
J
H
E
P
1
1
(
2
0
1
4
)
0
1
0

Published for SISSA by Springer

Received: July 17, 2014

Revised: September 16, 2014

Accepted: September 29, 2014

Published: November 4, 2014

Vortex hair on AdS black holes

Ruth Gregory,a,b Peter C. Gustainis,c David Kubizňák,b,c Robert B. Mann,b,c
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1 Introduction

That black holes have no hair is a long-standing dictum of classical general relativity [1],

one whose content is highly contingent upon assumed conditions. Although the original

no-hair theorems were more about limiting charges a black hole could carry, they have

come to be taken more widely as meaning black holes cannot support nontrivial fields

on their event horizon. This outlook is supported by the original no hair theorems for

gauge fields and scalars [2, 3], which placed what were regarded as eminently reasonable

conditions on matter fields. In the intervening years, however, it has become clear that

these conditions are not only too restrictive [4], but in fact there are many situations of

physical interest in which black holes can support nontrivial field configurations. Most of

these are concerned with asymptotically flat space times [5–7] whose hair falls off sufficiently

rapidly at large distances from the black hole, though there are examples of nonsingular

cosmological solutions with time dependence [8–10], or indeed scalar condensates around

Kerr black holes [11, 12].

Topological defects form an interesting class of alternative examples of black hole hair

outside of the asymptotically flat class. Both domain walls and cosmic strings [13, 14],

topologically stable objects with a nontrivial quantum-field-theoretic vacuum structure,

can have significant gravitational influence, and were originally expected to be antipathetic

to black holes, in part because of the problem of how to have the associated fields end on

the event horizon, but also because of the strong global gravitational impact of the black

hole. Domain walls provide a ‘mirror’ to spacetime (effectively compactifying space [15, 16])

and cosmic strings yield a conical deficit that generates a gravitational lens [17]. It is now

known that both can “pierce” the black hole [18, 19]: in the former case, the field theoretic
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wall provides a smooth transition between mirror images of the northern hemisphere of

the C-metric,1 whereas in the latter case a smooth version of the Aryal-Ford-Vilenkin

metric [21] represents a black hole with a conical deficit through its poles. The original

solution [19] has been generalized in a number of ways to include vortices ending on black

holes [22–26], charged black holes [27–30], dilatonic black holes [31, 32], rotating black

holes [33, 34], black holes as beads on cosmic strings [35], and asymptotically dS [36] and

AdS black holes [37, 38]. Fields typically terminate on the event horizon or, in the case of

extremal black holes, be expelled from the horizon if the width of the string is comparable

to the size of the black hole.

Most recently, the rotating black hole has been subject to a thorough study [34],

whose analysis corrected earlier work that had a flawed ansatz [33]. There is now a detailed

understanding of how the core fields of a vortex accommodate the rotation of asymptotically

flat black holes and their associated ‘electric’ field generation. The vortex cuts out a

local co-rotating deficit azimuthal angle, which leads to some novel features, shifting the

ergosphere of the black hole and altering the innermost stable circular orbit (ISCO). As

with charged black holes, flux expulsion can indeed take place under certain circumstances.

However unlike the charged case the phase transition is of first order and numerical evidence

suggests that the flux-expelled solution is not dynamically stable.

Here, we investigate the impact of a negative cosmological constant on the problem

of a vortex piercing a black hole. Specifically, we obtain vortex solutions for an Abelian

Higgs model minimally coupled to Einstein gravity in four dimensions with a negative

cosmological constant. We obtain both approximate and numerical vortex solutions to the

field equations of the Abelian Higgs model in the background of a Kerr-Newman-AdS black

hole. We find that as the AdS length, `, becomes comparable to the size of the vortex, the

core of the vortex increasingly narrows and the fields exhibit asymptotic power-law falloff

instead of exponential. We find that the Meissner effect, observed previously for extremal

Kerr and Reissner-Nordstrom black holes, persists here as well, and is first order if there is

non-zero rotation but is otherwise 2nd order. We find that the flux can pierce the horizon

provided the AdS length is sufficiently large, and numerically obtain the critical radius for

the transition from piercing to expulsion.

Our work may have interesting astrophysical implications. It has long been known [39,

40] that asymptotically flat spinning black holes tend to expel magnetic fields in a contin-

uous way as the black hole is spun up. Indeed, it has been argued that all stationary, ax-

isymmetric magnetic fields are expelled from the Kerr horizon in the extremal limit [41, 42].

Since a Killing vector in the vacuum spacetime can act as a vector potential for a Maxwell

test field, as the hole is ‘spun up’ toward extremality, the component of the magnetic field

normal to the horizon approaches zero, and so the flux lines are expelled (a phenomenon

that also occurs for black strings and p-branes [43]). This Meissner-like effect could quench

the power of astrophysical jets, since the magnetic fields need to pierce the horizon to

extract rotational energy from the black hole, though it has been recently argued [44] that

split-monopole magnetic fields may continue to power black hole jets, with the fields be-

1An accelerating black hole metric [20].
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coming entirely radial near the horizon, avoiding expulsion. In contrast to this we find

(as for the asymptotically flat case [34]) in the Abelian Higgs model that for large AdS

black holes the vortex pierces the event horizon, whereas flux is expelled if the black hole is

sufficiently small. This would provide an interesting observational signature for black holes

located in a local AdS-like environment of positive vacuum pressure, if any such exist.

