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1 Introduction

There has been significant recent progress on the lattice discretization of N = 4 super

Yang-Mills (SYM) [1–5]. (For alternative approaches see [6–11].) One motivation for such

efforts is that it is highly desirable to test the AdS/CFT correspondence at a finite number

of colors N , and for moderate values of the ’t Hooft coupling λ = g2N ∼ 1. Indeed, results

in this regime would, in theory, open the way to nonperturbative results for quantum

gravity. Another reason to study N = 4 SYM on the lattice is that the continuum theory

is an interacting conformal field theory at all scales, unlike the situation with theories inside

the conformal window, which only approach a conformal fixed point in the infrared (IR).

Originally, the lattice construction was discovered by orbifolding a matrix model in such

a way as to preserve a nilpotent supercharge [1, 12]. Subsequently, the same construction

was arrived at by discretizing not the usual theory but a topologically twisted cousin. In

flat space this corresponds merely to an exotic change of variables — one more suited to

discretization. In the case of N = 4 SYM there are three independent topological twists

of the theory and the one that is employed in the lattice work is the Marcus or Geometric-

Langlands twist [13, 14]. The resulting lattice action takes the form

S =
1

2g2
(Qλ+ Sclosed)

λ =
∑
x

a4 Tr

(
χabFab + ηD(−)

a Ua −
1

2
ηd

)
Sclosed = −1

4

∑
x

a4εabcdeχdeD
(−)
c χab(x) (1.1)
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where we include the appropriate factors of the lattice spacing a and the explicit expressions

for the terms involving covariant derivatives are given by

Fab(x) = D(+)
a Ub(x) = Ua(x)Ub(x+ ea)− Ub(x)Ua(x+ eb)

D(−)
a Ua(x) = Ua(x)Ua(x)− Ua(x− ea)Ua(x− ea)

εabcdeχdeD
(−)
c χab(x) = εabcdeχde(x+ ea + eb)

[
χab(x)Uc(x− ec)

− Uc(x− ec + ea + eb)χab(x− ec)
]
. (1.2)

Notice that these expressions involve fields which are associated to the links of an A∗4 lattice

which possesses five (linearly dependent) basis vectors and an associated S5 point group

symmetry. To complete the specification of the action we also need the action of Q on the

lattice fields, which is given by

QUa = ψa, Qψa = 0, QUa = 0

Qχab(x) = −Fab(x) ≡ Ub(x+ ea)Ua(x)− Ua(x+ eb)Ub(x)

Qη = d, Qd = 0 . (1.3)

It can be checked that the classical continuum limit of this lattice action yields the usual

Marcus twist of N = 4 SYM if the lattice fields are decomposed into their irreducible

components under the S5 symmetry (see [12]) and the link fields expanded according to1

Ua(x) =
1

a
+Aa(x), Ua(x) =

1

a
−Aa(x) . (1.4)

As an example of this argument consider the A∗4 term
∑
χabD[aψ b] which emerges after

carrying out the Q-variation of the χabFab term above. Decompose the lattice fields (in a

fixed gauge) into their S5 irreducible components via the relations

χab = PaµPbνχµν + Pa5Pbνψ̄ν (1.5)

ψb = Pbλψλ + Pb5η (1.6)

Da = PaρDρ + Pa5φ . (1.7)

The 5× 5 orthogonal matrix P that appears in these expressions is introduced in [12] and

serves as the bridge between the fields occurring on the A∗4 lattice and their continuum

cousins.2 In these expressions Greek indices run from one to four while Latin cover the

range from one through five. If we substitute these decompositions into this A∗4 fermion

term we find

χabDaψb = PaµPbνPaρPbλχµνDρψλ + Pa5PbνPbλPa5ψ̄νφψλ + . . . (1.8)

χabDbψa = PaµPbνPbρPaλχµνDρψλ + Pa5PbνPa5Pbρψ̄νDρη + . . . . (1.9)

1We work with antihermitian generators of the SU(N) gauge group.
2It is crucial for these arguments that in fact the lowest lying irreducible representations of the S5

