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avoid some of the pitfalls that have disrupted other recent ideas. I argue however that the

proposal has the uncomfortable property that states in the CFT Hilbert space do not have

definite physical interpretations, unlike in ordinary quantum mechanics. I also contrast the

“state-dependence” of the proposal with more familiar phenomena, arguing that, unlike

in quantum mechanics, the measurement process (including the apparatus) in something

like the PR proposal or its earlier manifestations cannot be described by unitary evolution.

These issues render the proposal somewhat ambiguous, and it seems new ideas would be

needed to make some version of it work. I close with some brief speculation on to what

extent quantum mechanics should hold for the experience of an infalling observer.
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1 Introduction

The question of whether or not the physics of black holes is described by quantum mechanics

has a long history, going back to the seminal papers of Hawking [1, 2]. The majority of

people working in the field now believe that it is, motivated primarily by the success of

the BFSS matrix model [3] and especially the AdS/CFT correspondence [4–6]. In these

examples one has a fully quantum mechanical description of black hole formation and

evaporation, so the issue of whether it is possible to have a theory that describes black

holes quantum mechanically appeared to be settled. There were always lingering doubts

however about how exactly these quantum mechanical theories could be used to describe

the experience of the infalling observer [7, 8]. In the last few years this lingering uncertainty
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has been crystallized into a relatively sharp set of paradoxes, all of which seem to imply

that a description of the infalling observer requires some sort of extension or modification

of the quantum mechanical theory used to describe the formation and evaporation of the

black hole [9–14].

Recently Papadodimas and Raju have made an interesting proposal for the description

of the black hole interior in AdS/CFT [15, 16]. Their proposal is related to earlier ideas that

are often grouped together under the slogan “A = RB” [17–20], or somewhat more carefully

“ER = EPR” [21, 22],1 but the new proposal is considerably more precise than any of this

previous work. It moreover is able to cleverly avoid some of the objections [12, 14, 25]

raised to A = RB (or to ER = EPR). The main new idea is to focus on a “small algebra”

of potential observables, with respect to which one defines a set of “equilibrium states”

that are expected to have smooth horizons. For each operator in the small algebra one can

then define a “mirror operator”, which for the case of the mirror of an operator related

to a mode just outside the black hole horizon has the interpretation of acting on a mode

just behind the horizon, which has been difficult to get at by other means. The most

controversial part of the proposal, which it inherits from A = RB or ER = EPR, is that

the mirror operators are defined in a “state-dependent” manner, which is not allowed in

ordinary quantum mechanical measurement theory.

In this note I attempt a careful critical analysis of the PR proposal. In section 2 I

will introduce the proposal, clarifying some aspects that were not completely transparent

in the original papers, especially the treatment of 1/N corrections. In section 3 I argue

that in the PR proposal, pure quantum states in the CFT associated with large black holes

do not have definite physical interpretations for the infalling observer, unlike in ordinary

quantum mechanics. In section 4 I discuss new issues that arise in extending the proposal

to more general black holes, namely two-sided AdS wormholes and evaporating Minkowski

black holes. For the AdS wormholes I consider several possible extensions of the one-sided

proposal, identifying one which I consider to be the most appealing. For evaporating black

holes, there is a new problem in that the small algebra does not seem to be sufficient for

describing the realm of possible experiments. In section 5 I study the “state-dependence”

of the proposal in more detail, emphasizing the considerable extent to which it violates

quantum mechanics. I compare this to more conventional physical situations where naively

state dependent operators arise but the measurement theory is nonetheless consistent with

quantum mechanics. Finally I close with some brief remarks on the expected validity of

quantum mechanics for the infalling observer. The later sections can basically be read

in any order.

Before beginning however I will briefly comment on to what extent the theory I describe

here is really the same as that proposed in [15, 16]. The proposal of [15, 16] is only defined

at leading order in 1/N ; my version is defined to all orders in 1/N . My version fully agrees

with their proposal at leading order. I have included the 1/N corrections to emphasize that

they do not remove potentially troubling features of the leading order proposal of [15, 16],

1I here mean some version of these ideas which would prevent firewalls in generic states. Motivated

by complexity-theoretic arguments Susskind has recently been exploring the possibility of a version where

generic states would have firewalls, but black holes formed by short collapses would not [23, 24].
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Figure 1. A one-sided AdS black hole. On the left we have the shell of matter that created the

black hole in orange, the black hole interior in light blue, the horizon as a dashed line, and an

infalling observer in dark blue. On the right is a detail of the region where the observer crosses

the horizon, with an interesting set of modes indicated. The purple modes are easily evolved back

to region I, and the green modes are already there. The red modes would need to be evolved all

the way back through the collapsing shell and reflected off of r = 0 to get them out to region I.

Smoothness of the horizon requires entanglement between the red and green modes.

contrary to what was suggested in those papers. There is a sense however in which my

proposal for the 1/N corrections is deficient; as I explain in section 2.4 it does not really

work for CFT states that are sufficiently narrow in energy. I have not emphasized this in the

paper because I do not believe it is a robust feature of the proposal, and indeed I offer some

speculation in the appendix about how this might be fixed by a completely “one-sided”

reformulation of the proposal. The features that I have emphasized, the non-uniqueness of

the interpretations of states and the non-unitarity of the measurement process, I believe

are robust, and will continue to be present in any version of these ideas. In fact such

a formulation will by definition introduce more ambiguity than my cleaner “two-sided”

formulation, and so will make it easier for these issues to persist.

2 Description of the proposal

Consider a big one-sided AdS black hole, made from some sort of infalling matter at early

times. The Penrose diagram for this system is shown in figure 1. Bulk effective field theory

degrees of freedom in the region outside of the horizon, which I have denoted region I, can

be fairly simply described in terms of microscopic CFT variables using the BDHM/HKLL

map [26–28]. This construction essentially proceeds by solving the bulk operator equations

of motion in from the boundary in the CFT [29]; I review a few more details in the following

subsection.
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Figure 2. The two-sided AdS-Schwarzschild wormhole. The infalling observer again jumps in from

the right, but the red right-moving modes inside can now be understood as having come from the

left side.

To describe the interior, denoted as region II in the figure, is more challenging. One

way to begin is to observe that the interior lies to the future of everything outside, so

roughly we can think of the horizon as a Cauchy surface and then evolve up into region

II using the bulk equations of motion [29–31]. Left-moving modes just inside the horizon,

shown in purple in figure 1, can indeed be simply understood as having “just fallen in”

from region I.2 Right-moving modes behind the horizon however, which are shown in red

in figure 1, are more subtle. If we try to evolve them back, they are more and more blue-

shifted and eventually collide with the infalling matter at high center of mass energy. At

this point the bulk equations of motion are insufficent to proceed further, and we are unable

to reflect through r = 0 and back out to find a simple CFT definition of these modes [12].

This situation can be compared with the two-sided AdS-Schwarzschild wormhole,

shown in figure 2. The main difference for our purposes is that in figure 2 the red modes

can be evolved back to the left boundary without encountering any high-energy collision.

This suggests that a CFT description of region II in the two-sided case should be easier

than for the one-sided case; a construction along the lines of BDHM/HKLL should be

possible [26–28], and indeed some of the details have been worked out in [19]. In order to

proceed similarly for the one-sided black hole the task then seems clear: where are the red

modes in the CFT?

2.1 The basics of reconstruction

I’ll first review a bit more about the BDHM/HKLL construction of local bulk operators in

AdS/CFT [26–28]. Any such construction will at best be perturbative in the gravitational

coupling constant, which I will refer to as 1/N . For small numbers of operators any

backreaction can be treated perturbatively, so by an appropriate gauge fixing [32, 33] we

can treat the bulk theory as a quantum field theory in curved spacetime (the gravitons will

2This decomposition into left- and right-moving modes is made only in the vicinity of the horizon;

because of mass, tranverse momentum, and/or interactions it will not be conserved globally. For brevity

I will sometimes ignore this in the following heuristic discussion; mixing can systematically be included

without affecting the main points here.
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just be another matter field). It will be an effective field theory with nontrivial irrelevant

operators appearing that are suppressed by powers of 1/N ; their coefficients can in principle

be determined by comparison with the CFT. Which background we use depends on the

classical properties of the state under consideration, such as its mass and charge. For

simplicity I will assume that all interactions are suppressed by powers of 1/N , as for example

would be the case in the asymptotically AdS4 × S7 superselection sector of M-theory that

is dual to the ABJM theory [34].

To leading order in 1/N all fields are then free, so in particular for a massive scalar

field we have the Heisenberg picture expression

φ(x) =
∑
n

[
fn(x)an + f∗n(x)a†n

]
, (2.1)

where fn are Klein-Gordon normalizeable solutions of the bulk wave equation in the back-

ground of interest and an and a†n are annihilation and creation operators obeying the usual

algebra. I will always consider the CFT on R × Sd−1, so the index n will be discrete.

Moreover I will always take the modes fn to have definite angular momentum and positive

ADM energy, meaning that they will approach r−∆e−iωtY`m1...md−2
(Ω), with ω ≥ 0, at

large r in coordinates where the metric approaches

ds2 = −
(
r2 + 1

)
dt2 +

dr2

r2 + 1
+ r2dΩ2

d−1 . (2.2)

Here as usual

∆ =
d

2
+

1

2

√
d2 + 4m2 , (2.3)

and I have set the AdS radius to one. In order for (2.1) to make sense as an operator

expression in the CFT we need to give a CFT expression for an. The right choice [26]

turns out to be to take

an ∝ Oω`m1...md−2
, (2.4)

where on the right hand side we have the Fourier transform

Oω`m1...md−2
=

∫
dt

∫
dΩeiωtY ∗`m1...md−2

(Ω)O(t,Ω) , (2.5)

where O is the CFT primary operator dual to φ. For compactness I will simply refer

to these operators as Oω below; it will always be implicit that ω ≥ 0. (2.4) is uniquely

determined by requiring that (2.1) obey its bulk equation of motion and be consistent with

the “extrapolate” dictionary [26, 35]

lim
r→∞

φ(t, r,Ω)r∆ = O(t,Ω). (2.6)

One can check that Oω and O†ω have the right algebra to leading order in 1/N , this follows

for example from the large N operator product expansion

O(y)O(y′) =
1

|y − y′|2∆
+O2(y′) +O(1/N). (2.7)

Here I use y to denote a boundary point, as opposed to x, which is a bulk point.
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One can also write (2.4) in position space [27, 28] as

φ(x) =

∫
ddy
√
γ(y)K(x; y)O(y), (2.8)

where γ is the boundary metric and K(x; y) is sometimes called the “smearing function”.3

This position space expression is convenient in the treatment of 1/N corrections [29]. For

example in the presence of a cubic interaction g
3N φ

3, solving the bulk equation of motion

to next to leading order in 1/N gives [29]

φ(x) =

∫
ddy
√
γ(y)K(x; y)O(y)

+
g

N

∫
dd+1x′

√
−g(x′)ddy

√
γ(y)ddy′

√
γ(y′)G(x;x′)K(x′; y)K(x′; y′)O(y)O(y′)

+O
(
1/N2

)
. (2.9)

Here G is a particular type of bulk Green’s function. The right hand side has an obvious

diagrammatic interpretation that continues to higher orders. We will not need the details

though, the point for us is just that the right hand side involves (nonlocal) polynomials

of higher and higher order in Oω as we go to higher order in 1/N . The Oω’s are thus the

“building blocks” one uses to perturbatively assemble bulk fields.