From a holographic perspective, a vortex in the bulk has an interpretation as a defect

in the the dual CFT [37, 45], corresponding in the dual superfluid to heavy pointlike

excitations around which the phase of the condensate winds. We comment briefly at the

end of our paper on a holographic interpretation of our results.

2 Abelian Higgs model for a cosmic string

The abelian Higgs model is the canonical toy model for a cosmic string, as it has the

simplest action with the requisite vacuum structure to allow a vortex to form. We write

the action as2

S =

∫
d4x
√
−g
[
DµΦ†DµΦ− 1

4 F̃µνF̃
µν − 1

4λ(Φ†Φ− η2)2
]
, (2.1)

where Φ is the Higgs field, and Aµ the U(1) gauge boson with field strength F̃µν . As per

usual, we rewrite the field content as:

Φ(xα) = ηX(xα)eiχ(x
α) , (2.2)

Aµ(xα) =
1

e
[Pµ(xα)−∇µχ(xα)] . (2.3)

These fields extract the physical degrees of freedom of the broken symmetric phase, with X

representing the residual massive Higgs field, and Pµ the massive vector boson. The gauge

degree of freedom, χ, is explicitly subtracted, although any non-integrable phase factors

have a physical interpretation as a vortex.

In terms of these new variables, the equations of motion are

∇µ∇µX − PµPµX +
λη2

2
X(X2 − 1) = 0 , (2.4)

∇µFµν + 2e2η2X2P ν = 0 . (2.5)

Because we have not set G ≡ 1, we still have the freedom to fix the units of energy, or

η. We therefore choose to set
√
λη = 1, effectively stating our Higgs field has order unity

mass. For further use we also introduce the Bogomol’nyi parameter [46]:

β = λ/2e2 , (2.6)

indicating the gauge field has mass of order 1/
√
β. Alternately, we can rescale the dimen-

sionful parameters t and r in the equations of motion: t →
√
ληt, etc. and their corre-

sponding gauge field components Pt → Pt/
√
λη — note Pφ remains unrescaled however.

2We use units in which ~ = c = 1 and a mostly minus signature.
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A straight static vortex solution will then have the Higgs profile, XNO, dependent on a

single radial variable, R say, and the gauge field will have a single angular component, Pφ =

PNO(R), where in flat spacetime XNO and PNO satisfy the Nielsen-Olesen equations [47]

X ′′NO +
X ′NO
R

=
P 2
NOXNO

R2
+

1

2
XNO(X2

NO − 1) ,

P ′′NO −
P ′NO
R

=
X2
NOPNO
β

.

(2.7)

The profiles of the XNO and PNO fields are highly localized around R = 0, and represent a

Higgs core in which the U(1) symmetry is restored with (in this case) a unit of magnetic flux

threading through. Higher winding strings can be obtained by replacing PNO → NPNO,

although these are unstable to splitting for β > 1.

Since we are interested in vortices in an anti-de Sitter black hole background, for future

reference we now discuss the vortex solution in the pure AdS geometry:

ds2 =
(

1 +
r2

`2

)
dt2 − dr2(

1 + r2

`2

) − r2dθ2 − r2 sin2θdφ2

=
`2 +R2

`2(1− Z2)
dt2 − `2 +R2

(1− Z2)2
dZ2 − `2dR2

`2 +R2
−R2dφ2 .

(2.8)

By writing the AdS metric in this second, cylindrical, form we can see that if we align the

vortex in the {R,φ} plane, the equations of motion will be independent of Z, and hence

our vortex can once again be represented by a set of ordinary differential equations:(
1 +

R2

`2

)
P ′′0 +

(
2R2

`2
− 1

)
P ′0
R

=
X2

0P0

β
,(

1 +
R2

`2

)
X ′′0 +

(
4R

`2
+

1

R

)
X ′0 −

P 2
0X0

R2
− 1

2
X0(X

2
0 − 1) = 0 .

(2.9)

As R→ 0, the additional terms dependent on the AdS background drop away, and we have

a very similar field structure on axis to the Nielsen-Olesen vortex. For R & ` however, the

functions are modified, and the asymptotic fall-off of the fields becomes power law rather

than exponential.

In figure 1 we show the Higgs and gauge profiles for the AdS vortex. At large `,

the profile is essentially the same as the pure NO-vortex. However as ` approaches the

scale of the vortex, the core is seen to narrow, and the power law fall-off becomes more

apparent. Although we can formally integrate these equations for ` . 1, it is unclear that

such solutions with our boundary conditions are physically relevant, as the false vacuum

X = 0 becomes stable for Compton wavelengths above the AdS scale [48].

