properties of the equations of motion can be exploited to

further understand this problem and use those solutions as example.

3 Solution given the parameterization X(θ)

As mentioned before, the boundary curve data is given as a function X(s), s ∈ [0, 2π] and

is related by an unknown reparameterization s(θ) to the boundary value X(r = 1, θ) of the

function X(z, z̄) in the conformal parameterization of the disk. In this section we are going

to assume that such reparameterization is known and show how the data X(θ) allows for a

simple computation of the area. At the end of the section we rewrite the formulas in terms

of the parameterization X(s) at the expense of introducing an unknown function V2(s).

In the next section we discuss how to determine such function. We start by studying the

properties of the function α and how it can be reconstructed from certain boundary data.

Later we show that such boundary data can be obtained from X(θ) and that, from there,

the area simply follows.

3.1 Expansion near the boundary of the disk

The function α determines the metric induced on the surface as

ds2 = 4e2αdzdz̄ . (3.1)

Since the induced metric diverges at the boundary Z = 0 of H3 (due to the factor 1
Z2 in

the metric), it follows that

α(r, θ)→∞, when r → 1 . (3.2)

Consider now the equation (2.18) for α

∂∂̄α = e2α + ff̄e−2α , (3.3)

– 6 –
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for a given analytic function f(z) in the unit disk. To expand the solution near the boundary

it is further convenient to define the coordinate

ξ = 1− r2 , (3.4)

that vanishes at r = 1. Expanding near ξ = 0 we find the solution

α = − ln ξ + β2(θ)(1 + ξ)ξ2 + β4(θ)ξ4 +O(ξ5) . (3.5)

The arbitrary function β2(θ) completely determines the solution since all the higher coef-

ficients are algebraic functions of f(z), β2 and its derivatives. For example

β4(θ) =
1

10
|f(eiθ)|2 +

1

5
β2

2 −
1

40
β′′2 +

9

10
β2 . (3.6)

The function β2(θ) can also be defined as

β2(θ) =
1

6
e2iθ(∂2α− (∂α)2)

∣∣∣∣
r→1

. (3.7)

Since the function f(z) is completely determined by its boundary value f(r = 1, θ), the

functions α(r, θ) and f(z) are completely determined by two functions f(r = 1, θ) and

β2(θ). This data however is redundant, if we are given f(r = 1, θ) choosing β2(θ) arbitrarily

should lead to a singular solution in similar fashion as it happens for the Laplace equation

if we give the value of the function and the normal derivative. Let us assume for the

moment that we know those functions and want to find the shape of the curve where the

corresponding surface ends.

3.2 Shape of the Wilson loop

Having computed the expansion for α, the expansion for J and J̄ immediately follows.

Having J , J̄ we have to solve the linear problem

d(ψ1, ψ2) = (ψ1, ψ2)j . (3.8)

Given two linearly independent solutions (ψ1, ψ2) and (ψ̃1, ψ̃2) we construct

A =

(
ψ1 ψ2

ψ̃1 ψ̃2

)
, (3.9)

and then

X = AA† . (3.10)

The shape of the boundary is given by1

X̄ =
X12

X22
=
ψ1ψ̃

∗
1 + ψ2ψ̃

∗
2

ψ̃1ψ̃∗1 + ψ̃2ψ̃∗2
=
ψ1

ψ̃1

1 +
ψ2ψ̃∗2
ψ1ψ̃1

∗

1 +
ψ̃2ψ̃∗2
ψ̃1ψ̃∗1

 , (3.11)

1Some formulas are more conveniently written in terms of X̄ instead of X but it is completely equivalent

since they are just conjugate of each other.
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and the functions should be evaluated at the boundary of the disk. Using the expansion

obtained for α it follows that, at leading order

∂ξψ1 ' −
λ

2ξ
eiθψ2 , (3.12)

∂ξψ2 ' −
1

2λ
e−iθψ1 . (3.13)

Defining

H =
ψ1

ψ2
, (3.14)

it follows that

∂ξH ' −
λ

2ξ
eiθ +

1

2λξ
e−iθH2 , (3.15)

the only possible solution is that

H(ξ → 0) = ±λeiθ . (3.16)

Replacing in the value for X, namely eq. (3.11) we find the contour of the Wilson loop as

X̄ =
ψ1

ψ̃1

, X =
ψ∗1
ψ̃∗1

. (3.17)

Since ψ1, ψ̃1 solve a linear problem with a current holomorphic in λ, we find the very

important property that the boundary contour X̄(θ, λ) is a holomorphic function of λ (and

X(θ, λ̄) is anti-holomorphic). More precisely, X̄(θ, λ = 1) gives the shape of the Wilson

loop and the solution of the linear problem extends that to a holomorphic, one parameter

family of contours X̄(θ, λ). As mentioned before, when |λ| = 1, those contours define

minimal area surfaces with the same area as the original one. Finally, notice also that we

can take two different solutions of the linear problem and get the contour

X̃ =
Aψ∗1 +Bψ̃∗1
Cψ∗1 +Dψ̃∗1

=
AX +B

CX +D
, A,B,C,D ∈ C, AB − CD = 1 , (3.18)

namely a global conformal transformation of the first one. Since the theory is conformal

both are equivalent. Therefore, if we know the solutions to the linear problem near the

boundary we can reconstruct the shape of the Wilson loop. As we discuss next, to find

it, it is not necessary to solve the linear problem inside the disk, we only need to solve a

differential equation along the boundary. So, given the boundary curve X(θ) in the correct

parameterization, we can determine f(r = 1, θ) and β2(θ) thus completely determining

f(z) and α(r, θ).