In the CFT the Oω’s are somewhat singular operators, for example they exactly obey

[H,Oω] = −ωOω, (2.10)

so they have nonzero matrix elements only between energy eigenstates that differ by

exactly ω. Papadodimas and Raju suggest redefining them by integrating over a small fre-

quency range to make them more robust [15, 16]; I will instead leave them as they are but

insist on using them only in wave packets that are localized to within some time range ∆t.

2.2 The two-sided bulk

Let’s now consider interacting bulk fields propagating on the two-sided geometry of figure 2.

There is a natural CPT transformation Θ which exchanges fields on the two sides; in

Schwarzschild coordinates we have the action

Θ†φI(t, r,Ω)Θ = φIII(−t, r,Ω), (2.11)

where φ is a real bulk scalar field. The Hilbert space on the slice t = 0 is a tensor product

of states in region I and states in region III, each of which is conveniently spanned by

eigenstates of the Hamiltonians HR and HL respectively.4 It is convenient to define Θ as a

3For some backgrounds this expression does not quite exist as written [36], but it can always be fixed

up by smearing the bulk operator a little.
4This decomposition and the definition of HR and HL are straightforward for scalars, but for gauge

fields and gravity there is some subtlety due to the constraints at the interface between regions I and region

III [37–40]. I discuss this at some length in appendix A, but the upshot is that I do not expect these

subtleties to affect equations (2.15), (2.16), and (2.19) below, with HR and HL interpreted as the ADM

Hamiltonians.
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map from the left Hilbert space to the right Hilbert space rather than from the full Hilbert

space to itself, for example we can then use a basis |i〉R of HR eigenstates for the states in

region I and a basis

|i∗〉L ≡ Θ†|i〉R (2.12)

of HL eigenstates for the states in region III. An operator A in region I with action

A|i〉R =
∑
j

Aji|j〉R (2.13)

has a CPT conjugate which acts as

Θ†AΘ|i∗〉L =
∑
j

A∗ji|j∗〉L. (2.14)

We will be interested in operators Oω on the right which obey

[HR,Oω] = −ωOω
[HL,Oω] = 0 . (2.15)

Their CPT conjugates will then obey[
HL,Θ

†OωΘ
]

= −ωOω[
HR,Θ

†OωΘ
]

= 0. (2.16)

Intuitively Oω’s create and annihilate excitations with HR−HL = ω in region I, their CPT

conjugates create and annihilate excitations with HR −HL = −ω in region III, and both

are needed to understand region II (or IV). Up to mixing the purple modes in figure 2 are

created and annihilated by acting with O’s and time-evolving, while the red modes are

created by acting with their CPT conjugates and evolving.

Let’s now consider a bulk state

|ψbulk〉 ≡
∑
ij

Cji|i∗〉L|j〉R. (2.17)

If C is invertible then this state has the interesting property that

Θ†AΘ|ψbulk〉 = CA†C−1|ψbulk〉. (2.18)

In other words, the action of an operator in region III on the state can be written (in a

way that depends on the state) as an operator acting on region I. That this is possible is

a consequence of the entanglement of the state (2.17); it is the same basic idea that is at

the heart of the Reeh-Schlieder theorem of relativistic quantum field theory [41]. A similar

equation holds for the action of Θ†AΘ on a more general state obtained by acting on the

state (2.17) with another operator A′ on the right:(
Θ†AΘ

)
A′|ψbulk〉 = A′

(
CA†C−1

)
|ψbulk〉. (2.19)

– 7 –
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Figure 3. The “method of images”. We define operators in region III, but use them only to

compute things which are localized above the orange shell. The expression of operators in region

II in terms of the region III (and I) operators is found by using the two-sided bulk equations of

motion, assuming that the shell does not exist. Of course the shell does exist, its existence can be

confirmed just in region I using the ordinary AdS/CFT dictionary, and the regions below it in this

figure therefore do not.

One interesting bulk state to consider is the Hartle-Hawking-Israel or thermofield dou-

ble (TFD) state [42, 43]

Cji ∝ δije−βEi/2, (2.20)

which is the natural choice of “ground state” for the system. In this case an operator Oω
obeying (2.15) will have a CPT conjugate that acts on the TFD state as

Θ†OωΘ|ψbulk〉 = e−βω/2O†ω|ψbulk〉. (2.21)

In AdS/CFT the TFD state is dual to itself, with the bulk energy eigenstates replaced by

energy eigenstates of two copies of the CFT [44]. We will be interested in more general

states than the TFD, so for the most part we will stick to the general expression (2.17),

assuming only that C is invertible. The reduced density matrix on the right is then

ρR = CC†. (2.22)

2.3 The Papadodimas-Raju proposal

The proposal of Papadodimas and Raju is to use equation (2.19) to motivate a construction

of the red modes in figure 1; if the extra operators from the left side that we need in the

two-sided case to construct the interior can be rewritten as operators acting on the right

side, why don’t we just find CFT operators with this action and use them in the one-sided

case as well? There are several issues with trying to do this however.

First of all any attempt to produce the Θ†AΘ operators in the single CFT of a one-

sided collapse seems like it will accomplish too much: in addition to constructing region II

we will also construct region III. This would be overkill; if we really have region III then

we should also have a second copy of the CFT. The situation here however is similar to the

method of images in electrostatics; we use the Θ†AΘ’s only to compute things in region II.

This is illustrated in figure 3.
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Secondly (2.19) depends on the matrix C, which came from the choice of bulk

state (2.17). So if C appears in our definition of operators behind the horizon, we are

essentially putting in the state that we want to get out. But how do we choose it? For now

I will just assume that there is some prescription which in some appropriate sense agrees

with the TFD state to leading order in 1/N ; I return to this question in section 2.4.

There is also an immediate technical problem. Say we want to define a “mirror”

operator Õω in the CFT whose bulk interpretation is the same as Θ†OωΘ when used in

constructing operators in region II. Moreover say we have some “smooth horizon” finite-

energy state |ψ〉 in the CFT on which Õω acts as CO†ωC−1. The full set of CFT states

can be generated from this state by acting with enough local CFT operators [41], but if we

demand that Õω acts as in equation (2.19) for A′ any polynomial of local CFT operators,

then we would discover that Õω commutes with all local operators and is thus proportional

to the identity.5 One of the two main new ideas of the PR papers [15, 16] is to ameliorate

this by requiring Õω to act as (2.19) only when A′ is in some small set of operators A.

More precisely, they define the set of operators A as the set of all polynomials in the

Oω’s, their hermitian adjoints, the C conjugates of both, the Hamiltonian, and the charges

for any bulk gauge fields, with the restrictions that both the degree of the polynomial and

the energy of all operators present cannot be too large.6 I will denote the maximal degree

as dmax, and require that the total energy be much less than the energy of the black hole.

I will also demand that each frequency index ω is integrated against a wave packet which

localizes it to within some particular time range ∆t.

We can estimate the total number of linearly independent elements of the set A as

follows. First of all we can get the most operators for a given total energy by taking

them all to have ω . 1
rs

, where rs is the Schwarzschild radius.7 To avoid the modes they

create being confined to within a Planckian distance of the horizon we must cut off their

total angular momentum at `max ∼ rs
`p

. The total number of angular momentum modes

at a given frequency then scales like `d−1
max ∼ S. The number of linearly independent wave

packets at a given angular momentum is of order ∆t
rs

, so we can estimate the number of

linearly-independent elements of A as

|A| ∼
(

∆t

rs
S

)dmax

. (2.23)

In order to have a chance at nontrivial Õω’s we need

|A| � eS , (2.24)

which we can obtain in various ways depending on what we assume about ∆t. PR take

∆t ∼ rse
√
S , which would then imply that we need dmax to be at most

√
S, but we could

also take ∆t ∼ rsS, or even ∆t ∼ rs, in which case we can have dmax ∼ S/ logS. It is

5This is a version of the “commutator” argument of [12], which is a standard criticism of “A = RB”.
6The Hamiltonian and any conserved charges can be understood as zero modes of single-trace operators,

but they are sufficiently special that they sometimes need to be discussed separately. From here on the set

of Oω’s and Õω’s should always be understood as not including the zero modes of any conserved currents.

The symbol Aα will denote a generic element of the algebra A, which does include them.
7For simplicity I will occasionally assume that rs is not parametrically larger in N than the AdS radius.

The temperature will then also be of order the AdS scale.
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convenient to take the time range the wave packets are localized in to be centered at t = 0,

which we can do without loss of generality by moving the shell back in time as in figure 3.

Intuitively the set A is supposed to be the “set of observables outside the black hole

that are easy for an infalling observer to measure”.8 These restrictions mean that A is not

quite a Von Neumann algebra, since it is not closed under multiplication. I will nonetheless

sometimes refer to it for convenience as the “small algebra”.

For any state |ψ〉 in the CFT one can then define a subspace

Hψ ≡ A|ψ〉. (2.25)

Inspired by (2.19), PR then suggest defining the action of the mirror operators on Hψ as

Õω|ψ〉 = CO†ωC−1|ψ〉

Õ†ω|ψ〉 = COωC−1|ψ〉, (2.26)

together with9 [
Õω, Aα

]
Hψ =

[
Õ†ω, Aα

]
Hψ = 0. (2.27)

Equations (2.26) say that the mirror operators act on the state |ψ〉 as if they were Θ†ÕΘ

acting on the bulk state (2.17), and equations (2.27) say that their algebra acting on Hψ
is the same as it would be in the bulk. In other words what the proposal is doing is

“simulating” the two-sided bulk of the previous section within a single copy of the CFT.

These equations can be interpreted as a set of linear constraints which must be solved to

find the mirror operators; they should be solveable provided they are consistent.10 Note

that (2.26) and (2.27) are uncorrected to all orders in 1/N ; perturbative corrections all go

into the map to bulk fields, as in equation (2.9), and the choice of C.