(strictly its A5 subgroup) match those of the continuum twisted SO(4) group.
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Using the orthogonal properties of the matrix P all other terms vanish since they involve

contractions of the type PaµPa5 = 0 and the expression simplifies to∑
χabD[aψ b] → χµνD[µψν] + ψ̄µDµη + ψ̄ν [φ, ψν ] . (1.10)

These terms match precisely some of those appearing in the continuum Marcus twist of

N = 4 SYM. Similar reductions occur for all terms in the A∗4 action and confirm that

the lattice theory does indeed target N = 4 SYM in the naive continuum limit. Notice

that the action has an additional U(1) ghost number3 symmetry under which the fields(
η, ψ, χ, ψ̄, η, φ, φ,A

)
carry charges (1,−1, 1,−1, 1, 2,−2, 0). This symmetry is hidden in

the original A∗4 lattice formulation and is visible only when the A∗4 fields are decomposed

into their irreducible representations under the S5 lattice symmetry. It will be important

in our later analysis.

2 Blocking transformation

The original lattice Λ may be described by Λ =
{
a
∑4

µ=1 nµeµ|n ∈ Z4
}

, where the eµ are

the first four of the five (degenerate) basis vectors of the A∗4 lattice. The blocked lattice

will merely be doubled in every direction: Λ′ =
{

2a
∑4

µ=1 nµeµ|n ∈ Z4
}

. From this point

forward we will work in lattice units, setting a = 1. The blocked fields will be denoted by

primes and must begin and end on sites of the blocked lattice Λ′. The trick is to come up

with a blocking transformation such that the Q algebra is preserved (maintenance of S5

symmetry will be straightforward), with the geometric intepretation also surviving. For

example, χ′ab(x) must begin on site x+ 2ea + 2eb and end on site x since the original field

χab(x) begins on x+ ea + eb and ends on x. One choice that achieves this is the following:

U ′a(x) = ξUa(x)Ua(x+ ea), U ′a(x) = ξUa(x+ ea)Ua(x)

d′(x) = d(x), η′(x) = η(x)

ψ′a(x) = ξ [ψa(x)Ua(x+ ea) + Ua(x)ψa(x+ ea)]

χ′ab(x) =
ξ2

2

[
Ua(x+ea+2eb)Ub(x+ea+eb)χab(x)+Ub(x+2ea+eb)Ua(x+ea+eb)χab(x)

]
+ ξ2

[
Ua(x+ ea + 2eb)χab(x+ eb)Ub(x) + Ub(x+ 2ea + eb)χab(x+ ea)Ua(x)

]
+
ξ2

2

[
χab(x+ea+eb)Ua(x+ eb)Ub(x) + χab(x+ ea + eb)Ub(x+ea)Ua(x)

]
. (2.1)

Because the link variables, being elements of GL(N,C), are non-compact we have allowed

for the possibility that they are rescaled by a factor ξ under the transformation. (This

will become important when we perform the two-lattice matching in our Monte Carlo

renormalization group (MCRG) analysis of section 4, and in this context ξ becomes a

blocking parameter similar to those in other schemes. Indeed, it is typical in MCRG to

tune a blocking parameter in order to achieve matching.) The following parts of the algebra

are obvious upon inspection: QU ′ = 0, Qη′ = d′, Qd′ = 0. In particular note that for the

3This is referred to as a ghost number because Q is used as a BRST symmetry in the construction of a

topological field theory from the Marcus twist.
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η, d system we have simply utilized decimation. It is not difficult to also see that QU ′a = ψ′a
by making use of the orginal algebra QUa = ψa. The fact that Qψ′a = 0 then follows from

the minus sign that comes in when Q is pushed past ψa(x):

Qψ′a(x) = ξQ [ψa(x)Ua(x+ ea) + Ua(x)ψa(x+ ea)]

= −ξψa(x)ψa(x+ ea) + ξψa(x)ψa(x+ ea) = 0 . (2.2)

To demonstrate that Qχ′ab = −F ′ab we first note that the logical definition of the field

strength in terms of the blocked fields is a straightforward transcription of the original

expression:

F ′ab(x) = −
[
U ′b(x+ 2ea)U

′
a(x)− U ′a(x+ 2eb)U

′
b(x)

]
. (2.3)

Then applying Q to the expression for χ′ab in terms of the original fields, one indeed

obtains the desired expression after a few steps of algebra. At this point one immediately

recognizes that the nilpotency Q2 = 0 has also been maintained. It is also easy to see

that the properties under the symmetric group S5 have been preserved: any invariant of

the original fields is also S5 invariant when expressed in terms of the blocked fields. For

instance,
∑

a U ′aU
′
a is obviously invariant under permutations of the indices.