3.3 Solution of the linear problem along the boundary

At fixed radius on the disk we can solve the linear problem

(∂θψ1, ∂θψ2) = (ψ1, ψ2) Jθ , (3.19)

– 8 –
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with

Jθ =

(
Jθ11 J

θ
12

Jθ21 J
θ
22

)
= i

(
−1

2r∂rα zfe−α − 1
λ z̄e

α

zλeα + z̄f̄ e−α 1
2r∂rα

)
. (3.20)

Simple algebra leads to an equation just for ψ1:

∂2
θψ1 − ∂θψ1(TrJθ + ∂θ ln Jθ21) + ψ1

(
det Jθ + Jθ11∂θ ln

Jθ21

Jθ11

)
= 0 . (3.21)

Taking into account that TrJ = 0 and defining

χ(θ) =
1√
Jθ21

ψ1 , (3.22)

we get

− ∂2
θχ+ V (θ, r)χ = 0 , (3.23)

with

V (θ, r) = −1

2
∂2
θ ln Jθ21 +

1

4
(∂θ ln Jθ21)2 − det Jθ − Jθ11∂θ ln

Jθ21

Jθ11

. (3.24)

Although this is valid for any value of r we want to study what happens as r → 1. In that

limit the potential is finite and equal to

V (θ, r = 1) = V (θ) = −1

4
+ 6β2(θ)− f(θ)λe2iθ +

1

λ
e−2iθf̄(θ) . (3.25)

Also, near the boundary,

Jθ21 = i

√
1− ξ
ξ

λ eiθ +O(ξ) , (3.26)

and therefore in eq. (3.22), the factor 1√
J21

makes χ(θ) antiperiodic instead of periodic as

ψ1(θ). Given two linearly independent solutions of this equation χ1 and χ̃1 the shape of

the Wilson loop is given by

X̄ =
χ1

χ̃1
. (3.27)

Now we can use a well-known property of the Schwarzian derivative (that follows by simple

computation) to obtain

{X̄, θ} =

{
χ1

χ̃1
, θ

}
= −2V (θ) . (3.28)

Namely, the Schwarzian derivative of the shape of the contour is given by

{X̄λ, θ} =
1

2
− 12β2(θ) + 2f(θ)λe2iθ − 2

λ
e−2iθf̄(θ) . (3.29)

If we take λ = 1 as defining the Wilson loop of interest then we have the very simple

relation

Re{X̄, θ} =
1

2
− 12β2(θ) , (3.30)

Im{X̄, θ} = 4Im
[
f(θ)e2iθ

]
. (3.31)
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Summarizing, given the boundary contour X(θ) we can compute the Schwarzian derivative

and from there we get the necessary boundary data

β2(θ) =
1

24
− 1

12
Re{X̄, θ} , (3.32)

Im
[
f(θ)e2iθ

]
=

1

4
Im{X̄, θ} . (3.33)

Since z2f(z) is holomorphic we can reconstruct z2f(z) in the interior of the disk from the

imaginary part at the boundary using the formula

Re(z2f(z))
∣∣
z=eiθ0

=
1

2π

 
Im(z2f(z)) cotan

(
θ − θ0

2

)
. (3.34)

This means that, if we are given {X̄, θ} for λ = 1 we can reconstruct it for any value of

λ as

{X̄λ, θ} = {X̄, θ}+
i

2

(
λ+

1

λ
− 2

)
Im{X̄, θ} (3.35)

+
1

4π

(
λ− 1

λ

) 
Im({X̄, θ′}) cotan

(
θ − θ′

2

)
dθ′ . (3.36)

Now we can write {X̄λ(θ), θ} and the linear problem along the boundary direction θ be-

comes

− ∂2
θχ(θ)− 1

2
{X̄λ(θ), θ}χ = 0 , (3.37)

which should have anti-periodic solutions for any value of λ. Now we show that given this

data it is possible to compute the area of the surface.

3.4 Expansion for the spectral parameter λ → 0

It is useful to compute the behavior of the solution for λ→ 0. In this region it is convenient

to introduce a new spectral parameter y such that

λ = −y
2

4
. (3.38)

The equations for ψ1, ψ2 are

∂ψ1 = −1

2
∂αψ1 −

y2

4
eαψ2 (3.39)

∂ψ2 = fe−αψ1 +
1

2
∂αψ2 (3.40)

∂̄ψ1 =
1

2
∂̄αψ1 − e−αf̄ψ2 (3.41)

∂̄ψ2 = − 4

y2
eαψ1 −

1

2
∂̄αψ2 . (3.42)

Defining

F = eα
ψ1

ψ2
, (3.43)
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it is easy to find that

∂F = −y
2

4
e2α − fe−2αF 2 (3.44)

∂̄F = 2∂̄αF − f̄ +
4

y2
F 2 . (3.45)

Now the expansion

F = ±y
2

√
f̄ + y2

(
1

16
∂̄ ln f̄ − 1

4
∂̄α

)
+O(y3) , (3.46)

follows. From here the corresponding expansion for ψ1,2 is

lnψ1 = −1

2
α∓ 2

y

ˆ z̄√
f̄dz̄ +

1

4
+ yζ11 +O(y2) (3.47)

lnψ2 =
1

2
α∓ 2

y

ˆ z̄√
f̄dz̄ − 1

4
ln f̄ + yζ21 +O(y2) . (3.48)

The coefficients ζ11 and ζ21 obey

∂(

√
f̄ ζ11) = ∓1

2
e2α (3.49)

∂(

√
f̄ ζ21) = ±1

2
ff̄e−2α . (3.50)

The main significance of these equations is that the corresponding right-hand sides are

total derivatives, a fact that will be important when computing the area. For that purpose

it is only necessary to know the coefficient ζ21 at the boundary. To obtain it, we need to

solve the linear problem at the boundary for the function ψ2. In analogy with eq. (3.22),

we start by rewriting the functions ψ2 as

ψ2 =
√
J12χ , (3.51)

where J12 behaves, near the boundary as

J12 = − i
λ

√
1− ξ
ξ

e−iθ +O(ξ) , (3.52)

and χ obeys the equation

∂2
θχ = V χ =

1

y2
V−1 + V0 + y2V1 , (3.53)

with

V−1 = −4f̄ e−2iθ, V1 =
1

4
fe2iθ, V0 = −1

4
+ 6β2(θ) , (3.54)

similar to eq. (3.25). Writing

χ = eS , S =
∞∑

n=−1

ynSn , (3.55)