This definition immediately begs the question however of which states |ψ〉 should be

used to define Hψ. The second main new idea of the PR papers [15, 16] is to give a rule

for which states |ψ〉 should be used. The idea is that we should only expect (2.26) to be

satisfied if the state |ψ〉 is an “equilibrium” state. There are various ways to define the

equilibrium condition, the one I will mostly use is that in any equilibrium state |ψ〉 we

must have11

〈ψ|Aα|ψ〉 = tr
(
CC†Aα

)
+O

(
e−cS

)
(2.28)

8An important point here is that “easy” is different from “possible”; things which involve O(S) Oω’s

seem quite possible to measure. I return to this below.
9In fact PR actually instead require that Õ commutes only with O’s, while for the Hamiltonian H

they instead demand [H, Õω] = ωÕω (and a similar equation for any conserved charge Q). I explain in

appendix A why I prefer the prescription given here. The difference comes from whether we interpret the

CFT Hamiltonian H as representing the bulk operator HR or the bulk operator HR − HL + E0 with E0

some constant. My choice is the former, whereas they would like the latter, but only the former seems

consistent with the OPE structure of the CFT.
10Their consistency essentially follows from (2.24) and the equilibrium condition (2.28) below; for details

see the PR papers [15, 16].
11This is different than equilibrium condition proposed by PR; they demand only that expectation values

of elements of A are time-independent to exponential precision. This is not sufficient however for the

correlation functions of O’s and Õ’s to reproduce bulk correlators in the state (2.17). For example a

superposition of two black holes of very different mass would be an equilibrium state according to their

criterion, since no elements of A mix between them. My condition (2.28) implies theirs when C commutes

with the Hamiltonian, but is also necessary and probably sufficient for the consistency of the proposal.
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for any Aα ∈ A, for some O(1) constant c. This condition has two motivations; first of all

we certainly shouldn’t expect a CFT state |ψ〉 to look like the bulk state (2.17) (evolved

up to region II) unless the expectation values of operators in region I constructed by the

BDHM/HKLL map are consistent with this. This map is supposed to accurately recon-

struct the bulk to all orders in 1/N , so any differences should be non-perturbatively small.12

Secondly, since we assumed that to leading order in 1/N we have CC† ≈ 1
Z e
−βHCFT , where

we can now define this approximation more carefully as meaning that the expectation val-

ues of elements of A in the two ensembles agree to leading order in 1/N , we can think

of states obeying (2.28) as being states where the black hole has “settled down” enough

that the state looks thermal with respect to the small algebra A. In particular any objects

would have to have been thrown in more than a time of order rsS in the past in order for

the excitations they created to die down to exponentially small size.13 By the argument of

Hayden and Preskill [45] it is then much too late for them to affect the experience of an

observer who jumps in near t = 0. Thus the equilibrium states “have a right” to a smooth

horizon. By using equations (2.26), (2.27), and (2.28), it is clear that any expectation value

of bulk fields constructed from the O’s in the small algebra A and their mirror Õ’s will

agree with low energy effective field theory in the state (2.17) to all orders in 1/N .

Equilibrium states obey an important “KMS” condition

〈ψ|AαAβ|ψ〉 = 〈ψ|AβCC†Aα
(
CC†

)−1
|ψ〉+O

(
e−cS

)
, (2.29)

for any two elements Aα, Aβ in A. This condition is necessary for the consistency of (2.26),

since it ensures that the action of Õ†ω on the right is consistent with its natural action on

the left induced from the action of Õω on the right.14

The Õ operators have the uncomfortable property that they are “state-dependent”;

ordinarily in quantum mechanics one first defines an observable to be some hermitian

operator and then sticks to this hermitian operator regardless of the state of the system.

For now we will just accept this, but I will give a detailed discussion of to what extent this

is a modification of quantum mechanics (it is) in section 5.

2.4 Choosing the bulk state

I now return to the choice of the “target” bulk state (2.17). We should really think of

the equilibrium condition (2.28) as a “compatability” condition between a set of CFT

equilibrium states E and a two-sided bulk state labelled by C; in order to realize the PR

proposal we must look for compatible pairs (E , C). The most obvious C to consider is the

TFD state, and a set of CFT states which is compatible with it is

|ψ〉 =
1√
Z

∑
j

e−βEj/2+iφj |j〉, (2.30)

12Remember we are considering big black holes so S is proportional to some positive power of N .
13From the point of view of this observation it seems rather natural to take ∆t ∼ rsS, since this gives

the infalling observer the ability to do experiments involving equilibration to the level of precision involved

in (2.28). Having ∆t be shorter, for example of order rs logS, seems too restrictive given our intuition that

A should represent what is “not too hard” to do.
14I thank Herman Verlinde and Xi Dong for discussions of this point.
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where |j〉 are energy eigenstates and φj are randomly chosen phases. The compatibility,

meaning that expectation values of elements of A obey (2.28) with CC† = 1
Z e
−βH , follows

from the eigenstate thermalization hypothesis [46]

Aij = δijA(Ei) + e
−S
(
Ei+Ej

2

)
/2
Rij , (2.31)

where A and |R| are smooth O(1) functions of E but the phase of R varies erratically. The

states (2.30) are thus a very promising starting point for implementing the PR proposal.

Interestingly however at the level of 1/N corrections other natural sets of “black hole-

like” CFT states are not compatible with the TFD state; this was briefly pointed out by

PR [16]. I now discuss the reason for this at some more length. Consider a black hole

formed in a pure state from a collapse that lies in some thin energy shell. If the state is

sufficiently generic, expectation values of simple operators should be exponentially close (in

the entropy) to their microcanonical expectation values. This follows for example from a

theorem of Lloyd [47], which states that for any operator A on a Hilbert space of dimension

d, we have ∫
dU (〈ψ(U)|A|ψ(U)〉 − 〈A〉MM )2 =

1

d+ 1

(
〈A2〉MM − 〈A〉2MM

)
, (2.32)

where MM denotes the expectation value in the maximally mixed density matrix I/d.

Here |ψ(U)〉 denotes the state created by acting on some reference state with a unitary

matrix U , which is then integrated over the Haar measure. In other words the expectation

value of any operator in a particular pure state is generically exponentially close (in the

entropy log d) to its maximally mixed expectation value.15 We’d like to take this Hilbert

space to be the set of CFT states in some narrow energy band, ie the microcanonical

ensemble, but we have the technical issue that not all operators in the small algebra A
send this subspace into itself. For any operator Aα ∈ A however we can always construct

an operator that does send the microcanonical subspace into itself by just sandwiching

Aα between two projection operators that project onto the subspace. Lloyd’s result (2.32)

applies to this projected operator, but actually we can ignore the projections in three of

the four terms. Indeed we have∫
dU (〈ψ(U)|Aα|ψ(U)〉 − 〈Aα〉MC)2 =

1

d+ 1

(
〈AαΠAα〉MC − 〈Aα〉2MC

)
, (2.33)

where the average is now over pure states in the energy shell, Π is the projection operator

onto states in the shell, and MC means the expectation value in the microcanonical density

matrix that is proportional to the identity on this energy shell and is zero otherwise. Finally

if we take Aα to be hermitian then by inserting a complete set of energy eigenstates we

see that

〈AαΠAα〉MC ≤ 〈A2
α〉MC , (2.34)

15Here I assume that A is sufficiently smooth that A2 does not have an expectation value which is

exponentially enhanced; this should be the case for any operators we consider here.
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which together with (2.33) immediately shows that the expectation value of a reasonably

smooth operator in a typical pure state drawn from the microcanonical ensemble will be

exponentially close to its microcanonical expectation value.16

For comparison we can study how accurately the canonical ensemble reproduces the

expectation values of elements of A in a collapse state |ψ〉 of narrow energy width.

Expectation values in the canonical ensemble tend to differ from those in the microcanon-

ical ensemble by powers in the inverse entropy, so in fact the TFD state will already get

the expectation values wrong at low orders in perturbation theory.17 Indeed for any oper-

ator Aα with reasonably smooth diagonal matrix elements in energy, we can estimate its

canonical expectation value as

〈Aα〉 =

∫
dEeS(E)−βEAα(E)∫

dEeS(E)−βE . (2.35)

The saddle point approximation to these integrals gives back the microcanonical expecta-

tion value, but the perturbative corrections to the saddle point will only be suppressed by

powers of the entropy, which is not good enough to satisfy the equilibrium condition (2.28).

Thus we see that for black holes formed by a collapse that is well-localized in energy,

it seems we should look for a “target” bulk state (2.17) where the reduced density matrix

CC† is close to the microcanonical density matrix, which is constant in some energy range

and then very small outside of it. This however is actually rather problematic from the

point of view of the PR construction. The obvious choice would be to take C to be the

“microcanonical double state”, where C is diagonal with real and positive elements. But

in this case the action of the mirror operators is rather badly defined; consider the state

Õω|ψ〉 = CO†ωC−1|ψ〉, (2.36)

where ω is parametrically larger than the width of the energy band from which we pull

|ψ〉. The C−1 keeps the state |ψ〉 within the band, but the O†ω takes it out. When we then

act with C again we will then get a huge suppression, with an amount that depends on

how exactly we define the microcanonical ensemble CC† outside of the energy range we are

interested in. Thus if we compute a correlation function like 〈ÕO〉 it will be exceedingly

small. This suggests that to the extent the state has a geometric interpretation at all, it

does not involve two sides which are separated only by a single bifurcate horizon. It then

is far from clear that the O’s and Õ’s provide sufficient initial data to reconstruct region II

a la figure 3.18 This inability to deal with narrow states is problematic for the generality of

the construction, since after all one would hope that for example exact energy eigenstates

16One might worry that these Haar averaged states are “too typical” in the sense that they usually must

be built up over exponentially long times. In fact Lloyd’s theorem holds for averages over much simpler

sets of states, such as those generated by unitary 2-designs [45].
17It may be somewhat unfamiliar to see ensemble inequivalence competing with perturbation theory in

interactions; the reason is that for a big black hole we have taken the entropy to be of order N to some

power while the interactions are suppressed by powers of 1/N . This is different than the usual situation

in statistical mechanics where interactions are suppressed only by factors like 1/137 while entropies are of

order 1023.
18This argument does not apply to the TFD because its energy width is of order the temperature times√
S, which is larger than ω for any operators of interest for the infalling observer.
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should have smooth interiors, and in appendix A.3 I give some brief speculation on what

might be done about it.19 For now to avoid this issue, which is something of a distraction

from the main point of this paper, I will just restrict the discussion to bulk states where

the energy fluctuations in CC† are of order those in the TFD state.

3 Do states have unique interpretations?

Let’s now try to understand better the global structure of the CFT Hilbert space in the

PR proposal. There is a set E ⊂ HCFT of equilibrium states satisfying (2.28), relative to

each of which one defines mirror operators Õ with respect to which it resembles the bulk

state (2.17) for any infalling observer who jumps in in the vicinity of t = 0. For observers

who jump in much later or much earlier we use a different choice of the small algebra A,

so the set E is different. The set E is not a linear subspace of the Hilbert space; in fact

its span (including different energies) is just HCFT. On top of each equilibrium state |ψ〉
we then build a linear subspace Hψ by acting with either elements of A or their mirror

operators. The other states in this subspace are to be interpreted as “excited”, in some

particular way. This leads to what seems to be an important consistency requirement for

the proposal: the linear subspaces constructed in this way must not intersect.