3 Vortices in Kerr-AdS: analytics

Although the full exact solution of a vortex in a black hole background must be found

numerically, there are two ways in which we can gain insight into the system analytically.

The first is by construction of an approximate solution, and the second is the case of
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Figure 1. AdS-NO vortex: the values of X and P for the AdS NO vortex are depicted as functions

of R.

extremal black holes in which we can prove the existence (or not) of a piercing solution on

the event horizon.

We start by writing down the charged rotating black hole solution [49]

ds2 =
∆

Σ

[
dt− a sin2θ

Ξ
dφ

]2
− Σ

∆
dr2 − Σ

S
dθ2 − S sin2θ

Σ

[
adt− r2 + a2

Ξ
dφ

]2
, (3.1)

where

Σ = r2 + a2 cos2θ , Ξ = 1− a2

`2
, S = 1− a2

`2
cos2θ ,

∆ = (r2 + a2)
(

1 +
r2

`2

)
− 2mr + q2 , (3.2)

and the U(1) potential is

A = −qr
Σ

(
dt− a sin2θ

Ξ
dφ

)
. (3.3)

The mass M , the charge Q, and the angular momentum J are related to the parameters

m, q, and a as follows:

GM =
m

Ξ2
, GQ =

q

Ξ
, GJ =

am

Ξ2
. (3.4)

The ergosphere is located at ∆ = a2S sin2 θ, and the horizon at ∆ = 0. For large `, the

horizon is just slightly perturbed from its Kerr-Newman value. As ` decreases, the horizon

radius drops, and for small ` asymptotes to m1/3`2/3 (or
√
q` for nonzero charge). We see

therefore that for smaller values of `, the fact that m� 1 is no guarantee that the horizon
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radius must also be similarly large in general. However, as we have already remarked, we

do not expect ` . 1 to be physically relevant. Therefore in any analytic approximation,

we will assume ` > 1.

Before moving to the vortex equations and analytic results, it is worth remarking on

the behaviour of the horizon radius in a little more detail, and how this depends on `.

This is most succinctly captured by the extremal horizon radius, when ∆ = ∆′ = 0, which

implies

r+ =
`√
6

((1 +
a2

`2

)2

+ 12

(
a2 + q2

`2

))1/2

−
(

1 +
a2

`2

)1/2

. (3.5)

We see therefore that r+(a, q, `) <
√
a2 + q2, the Kerr-Newman value. Moreover, as `

drops, it is easy to see that r+ also drops, and for ` . 10 drops quite sharply. Therefore,

for the purposes of finding an approximate solution for the vortex functions, which typically

assumes the black hole is large, we must consider ` & 10, and for considerations of flux

expulsion, which typically happens for small black holes, we would expect any argument

to be sensitive to the value of `.

To find the vortex equations, we must consider not only the X and Pφ functions, but

also a nonzero Pt:

0 = ∆X,rr + ∆′X,r + SX,θθ + cot θ
(
S +

2a2

`2
sin2 θ

)
X,θ

+ΣP 2
µX −

Σ

2
X(X2 − 1) , (3.6)

X2

β
Pt =

4
Σ
Pt,rr +

S

Σ
Pt,θθ +

2aΞ cot θ

Σ3

(
ρ2S −∆ +

a2

`2
Σ sin2θ

)
Pφ,θ

−aΞ

Σ3

(
2r(Sa2 sin2θ −∆) + Σ∆′

)
Pφ,r

+
cot θ

Σ3

(
S
(
ρ4 + a4 sin4θ

)
− 2a2 sin2θ

(
∆− ρ2Σ

`2

))
Pt,θ

−sin2θ

Σ3

(
a2
(
2rρ2S + Σ∆′

)
− 2rρ2∆

sin2θ

)
Pt,r , (3.7)

X2

β
Pφ =

∆

Σ
Pφ,rr +

S

Σ
Pφ,θθ +

ρ2

Σ3

(
2rSa2 sin2θ + Σ∆′ − 2r∆

)
Pφ,r

+
cot θ

Σ3

(
2a2 sin2θ

(
∆− a2

`2
Σ sin2θ

)
− S

(
a2 sin2θ(ρ2 − Σ) + ρ4

))
Pφ,θ

+
2 cot θa3 sin4θ

ΞΣ3

(
∆− ρ2

(
1 +

r2

`2

))
Pt,θ

+
a sin2θ

ΞΣ3

(
2r
(
ρ4S −∆(Σ + ρ2)

)
+ ρ2Σ∆′

)
Pt,r , (3.8)

where ρ2 = r2 + a2 has been introduced for visual clarity, ∆′ = d∆/dr, and

P 2
µ =

(ρ2Pt + aΞPφ)2

Σ∆
−

(ΞPφ + a sin2θPt)
2

ΣS sin2θ
. (3.9)
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3.1 Approximate solution

As with the original Schwarzschild, Reissner-Nordstrom and Kerr black holes, it is useful

to develop an analytic approximate solution. Clearly we expect this to make use of the

(possibly AdS) Nielsen Olesen solutions, and to depend on a single function of r and θ.