– 11 –



J
H
E
P
1
1
(
2
0
1
4
)
0
6
5

and using α = − ln ξ +O(ξ2) we find that

lnψ2 =
1

2
α− 1

2
iθ +

1

y
S−1 + S0 + yS1 + . . . (3.56)

Comparing with the previous result we should have

S−1 = ∓2

ˆ z̄√
f̄dz̄, S0 −

1

2
iθ = −1

4
ln f̄ , S1 = ζ21 . (3.57)

The coefficients Sn can be found independently by solving the differential equation. The

first coefficient S−1 turns out to be equal to

S−1 = ±
ˆ θ

0

√
V−1(θ′)dθ′ = ±2i

ˆ θ

0
e−iθ

′
√
f̄dθ′ = ∓2

ˆ z̄√
f̄dz̄ , (3.58)

up to an arbitrary integration constant. The next two coefficients are then determined

from

S0 = −1

4
lnV−1 =

1

2
iθ − 1

4
ln f̄ + C0 (3.59)

S′1 = ± 1√
V−1

[
V0 +

1

4
∂2
θV−1 −

1

16
(∂θV−1)2

]
, (3.60)

where C0 is an irrelevant constant. The values S0 and S−1 agree with the expectations and

the value of S1 determines the coefficient ζ21 = S1. The rest can be found recursively

S′n+1 =
1

2S′−1

−S′′n − n∑
p=0

S′pS
′
n−p

 , (3.61)

but they are not going to be needed in this paper. It is interesting to note that the

periodicity condition ˆ 2π

0
S′n+1 = 0 , (3.62)

is non-trivial in terms of the right hand side of eq. (3.61). These conditions are equivalent

to the vanishing of the holonomy and will be written later in a different way.

3.5 Computation of the area

The area is defined, in principle, as

A∞ = 4

ˆ
D
e2αdσdτ . (3.63)

This quantity however is infinite. Introducing a regulator ε→ 0 it is shown in the appendix

that the area can be written as

A∞ =
L

ε
− 2π − 4

ˆ
D
ff̄e−2αdσdτ , (3.64)
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where L is the length of the boundary curve. Therefore the finite part of the area, and the

one that is interesting for physical applications, is defined as

Af = −2π − 4

ˆ
D
ff̄e−2αdσdτ . (3.65)

As a comment, this result implies that [61]

Af ≤ −2π . (3.66)

The equality is valid for the half-sphere whose boundary is a circle. Using eq. (3.50) we find

Af = −2π ∓ 8

ˆ
D
∂

(√
f̄ ζ21

)
dσdτ . (3.67)

Choosing coordinates

z = σ + iτ = reiθ , (3.68)

it follows that

Af = −2π ∓ 4i

˛
dz̄

√
f̄ ζ21 , (3.69)

where the integral is over the unit circle in the z plane. From the previous section we can

use that

S′−1 = ±2ie−iθ
√
f̄ , S1 = ζ21 , (3.70)

to write

Af = −2π ± 2i

˛
S′−1S1dθ = −2π ∓ 2i

˛
S−1S

′
1dθ , (3.71)

where we integrated by parts and use periodicity in θ to eliminate a boundary term. Using

some algebra we obtain

Af = −2π ∓ i
˛
S−1

S′−1

(
V0 +

1

2
{S−1, θ}

)
dθ (3.72)

= −2π ± i

2

˛
S−1

S′−1

(
Re{X̄, θ} − {S−1, θ}

)
dθ , (3.73)

where we used eqs. (3.54), (3.30), namely that V0 = −1
2Re{X̄, θ}. This formula shows that

if we indeed know the function X(θ), we can compute f(θ) from eqs. (3.36), (3.29) and

thus the area. As we have already mentioned a few times the function X(θ) is related ot

the curve X(s) by an unknown reparameterization s(θ). It is therefore useful to rewrite

the formulas in terms of X(θ(s)). Since for any function F (θ(s)):

{F, θ} = {s, θ}+ (∂θs)
2{F, s} , (3.74)

we obtain

Af = −2π ± i

2

˛
Re{X, s} − {w, s}

∂s lnw
ds , (3.75)

where we defined the complex variable

w =

ˆ z√
fdz , (3.76)
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such that S−1 = ±2w̄. The sign in the equation should be chosen such that the condi-

tion (3.66) is satisfied, i.e. Af ≤ −2π. In this form the expression for the area is manifestly

reparameterization invariant (using eq. (3.74) to change parameterization s → s′). If we

consider w(s) as a given (complex) function we can define X(w) with the understand-

ing that derivatives are taken as ∂wX(w) = ∂sX
∂sw

. With such definition and using that

Re{X, s} = 1
2({X, s} + {X̄, s}) and eq. (3.74) we find the following interesting expression

for the area

Af = −2π ± i

4

˛ [
{X,w}+ {X̄, w}

]
w dw , (3.77)

indicating that, if we were to extend X(w) to the interior of the contour w(s), the area is

related ot the double poles of {X(w), w}.
Summarizing, since X(s) is given, the problem of computing the area reduces to finding

the complex contour w(s). This is highly non-trivial and is the equivalent of finding the

normal derivative given the value of the function in the Laplace problem. In that case the

known solution is to use a dispersion relation such as eq. (3.34). Equivalently one can use

the vanishing of an infinite set of conserved quantities as described in the appendix. In the

present case we can rewrite the problem in an interesting way, as done in the next section,

but at present we cannot give a general solution.