Say that there was a state |χ〉 in the Hilbert space which could be realized either

by acting on some equilibrium state |ψ〉 with an operator Aα ∈ A or by acting on some

other equilibrium state |ψ′〉 with a different operator Aβ ∈ A. In this case the physical

interpretation of the state |χ〉 would be ambiguous; would an infalling observer see it as

acting on the bulk state (2.17) with Aα or with Aβ? I will now argue that this situation

can indeed be generically realized and thus that in the PR proposal quantum states in

HCFT cannot have fixed physical interpretations.

To demonstrate such a situation it is clearly sufficient to find a nontrivial element of the

algebra A which sends equilibrium states to other equilibrium states. It is not immediately

clear that this can be done, after all the equilibrium condition (2.28) is rather restrictive.

Acting with any small number of Oω’s and O†ω’s can always be detected by the expectation

value of some other small number of Oω’s and O†ω’s, since we can always just arrange to

have a non-vanishing correlation function. What we would like is a unitary transformation

Ũ that commutes with everything in A to exponential accuracy: we then would have

〈ψ|Ũ †AαŨ |ψ〉 = 〈ψ|Aα|ψ〉. (3.1)

An obvious guess for how to find such a Ũ is to build it out of Õ operators, since from (2.27)

these commute with everything in A [48]. For example we can consider the operator

Ũ ≡ eiαÕ
†
ωÕω , (3.2)

At leading order in 1/N this is the exponential of the number operator for some mode

behind the horizon; it rotates the phases of the number eigenstates for the mode. At

19This difficulty with states of narrow energy width is one of the main reasons that Raju and Papadodimas

attempted to have [H, Õ] 6= 0. If this were possible it would ameliorate the problem somewhat, but I argue

in appendix A.3 that it does not seem to be consistent within the CFT to do this.
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higher order in 1/N it does not exactly have this interpretation, but it is well defined

and from (2.27) it continues to commute with everything in A acting on the state |ψ〉.20

This operator thus sends the equilibrium state |ψ〉 to another equilibrium state according

to (2.28), but according to bulk effective field theory the horizon is no longer smooth. More

precisely the state Ũ |ψ〉 is no longer annihilated by the “infalling” annihilation operator

proportional to Õω − CO†ωC−1, and in fact the “infalling” number operator has an O(1)

expectation value.

The operator Ũ is not actually an element of A since it involves the mirror operators,

but we can use (2.26) to define a new operator that has the same action on |ψ〉:21

V ≡ eiαCO
†
ωOωC−1

= CU †C−1, (3.3)

where U ≡ e−iαO
†
ωOω is the unitary operator whose mirror is Ũ . V is not unitary, but its

action on |ψ〉 preserves the norm since it is equivalent to the action of Ũ . It may appear

surprising that acting with V on the state preserves the expectation values of all elements

of A, but this amusingly follows from the KMS condition (2.29). Indeed

〈ψ|V †AαV |ψ〉 = 〈ψ|
(
C†
)−1

UC†AαCU
†C−1|ψ〉

= 〈ψ|AαCU †C−1CC†
(
C†
)−1

UC†
(
C†
)−1

C−1|ψ〉+O
(
e−cS

)
= 〈ψ|Aα|ψ〉+O

(
e−cS

)
. (3.4)

This argument applies for any Ũ that we build out of Õ’s.

To complete the argument we now would like to argue that V ∈ A, but this isn’t

actually true, for two reasons. First of all it is not a polynomial in Oω, O†ω, and their C

conjugates of degree at most dmax. Secondly we are supposed to integrate any ω index

against a wave packet that localizes it into a time range ∆t. The wave packets are easily

included, and to deal with the first problem the convergent series expansion for the ex-

ponential in the definition of V can simply be truncated at order dmax. This breaks the

unitarity of U , but only by an amount which is of order e−dmax log dmax+#dmax , where # is

some O(1) number.22 If we take ∆t to be at most some power of S, then we found in the

discussion around (2.24) that we can consistently take dmax ∼ S/ logS; the error is then of

order e−cS , which doesn’t violate the equilibrium condition.

If we take ∆t to be of order e
√
S , then we can only make the error as small as e−

√
S

(the actual choice of power here is unimportant, I take 1/2 for simplicity of exposition).

This is non-perturbatively small, but still parametrically larger than e−cS . Is a deviation

20If we could arrange [H, Õ] 6= 0 as advocated by PR, then here we would need to arrange for Ũ

to commute with H within expectation values. This is rather restrictive, but seems to be possible by

systematically “improving” (3.2). I argue in appendix A.3 however that we must have [H, Õ] = 0.
21Technically for this equation to be valid we must perform the truncation of the exponential discussed

in the following paragraph.
22Here I have assumed that the we can think of the operator CO†ωOωC−1 as being bounded at order one.

Since to leading order in 1/N it is just a number operator, this will clearly be true for a fermionic field. For

a bosonic field, we need to use the property that eigenstates of the number operator with large eigenvalue

are exponentially suppressed in an equilibrium state.
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from the equilibrium condition of order e−
√
S “large enough” to no longer expect a smooth

horizon? By the rules I’ve described so far it is, but there is some question as to whether

or not it is really reasonable to insist on the equilibrium condition (2.28) being so strong.

Saying that the deviation is of order e−cS is a stronger statement that saying that it is

non-perturbatively small; for example in string theory in the early 1990’s it was a major

accomplishment to realize that nonperturbative effects should scale like e−1/g instead of

e−1/g2
[49]. As I discussed in the previous section however, even in perturbation theory it

is unclear whether or not a well defined procedure exists for determining the target bulk

state (2.17). Beyond perturbation theory it is even less clear. Consider for example the non-

perturbative process where a black hole of mass of order the Planck mass is spontaneously

fluctuated out of the horizon and into the atmosphere. This decreases the entropy of the

black hole by S
1
d−1 , so we expect the probability of it happening is e−S

1
d−1

. For AdS4, this

is e−
√
S . So apparently there are interesting non-perturbative effects of this size, which

would be difficult to systematically include in determining the state (2.17), and since the

matrix C appears explicitly in the equilibrium condition it seems excessive to demand it to

require such small deviations. Of course even if we do require this the issue only arises if

we take ∆t to be exponentially large, and there is no clear reason why we should do this.23

We thus appear to have found a problem for the PR proposal; what is the bulk in-

terpretation of the state V |ψ〉? Is the horizon excited or is it not? In fact this issue is

somewhat related to the difficulty in identifying the right target state (2.17); who is to say

that we shouldn’t include some extra phases in C? Or even a generic unitary Ũ? In fact if

we were sufficiently perverse, we could make what seems to be an equally consistent version

of the PR proposal where the mirror operators are defined in such a way that equilibrium

states always have firewalls. The operators Ũ are something like a “zero mode” that pushes

us in the direction of such a definition.

4 More general black holes

Having introduced and analyzed the PR proposal in the case where it is strongest, the big

AdS black hole, I now discuss two more general cases which introduce new issues. Another

interesting generalization which I will not discuss is to big AdS black holes in states that

are slightly mixed [50].

4.1 Two-sided black holes

I first consider two-sided AdS black holes. The TFD state is obviously an interesting

choice of state, where the interior seems to be describable in the BDHM/HKLL formalism

23Another possible loophole to the argument of this section is that we could simply declare that dmax is

parametrically smaller than it needs to be for mirror operators to be consistently defined. Since we are just

making it up the rules anyway, there is no deep principle preventing this. As long as we take it to scale

like some power of S however, the error from truncating the exponential in defining V will be exponentially

small in that power of S. If the power is less than one then the caveats of this paragraph can again be

applied to resist viewing this as a real resolution of the problem. In any event making the algebra smaller

than necessary is unsatisfying, since it is increasing in size the set of experiments which are in principle

doable but not described by the PR proposal.
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without recourse to mirror operators. We can also consider more general entangled states

of the two CFT’s, which should be dual to more complicated wormholes [21, 51, 52]. The

new interesting question here is how the small algebra A should be defined. Let’s assume

that the infalling observer will jump in from the right side; should A be given by its usual

definition in the right CFT, or should it include “simple” operators from both CFT’s?

Let’s first imagine that we have A = AR. In the TFD state the mirror operators will

then be the left algebra AL. Any unitary operator acting on the left CFT preserves the

equilibrium condition that operators in the right CFT have thermal expectation values,

so in particular we could send in a freight train from the left boundary in figure 2 and it

would not be detected by the small algebra A. In this setup it is thus even easier to get into

the situation of the previous section; how do we know whether or not we should interpret

the state with the freight train as a new TFD state with a smooth horizon? In fact the

BDHM/HKLL construction here would say that we should not interpret it this way; the

mapping between the left and the right CFT’s and the bulk is fixed by the Euclidean

construction of the TFD state, which connects the two sides in a single copy of the CFT;

it does not leave any freedom to redefine the dictionary between the two sides. So it seems

taking the small algebra to just be AR produces an inconsistency between the PR rules

and the BDHM/HKLL dictionary.

We are thus led to consider the alternate choice of algebra where A is generated by the

union of AL and AR. Here there is a new subtlety however; how should the equilibrium

condition be defined? One choice would be to require that all expectation values of elements

of A resemble the TFD state. In this case we would of course decide that the TFD state

itself is an equilibrium state, but if we tried to construct mirror operators we would fail.

There would now be elements of A which annihilate the state, so the conditions (2.27)

would not be solvable. This is perhaps the correct answer, since in this case we do not need

state-dependent mirror operators. This choice however leads to a problem in that it seems

incorrect when we consider more generic two-sided wormholes. Let’s consider a generic

entangled pure state of two CFT’s with fixed HR + HL. According to the definition this

would not be an equilibrium state, since there would now not be any simple entanglement

between the left and right algebras. The PR construction would then not be able to tell us

whether or not these states have smooth horizons, whereas if we don’t believe in firewalls

we might expect that they should.

We could instead use the two-sided algebra but define the equilibrium condition to be

that the expectation values of the two-sided algebra are consistent with the product state

ρTh =
e−βHL ⊗ e−βHR

Z2
. (4.1)

The typical two-sided pure state now will be an equilibrium state; the PR construction

will produce two sets of mirror operators, one for each side, and it will construct a smooth

horizon on each side.24 The TFD state now will be far out of equilibrium, so the PR

24In fact this will be the same construction as if we had just used the one-sided algebra for whichever

side we jump in from. This is reasonable, since generic wormholes are expected (if they are not singular!)

to be “long” [51, 52]; infallers from different sides won’t be able to meet in the middle.

– 17 –



J
H
E
P
1
1
(
2
0
1
4
)
0
5
5

proposal will be silent on what its properties should be. This is a good thing however, since

as we just discussed we don’t expect to need mirror operators to reconstruct the interior

in the TFD state. This last choice is thus probably the most appealing, even though for

generic states it still will have two copies of the ambiguity of the previous section.