Consider the function

R ≡ ρ√
Ξ

sin θ , (3.10)

which tends to the Kerr expression ρ sin θ as ` → ∞. Then, assuming that the vortex is

much thinner than the black hole horizon radius means that ρ is always much greater than

one, and focusing on the core region of the vortex [R < O(10)] means that sin θ � 1. We

can therefore expand the metric functions

Σ = ρ2
(

1− a2R2Ξ

ρ4

)
' ρ2 , S = Ξ

(
1 +

a2R2

`2ρ2

)
' Ξ , (3.11)

and derivatives as

∂

∂r
=
Rr

ρ2
d

dR
,

∂

∂θ
=

ρ√
Ξ

(
1− ΞR2

ρ2

)1/2
d

dR
' ρ√

Ξ

d

dR
,

∆
∂2

∂r2
+ S

∂2

∂θ2
=

[
S
(ρ2

Ξ
−R2

)
+

∆R2r2

ρ4

]
d2

dR2
+
(∆a2

ρ4
− S

)
R
d

dR
(3.12)

' ρ2
(

1 +
∆R2

ρ4

) d2
dR2

,

to leading order in R/ρ. This already leads to significant simplification of several of the

terms in (3.6)–(3.8). Then a little experimentation suggests the following approximate

functions

X ' X0(R) , Pφ ' P0(R) , Pt '
a

ρ2

(∆

ρ2
− Ξ

)
P0(R) , (3.13)

which to leading order give the approximate equations:

0 =

(
1 +

∆R2

ρ4

)
X ′′0 +

(
1 +

4R2

`2

)
X ′0
R
− P 2

0X0

R2
− X0

2
(X2

0 − 1) ,

X2
0

β
P0 =

(
1 +

∆R2

ρ4

)
P ′′0 −

(
1 +

(2∆− r∆′)R2

ρ4

)
P ′0
R
.

(3.14)

Away from the horizon, ∆ ∼ ρ4/`2 to leading order, and we recover the AdS Nielsen-Olesen

equations (2.9). However retaining the R2/`2 terms is perhaps misleading, as we require

` > O(10) in order for the horizon radius of an extremal black hole not to be too small.

We also see that on (or near) the horizon, the O(R2/`2) corrections to the Nielsen-Olesen

equations fail to have the precise AdS form. This implies that while we can use the analytic

approximation to good effect away from the black hole, near the horizon we would expect

corrections to our solution at order O(`−2).

Note that because of the behaviour of ∆ at large r, the approximation for Pt in (3.13)

actually becomes proportional to Pφ at large r: Pt ∼ aPφ/`2. Our gauge field is thus

P = Pφdφ+ Ptdt ∼ P0(R)
(
dφ+

a

`2
dt
)
, (3.15)
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Figure 2. Approximate vs. numerical solution: in each case the numerical solution is shown in

solid colour, and the approximation in dashed black. Contours of 0.1− 0.9 (in steps of 0.2) of the

range of each field are shown. From left to right: the Higgs field in blue, the Pφ field in red, and

PT (the component with respect to the nonrotating frame at infinity) in brown. For PT , we show

contours of 0.1− 0.9 of the maximal negative value, which is attained on the poles of the horizon.

The outer grey curve represents the boundary of the ergosphere.

therefore it would appear that we have an electric field inside our vortex far from the

black hole. In fact, this is simply an artifact of the Boyer-Lindquist style coordinates we

have used in (3.1), which asymptote AdS4 in a rotating frame with angular momentum

Ω∞ = a/`2 [50]. One may remove this rotation by introducing new variables

ϕ = φ+
a

l2
t , T = t . (3.16)

It is then easy to check that P in (3.13) now reads

P = P0(R)
(
dϕ− a(2mr − q2)

ρ4
dT
)
. (3.17)

The PT component is now negative definite and falls off appropriately at large r. The form

of this solution is now identical to that used in [34].

Figure 2 shows a comparison of this pseudo-analytic approximation with a numerically

obtained solution for an extremal low mass lowish ` black hole. We take the values m =

3, ` = 20, q = 0, and with a ' 2.939 at its extremal value in order to draw a parallel with

the plot in [34]. What is clearly shown is that the approximation is extremely good almost

everywhere, the only slight discrepancy appearing near the event horizon — as expected

given the structure of the corrections to the approximation there.

As we have remarked, the approximate solution here is only a good approximation

away from the horizon region, and requires 1 −∆/ρ4 � 1. However, for large AdS black

– 8 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
0

holes, the horizon radius can be much smaller than the bare Schwarzschild radius, and

the region in which we cannot justify the approximate solution grows. We have explored

this region numerically (see section 4) and find no qualitative difference from the “smaller”

black holes. Indeed, the approximate solution seems to still capture the qualitative features

of the solution, and the only quantitative difference we observe is that the time component

of the gauge field PT leaks further out along the axis compared to the approximate solution,

as can be seen by looking at (3.7) on axis.