3 Renormalization

What we are interested in is the number of counterterms that must be fine-tuned in order

to obtain the desired long distance effective theory — i.e., one whose classical continuum

limit is nothing but N = 4 SYM. The strategy is to enumerate the lattice operators that

could possibly be generated under renormalization group flow with the blocking scheme

given above. Lattice operators that give relevant or marginal operators in the continuum

limit are the ones that would correspond to counterterms which must be fine-tuned. Of

course some operators can be given their canonical coefficients simply by a rescaling of the

fields; this is something that we will also describe below. The remaining coefficients, which

are determined by the flow from the ultraviolet theory (UV), would have to be fine-tuned

by adjusting corresponding coefficients in that UV theory. If we can write down two lattice

operators that both give the same relevant/marginal operator and only differ by irrelevant

operators in the continuum limit, then we can count them as a single counterterm for the

purpose of fine-tuning, and we only need write one of them for our description of the “most

general long distance effective action.” This is because this long distance action is defined

up to irrelevant operators, which do not affect the counting of counterterms that must be

fine-tuned.

In the continuum theory, the Q closed term that appears in the action is the unique

renormalizable operator with this property. Hence we know that on the lattice the

Q closed term is also unique. Thus what remains is to enumerate the Q exact op-

erators that are renormalizable. These must all take the form QTr
[
Ψf
(
U ,U , d

)]
or

Q
{

Tr ηTr f
(
U ,U , d

)}
, where Ψ is one of the fermion fields. Cubic or higher powers of

fermions would be nonrenormalizable, and the quantity that Q acts on must be fermionic

so that the action is bosonic. Only η can be used in a double trace operator, because a

– 4 –



J
H
E
P
1
1
(
2
0
1
4
)
0
5
0

field must be a site field in order for its trace to be gauge invariant. Thus, beginning with

Ψ = η, we have the following possible terms:

QTr
[
η(x)Ua(x− ea)Ua(x− ea)

]
, QTr (ηd)

QTr
[
η(x)Ua(x)Ua(x)

]
, QTrη,

Q
[
Tr ηTr

(
UaUa

)]
. (3.1)

However, the original action is invariant under the shift symmetry

η(x)→ η(x) + c1N (3.2)

where c is an arbitrary constant Grassmann parameter. This symmetry restricts the above

terms to the following combinations:

QTr
[
ηD(−)

a Ua
]
, QTr (ηd)

QTr
(
ηUaUa

)
− 1

N
Q
{

Tr ηTr
(
UaUa

)}
. (3.3)

Thus we only find one term that is not already present in the original action; this will be

the so-called “β term” below.

As far as Ψ = ψa is concerned, one gauge invariant combination that we can write

down is Tr ψaUa. However, Q acting on this vanishes identically. Another operator that

is allowed by the symmetries is

∆S = β2

∑
x

a4
(
aQTr ψaUaUaUa

)
= β2

∑
x

a4
[
aTr ψa(x)ψa(x+ea)Ua(x+ea)Ua(x)

]
(3.4)

where β2 is a dimensionless constant generated under the renormalization group (RG) flow,

and the power of a in front of the operator is dictated by the mass dimensions of the fields,

according to the way in which we normalized the links in (1.4): [ψa] = 3/2, [Ua] = 1. Of

course the factor of a4 simply represents the measure d4x in the continuum limit, as in the

original action above. The explicit power of a in front of the operator makes it appear as if

this is an irrelevant operator in the continuum limit; however, this is not the case because

of the factors of 1/a that arise from (1.4). Explicitly:

aTr ψa(x)ψa(x+ ea)Ua(x+ ea)Ua(x)

= aTr

{
ψa(x)

[
ψa(x) + a∂aψa(x) +O

(
a2
)] [1

a
−Aa(x) +O(a)

] [
1

a
−Aa(x)

]}
= Tr ψaDaψa +O(a) . (3.5)

Thus at leading order there is a marginal operator coming from this term. It violates the

Euclidean SO(4) Lorentz symmetry, but is consistent with the S5 point group symmetry

of the lattice. However, in fact this operator is prohibited by the U(1) symmetry described

earlier and hence β2 = 0 in the renormalized theory.