4.2 Evaporating black holes

I now turn to the evaporating black hole. It is sometimes convenient to arrange for a big

black hole in AdS to evaporate by coupling the CFT to an auxiliary system [12, 53], but this

can lead to puzzling issues which I would prefer to avoid so I will focus on an evaporating

Minkowski black hole where we mostly expect local semiclassical physics to approximately

hold everywhere. The cost of course is that we cannot use the CFT language, so the

discussion will be less precise.

To be concrete I will model the state of an evaporating black hole as a qubit system,

which factorizes into three parts [54]

H = HH ⊗HB ⊗HR. (4.2)

Here H is the remaining black hole (the “stretched horizon”), which I take to consist of m

qubits, B is the thermal atmosphere (“the zone”), which I take to have k qubits, and R is

the Hawking radiation, which I take to have n qubits. We will mostly be interested in the

situation where the black hole is “old”, ie when n > m+ k. It is natural to take the small

algebra A to be generated by polynomials in the Pauli operators acting on HB⊗HR, since

these are the degrees of freedom which are accessible to the infalling observer. We will

restrict to polynomials of degree at most p. There is no natural dynamics in this model, so

there is no analogue of the frequency wave packets we needed in the previous discussion.

Effectively we are just taking ∆t ∼ rs. We will consider a state |ψ〉 to be an equilibrium

state if

〈ψ|Aα|ψ〉 = 2−n−m−ktrAα +O
(

2−c(n+m+k)
)
. (4.3)

To implement a version of the PR proposal we need to pick a “target” state; we will imagine

that the horizon is smooth in the infalling frame if we have

|ψ〉AB = 2−k/2
∑
a

|a〉A|a〉B, (4.4)

where a runs over 0 and 1 for each qubit. HA is the “image” Hilbert space analogous to

the second exterior in the PR proposal; we are essentially saying that each mode and its

Hawking partner must be in the state 1√
2

(|00〉+ |11〉). This state has the property that

acting with the Pauli operator Z1 on the first qubit has the same effect as acting with the

Pauli operator Z2 on the second qubit, and similarly for the Pauli Xi operators and (up to

a sign) the Yi operators. This property is the analogue of equation (2.19) above. We can

then define mirror operators, for example by demanding that

X̃iAα|ψ〉 = AαXi|ψ〉, (4.5)

where i runs over the qubits in B.
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It is interesting to see how large p can be before we are no longer able to solve (4.5) [16].

This happens when the set of states Aα|ψ〉 generated by acting on |ψ〉 with linearly in-

dependent elements of the algebra stop being linearly independent. The latest this can

happen is when the number |A| of linearly independent elements of the algebra equals the

dimensionality 2n+k+m of the Hilbert space. For the qubit system the linearly independent

elements of the algebra are just products of Pauli matrices on the various sites, so if we

include all products of degree at most p then

|A| =
p∑
j=0

(
n+ k

j

)
3j . (4.6)

If we take p = n + k then this sum can be evaluated to give 22(n+k), as expected since in

this case A would just be the set of all operators acting on n+ k qubits. Mirror operators

that commute with all operators on B and R can thus be defined only if n+ k < m, or in

other words if the black hole is “young”.25 For old black holes however we clearly need to

take p < n+ k. We can estimate how much less by defining p ≡ (n+ k)α, with 0 < α < 1,

and approximating the sum as an integral:

|A| ∼
∫ α

0
dα′e(−α′ logα′−(1−α′) log(1−α′)+α′ log 3)(n+k). (4.7)

The integrand has a saddle point at α′ = 3/4, where it is of order 22(n+k), so apparently

when the black hole is old we need to take α < 3
4 . In that case it will be dominated by its

upper endpoint, so we can determine the maximally allowed value by solving

− α logα− (1− α) log(1− α) + α log 3 = log 2

(
1 +

m

n+ k

)
, (4.8)

which is solved by some O(1) value of α that is about .2 in the limit that m
n+k → 0.

We thus see that the PR proposal is able to arrange for the mirror operators to commute

with any exterior operator that acts on at most 20% of the atmosphere and Hawking

radiation. This is significantly more than was found in earlier attempts to make the idea of

A = RB work, where it was typically found that the constructions of operators behind the

horizon had O(1) commutators even with single qubit operators on the radiation [12, 55].

The reason the PR proposal is able to do so much better is that the X̃i operators are not

actually Pauli operators in the sense of having a spectrum which is half 1 and half −1. In

other words there is no qubit factor in the Hilbert space on which they have the standard

action; they are not associated with some particular purification RB of B.

Should we then be satisfied? In this version of the PR proposal we can still raise

the objections of section 3, but I would instead like to draw attention to a different issue.

Namely, is it really reasonable to not allow a construction of the interior in situations

where the infalling observer does interact with more than 20% of the Hawking radiation?

25This is a manifestation of Page’s theorem, which says that when m > n + k we can construct a

purification of B which lies entirely in H. The mirror operators then can be defined to act only on H, so

they manifestly commute with operators on B and R.
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There seems to be no major technical obstruction to an infalling observer doing so, and

the observer has plenty of time to do it before the black hole evaporates.26 Moreover even

if the infalling observer does nothing, an O(1) fraction of the radiation could interact with

a dust cloud on its way out.27 Do we really expect a firewall in such situations? I will

postpone further discussion of this to section 6 below, but I believe that any compelling

theory of black hole physics will need to be able to describe such experiments, and any

others that we can reasonably imagine doing. It is not allowed to “plead the fifth”.

5 Some comments on state-dependence

I now return to the question of state-dependence. The goal of this section is to contrast

the state-dependence of the PR proposal from more conventional phenomena which have

something of the same flavor. My basic strategy is to understand to what extent “state-

dependent measurements” can be realized as unitary evolution of the system to coupled to

some apparatus. I will argue that all “standard examples” of state-dependent measurement

can be implemented in this way, but that the PR proposal cannot. Before giving the general

discussion it is convenient to first introduce an example.

5.1 State-dependence and spontaneous symmetry breaking

Consider the 3 + 1 dimensional O(N) symmetric scalar field theory with Lagrangian

L = −1

2
∂µφi∂

µφi +
m2

2
φiφi −

g

4
(φiφi)

2 . (5.1)

Here i is an index which runs from 1 to N , and the summation convention is in force. In

infinite volume (and with m2 > 0) this theory has a continuous set of degenerate vacua

|n̂〉, where n̂ is a unit vector in RN . These vacua can be distinguished by the expectation

value of the field φi, which at leading order in g is

〈φi(x)〉n ≡ 〈n̂|φi(x)|n̂〉 =
|m|
√
g
n̂i. (5.2)

The low-energy spectrum of this theory around one of the vacua has N − 1 massless

Goldstone bosons and one massive boson of mass squared 2m2.

The point of interest for us here is that which fields create the Goldstone bosons

seems to depend on the choice of state |n̂〉. For example the Goldstone bosons are created

by the field

φ⊥i (x, n̂) ≡ φi(x)− (φ · n̂) n̂i. (5.3)

Isn’t this a state-dependent operator? It appears to be, but before rushing to conclusions

it is important to think more carefully about what we actually mean by “measuring the

two-point function of the Goldstone boson field”.

26Such experiments are much easier than any experiment requiring decoding of the Hawking radiation,

where there may indeed be a good case that the such experiments cannot be done by an observer who can

also probe the interior [54, 56].
27This objection was also raised by Raphael Bousso in a talk at the “Bulk Microscopy from Holography”

workshop at the Princeton Center for Theoretical Science in November 2013. See also [25].
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One option is to try to “remove” the state-dependence by defining a single operator

whose correlation functions in any state |n̂〉 are equivalent to those of φ⊥(x, n̂). In infinite

volume this can be done exactly using projection operators onto different superselection

sectors, while in finite volume V we can do it to leading order in 1/V by defining a

“n̂ operator”

n̂op ≡
√
g

|m|V

∫
d3xφi(x) (5.4)

and replacing n̂→ n̂op in the definition (5.3). Since 〈n̂|n̂op|n̂〉 = n̂, and the commutator of

n̂op with any local operator is another local operator times a power of 1/V , this operator

has the same expectation values as φ⊥i (x, n̂) up to O(1/V ) corrections.

I claim however that this procedure of “removing” the state-dependence does not de-

scribe what we usually do in the laboratory when studying Goldstone bosons. Setting up

an apparatus to measure this operator would be rather irritating, since it would have to

involve the nonlocal operator n̂op each time we measure the field. What we usually do

instead is measure n̂op once to determine what state we are in, and then conditioned on

the result of this measurement we then measure various combinations of the φ⊥i (x, n̂)’s

as defined in equation (5.3). The small commutator of the “order parameter” n̂op with

local operators ensures us that we do not need to measure it again later in the experiment.

The distinction between this protocol and one where we measure the “state-independent”

operator defined in the previous paragraph by the replacement n̂ → n̂op is not academic;

if we started the system in a superposition of different |n̂〉 states, the results would differ

substantially (they also differ at any case at O(1/V )). It should be clear however that

either is perfectly normal in principle, and they had better both be consistent with quan-

tum mechanics. I now discuss this more abstractly in the context of general quantum

measurement theory.

5.2 Measurement theory

The basic idea of quantum measurement theory is as follows.28 Say we have a system S

and we’d like to measure some hermitian operator A that acts on it. We adjoin the system

to a pointer system P whose dimensionality is equal to the number of distinct eigenvalues

of A. We then arrange for the unitary evolution of the joint system to be

|i〉S |0〉P → |i〉S |ai〉P , (5.5)

where |0〉P is some particular “initial” state of the pointer and |i〉S is any eigenstate of

A with eigenvalue ai. Note that the states |ai〉P are not necessarily all distinct; different

|i〉S ’s could have the same eigenvalues. If we now start the system in an arbitrary pure

state |ψ〉S =
∑

iCi|i〉S then we have the evolution

|ψ〉S |0〉P →
∑
i

Ci|i〉S |ai〉P . (5.6)

28For a nice review see section 3.1 of [57].
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The pointer is now in a mixed state

ρP =
∑
a

∑
i | ai=a

|Ci|2|a〉〈a|, (5.7)

so if we look at it then we will see a result a drawn from the probability distribution

predicted by the usual Born rule for measuring A. Of course in this last step we again have

to make a measurement, but the pointer is usually assumed to be sufficiently classical that

it is “obvious” what it means to measure it.

The important point here is that the measurement process can be described as unitary

evolution of the system coupled to some apparatus. The same is true for the protocol

described at the end of the previous section, where we first measured n̂op and then condi-

tioned on the result measured some combination of φ⊥i (x, n̂)’s, but to see it we first need

to recall the standard idea of conditioned unitary evolution. Consider a bipartite system

consisting of systems S1 and S2. We can then define an evolution

|i〉S1 |j〉S2 → |i〉S1Ui|j〉S2 , (5.8)

which we can interpret as looking at S1 in the basis |i〉 and then, depending on the result,

applying a unitary transformation Ui to system S2. The evolution (5.8) is unitary for any

choice of the Ui’s.