3.2 Extremal black holes

The extremal horizon exhibits a Meissner effect for the cosmic string, in which if the

black hole becomes too ‘small’ the cosmic string magnetic flux is expelled from the black

hole, and the horizon remains in the false vacuum. For both Reissner-Nordstrom [30] and

Kerr [34] black holes, the existence of this phase transition has been proven analytically,

as well as demonstrated numerically. The Reissner-Nordstrom transition is second order,

corresponding to a continuous change in the order parameter (the magnitude of the Higgs

field) between piercing and expelling solutions. For the Kerr black hole however, the

phase transition was first order, corresponding to a discontinuous change in the value of

the gradient of the zeroth component of the gauge field between piercing and expelling

solutions.

We will now argue for the existence of a Meissner effect in the AdS-Kerr-Newman black

holes; the Kerr-Newman situation follows from taking the large-` limit. Begin by defining

new variables P and Q:

SP = ΞPφ + a sin2θPt , (r − r+)Q = ρ2Pt + aΞPφ , (3.18)

where the factors have been chosen so that the horizon equations are clearly identifiable,

and the range of P is P ∈ [0, 1]. The field equations (3.6)–(3.7) become

0 =
∆

Σ
X,rr +

∆′

Σ
X,r +

1

Σ sin θ

(
S sin θX,θ

)
,θ

+

(
(r − r+)2Q2

Σ ∆
− P 2

ΣS sin2 θ

)
X − X

2
(X2 − 1), (3.19)

X2P

β
=

∆

Σ
P,rr +

S

Σ
P,θθ +

Σ∆′ − 2r∆

Σ2
P,r +

cot θ

Σ

(
4
a2

l2
sin2θ − S

Σ

(
Σ− 2a2 sin2θ

))
P,θ

+
2a sin2 θ

Σ2

(
(r − r+) (rQ,r − cot θ Q,θ −Q) + aP

(
1− r2

l2

)
+ rQ

)
, (3.20)

X2Q

β
=

∆

Σ

[(r − r+)Q],rr
(r − r+)

+
S

Σ
Q,θθ +

cot θ

Σ2
(2a2 sin2 θ(1 +

r2

`2
) + S Σ)Q,θ

+
2∆

Σ2

(
a

(r − r+)
(rSP,r − S cot θP,θ − (2− S)P )− rQ,r −

r+Q

(r − r+)

)
, (3.21)
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which in the extremal limit and on the horizon reduce to(
S sin θX ′

)′
= X sin θ

[
SP 2

sin2 θ
− 2Q2

∆′′+
− Σ+

2
(1−X2)

]
, (3.22)(

S2P ′

Σ+ sin θ

)′
= PS sin θ

[
X2

β sin2 θ
− 2a2

Σ2
+

(
1−

r2+
`2

)]
− 2ar+SQ sin θ

Σ2
+

, (3.23)(
S sin θQ′

Σ+

)′
=
X2Q

β
sin θ , (3.24)

where a prime now denotes d/dθ, and the “+” subscript indicates the function is evaluated

at r = r+, given by (3.5). Note that unlike the vacuum Kerr case, in which r+ = a, there

is no simple factorization of Σ+ leading to a clean θ-dependence in these equations.

Note that if a = 0, Q ≡ 0, and S ≡ 1 and our system of horizon equations reduces

precisely to the Reissner-Nordstrom horizon equations studied in [30]. Therefore we expect

essentially the same analytic arguments to hold here (which is the case as we shall see

below). Further, since Q vanishes, we expect a second order phase transition governed by

the continuous order parameter X. On the other hand, if a 6= 0, Q is nonzero in the bulk

of the spacetime and so we must examine the full system of horizon equations.

Let us look first at the behaviour of the horizon function Q, as this will give us the

order of the phase transition. For a piercing solution, X is nontrivial on the horizon. Hence

Sβ sin θQ′(θ) = Σ+

∫ θ

0
X2Q sin θdθ , (3.25)

upon integrating (3.24). We can easily see this cannot be true unless Q ≡ 0. Evaluat-

ing (3.25) at the first point at which Q′ = 0 tells us that
∫ θ
0 X

2Q sin θ = 0, but Q is either

positive and increasing on this range, or negative and decreasing: in either case, the inte-

grand is positive or negative definite, thus cannot be zero. Therefore Q ≡ 0 for a piercing

solution. On the other hand, an expelling solution has X ≡ 0, with Pφ = 1, hence

P =
ΞΣ+

ρ2+S
, Q ≡ −2ar+Ξ

ρ2+
. (3.26)

Given that Q changes in a discontinuous fashion, we see that the phase transition is first

order for nonzero a.