4 The condition of vanishing charges

In the previous section we found that the area is completely determined if we have the

contour X(s) and the function w(s). If we were given the function X(θ) in the conformal

parameterization, then we could compute w(s) by integrating
√
f(z) which is determined

by the imaginary part of the Schwarzian derivative {X̄, θ}. However, the function θ(s) that

would determine X(θ) from X(s) is unknown. Given X(s) and eq. (3.36) we can write

instead

{X̄λ, s} = {X̄, s}+
i

2

(
λ+

1

λ
− 2

)
Im{X̄, s} −

(
λ− 1

λ

)
V2(s) , (4.1)

where we used the following property of the Schwarzian derivative

Re{X̄, s} = {θ, s}+ (∂sθ)
2Re{X̄, θ}, Im{X̄, s} = (∂sθ)

2Im{X̄, θ} , (4.2)

and introduced the unknown function V2(s). From eqs. (4.2) and (3.29) we identify

V2(s) + iV1(s) = −2f(θ)e2iθ(∂sθ)
2, V1(s) = −1

2
Im{X̄, s} , (4.3)

and then2

w(s) =

ˆ s√
V2(s) + iV1(s) ds . (4.4)

Namely, the function V2(s) completely determines w(s) and thus the area. It also gives the

Schwarzian derivative as

{X̄λ(s), s} = Re{X̄, s} − λ(∂sw)2 +
1

λ
(∂sw̄)2 . (4.5)

2The square root should be defined such that w(s) is continuous (and periodic).
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To determine V2(s) we change variables θ → s in eq. (3.37) obtaining

− ∂2
sφ+ V φ = 0, V (s) = −1

2
{X̄λ, s} , (4.6)

where we replaced χ(θ) =
√
∂sθ φ(s). For λ = 1 the equation has two anti-periodic solutions

φa(s) =
1√

∂sX̄(s)
, φb =

X̄(s)√
∂sX̄(s)

. (4.7)

Notice that X̄(s) = φb(s)/φa(s). For general values of λ the solutions of such differen-

tial equation might not be anti-periodic. In particular take two solutions satisfying the

boundary conditions

φ1(0) = 1, ∂sφ1(0) = 0, φ2(s) = 0, ∂sφ2(0) = 1 . (4.8)

Since the potential V (s) is periodic with periodicity 2π, a shift in s by 2π defines two new

solutions [62]

φ̃1(s) = φ1(s+ 2π) = A(λ)φ1(s) +B(λ)φ2(s), (4.9)

φ̃2(s) = φ2(s+ 2π) = C(λ)φ1(s) +D(λ)φ2(s) . (4.10)

This defines the monodromy matrix as

Ω =

(
A(λ) B(λ)

C(λ) D(λ)

)
. (4.11)

Since the Wronksian W = φ1φ
′
2 − φ2φ

′
1 = 1 = AD − BC we have Ω ∈ SL(2C). The

quasi-momentum p(λ) is defined from the trace of the monodromy matrix as

Tr Ω = A(λ) +D(λ) = 2 cos(p(λ)) , (4.12)

and determines a set of conserved quantities. However, the monodromy matrix should be

trivial. We know that the linear problem can be solved in the disk which has no non-trivial

loops and therefore the solutions ψ1,2 are periodic. Thus, the corresponding solutions χ are

anti-periodic for any value of λ and p(λ) = π. Thus, the problem of finding V2(s) reduces

to the following problem:

Problem: consider the equation

−∂2
sφ+V (λ, s)φ(s) = 0, V (λ, s) = V0(s)+

i

2

(
λ+

1

λ

)
V1(s)+

1

2

(
λ− 1

λ

)
V2(s) , (4.13)

where V0(s) : R → R and V1(s) : R → R are known periodic functions of s with period

2π, determine the periodic function V2(s) : R → R such that, for any value of λ, all

solutions φ(s) of the equation are antiperiodic in s, i.e. φ(s + 2π) = −φ(s). In our case

V0(s) + iV1(s) = −1
2{X̄, s} and the resulting V2(s) can be used in eqs. (4.4) and (3.75)
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to find the area. If one so prefers, defining the function ψ = e
1
2
isφ we can say that all

solutions of the equation

− ∂2
sψ + i∂sψ +

[
V (λ, s) +

1

4

]
ψ = 0 , (4.14)

are periodic in s = [0, 2π], for any value of λ.

In any case, this problem is equivalent to the following one: given a curve X̄(s) in the

complex plane (or Riemann sphere), determine a one complex parameter family of curves

X̄λ(s) such that X̄λ=1(s) = X̄(s) and such that the Schwarzian derivative {X̄λ(s), s} is a

meromorphic function of λ with only a simple pole at λ = 0 and a simple pole at infinity.

That is

{X̄λ(s), s} = −2

[
V0(s) +

i

2

(
λ+

1

λ

)
V1(s) +

1

2

(
λ− 1

λ

)
V2(s)

]
, (4.15)

for some functions V0,1,2(s). Since X̄λ(s) = 1 is known, the functions V0,1 are known, only

V2(s) follows from solving this problem.

The two problems are equivalent. Given a function V2(s) in the first problem, one

can find two linearly independent solutions φ1(s) and φ̃1(s) that should be anti-periodic

according to the statement of the problem. Taking

X̄λ(s) =
φ1(s)

φ̃1(s)
, (4.16)

solves the second problem. Vice-versa, given a family X̄λ(s) that solves the second problem,

V2 follows. That all solutions of the linear problem are anti-periodic follows by simply

exhibiting the following basis of solutions:

φa(s) =
1√

∂sX̄λ(s)
, φb(s) =

X̄λ(s)√
∂sX̄λ(s)

. (4.17)

If any of these two equivalent problems is solved, then the area of the minimal surface

can be found. Unfortunately we were not able to find a generic analytical or numerical

procedure to solve this problem. In the following we are going to give the solution of the

case of small perturbations around the known circular Wilson loop and also a solution in

terms of theta functions.

4.1 The R-function

Most of the paper is based on the Schwarzian derivative, a conformal invariant. In this

subsection we just mention the possibility of defining another invariant. Given two linearly

independent solutions of the boundary problem φ1(s) and φ2(s) normalized such that the

Wronskian W = φ1(s)φ′2(s)− φ′1(s)φ2(s) = 1 we define

Rλ(s, s′) = φ1(s)φ2(s′)− φ1(s′)φ2(s) . (4.18)

The main property of R(s, s′) is that it does not depend on which two solutions we choose.

Namely if we consider two other (equally normalized) solutions:

φ̃1 = aφ1 + bφ2, φ̃2 = cφ1 + dφ2, ab− cd = 1 , (4.19)
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then the R-function defined with φ̃1,2 is the same in view of the condition ab − cd = 1.