With these tools we can now give a more general discussion of the two measurement

protocols of the previous section. Say that we have a system S on which A and B are

two hermitian operators. Moreover say that we have some classical function f(a, b) of

their eigenvalues. The reader should think of A as being analogous to n̂op in the previous

section. The first protocol, where we replaced n̂→ n̂op in (5.3), corresponds to measuring

the quantum operator f(A,B) using (5.5). Our second protocol, measuring n̂op and then

conditionally measuring φ⊥(x, n̂), generalizes to first to measuring A and finding some

result a, then measuring the quantum operator f(a,B). We can describe this as unitary

evolution as follows; first adjoin to the system S two pointers, PA for the first measurement

and Pf for the second.29 Then apply the unitary measurement protocol (5.5) to the system

S and the first pointer PA. Finally apply the conditioned unitary evolution (5.8), where

conditioned on the state of PA we apply the unitary measurement protocol to S and Pf
for measuring f(a,B). The quantum circuit diagram for this evolution is given in figure 4,

explicitly the full evolution is

|i〉S |0〉PA |0〉Pf → |i〉S |ai〉PA |0〉Pf →
∑
j′

Cij′ |j′〉S |ai〉PA |f(ai, bj′)〉Pf , (5.9)

where |i〉S is an eigenstate of A with eigenvalue ai, |j′〉S is an eigenstate of B of eigenvalue

bj′ , and |i〉S =
∑

j′ C
i
j′ |j′〉S . A classical observer can then look at the pointers to sample

from the joint distribution for a and f (or the conditional distribution for f given a).

I believe that the second protocol captures the essence of what most people think of as

“state-dependent operators” in ordinary quantum mechanics. There is some approximately

29For simplicity we assume that the number of distinct eigenvalues of f(a,B) is the same for all a, enabling

us to use just one pointer for the second measurement.
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P PSA f

Figure 4. The unitary process for measuring A and then conditionally measuring f . Time goes up.

classical observable which we first pin down with a measurement, and then use to decide

which other operators to measure. The entire process can be described as unitary evolution

on the system together with an apparatus.

5.3 State-dependence in the PR proposal

I now compare the state-dependence of the PR proposal (or its less-precise earlier cousins)

to the above protocols. To warm up, let’s first consider the operators O used in building

fields outside of the horizon. These apparently depend on some basic properties of the

state, for example the mass of the black hole and where it is, but this information is

essentially classical. We are thus in the situation where we can use either of the protocols

of the previous subsections to interpret them. An infalling observer will probably use the

second protocol; she will look to see where the black hole is and how big it is before aiming

her jump.

The situation for the interior operators Õ is more interesting. Consider a complete

basis of equilibrium states. We can define some operator A which distinguishes them, and

then try to use this information to define state-dependent operators Õa for modes behind

the horizon. To run the second protocol we would first measure A and then do a conditional

measurement of Õa. This would require the infalling observer to do an extremely sensitive

measurement of the black hole, essentially determining which microstate it is in. It is

unreasonable to require the infalling observer do this, so we conclude that the second

protocol cannot be used to legitimize the PR proposal. We could also try the first protocol

by defining the interior operators including explicitly the operator A in our expressions,

which I will denote as ÕA. We now run into the issue however that the commutator of A

with O and Õa will be quite large. This then will destroy the algebraic properties of the

ÕA’s, and their correlation functions will no longer agree with effective field theory.

Thus the state-dependence of the PR proposal cannot be interpreted as arising from

either of the two protocols we just discussed. In fact we can go further and argue that

there is no possible unitary evolution on the system together with some apparatus which

realizes the PR proposal. More explicitly, there is no single unitary operator which takes an

arbitrary equilibrium state together with a given pointer, not depending on the equilibrium
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state, and uses that pointer to measure the Õ appropriate for the equilibrium state. To

get started I first observe in general that it is impossible to have a pointer which measures

two distinct operators: say that Õ1 and Õ2 are two operators associated with different

equilibrium states. Since they are supposed to have the same physical interpretations,

they should have the same eigenvalues. An obvious way to try to get them to both be

measured by the same pointer is to find a unitary which implements

|i, 1〉|0〉 → |i, 1〉|õi〉
|i, 2〉|0〉 → |i, 2〉|õi〉. (5.10)

Here |i, 1〉 is some complete eigenbasis of Õ1, with eigenvalues õi, and similarly |i, 2〉 for Õ2.

It is fairly straightforward to show however that this evolution is only possible if the two

operators are in fact equal; for convenience of the reader I give a proof in appendix B.30

The basic idea of the proof is that the first line of (5.10) completely specifies the unitary

operator, so there is no freedom left to fit the second line. This might be called a “no

state-dependent operators theorem” of quantum mechanics.

This theorem does not quite directly address the PR proposal however, since the

types of states PR are interested in are equilibrium states and small perturbations thereof,

rather than eigenstates of the Õ’s. The same intuition should still apply however; we

can introduce a complete basis of equilibrium states, on which the action of the unitary

coupling the pointer to the system is fixed. There would be no remaining freedom to deal

with other equilibrium states that are superpositions in this basis. In fact we can get into

trouble even faster by using the observation of section 3 above.31 For convenience I will

work in a simplified version of the qubit evaporation model of section 4.2, where I take

B to have only a single qubit, I combine H and R into B̄, and I take the algebra A to

consist only of operators on B. In any equilibrium state |ψ〉 the density matrix on B will

be maximally mixed, so by the Schmidt decomposition we can write

|ψ〉 =
1√
2

(|0〉B|0̄〉B̄ + |1〉B|1̄〉B̄) , (5.11)

where |0̄〉B̄ and |1̄〉B̄ are pure states of unit norm that are typically very complicated. Now

let’s consider a measurement of Z̃, the mirror operator to the Z operator on B. Our

“target” bulk state is (|00〉+ |11〉)/
√

2, so by construction measuring Z̃ should produce the

same state as measuring Z. We will thus have

|ψ〉|0〉P →
1√
2

(|0〉B|0̄〉B̄|0〉P + |1〉B|1̄〉B̄|1〉P ) . (5.12)

30One might think that the pointer should also be state-dependent, since it is behind the horizon as well,

but for simplicity we can take it to be made out of the infalling purple modes in figure 1, which are expected

to be state-dependent only in the weak sense of the previous two sections.
31The argument that follows here is closely related to the “frozen vacuum” argument of [25], but it is

reworked a bit to more directly apply to the PR construction.
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Let’s now consider however the set of four mutually orthogonal equilibrium states:32

|ψ±〉 =
1√
2

(|0〉B|0̄〉B̄ ± |1〉B|1̄〉B̄)

|χ±〉 =
1√
2

(|0〉B|1̄〉B̄ ± |1〉B|0̄〉B̄) . (5.13)

Since these are all equilibrium states, measuring Z̃ should in all cases be equivalent to

measuring Z so after taking superpositions we have the following evolution

|00̄〉BB̄|0〉P → |00̄〉BB̄|0〉P
|11̄〉BB̄|0〉P → |11̄〉BB̄|1〉P
|01̄〉BB̄|0〉P → |01̄〉BB̄|0〉P
|10̄〉BB̄|0〉P → |10̄〉BB̄|1〉P . (5.14)

So far this evolution can be unitary, since after all it is equivalent to measuring Z, which is

state-independent. It cannot however be unitary if it is restricted to act only on P and B̄,

which is after all what we should demand; the infalling observer knows that she is measuring

Z̃, not Z, since these are done by different physical experiments. Indeed this would require

both |0̄0〉B̄P → |0̄0〉B̄P and |0̄0〉B̄P → |0̄1〉B̄P , as well as both |1̄0〉B̄P → |1̄0〉B̄P and

|1̄0〉B̄P → |1̄1〉B̄P . More operationally we could instead demand that measuring Z̃, applying

X to flip the qubit B, and then measuring Z̃ again returns the same result for both Z̃

measurements, which leads to a similar contradiction. By presenting the argument this

way we see that this contradiction is closely related to the ambiguity of section 3; acting

with X sends |ψ+〉 → |χ+〉, so if the formalism itself cannot decide whether or not |χ+〉 is

excited we can hardly expect a pointer to be able to.

6 Including the infalling observer

We have now seen that the PR proposal is inconsistent with quantum mechanics on two

serious counts. We saw in section 3 that it can assign to a single quantum state more

than one physical interpretation, and we saw in section 5 that its measurement process

cannot be realized as unitary evolution, as opposed to ordinary quantum mechanics (with

pointers) where it can. What then are we to conclude? It seems that what the proposal

needs to work is some rule along the lines of the following: say I am going to jump into a

black hole, which is in some equilibrium state |ψ〉. Moreover say that you are planning to

act on the state with some operator Ũ (or V ) as defined in section 3. If I know that you

are going to do this, then I conclude that I will see an excited horizon, and if I jump in

that is what I see. But if I don’t know you are going to do this, then my Õ operators are

automatically redefined in such a way that I see a smooth horizon when I jump in, even

though the quantum state of the black hole is the same in either case. The full state of

32These are the types of equilibrium states one would construct acting on |ψ〉 with the “unitary behind

the horizon” type operators discussed in section 3, but here I will follow the rules of PR and construct

mirror operators which see the “horizon” as unexcited.
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the system in the two different situations wouldn’t actually be the same, since the internal

state of the observer is different in the two cases. Is this crazy? Undoubtedly, but that

does not automatically mean that it is wrong.33 Rather than prolonging this paper further

by trying to make a consistent theory that accommodates this kind of thing, which is what

I expect would really be needed to make some version of the PR proposal (or A = RB,

ER=EPR, etc) work for black holes in generic states, I will instead close by making some

general comments about the validity of quantum mechanics for infalling observers.34

In ordinary situations where we study quantum mechanics, the system under study

is “small” and our apparatus is “big”. This allows us to basically treat the apparatus

classically, up to a single pointer variable as we have discussed in the previous section. The

detailed history and construction of the apparatus (and the experimenter) are completely

irrelevant for the outcome of the experiment, at least as long as the experiment has been

constructed correctly. This is to be contrasted with the type of thing described in the

previous paragraph, where what the experimenter is aware of and intends to do is of

paramount importance. It is interesting to note however that in the black hole situation

the “small/big” situation is reversed; we are trying to study a giant black hole as a quantum

mechanical object, using an infalling observer who is rather small in comparison. This is

unlike any other situation where we have tested quantum mechanics, and it does not seem

a priori absurd to imagine that the usual measurement theory would need to be modified

in this case.35 The infalling observer simply cannot carry in an apparatus which is able

to record any substantial fraction of the information which would be needed to describe

the black hole in detail, since this would by necessity cause large back-reaction.36 AMPS

have tried to avoid this problem by inventing an experiment that does not require the

infalling observer to actually carry in a large number of qubits, but they do need to at

some point perform a complicated experiment on an O(1) fraction of the Hawking radiation.