For the fermion choice of Ψ = χab, we can form the operators

QTr (χabUaUb), QTr (χabUbUa) . (3.6)

– 5 –
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However, the antisymmetry χab = −χba requires that these be combined with a minus sign,

leading to the operator

QTr
(
χabD(+)

a Ub
)

(3.7)

which is already present in the action. As before, adding additional powers of UaUa merely

leads to the same marginal operator in the continuum limit; leaving them out only changes

irrelevant operators — something that we are not interested in as far as counting countert-

erms is concerned.

It is clear that the blocked fields must have the same geometric interpretation on the

lattice Λ′ in order for these arguments to hold. This dictates the structure of the site

arguments of the fields, for instance appearing in (3.7), such that the same term as in the

original action appears in the long distance effective theory. It is also important that the

blocking preserves the S5 symmetry, so that this restriction on operators will be present.

Without it, we would have generated many other possibilities in the above analysis.

Thus the most general long distance effective action is4

QTr
{
α1χabFab + α2η

[
Da,Da

]
− α3

2
ηd
}
− α4

4
εabcde Tr χdeDcχab

+ βQ

{
Tr ηUaUa −

1

N
Tr ηTr UaUa

}
(3.8)

where we have suppressed an overall
∑

x a
4 factor. Acting with Q, followed by a rescaling

of fields

η → ληη, χab → λχχab, ψa → λψψa, d→ λdd (3.9)

we obtain

Tr

{
− α1FabFab − α1λχλψχabD[aψb] + α2λdd

[
Da,Da

]
− α2ληλψηDaψa

− α3

2
λ2
dd

2 − α4

4
λ2
χεabcdeχdeDcχab

}
+ β

{
λd Tr

(
dUaUa

)
− ληλψ Tr

(
ηψaUa

)
− 1

N
λd Tr dTr

(
UaUa

)
+

1

N
ληλψ Tr ηTr

(
ψaUa

)}
. (3.10)

Using the freedom in the four rescaling factors, we can simultaneously impose four con-

straints,

α1λχλψ = α1, α2λd = α1, α2ληλψ = α1, α4λ
2
χ = α1 (3.11)

which sets many of the coefficients above to α1. Solving this system one obtains

λη =

√
α3

1

α4α2
2

, λχ =
1

λψ
=

√
α1

α4
, λd =

α1

α2
. (3.12)

It is also convenient to define

α′3 = α3

(
α1

α2

)2

, β′ = β
α1

α2
. (3.13)

4Actually there is one further operator that can be added to the A∗
4 action O =

∑
x εabcde

Tr
(
Ua(x)Ub(x+ a)Uc(x+ a+ b)Ud(x+ a+ b+ c)Ue(x+ a+ b+ c+ d)

)
. However this operator (which is

Q exact) yields only the usual topological term
∫
εµνρλFµνFρλ in the continuum limit.

– 6 –
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Then the action takes the form

Tr

{
− α1FabFab − α1χabD[aψb] + α1d

[
Da,Da

]
− α1ηDaψa

− α′3
2
d2 − α1

4
εabcdeχdeDcχab

}
+ β′

{
Tr
(
dUaUa

)
− Tr

(
ηψaUa

)
− 1

N
Tr dTr

(
UaUa

)
+

1

N
Tr ηTr

(
ψaUa

)}
. (3.14)

In fact it is remarkable that the β term does not bifurcate into multiple coefficients; this

is a consequence of λd = ληλψ.