It is clear that a flux expelling solution to the horizon system of equations (3.22)–(3.24)

can exist. However to prove flux expulsion happens, this solution must be extendable to

a bulk solution. To demonstrate this, we follow the argument of [30]. If flux is expelled,

X ≡ 0 on the horizon, and must become nonzero and positive a small distance from

the horizon, implying (∆X,r),r > 0 just outside the horizon. Referring to (3.19), we see

therefore that

(S sin θX,θ),θ +
(r2+ + a2 cos2 θ)X

2
sin θ <

SP 2

sin θ
X <

SX

sin θ
(3.27)

is required if a flux expelling solution is to exist. Integrating this inequality on [θ0, π/2]

gives

S sin θ0X,θ0 >

∫ π/2

θ0

(
(r2+ + a2 cos2 θ) sin θ

2
− S

sin θ

)
Xdθ . (3.28)
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Figure 3. Meissner effect: an illustration of the analytic bounds on the critical horizon radius for

the Meissner effect for q = 0. In the shaded regions, the vortex should either pierce the horizon,

or be expelled as indicated. The critical radius therefore lies between these two bounds. For

sufficiently low `, flux is always expelled. Numerically obtained transition radii are indicated. The

solid r+ = `/
√

3 line on the left indicates the a = ` singular limit.

Defining α so that Σ+ sin2 α/S = 2, by taking θ0 > α we can bound this integral from below

using X(θ) > X(θ0). We can also bound the derivative of X by X,θ0 <
X(θ0)−X(α)

θ0−α < X(θ0)
θ0−α ,

leading to

S sin θ0
X(θ0)

θ0 − α
> S sin θ0X,θ0 > X(θ0)

∫ π/2

θ0

(
(r2+ + a2 cos2 θ) sin θ

2
− S

sin θ

)
dθ , (3.29)

which implies

(θ0 − α)

S(θ0) sin θ0

(
r2+ cos θ0

2
+
a2 cos3 θ0

6
+ Ξ log tan

(θ0
2

)
− a2

l2
cos θ0

)
< 1 (3.30)

on the interval [α, π/2]. If this inequality is violated, then we cannot have flux expulsion,

and the vortex must pierce the black hole. Note, if a = 0, then (3.30) is independent of `,

and reduces to the previously explored Reissner-Nordstrom relation [30], giving the same

upper bound on the horizon radius for flux expulsion of
√

8.5. For a 6= 0, we must explore

the {a, `} phase plane (having ensured that a solution α exists) to determine the upper

bound on the horizon radius. Clearly if ` drops too low, we require a large charge to allow

for a solution to α. Hence for a given q, we expect a minimal value of ` for this upper

bound to exist. This is shown most clearly for q = 0, in figure 3.

To argue that a Meissner effect should exist for sufficiently low horizon scales, we

assume a piercing solution to (3.22)–(3.24) exists, in which X and P will have nontrivial
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profiles symmetric around θ = π/2, with X maximised and P minimised (at least for large

` or small a < q) at π/2. If a = 0, the argument of [30] can be used to deduce that for

r+ . 0.7 the flux must be expelled, and this argument can be extended to include small a

(see appendix). For q = 0, or dominant a, an alternate argument must be used. At large `,

P is minimised at π/2, which implies a constraint on r+ given by (writing Xm = X(π/2)):

P ′′
(π

2

)
= P

(
X2
mr

2
+

β
− 2a2

r2+

(
1−

r2+
`2

))
≥ 0 ⇒ r4+ + 2r2+

a2β

`2
> 2a2β . (3.31)

However, for low values of `, we cannot show that P is minimised at π/2, and indeed

scrutiny of piercing solutions near the phase transition indicates a tiny modulation in P .

What we can say however, is that P has at most one additional turning point on [0, π/2],

as the source term on the r.h.s. of (3.23) is monotonically decreasing on [0, π/2], hence

S2P ′/Σ+ sin θ has at most one turning point where X2Σ2
+ = 2a2β sin2 θ(1− r2+/`2).

Suppose therefore that we are at low ` and P has such a turning point on [0, π/2].

Now consider S2/Σ+ sin θ; the derivative(
S2

Σ+ sin θ

)′
= − S cot θ

Σ2
+ sin θ

[
(r2+ + a2)Ξ− 3a2

(
1 +

r2+
`2

)
sin2 θ +

a4

`2
sin4 θ

]
(3.32)

has a zero at θ0, where

a2

`2
sin2 θ0 =

3

2

(
1 +

r2+
`2

)
− 1

2

√
9

(
1 +

r2+
`2

)2

− 4Ξ
r2+ + a2

`2
. (3.33)

For q = 0, sin θ0 ∈ [0,
√

2/3], as ` ranges from a to∞, whereas the node in P only switches

on for lower `, and initially appears at π/2. Therefore at θ0 we expect S2P ′/Σ+ sin θ > 0,

and hence

(r2+ + a2 cos2 θ0)
2 > X2(θ0)Σ

2
+(θ0) > 2a2β sin2 θ0

(
1−

r2+
`2

)
. (3.34)

Thus, if this equality is not satisfied at θ0, we deduce that a piercing solution is not possible,

and expulsion must occur. Figure 3 shows this lower bound for q = 0.

The full details of the phase transition must be determined numerically, and figure 3

shows the numerically obtained critical horizon radius as a function of ` for q = 0 together

with the analytic lower and upper bounds on r+,crit. We discuss the phase transition

further in section 5.