Such condition is required for the Wronskian to be one. The function R(s, s′) is related to

the local cross ratios [29] defined as

Y (s, s′) =
∂sX̄(s)∂s′X̄(s′)

(X̄(s)− X̄(s′))2
=

1

R2(s, s′)
, (4.20)

as can be seen by using X̄(s) = φ1(s)/φ2(s) and the condition that the Wronskian is one.

Other interesting properties are

Rλ(s, s) = 0, ∂sR
λ(s, s′)

∣∣∣
s′=s

= −1, R(s+ 2π, s′) = −R(s, s′) = R(s, s′ + 2π) , (4.21)

and the equation

(∂2
s − ∂2

s′)R
λ(s, s′) = (V (s)− V (s′))Rλ(s, s′) , (4.22)

where the potential V (s) is the one in eq. (4.6). Equations of this type are studied for

example in [66] and could provide a good way to approach the problem but we leave a

more detailed study of the function R(s, s′) for future work.

5 Near circular Wilson loops

The near circular solution was originally studied by Semenoff and Young [63], those results

were extended to all loops in [64] by using a previous result from Drukker [65]. The

integrable properties of those solutions were recently discussed in [58]. Here we consider

the near circular solutions as an illustration of the discussions in this paper. First we

describe the solution in the usual approach of perturbing the equations of motion and then

we show that the same results can be obtained, perhaps even more straight-forwardly using

the methods of this paper. One caveat is that in our approach, the limit λ→ 0 is relevant

but it does not commute with the small perturbation limit. For that reason we need to

redo the computation of the area. Before going into the derivation let us summarize the

results. The circular Wilson loop is a map from the unit disk parameterized by z = reiθ,

r ≤ 1 into Poincare AdS such that the boundary r = 1 maps to the circle X = eiθ. If we

parameterize the fluctuations as

X = eiθ−ξ(θ) , (5.1)

what we find in this paper is that we have to analytically continue the function ξ(θ) to a

function g(z) such that

ξ(θ) = 2Re[g(z = eiθ)] . (5.2)

Having done that, the function f(z) in the definition of the flat current, namely eq. (2.17)

is given by

f(z) = −1

2
(z∂3g + 3∂2g) , (5.3)

and the area is given by

Af = −2π + i

˛
dθ g(θ)

(
∂3
θ ḡ(θ) + ∂θḡ(θ)

)
, (5.4)

where ḡ(θ) is the complex conjugate of g(θ). Let us see now how this is derived, first in

the standard approach of perturbing the equations of motion and then with the method

we are discussing, namely using the Schwarzian derivative of the contour.
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5.1 Perturbing the equations of motion

In the notation of this paper, the circular solution is given by

A0 =
1√

1− zz̄

(
1 z̄

z 1

)
, X0 = A0A†0 =

1

1− zz̄

(
1 + zz̄ 2z̄

2z 1 + zz̄

)
, (5.5)

or equivalently, using z = reiθ:

Z =
1− r2

1 + r2
, X =

2r

1 + r2
eiθ, X̄ =

2r

1 + r2
e−iθ , (5.6)

or, in embedding coordinates,

X1 + iX2 =
2r

1− r2
eiθ, X0 =

1 + r2

1− r2
X3 = 0 , (5.7)

The flat current is

J =
1

1− zz̄

(
−1

2 z̄ 0

λ 1
2 z̄

)
, J̄ =

1

1− zz̄

(
1
2z

1
λ

0 −1
2z

)
, (5.8)

so that

eα =
1

1− zz̄
, f(z) = 0 . (5.9)

If the function f(z) vanishes, we obtain the circular solution, therefore we need to consider

a first order fluctuation such that f(z) 6= 0. By looking at eq. (3.3) we see that the variation

of α is second order and therefore it can be ignored. Thus, the variation of the flat current

is simply

δJ = (1− zz̄)f(z)σ+, δJ̄ = −(1− zz̄)f̄σ− . (5.10)

Notice that

Tr(δJ δJ̄) = (1− zz̄)2ff̄ = −e−2αff̄ , (5.11)

implying, from eq. (3.65) that

Af = −2π + 4

ˆ
Tr(δJ δJ̄)dσdτ . (5.12)

A fluctuation in A can be parameterized as

A = eHA0 ' A0 +HA0 , (5.13)

for a traceless matrix H that should obey

∂H = A0δJA−1
0 , ∂̄H = A0δJ̄A−1

0 , (5.14)

namely

∂H = f(z)

(
−λz 1

−λ2z2 λz

)
, ∂̄H = −f̄

(
− 1
λ z̄ −

1
λ2
z̄2

1 − 1
λ z̄

)
. (5.15)
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The solution follows by simple integration and is more conveniently written in terms of a

holomorphic function

g(z) = −z
ˆ z

f(z′)dz′ + 2

ˆ z

z′f(z′)dz′ − 1

z

ˆ z

z′2f(z′)dz′ , (5.16)

so that

f(z) = −1

2
(z∂3g + 3∂2g) . (5.17)

Here it might not be clear why we define g(z) this way but in the next subsection it appears

quite naturally. Now we have

H = H(z, λ)−
(
H

(
z,− 1

λ̄

))†
, (5.18)

with

H(z, λ) =
λ

2
(z2∂2g + z∂g − g)σz −

(
∂g +

1

2
z∂2g

)
σ+ +

1

2
λ2z3∂2gσ− . (5.19)

Given H we can reconstruct the matrix A and from there the shape of the boundary

contour as

X̄ =
A11

A21

∣∣∣∣
r=1

' 1

λ
e−iθ

(
1 +H11 −H22 + λzH12 −

1

λz
H21

)∣∣∣∣
r=1

(5.20)

' 1

λ
e−iθ−λg(z)−

1
λ
ḡ(z̄) . (5.21)

Taking λ = 1 as the original contour and matching with eq. (5.1) we find that g(z) is an

analytic function in the disk whose boundary value is determined by the fluctuation ξ(θ) as

ξ(θ) = 2Re[g(z = eiθ)] . (5.22)

This completely fixes the function g(z).