The original AMPS experiment involved an extremely sophisticated quantum computation

which is probably impossible to really implement [54], but as we saw in section 4.2, for

the PR construction to fail one only needs to consider something like flying around and

flipping the helicity of some O(1) fraction of the Hawking photons. This is much easier

than the AMPS quantum computation, there is no principled reason why it cannot be

done. The point here however is that although the infalling observer can remember that

33In fact it is somewhat reminiscent of the Gottesman-Preskill refinement of the black hole final state pro-

posal, where any thing happening behind the horizon is “unhappened” by post-selection from the point of

view of somebody outside the horizon but presumably not for somebody who falls in [58–61]. It would be in-

teresting to understand better the relationship between that proposal and the one under consideration here.
34There seems to be some overlap with some of the ideas here and what Mathur and Turton call “fuzzball

complementarity” [62], although I disagree with various parts of their discussion.
35In the context of cosmology it has already been argued that the experiences of observers with funda-

mentally limited resources do not have precise quantum mechanical descriptions [63, 64], and any lesson of

this nature which we could learn from black holes would obviously be very valuable for cosmology.
36This can be quantified using the recently proven Bekenstein-Casini bound [65, 66], which roughly says

that an object capable of storing S bits of information much have a mass greater than S/R, where R is the

size of the object. To fit in the black hole the object must be small compared to the black hole, while to

avoid back-reaction its mass must be small compared to the black hole mass; taken together with the bound

these show that the memory capacity S of the object must be much smaller than the black hole entropy.
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a large number of photon helicities were flipped, she cannot actually carry in a list of

which photons were flipped and which weren’t. We might imagine that the definition of

the Õ’s gets reset in this case and she sees a smooth horizon, with her inability to actually

remember (or carry in a record of) which ones were flipped preventing various paradoxes.

Should the theory really make use of this type of thing? One might hope not, but if the

PR proposal or something like it is to prevent firewalls in generic states it seems more and

more likely that it will have to. A solid example of a theory that does this (or a concrete

explanation of how AdS/CFT secretly does it) would obviously be necessary before it could

really be taken seriously.
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A Gauge constraints and charges

In theories with gauge symmetries it is not necessarily the case that a decomposition of

space into two regions should induce a tensor factorization of the Hilbert space. The basic

reason is that the constraints used in defining the physical Hilbert space typically involve

spatial derivatives, for example the Gauss law constraint

∇ · E = ρ (A.1)

in electrodynamics or the Hamiltonian constraint

KijK
ij −K2 +R{3} = 16πGT00 (A.2)

in gravity. Since the PR construction of mirror operators is based on assuming a tensor

factorization of the bulk Hilbert space as in equation (2.17), we need to make sure that

this is not inconsistent with the constraint structure of the bulk gauge symmetries.

Similarly in defining conserved charges associated to gauge symmetries, the constraints

typically imply that the charges can be written as surface integrals over the boundary of

the spatial region in question. In the PR construction we are replacing two asymptotic

boundaries with one, and we need to make sure that the relationship between the CFT

Hamiltonian and the bulk ADM Hamiltonians is chosen consistently.

The purpose of this appendix is to address these concerns in more detail, motivated

by a simple example which illustrates the relevant issues. Readers who are willing to

accept the tensor factorization and are only interested in understanding my choice of the

commutator of H and the Õ’s being zero can perhaps skip to subsection A.3. Other work

that discusses some of the issues in this appendix includes [16, 32, 33, 38–40].
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A.1 A toy model

The constraint structure of perturbative gravity in the AdS-Schwarzschild background is

a bit complicated, but an excellent model which captures the relevant physics is scalar

electrodynamics in 1 + 1 dimensions, quantized on a spatial interval of finite length. I will

take the boundary conditions to be A0 = 0 and φ = 0 at each endpoint, and require that

gauge transformations vanish there.37 The Hamiltonian is

H =

∫ 1

0
dx

[
1

2
Π2 + π†π + (Dxφ)†Dxφ

]
, (A.3)

where

Dµφ = ∂µφ− iqAµφ, (A.4)

and

Π ≡ −E = ∂xA
0 + Ȧx (A.5)

is the conjugate momentum to Ax.

π = (D0φ)† (A.6)

is the conjugate momentum to φ. Physical states obey the Gauss law constraint

(∂xΠ + ρ) |ψ〉 = 0, (A.7)

where

ρ = iq
(
φπ − π†φ†

)
(A.8)

is the charge density.

An interesting property of these boundary conditions is that they allow us to define

nonlocal gauge-invariant operators by “dressing” charged fields with Wilson lines. For

example the operators

−→
φ (x) ≡ φ(x)eiq

∫ 1
x dxAx

←−
φ (x) ≡ φ(x)e−iq

∫ x
0 dxAx

W ≡ eiq
∫ 1
0 dxAx (A.9)

are gauge invariant, with the first operator being the product of the second and third.

Another interesting property of these boundary conditions is that they do not allow

us to use “axial gauge” Ax = 0; for example φ = 0, A0 = 0, and Ax = E0t is a nontrivial

solution of the equations of motion that obeys the boundary conditions but cannot be put

into axial gauge without violating them.

For maximal clarity it is convenient to put this model on a spatial lattice, which I will

take to have four points. I will work in units where the lattice spacing is one. For my

37This system is the 1 + 1 dimensional analogue of a region of space between two perfect conductors

that are connected by a wire. These boundary conditions are chosen because they resemble the usual

“normalizeable” boundary conditions in AdS that lead to well-defined asymptotic charges.
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choice of boundary condition there are three gauge field degrees of freedom living on the

links between the points, A12, A23, and A34, and there are two charged fields living on

the middle two lattice sites, φ2 and φ3. The gauge group is U(1) × U(1), with the gauge

transformations living at sites 2 and 3. Since charge fields have 2 degrees of freedom each,

there are a total of 7 non-gauge-invariant degrees of freedom. There are thus 5 physical

degrees of freedom; more concretely we can write any gauge-invariant wave function as

〈A12A23A34φ2φ
∗
2φ3φ

∗
3|ψ〉 = ψ

[
W,
←−
φ 2,
←−
φ ∗2,
−→
φ 3,
−→
φ ∗3

]
. (A.10)

Here we have

−→
φ 3 = φ3e

iqA34

←−
φ 2 = φ2e

−iqA12

W = eiq(A12+A23+A34). (A.11)

There are also gauge invariant canonical momentum operators

−→π 3 = π3e
−iqA34

←−π 2 = π2e
iqA12 . (A.12)

The Gauss law constraint becomes

E34 − E23 = ρ3 (A.13)

E23 − E12 = ρ2. (A.14)

If we wish to go to axial gauge, the most we can do is for example to set A12 = A34 = 0;

as expected from the continuum argument above there is not enough gauge symmetry to

also set A23 = 0. The Wilson line W is thus a physical degree of freedom, it cannot be

removed by gauge fixing. This choice of gauge does remove the manifestly nonlocal dressing

from
−→
φ 3 and

←−
φ 2, but there will still be a nonlocal commutator with the electric field that

remembers it (it doesn’t look particularly nonlocal here, but in the obvious generalization

to more lattice sites it will).

This discussion of the physical Hilbert space makes it clear that if we cut the interval

in half, there is no gauge-invariant tensor factorization of the Hilbert space associated with

this. In addition to the charged operators acting on sites 2 and 3, there is the Wilson

line that cannot be generated by gauge invariant operators localized on one side or the

other (this again is a bit more obvious if we include more lattice points).38 Since a tensor

factorization is necessary for the PR construction, it seems we are in a bit of trouble. More

explicitly, acting on a generic state of the form (A.10) with an operator f
(←−
φ 2,
←−π 2, E12

)
38As explained in [39], this inability to factorize will be the case anytime the subalgebra of operators

associated with a subregion has a nontrivial center. In this model we should clearly include
←−
φ 2 and its

canonical conjugate ←−π 2 in the subalgebra associated to the “left half” of the interval, as well as E12. It

is up to us whether or not we include E23; if we do then E23 is a nontrivial element of the center, since

acting on gauge invariant states it is equal to E34 − ρ3, which obviously commutes with everything else in

the subalgebra. If we do not include E23, then E12 + ρ2 is a nontrivial element of the center.
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is not in general equal to the action of some other operator g
(−→
φ 3,
−→π 3, E34

)
on the same

state. It will typically be equal to the action of some operator g
(−→
φ 3,
−→π 3, E34,W

)
, but this

depends also on W , which in the gravitational analogue has no single-CFT representation.39

This dependence will go away only if for some reason we are only interested in states where

the Wilson line degree of freedom factors out, that is in states whose wave functions have

the form40

ψ
[
W,
←−
φ 2,
←−
φ ∗2,
−→
φ 3,
−→
φ ∗3

]
= ψW [W ]ψφ

[←−
φ 2,
←−
φ ∗2,
−→
φ 3,
−→
φ ∗3

]
. (A.15)

There is indeed a fairly natural set of mutually orthogonal subspaces that have this

form: the subspaces where E23 is a constant. These subspaces have the nice property that

they are preserved by the action of E12, E34,
←−
φ 2,
−→
φ 3, their hermitian conjugates, and their

conjugate momenta. They also relate nicely to the definition of charge; the total charge is

given by a sum of two “boundary terms”

Qtot ≡ ρ2 + ρ3 = E34 − E12, (A.16)

and we can also define “left” and “right” charge operators

Q̂R = E34 − E23 = ρ3

Q̂L = E23 − E12 = ρ2 . (A.17)

On a subspace of constant E23 we have the nice property that the boundary operators E12

and E34 act only on the left and right tensor factors respectively. A crucial choice in the

PR construction is what combination of these operators we interpret as the charge operator

(or Hamiltonian for the case of gravity) when we have only a single CFT.

A.2 The two-sided gravitational bulk

I now more heuristically discuss the case of gravity in the two-sided asymptotically-AdS

system. We’d like to split the system into two parts, but as in electrodynamics the con-

straints do not allow us to do this. There is no simple gravitational analogue of Wilson

lines, so the construction of gauge invariant operators is more complicated. I will leave

the details to future work, and just make a few comments about what I expect to happen

based on the example just discussed.