4 Numerical solution

In order to obtain numerical solutions of the vortex equations (3.6)–(3.8), which form an

elliptic system, we follow references [19] and [34], employing a gradient flow technique on a

two-dimensional polar grid. Briefly, this method introduces a fictitious time variable, with

the ‘rate of change’ of our functions being proportional to the actual elliptic equations we

wish to solve:

Ẏ i = ∆Y i + F i(Y,∇Y) , (4.1)
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where ∆i represents a second order (linear) elliptic operator and F is a (possibly nonlinear)

function of the variables Y i and their gradients, such that the r.h.s. is our system of elliptic

equations. We now have a diffusion problem, and solutions to this new equation eventually

“relax” to a steady state, in which the variables are no longer changing with each time step,

and the solutions Y i satisfy our elliptic equations. The only subtlety with the given set-up

is that our elliptic system has one boundary (the event horizon) on which our equations

become parabolic. This was discussed in detail in [19], with the result that on each grid

update, we update the event horizon, using the horizon equations, and fixing

Pt = −
aΞPφ
r2+ + a2

(4.2)

on the horizon, which is mandated by finiteness of the energy-momentum tensor.

As an initial condition for the integration, we use the approximate solutions for the

functions X, Pφ and Pt given in equations (3.13), where we obtain the forms for P0(R)

and X0(R) by numerically integrating (2.9) on a one-dimensional grid. The approximate

solution is accurate to order r−2, thus we choose our outer boundary to be sufficiently far

from the horizon that our analytic approximation is extremely accurate near this outer

radial boundary, which is not updated in our code. On axis we impose the standard vortex

boundary conditions, (X = 0, Pφ = 1) while leaving Pt to relax by continuity. As pointed

out in [34], the fact that Pt is not restricted can be understood by noting that there is a

dyonic degree of freedom that is introduced into the solution due to the presence of the

black hole.

Figures 4 and 5 show a selection of the solutions obtained from the integration method

above which highlight the effects of the parameters ` and q on the rotating black hole

vortex. In all plots, we have chosen to illustrate the solution by plotting contour lines for

each field of 0.1 − 0.9 of the full range of the field in steps of 0.2. Thus, for the X and

Pφ fields, we have shown the 0.1, 0.3, 0.5, 0.7, and 0.9 contours, but for the PT field (note

— this is the gauge field component with respect to a non-rotating frame at infinity) the

maximally negative value of PT is attained on the horizon at the poles. The numerical

values of these contours therefore vary from plot to plot. The actual value of PT,min is

given in the captions.

Figure 4 shows the vortex solution for the case of ` = 100 and ` = 10 respectively,

at the extremal limit with the charge parameter q set to zero. The solution away from

the extremal limit is similar (see [34]), the main difference being that the actual numerical

values of the PT contours are lower. For ` = 100, the plots are almost indistinguishable

from the vacuum Kerr vortex solution analysed in [34], however, for ` = 10, the effect of the

cosmological constant can be easily seen. Comparing the figures, one notes that dropping

the value of ` strongly impacts the size of both the black hole horizon as well as the vortex,

causing the vortex width to tighten, the PT fields to shrink closer to the horizon, which

itself shrinks significantly.

Figure 5 then demonstrates the effect of adding a non-zero charge to the AdS-Kerr

vortex. As can be seen, this does not significantly impact the vortex, and appears to merely

shift the horizon and ergosphere inwards, while slightly causing the PT contour lines to
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Figure 4. AdS-Kerr vortex: a depiction of the numerical solution for the AdS-Kerr vortex for an

extremal uncharged rotating black hole. The upper plots have ` = 100, the lower plots ` = 10. In

each case, the contours of the Higgs field are shown on the left in blue (X = 0.1 − 0.9 in steps of

0.2), and on the right, the angular component of the gauge field, Pϕ in red (with the same contour

steps as for X), and PT in dashed black with contours of 0.1− 0.9 of PT,min = −0.0519,−0.116 for

the ` = 100 and ` = 10 cases respectively.
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Figure 5. AdS-Kerr-Newman vortex: numerical solutions for the AdS-Kerr-Newman vortex with

` = 50 and q = 0, (upper) and q = 5 (lower) with the same contour conventions as for figure 4,

with PT,min = −0.0569 for q = 0, and PT,min = −0.0563 for q = 5.
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Figure 6. AdS-Kerr vortex: the numerical solution for a large rotating black hole. As before, the

contours of the Higgs field are shown on the left in blue (X = 0.1− 0.9 in steps of 0.2), and on the

right, the angular component of the gauge field, Pϕ in red (with the same contour steps as for X),

and PT in dashed black with contours of 0.1− 0.9 of PT,min = −0.0555.

creep closer to the horizon, as is expected since the rotation parameter a = aex will be

lower with the charged black hole at the same mass.