The Area can be computed from eq. (5.12) by noticing from eqs. (5.14) and (5.18) that

Tr(δJ δJ̄) = Tr(∂H∂̄H) = −∂

{
Tr

[
H(z, λ)∂̄

(
H

(
z,− 1

λ̄

))†]}
. (5.23)

Integrating by parts and using the value for H from eq. (5.19) we find

Af = −2π − 2i

˛
dθTr

(
H(z, λ)∂θ

(
H

(
z,− 1

λ̄

))†)
(5.24)

= −2π + i

˛
dθ g(θ)

(
∂3
θ ḡ(θ) + ∂θḡ(θ)

)
. (5.25)

The surface itself can be obtained by replacing H in eq. (5.13) and then using X = AA†.
In this way it follows that, in Poincare coordinates, the perturbative solution is

δZ =
1− zz̄
1 + zz̄

[
g(z) + ḡ(z̄) +

1− zz̄
1 + zz̄

(z∂g(z) + z̄∂̄ḡ(z̄)

]
(5.26)

δX =
2z

1 + zz̄

[
g(z) + ḡ(z̄) +

1− zz̄
1 + zz̄

(z∂g(z) + z̄∂̄ḡ(z̄))

]
. (5.27)
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5.2 Derivation using the Schwarzian derivative

The method described in this paper is particularly simple for this case because the fluctua-

tions do not affect α meaning that the world-sheet metric remains conformal and therefore

the parameterization X(θ) = eiθ−ξ(θ) is already conformal!, i.e. we do not need to find the

reparameterization s(θ). The Schwarzian derivative of the contour X̄ = e−iθ−ξ(θ) is, at first

order in ξ:

{X̄, θ} =
1

2
− i(∂3

θξ + ∂θξ) , (5.28)

and thus

Re {X̄, θ} =
1

2
⇒ β2(θ) = 0 (5.29)

Im {X̄, θ} = −(∂3
θξ + ∂θξ) = −2i(f(θ)e2iθ − f̄(θ)e−2iθ) , (5.30)

where we used eq. (3.29) with λ = 1 or, equivalently, eqs. (3.30), (3.31). Since ξ(θ) is

periodic we can write it as

ξ(θ) = ξ0 +
∑
n≥1

(
ξne

inθ + ξ̄ne
−inθ

)
. (5.31)

On the other hand f(z) is analytic in the unit circle and then

f(z) =
∑
n≥0

fnz
n ⇒ f(θ) =

∑
n≥0

fne
inθ . (5.32)

It follows that

fn−2 =
1

2
n(1− n2)ξn . (5.33)

Equivalently, if we define the analytic function

g(z) =
1

2
ξ0 +

∑
n≥1

ξnz
n , (5.34)

and use the relation (5.33), we obtain

f(z) = −1

2
(z∂3g + 2∂2g) , (5.35)

that justifies this somewhat curious expression we introduced in eq. (5.3). This completes

the calculation of the analytic function f(z), the only data we needed to compute the area:

Af = −2π − 4

ˆ
D
ff̄ e−2αdσdτ = −2π − 4

ˆ
D
ff̄ (1− zz̄)2dσdτ , (5.36)

where we used eqs. (3.65) and (5.9). Previously we used the limit λ→ 0 to show that the

integrand is a total derivative. This limit is tricky here since 1
λ → ∞ in the Schwarzian

derivative (3.29) violating the condition of small perturbation. However the integrand can

be shown to be a total derivative by simple inspection:

∂F = ff̄ (1− zz̄)2 = −1

2
f̄(z∂3g + 2∂2g) (1− zz̄)2 (5.37)

F = −f̄
[

1

2
z(1− zz̄)2∂2g + (1− zz̄)∂g + z̄g

]
. (5.38)
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In this way the area simplifies to

Af = −2π − 2

˛
dθ e−iθF (r = 1, θ) . (5.39)

But

F (r = 1, θ) = −e−iθ f̄(θ)g(θ) . (5.40)

From eq. (5.35) and expanding the derivatives it follows that

Af = −2π +

˛
dθ e−2iθ f̄(θ)g(θ) (5.41)

= −2π −
˛
dθe−2iθg(θ)

[
z̄∂̄3ḡ + 3∂̄2ḡ

]∣∣
r=1

(5.42)

= −2π + i

˛
dθg(θ)

(
∂θḡ + ∂3

θ ḡ(θ)
)
, (5.43)

namely the same expression derived in eq. (5.25). To complete this subsection let us

mention that the boundary linear problem is

− ∂2
θχ+ V χ = 0 , (5.44)

where

V = −1

2
{X̄λ, θ} = −1

4
+
iλ

2
(∂3
θg + ∂θg) +

i

2λ
(∂3
θ ḡ + ∂θḡ) , (5.45)

with two anti-periodic solutions

χ1 = e−
1
2
iθ

[
1 +

1

2
λ(g − i∂θg) +

1

2λ
(ḡ − i∂θḡ)

]
(5.46)

χ2 = e
1
2
iθ

[
1− 1

2
λ(g + i∂θg)− 1

2λ
(ḡ + i∂θḡ)

]
, (5.47)

at first order in the perturbation. It should be noted that these expressions are not valid

in the limits λ→ 0,∞ since the corrections would not be small.

6 Solution in terms of theta functions

In [28, 29] an infinite parameter family of minimal area surfaces was obtained analytically in

terms of theta functions. Those solutions provide an infinite parameter family of solutions

to the problem described in section 4. We are going to write here those solutions. Making

this section self-contained would make it too long and take it out of the scope of this

paper. For that reason we refer the reader to [29] for definitions, notation and the identities

necessary to prove that these are indeed solutions of the problem in section 4. General

references on theta functions are, for example, [67–70] and their application to integrable

systems can be found e.g. in [31].