At this point, after rescaling of the fields, we find that a total of at most two fine-tunings

will be required: α′3 → α1 and β′ → 0. (The overall factor of α1 just corresponds to the

renormalized gauge coupling, which does not need to be fine-tuned since the continuum

theory is conformal.) This is drastically superior to the case of a naive implementation

such as Wilson fermions with SO(4) symmetry (the SO(6) symmetry cannot be preserved

because it is chiral), where there are eight fine-tunings (see appendix A).

However, there is another tool at our disposal. In [3] it was shown that no effective

potential was generated for the bosonic fields at any order in lattice perturbation theory.

Thus the moduli space is not lifted by perturbative radiative corrections. If this is also true

of nonperturbative effects, then the β term is forbidden, since it includes trilinear coupling

of the scalars, which would lift the moduli space (see appendix B). This would mean that

under the RG flow, β ≡ 0 is maintained. Any deviation from this would have to arise from

nonperturbative phenomena. It would be interesting to study the effects of instantons in

the lattice theory in order to see whether or not they generate an effective potential.

These arguments reveal that a single fine tuning of a marginal operator c2 = α′3/α1

is all that should be required to target N = 4 SYM in the continuum limit defined by

L→∞ with g2 held fixed. The situation is similar to the case of lattice QCD with Wilson

fermions where the bare mass must be fine-tuned to achieve the chiral limit. In actuality

our situation is somewhat better because we do not need to tune the bare coupling in order

to achieve the desired lattice spacing. This is a consequence of the fact that the continuum

theory is conformal at all scales.

We should also comment on our recent work [4] involving the restoration of R sym-

metries, which in the continuum is a global SU(4) symmetry that does not commute with

supersymmetry. It was found that restoration of even a discrete version of the R symmetry,

denoted by Ra and Rab, is sufficient to guarantee the correct continuum limit. It has the

effect of setting β ≡ 0 and all of the αi coefficients equal to each other. Thus in a Monte

Carlo renormalization group analysis (see next section) using the above blocking scheme,

it should be seen that blocked observables are related to each other by Ra symmetry after

a sufficient number of steps. The Ra symmetry was tested for 1×1 Wilson loops in [5] and

it was found to be violated by O(10)%. It would be of interest to repeat this measurement

after a few blocking steps and check whether or not the violation is reduced.

– 7 –
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4 Monte Carlo renormalization group

The strategy here is in principle relatively simple, though in practice rather challenging.

One simulates the theory on a fine lattice of size L4, obtaining configurations of the fine

lattice fields. This ensemble of fine lattice fields is then blocked according to the procedure

outlined in section 2 to produce an ensemble of blocked lattices of size (L/2)4. Observables

are then computed from these blocked fields. These could include m× n Wilson loops, or

mesonic correlation functions using blocked fermions in the interpolating operators. The

so-called “gluino-glue” state would also be of interest. One then simulates a coarse lattice

of size (L/2)4, but with the more general action given in the preceding section with a

single additional coupling c2 (we set β = β2 = 0 following the arguments in section 3). The

same class of observables are now computed directly on the coarser lattice. For instance,

if an m × n Wilson loop was computed on the blocked lattice, then a m × n Wilson loop

is computed on the coarse lattice. The coupling c2 of the coarse lattice action is then

tuned until there is a match between the observables. Notice that this matching is done at

the same lattice volume and hence the leading finite size effects are removed. This gives

one MCRG step. Similar to more conventional MCRG blocking schemes used for lattice

QCD we have an adjustable blocking parameter, the scaling factor ξ, that can be tuned to

optimize the matching between different observables.

As a preliminary step in this direction, we have performed a blocking step 84 → 44.

The scaling parameter is determined from holding the 1 × 1 Wilson loop constant. I.e.,

if W (1, 1)b.f. = ξ4W (2, 2)fine and W (1, 1)coarse are set equal, then ξ is determined. Here

“b.f.” indicates the fine lattice blocked using the RG blocking transformations above. We

show the determination of this parameter in figure 1. These simulations utilize auxiliary

parameters µ and κ to regulate the flat directions and suppress the U(1) sector [the gauge

group is U(N) not SU(N)] — we refer the reader to [5] for details. The current simulations

employ µ = 1.0 and κ = 0.5. In addition, on both fine and coarse lattices the coupling c2

is set to its classical value c2 = 1.0 and the gauge coupling on both coarse and fine lattices

are set equal. According to the above discussion,

ξ4 =
W (1, 1)coarse

W (2, 2)fine
. (4.1)

Taking this rescaling into account for other Wilson loops, we show the matching of

W (2, 1)b.f. and W (2, 2)b.f. to W (2, 1)coarse and W (2, 2)coarse in figures 2 and 3 respectively.