In order to effectively get a tensor product Hilbert space for the purposes of the PR

construction, we again need to impose some sort of additional constraint analogous to

E23 being a constant. In Einstein gravity an appealing gauge-invariant proposal is that we

should demand that the area of the extremal-area bulk surface Σ of topology Sd−1 be given

39One might be tempted to try to mirror the “left” degrees of freedom and the Wilson line W into the

“right” degrees of freedom, but this is in general not possible since the matrix C in (2.17) can only be

invertible in the relevant sense if the set of degrees of freedom we are “mirroring to”, ie the “right” degrees

of freedom, is not smaller than the set of degrees of freedom we are mirroring from.
40We can also consider states where the tensor factorization is in terms of

−→
φ 3 and

−→
φ 2. The discussion

below would be similar, although some words would change, but this choice is a better analogy for what

we usually do in the two-sided bulk system.
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by a c-number acting on the state. In more general theories (which we will need to consider

if we want to get the 1/N corrections right) we might instead ask that the integral of the

Noether charge d− 1 form Q[ξ] [67, 68] over the bulk surface Σ of topology Sd−1 that ex-

tremizes it be constant. Here ξ is any timelike vector field which approaches the asymptotic

time translation vector ∂t at the right boundary, which approaches −∂t at the left bound-

ary, and which vanishes on Σ and acts in the vicinity of Σ as the boost generator in the

two-dimensional plane orthogonal to Σ. This determines ξ only up to a constant multiple,

so Q defined this way has an irrelevant normalization ambiguity. In Einstein gravity∫
Σ
Q[ξ] ∝ A

4G
. (A.18)

One motivation for this proposal is that in any gravity theory the canonical Hamil-

tonian that evolves the metric and matter fields forwards along ξ to the right of Σ, while

keeping them fixed to the left, is [68]

ĤR = HR −
∫

Σ
Q, (A.19)

where HR is the AdS version of the ADM Hamiltonian, perhaps including 1/N corrections

to Einstein gravity, which is a boundary integral at the right boundary.41 ĤR here is

analogous to Q̂R in equation (A.17), and there we saw that we needed to set E23 to a

constant in order to have Q̂R be given only by a boundary term at infinity. Another

motivation is that any construction of gauge-invariant matter operators in the bulk that

proceeds by evolving operators in region I in from the right boundary and operators in

region III in from the left boundary should always produce operators that commute with∫
ΣQ, since their “gravitational dressing” will always extend away from Σ. In Einstein

gravity this point is supported by the calculations of Shenker and Stanford [52], who saw

that in a wide variety of states produced by acting with local operators on one or both

sides, the area of the extremal surface is never modified. Even more generally a recent

theorem [69] shows that the extremal surface always lies in the “causal shadow” of the

two boundaries, meaning that it can never receive or send signals from either boundary.

It seems quite plausible that the subspace of states where this quantity is fixed factorizes

into left and right degrees of freedom that provide a reasonable “laboratory” for the PR

construction of the interior.42

Independent of the validity of the PR construction, it is interesting to contemplate the

meaning of bulk states that are superpositions of different
∫

ΣQ in the context of AdS/CFT.

Equivalently, if there is a bulk gauge field it is interesting to contemplate the meaning of

states where the electric flux through Σ is not definite. Does an operator representing a

41I thank Don Marolf for emphasizing the existence and possible importance of this boundary term on

several occasions.
42One subtlety here is that in two-sided states where the extremal surface is not also a bifurcate horizon,

it is probably not true the bulk operators with simple two-CFT prescriptions are really sufficient to give

initial conditions for the bulk evolution up to the region behind the horizon done in the PR construction.

This is related to the problems with CFT states of narrow energy width described in section 2.4. Another

important question is whether or not the TFD state actually has the property that
∫

Σ
Q doesn’t fluctuate.
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bulk Wilson line extending from one boundary to the other exist on the Hilbert space of

the two CFT’s? It is far from clear that it does, since after all the Hilbert space of the

two CFT’s trivially factorizes into left and right parts, each of which is separately gauge-

invariant, and as we saw above the Wilson line does not respect this factorization. What are

we to make of this? One option is to argue that this means that the two CFT’s do not give

a complete description of the bulk physics; we need to include another degree of freedom

to describe this Wilson line. This is rather similar to the “superselection sectors” of Marolf

and Wall [11], although we seem to have arrived at it from a rather different direction

here. It is also reminiscent of what is sometimes called “strong complementarity” [17, 54,

70]. Alternatively it may be that it is the CFT’s which are correct, and that the bulk

observer has deluded herself into thinking that this Wilson line operator should exist. One

encouraging point is that there are states in the two CFT’s which we interpret as having

some electric flux through Σ; the Reissner-Nordstrom wormholes. We cannot assemble

them in a simple way from an uncharged TFD state by throwing in charges from the two

sides, even if we do it in a correlated manner, but they do exist. Does this mean that the

bulk Wilson line must also exist as an operator in the CFT’s in some nontrivial way? Since

the bulk gauge field (and bulk graviton) are “emergent” in the sense of not really being

present in the fundamental CFT description of the theory, perhaps the UV regularization

provided by quantum gravity is smart enough to avoid the difficulties of factorizing present

in the lattice model. The description of this Wilson line seems like a potentially valuable

toy version of the description of the interior in general, and I hope to have more to say

about it soon.

A.3 What is the Hamiltonian?

The PR construction works by finding a set of single-CFT operators whose algebra and

action on equilibrium states reproduces that of the two-sided bulk theory. One question

that is not entirely clear is which two-sided bulk operator should be represented by the

CFT Hamiltonian H. There are two somewhat natural candidates:

H → HR −HL + E0

H → HR. (A.20)

Since we are in the sector where
∫

ΣQ is a constant, HR acts on the right-side factor of the

Hilbert space and will commute with any operator in region III; if we represent it with the

CFT Hamiltonian H then our mirror operators Õ should be taken to commute with H.

This is the choice I have made in the main text. Alternatively if we take HR−HL+E0 to be

represented as H, then the mirror operators should not commute with H;43 we instead have[
H, Õω

]
Hψ = ωÕωHψ[

H, Õ†ω
]
Hψ = −ωÕ†ωHψ. (A.21)

This is the choice advocated by Papadodimas and Raju, but I will argue in the remainder

of this section that it is problematic.

43Here E0 is a c-number that is included so that the bulk expectation value is consistent with the expected

energy in the CFT.
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The equilibrium condition (2.28) will be the same for expectation values of elements of

A built only from O’s and their C conjugates for either interpretation of H, but we should

apply it also to expectation values involving H only if we take H to represent HR. If we

take H to represent HR −HL + E0 then in the bulk this is not an operator that acts on

the right only, so (2.28) should not apply to it. In fact it is fairly straightforward to show

that if (2.28) does apply to elements of A that include the Hamiltonian, then we essentially

must take
[
H, Õ

]
= 0. Indeed consider two algebra elements Aα and Aβ which are made

only out of O’s. By using equation (2.26), the fact that
[
Õ,O

]
= 0, and the equilibrium

condition (2.28), we see that

〈ψ|Aα
[
H, Õ

]
Aβ|ψ〉 = 〈ψ|AαHAβCO†C−1|ψ〉 − 〈ψ|C−1†O†C†AαHAβ|ψ〉

= tr
(
C†AαHAβCO†

)
− tr

(
CO†C†AαHAβ

)
= 0. (A.22)

This certainly is incompatible with (A.21), if the commutator is isn’t zero then it must ap-

parently be proportional to a somewhat strange operator whose expectation value between

any states in Hψ produced by acting just with O’s is zero but which is not zero between

elements when the Hamiltonian is involved.

To get an idea of what would be necessary, let’s consider what type of CFT states

could be compatible with the TFD state if we choose H to represent HR −HL + E0. By

consistency with the bulk we must have

CHC−1|ψ〉 = E0|ψ〉+O
(
e−cS

)
, (A.23)

which follows from the bulk equation (2.19) applied to HR:

HL|ψbulk〉 = CHRC
−1|ψbulk〉. (A.24)

For the TFD C commutes with H, so (A.23) says that CFT states that are compatible

with the TFD must be energy eigenstates to within exponential precision, at least as

far as expectation values of elements of A are concerned. This is rather bizarre, since

the equilibrium condition (2.28) still applies to elements of A that are only made out of

O’s; apparently we need states which “fake” a thermal distribution to all orders in 1/N

for expectation values involving only O’s, even though they are actually almost energy

eigenstates. This is surprising from the point of view of the discussion of section (2.4),

where we saw that the difference between microcanonical and canonical expectation values

entered at low orders of perturbation theory in 1/N . At best we could try to achieve this

by detailed microscopic tuning of the state, which is to be compared with the natural set

of states (2.30) that are compatible with the TFD state if we take H to represent HR.

In fact the structure of the operator product expansion in the CFT basically ensures

that if the equilibrium condition (2.28) applies to operators that are even fairly simple

functions of O, it must also apply to H. In any CFT the conformal Ward identity ensures

that the stress tensor Tµν must appear in the OO OPE, and we can isolate its contribution
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by subtracting off a few relevant operators which are all built from elements of the algebra

A. Since the Hamiltonian is just the zero mode of T00, we can write a “formula” for it

in terms of the O’s; we can then run the argument (A.22) to conclude that we must take[
H, Õ

]
= 0.44

For this reason I have taken H to represent HR in the main text. This proposal is

still not completely satisfactory, for example it has the problem with states with narrow

energy width discussed in section 2.4, but at the moment it seems to be the only possibility

based on the general strategy of consistently simulating the two-sided bulk order by order

in 1/N in a single CFT. One alternative which is perhaps worth exploring further is to

instead attempt to directly simulate the one-sided bulk including the collapse in the CFT;

of course this is what AdS/CFT does normally, but the new ingredient would be to allow

state-dependence and a restricted algebra A in an attempt to find the red modes behind

the horizon in figure 1. Unfortunately doing this would essentially require us to start over

from the beginning, with considerably more complications and possible ambiguities, and I

won’t attempt it here.

B A proof

Here I give the proof of a result quoted in section 5.3; that a given pointer cannot measure

two different operators. The two operators are called Õ1 and Õ2, and they are assumed

on physical grounds to have the same eigenvalues. To begin with I will also assume that

the eigenvalues have the same degeneracies, but this will be relaxed in the end. We want

to show that if there exists a unitary which implements

|i, 1〉|0〉 → |i, 1〉|õi〉
|i, 2〉|0〉 → |i, 2〉|õi〉, (B.1)

where |i, 1〉 is some complete eigenbasis of Õ1, with eigenvalues õi, and similarly |i, 2〉 for

Õ2, then the two operators must be equal. We can always write

|i, 2〉 =
∑
j

Cij |j, 1〉, (B.2)

where Cij is some unitary matrix. The consistency of (B.1) and (B.2) requires∑
j | õj=õ

Cij |j, 1〉 =

{
|i, 2〉 õi = õ

0 õi 6= õ
(B.3)

for all õ and i, which then implies that the unitary Cij is block-diagonal on the subspaces

of definite Õ1. If we look at the spectral representations of the operators

Õ1 =
∑
i

õi|i, 1〉〈i, 1| (B.4)

Õ2 =
∑
i

õi|i, 2〉〈i, 2|, (B.5)

44More conservatively if we include the various restrictions on elements of A we may only be able to

produce the Hamiltonian this way to within 1/N corrections in expectation values, but that should be

enough to rule out (A.21).
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we see immediately that we have shown that

Õ1 = Õ2 , (B.6)

so the operators weren’t actually state-dependent in the first place. The extension to the

case where we allow the operators to possibly have different multiplicities is straightforward;

the same argument shows that Cij is nonzero only if i and j have the same eigenvalues, but

this shows that C and C† map subspaces with the same eigenvalue into each other. By the

unitarity of C this can only be possible if these subspaces have the same dimensionalities.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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