In our case, first we introduce two theta functions θ, θ̂ associated with a hyperelliptic

Riemann surface and such that they differ by an odd half-period. Then a vector ζ(s) ∈ Cg
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is defined as ζ(s) = 2ω3z(s) + 2ω1z̄(s) where ω1,3 are constant vectors and z(s) is a closed

curve in the complex plane such that θ̂(ζ(s)) = 0 for any s. The potential is then given by

V (s) = −1

2
{z, s}+ λ(∂sz)

2 − 1

λ
(∂sz̄)

2 (6.1)

−4(∂sz)
2

[
2D3 ln θ(ζ(s))− D3

3
ˆθ(0)

D3θ̂(0)
+
D2

3θ(0)

θ(0)

]
, (6.2)

where D3 indicate derivative in the direction of the vector ω3. For any value of λ there are

two anti-periodic solutions to

− ∂2
sφ(s) + V (s)φ(s) = 0 , (6.3)

given by

φa =
1√
∂sz

θ̂(ζ(s)−
´ 4

1 )

θ(ζ(s))
e−µz−νz̄ (6.4)

φb =
1√
∂sz

θ̂(ζ(s) +
´ 4

1 )

θ(ζ(s))
eµz+νz̄ , (6.5)

where 4 denotes a point in the hyperelliptic Riemann surface whose projection on the

complex plane is λ. The constants µ, ν are given by

µ = −2D3 ln θ

(ˆ 4

1

)
, ν = −2D1 ln θ̂

(ˆ 4

1

)
. (6.6)

It is clear then that the two solutions correspond to choosing p4 as each of the two points on

the Riemann surface that project to the save value of λ. We found these solution by using

the already known results of [29]. It should be interesting to use the techniques of [31] to

directly solve the problem.

7 Conclusions

In this paper we have studied the problem of finding the area of the minimal surface

bounded by a given contour in the boundary of three dimensional hyperbolic space. We

were able to give a formula for the area that depended on finding the correct parameteri-

zation for the contour, in close analogy to the case in flat space. To determine the correct

parametrization we recast the problem as the one of finding a potential V2(s) that satisfies

a curious property equivalent to the vanishing of the monodromy, or equivalently of the

conserved charges. In the case of flat space the correct parameterization can in principle be

found by minimizing a certain functional. In our case, the problem of finding V2(s) seems

more challenging. In fact, we do not know of a general analytic or numerical procedure

to solve it. It seems that the problem can be treated at least numerically but we leave

that for future work. It would be interesting to relate this problem to the TBA equations

appearing in an alternative approach based on taking the limit of light-like Wilson loops

and developed in [73].
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More broadly, and speaking generally, the method we discussed can be thought as

converting a boundary problem into an initial value problem for which integrability methods

are more suited. In analogy with the Laplace equation, the vanishing of the conserved

charges is the integrability equivalent of the holomorphicity condition that relates the

boundary value of the function with the value of the normal derivative. In string theory

language, it determines the semi-classical state of the string. It is reasonable to speculate

that the same idea might be extended to the quantum case and used to determine a

boundary state for the string.
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A The Plateau problem in flat space

The Plateau problem is to prove the existence of a minimal surface bounded by a given

contour in Rn. It was solved in the 1930s by Jesse Douglas [71] by writing a certain

functional over the possible reparameterizations of the contour and showing that it always

has a minimum and that such minimum defines the minimal surface. We are not concerned

here with the details of the proof but instead with the techniques he used because they

have some parallel with what we tried to do in this paper. In fact the usefulness of that

construction for the AdS case was already pointed out in [72].

Using the same notation than in the main part of the paper, the surface is given by a

map of the unit disk |z| ≤ 1 with z = σ+ iτ = reiθ into Rn through functions Xi=1...n(z, z̄).

If the parameterization is conformal, the area is given by

A =
1

2

ˆ [
(∂σXi)

2 + (∂τXi)
2
]
dσdτ . (A.1)

The equations of motion are

∂∂̄Xi = 0 , (A.2)

solved by

Xi =
1

2
[gi(z) + ḡi(z̄)] , (A.3)

where gi(z) are holomorphic functions that can be determined from the boundary value

Re g(eiθ) = xi(θ). At the boundary we are going to write

gi(e
iθ) = xi(θ) + iξi(θ) , (A.4)

where ξi(θ) is the imaginary part that can be determined by the dispersion relation:

ξi(θ0) = − 1

2π

 
xi(θ)cotan

(
θ − θ0

2

)
dθ . (A.5)
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Before continuing let us just mention that the dispersion relation is equivalent to the

vanishing of an infinite set of conserved quantities given by

qn =

˛
dz zn∂φ, n ∈ Z≥0 . (A.6)

The reason we call the qn conserved quantities is that they are given by the holonomy

of the conserved currents jn = z2∂φ, namely the jn satisfy ∂̄jn = 0. Going back to the

condition qn = 0, it relates xi(θ) and ξi(θ) through

qn =
i

2

˛
dθ einθ(∂θξi − i∂θxi) = 0 , (A.7)

which after expanding xi(θ) and ξ(θ) in Fourier modes:

xi(θ) = xi0 +
1

2

∞∑
n=1

(xine
inθ + x̄ine

−inθ) (A.8)

ξi(θ) = ξi0 +
1

2

∞∑
n=1

(ξine
inθ + ξ̄ine

−inθ) , (A.9)

implies

ξ̄in = ix̄in, ∀n < 0 , (A.10)

namely

ξi(θ) = ξi0 −
i

2

∞∑
n=1

(xine
inθ − x̄ine

−inθ) . (A.11)

Therefore, the condition qn = 0, ∀n ≥ 0 is equivalent to the statement that xi(θ) and ξi(θ)

are the real and imaginary part of the boundary value of the holomorphic function

gi(z) = xi0 + iξi0 +
∑
n≥1

xinz
n , (A.12)

or equivalently to the dispersion relation (A.5). After this brief detour, let us go back to

the main problem.