It can be seen that this simple rescaling factor is quite sufficient to give a matching of

Wilson loop observables. There is no need to tune the coupling c2 on the coarse lattices to

achieve a good matching which implies that the system already lies close to a fixed point of

the RG transformation. Of course in the continuum this is to be expected, since the beta

function vanishes for all gauge couplings, but it is quite a startling result for the lattice

theory we are studying. One important point to make about this result is that it suggests

that the β term is not generated nonperturbatively, since we did not need to add it to the

coarse lattice theory in order to obtain matching. Of course the current lattices are small,

our statistics are limited and the number and type of operators used in the analysis is very

– 8 –
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Figure 1. Determination of the scaling parameter ξ. Plotted on the vertical axis is ξ4, the rescaling

factor needed to match the 1× 1 Wilson loop measured on the blocked lattices to its value on the

coarse lattice.

small. We postpone a more detailed analysis to a followup paper and regard the results

presented here as merely a proof of principle for this new blocking scheme.

5 Conclusions

In this article we have exhibited a RG blocking scheme forN = 4 lattice SYM that preserves

the symmetries and structure of the original lattice formulation: Q supersymmetry, S5

point group symmetry, η shift symmetry, U(N) gauge symmetry, the hidden U(1) ghost

number, and the spacetime realization of the fields in terms of 0-forms, 1-forms and 2-forms

with corresponding site, link, and diagonal gauge transformation properties. The existence

of such a real space RG transformation is necessary to our arguments in [3] about the form

of the long distance effective action, and the number of fine-tunings that are required in

order to recover the full symmetry group of the target continuum theory.

We have also shown that rescalings of the lattice fields reduces the number of coun-

terterms that must be adjusted in this procedure. In addition, we have argued that the

so-called β term lifts the moduli space, whereas the results of [3] prove that the moduli

space is not lifted to all orders in perturbation theory. We therefore conclude that β ≡ 0, so

that there is one less fine-tuning. Thus we finally arrive at a rather encouraging result: only

a single parameter must be manipulated in order to obtain the desired continuum limit.

This is comparable to the tuning required in Wilson quark simulations of lattice QCD.

– 9 –
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Figure 2. A comparison ofW (2, 1)b.f. andW (2, 1)coarse with the rescaling factor taken into account.

These results have led us to a preliminary implementation of MCRG. We find that

using the rescaling freedom in the blocked link fields we are able to obtain a matching of

Wilson loops without any fine-tuning or flow of couplings at all. This is consistent with an

approximately conformal theory.

Follow-up work will include MCRG on larger lattices, and the inclusion of matching

observables that involve fermions. This is important because symmetry restoration must be

checked in all sectors, not just the bosonic. As mentioned above, our tests of Ra symmetry

in [5] have been limited to Wilson loops, and this is not a sufficient test to establish the

full restoration of Ra symmetry, since fermionic observables should also be symmetric if

the lattice action is properly tuned. It is somewhat surprising that [5] found an O(10)%

violation of the Ra symmetry but that in the present study we see no evidence for flow of

couplings. One possibility is that the violation of Ra symmetry is not having a significant

effect on conformality. Another possibility is that Ra symmetry tests are more sensitive to

deviations from the desired N = 4 behavior.
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Figure 3. A comparison ofW (2, 2)b.f. andW (2, 2)coarse with the rescaling factor taken into account.

A Wilson fermion action

Here we enumerate the fine-tunings that would have to be performed if Wilson fermions

were used for the fermion discretization of lattice N = 4 SYM. In the case of Wilson

fermions, chiral symmetry is explicitly broken by the regulator. Thus one cannot preserve

the SU(4)R of the continuum theory. However, the SO(4) subgroup can be preserved.