The equations of motion (A.2) should be supplemented by the conformal constraint

that reads

(∂gi)
2 = 0 . (A.13)

Since (∂gi)
2 is a holomorphic function it is enough to impose that its imaginary part

vanishes at the boundary of the disk to ensure that it vanishes everywhere. Namely, we

only need

∂θxi∂θξi = 0 . (A.14)

Now we can compute the area by simple integration by parts obtaining

A =
1

2

˛
Xi∂rXidθ =

1

2

˛
xi(θ)∂θξi(θ) dθ . (A.15)
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We have

∂θξi(θ0) = − 1

4π

 
xi(θ)− xi(θ0)

sin2
(
θ−θ0

2

) . (A.16)

From here, the area, after symmetrizing the expression, is given by

A =
1

16π

˛ ˛
(xi(θ)− xi(θ0))2

sin2
(
θ−θ0

2

) dθ dθ0 . (A.17)

It seems that the problem of computing the area given the contour xi(θ) is solved but,

of course, the issue is the one that we mentioned before, we are only given xi(s) in some

parameterization and we need to allow for an unknown reparameterization θ(s) so that we

can choose conformal coordinates on the disk. How do we choose θ(s)?. If we take a wrong

θ(s) the functions xi(θ) are still defined and we can always analytically continue them to

compute ξi(θ) and also compute the (wrong) area using eq. (A.17). The mistake will only

appear if we check the conformal constraint, namely

0 = ∂θxi∂θξi = − 1

4π

 
∂θxi(θ) [xi(θ)− xi(θ0)]

sin2
(
θ−θ0

2

) , (A.18)

will not actually vanish for the wrong parameterization. As pointed out by Jesse Douglas,

from all possible reparameterizations θ(s) the one that minimizes the formula (A.17) is the

same one that satisfies the conformal constraint. Indeed, if the parameterization changes

by θ(s) = θ(s) + δθ(s) the variation of xi(θ) is

δxi = ∂θxiδθ . (A.19)

Performing such variation in eq. (A.17) thought as a functional of the parameterization θ(s)

shows that the condition for the variation to vanish is precisely the conformal constraint

written as in eq. (A.18).

Having summarized the flat space case, we just want to take away two simple ideas.

The area is determined by the contour and the normal derivatives of the functions Xi(r, θ)

at the boundary. The latter can be obtained from a dispersion relation if the correct

parameterization θ(s) is known. In this case there is a very beautiful result that the

correct parameterization minimizes a functional whose minimum value can be identified

with the area. In our case the unknown parametrization was rewritten in terms of the

potential V2(s) and determined from the condition that all charges vanish.

B Definition of the renormalized area

In this appendix we derive the formula for the finite part of the area. This derivation can

be found in [28] but we include it here for completeness since computing the area is the

main purpose of this paper. The area is defined naively as

A∞ = 4

ˆ
D
e2αdσdτ , (B.1)
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but, as already mentioned this definition fails since the integral diverges near the boundary.

The divergence is regulated by taking a contour at fixed Z = ε and expanding the area as

Aε = 4

ˆ
Z≥ε

e2αdσdτ =
L

ε
+Af +O(ε) , (B.2)

the divergent term is known to be given by the length of the contour and the finite piece

Af is the one we are after. Using the equation of motion for α we find

Aε =

˛
(∇α.n̂) d`− 4

ˆ
ff̄e−2αdσdτ , (B.3)

where n̂ is a unit vector normal to the contour Z = ε, namely

n̂ = − ∇Z
|∇Z|

. (B.4)

The functions X, X̄ and Z are regular in the disk including the boundary. The equations

of motion imply

∇X∇Z =
1

2
Z∇2X , (B.5)

namely that ∇X and ∇Z are perpendicular at Z = 0 and also ∇X∇Z ∼ ε when Z = ε.

Furthermore, the equation of motion for Z implies

(∇Z)2 − |∇X|2 = Z∇2Z . (B.6)

Finally, near the boundary, Z behaves as

Z = e−α h , (B.7)

where h is a non-vanishing positive function. Using that the length of the contour is

given by

L =

˛
|∇X|d` , (B.8)

it follows that

Aε =
L

ε
+

1

2

˛
∇2e−α

|∇e−α|
d`− 4

ˆ
ff̄e−2αdσdτ , (B.9)

substituting the expansion (see eq. (3.5))

e−α = ξ +O(ξ3) , (B.10)

it follows that

Af = −2π − 4

ˆ
ff̄e−2αdσdτ , (B.11)

as used in the main text.
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C Wavy Wilson line

In [63], a Wilson loop with the shape

X = s+ iζ1(s) , (C.1)

was considered in the limit |ζ̇| � 1 as a perturbation of the straight line X = s. Here

ζ̇ = ∂sζ. The area was found to be given by

δAf = − 1

4π

ˆ ∞
−∞

ds ds′

(
ζ̇1(s)− ζ̇1(s′)

)2

(s− s′)2
. (C.2)

Consider now an analytic function ζ(w = s + iτ) in the upper half plane Im(w) > 0 such

that its real part, on the real axis τ = 0 equals ζ1(s). Let us denote the imaginary part

on the real axis as ζ2(s), namely ζ(s) = ζ1(s) + iζ2(s). By a standard dispersion relation

we have

ζ2(s′) = − 1

π

 
ζ1(s)

s− s′
ds , (C.3)

and further

∂s′

 
ζ̇1(s)

s− s′
ds =

 
ζ̇1(s)− ζ̇1(s′)

(s− s′)2
ds . (C.4)

Integrating by parts and using some algebra we then find

δAf =
1

2

ˆ ∞
−∞

ζ̈1(s)ζ̇1(s) ds . (C.5)

To match with the formula (5.25) in the main text we consider the near circular Wilson loop

X = eiθ+2g1(θ) , (C.6)

and do a conformal transformation to the wave Wilson line by doing

X̃ = −iX + 1

X − 1
= −cotan

θ

2
− i 1

sin2 θ
2

g1(θ) . (C.7)

We identify then

s = −cotan
θ

2
, ζ1(s) = − 1

sin2 θ
2

g1(θ) . (C.8)

Using the same map for the world-sheet, namely

w = −iz + 1

z − 1
, (C.9)

we find that the interior of the unit disk |z| < 1 maps to the upper half plane Im(w) > 0

and therefore we identify the analytic function ζ(w) as

ζ(w) = −(1 + w2)g(z(w)) , (C.10)
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and thus

ζ2(s) = − 1

sin2 θ
2

g2(θ) . (C.11)

Replacing in eq. (C.5) and expanding it follows that

δAf = −2

ˆ 2π

0
dθ g2(g′1 + g′′′1 ) , (C.12)

in agreement with eq. (5.25).
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