Under this subgroup, the fermions λi, i = 1, . . . , 4 (we use a two-component notation in

terms of Weyl fermions) transform as a 4 and the scalars φm, m = 1, . . . , 6 transform as a 6,

or antisymmetric representation, which we can make explicity by mapping to φij = −φji,
i, j = 1, . . . , 4. Then the most general long distance effective action consistent with the

symmetries of the lattice theory is

S =

∫
d4x Tr

{
1

2g2
r

FµνFµν +
i

g2
r

λiσ
µDµλi +

1

g2
r

DµφmDµφm +m2
φφmφm

+mλ

(
λiλi+λiλi

)
+κ1φmφmφnφn+κ2φmφnφmφn+y1

(
λi [φij , λj ] + λi

[
φij , λj

])
+ y2εijkl

(
λi [φjk, λl] + λi

[
φjk, λl

])}
+

∫
d4x

{
κ3(Tr φmφm)2 + κ4 Tr φmφn Tr φmφn

}
. (A.1)

The coefficients of the first three terms were achieved by rescaling the fields. The other eight

coefficients will be determined by the renormalization group flow, and must be fine-tuned

by adjusting corresponding UV coefficients in the lattice theory.
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B Continuum limit of the β term

To arrive at the continuum limit of the β term discussed in the main text, we apply the

link expansion (1.4) and keep the terms that are not O(a) suppressed. This leads to∫
d4x β

1

a

{∑
a

Tr
(
d
(
Aa −Aa

))
− 1

N
Tr d

∑
a

Tr
(
Aa −Aa

)
−
∑
a

Tr ηψa +
1

N
Tr η

∑
a

Tr ψa +O(a)

}
. (B.1)

Now we recall that

Aa = Aa + iBa, Aa = Aa − iBa (B.2)

where Aa gives rise to the ordinary gauge fields and one scalar, and Ba lead to the other five

scalars of N = 4 SYM. Thus Aa − Aa = 2iBa. Also we decompose the U(N) generators

into T 0 = (i/
√

2N)1N and TA ∈ su(N) with A = 1, . . . , N2 − 1. We will normalize the

SU(N) generators to Tr TATB = (1/2)δAB. What we find is that all of the U(1) fields

disappear from the above expression and we are left with:∫
d4x

β

2

1

a

{
2idA

∑
a

BA
a − ηA

∑
a

ψAa +O(a)

}
. (B.3)

Since the mass dimension of the auxiliary field is [d] = 2, what we see is that we have two

dimension three operators, with a coefficient with mass dimension one. Absent fine-tuning

(or our moduli space argument), the size of this coefficient is O(1/a).

It is now desirable to eliminate the auxiliary field. For this we need all of the terms in

the action that involve d. We evaluate[
Da,Da

]
= 2iDaBa = 2i(∂aBa + [Aa, Ba]) . (B.4)

Then the terms in the action with the auxiliary field are

Tr
(

2iα2dDaBa −
α3

2
d2
)

+
β

2a
2idA

∑
a

BA
a . (B.5)

Solving the auxiliary equations of motion yields

d0 = 2i
α2

α3
∂aB

0
a

dA = 2i
α2

α3
(DaBa)

A + 2i
β

α3

1

a

∑
a

BA
a . (B.6)

Substituting these back into (B.5) yields

−α
2
2

α3

(
∂aB

0
a

)2−α2
2

α3
(DaBa)

A(DbBb)
A−2α2β

α3

1

a
(DaBa)

A
∑
b

BA
b −

β2

α3

1

a2

∑
a

BA
a

∑
b

BA
b . (B.7)

Thus we see that the SU(N) scalar mode
∑

aB
A
a gets an O

(
1/a2

)
mass term. In addition,

we have a cubic interaction [∂a +Aa, Ba]
∑

bBb in the SU(N) sector. Both of these would

lift the moduli space, which we have shown previously in [3] does not occur to any order

in perturbation theory. Thus unless nonperturbative effects lift the moduli space, β ≡ 0.

(It can also be seen from (B.3) that for β 6= 0 the SU(N) fermions would get a mass term

η
∑

a ψa.)
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