Finally, in figure 6 we present a solution for an uncharged black hole mass ten times

that of the AdS length scale: GM = 100, ` = 10, a = 5, and rh = 25.5. This is an

example of a ‘large’ black hole [51, 52] on the positive specific heat branch of the Hawking-

Page phase diagram3[53]. From this plot, we can see that there is no qualitative difference

from the ‘small’ black hole configurations, although we did observe a larger drift from the

approximate solution expression for the PT component, as we might have expected from

the analysis in section 3.1.

5 Discussion

We have examined the behaviour and interactions of vortices with asymptotically AdS

charged and rotating black holes. We first obtained an approximate solution to the abelian

3Thermodynamics of Kerr-AdS black holes is similar to that of the non-rotating AdS black hole studied

in [53] when one considers a grand canonical (fixed angular velocity) ensemble. In this case we observe

the Hawking-Page behavior: there are no black holes below a certain temperature whereas two branches

of black holes exist above this temperature; while small black holes have negative specific heat and are

thermodynamically unstable, the branch of large black holes has positive specific heat and, above a temper-

ature analogous to the Hawking-Page temperature, is thermodynamically preferred. One can also consider

a canonical (fixed angular momentum) ensemble where both small and large Kerr-AdS black holes are

thermodynamically stable, connected by a first-order phase transition à la Van der Waals fluid, see [54, 55].
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Figure 7. Flux expulsion behavior: plots illustrating features of the flux expulsion phase transition

on the event horizon of the black hole. The maximal value of the Higgs field Xm = X(π/2) is shown

as a function of r−1
+ for varying β (left) and ` (right).

Higgs Model in the background of a Kerr-Newman AdS black hole, and showed that the

Nielsen-Olesen equations retain their AdS form up to corrections of order R2/`2. Conse-

quently we found that our approximation was extremely good everywhere except near the

event horizon as expected. The comparison illustrated in figure 2 shows that the actual

solution has a stronger expulsion of flux than the approximation. Upon transforming to

a frame that is non-rotating at the boundary, the form of our solution is very close to its

asymptotically flat counterpart. We also explored the régime of large black holes where

we would expect the approximate solution to be less accurate, and while there was indeed

some discrepancy near the axis (particularly in the PT component of the gauge field) the

approximate solution was still a very good indicator of the way the full numerical solution

would behave.

For extremal black holes we explored the existence of a Meissner effect with the cosmic

string flux being expelled from the black hole at small horizon radii (although one should

be cautious about the stability of such small black holes [56]). We presented analytic

arguments to show that such a phase transition exists, showing that in the presence of

rotation it is a first order transition. We numerically explored the phase space to confirm

this expectation, and figure 7 shows the numerical results for the phase transition at several

values of ` and β. The existence of the first order transition is confirmed, and the effect of

` is to lower the critical value of r+ at which the transition occurs. This is also reflected

in a drop of both analytic bounds for expulsion and piercing of the vortex. We also notice

that the value of the order parameter (X(π/2)) rises with decreasing `, seen in the right

plot of figure 7. The left plot of figure 7 shows the effect of changing β, and is similar to the

corresponding plot for the vacuum Kerr solution in [34]. However the effect of changing β

is far more pronounced at the relatively low value of ` = 10 illustrated. Note that, unlike

pure Kerr, the plots do not extend to r−1+ → 0: there is an upper limit on the angular

momentum, and hence horizon radius.

Although we focused primarily on extremal rotating black holes as this was the main

thrust of our investigation, these black holes will always be ‘small’. Interestingly, we
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observed that for nonrotating extremal charged black holes, the system of equations which

determine flux expulsion are independent of the AdS length scale `. Although this seems

curious, we already saw evidence of this in our expressions for the approximate solution,

in which the equations of motion for the approximate solution reduced to the Nielsen-

Olesen system extremely near the horizon. Thus, even though black holes that exhibit

flux expulsion must be small relative to the inverse Higgs mass, they need not be small

compared to the AdS radius, should that be below the Higgs radius. We can therefore

envisage a set-up in which a ‘large’ AdS black hole has a flux expelled vortex.

The numerical integrations are considerably more sensitive with the addition of the

cosmological constant, mainly because an additional scale has been added which causes

the vortex to contract, as well as the black hole. Unfortunately this has prevented us from

investigating the small-` case in significant detail. This is in part the region of interest for

a holographic interpretation of our results, though our solution would only be relevant in

the IR as it does not have the requisite boundary conditions. As with the vacuum case,

we also see evidence of the ‘black hole bomb’ type instability [56, 57], in that as we lower

the horizon radius, the equations of motion become very slow and finicky to converge. In

the vacuum case, there was a range of black hole radii (of order the Higgs scale) which

were most sensitive, but as the black hole became smaller the sensitivity was reduced. We

believe this is because for black holes of a similar size to the string width, the edge of the

string, outside of which the scalar is massive, acts as a reflecting surface thereby trapping

radiative modes in the equatorial region, and allowing a superradiant mode to develop.

As the black holes gets smaller, the scalar radiation, while still reflected, now can escape

up the axis along the core of the string, and is not reflected back to the black hole in the

generic case. For AdS-Kerr however, the geometry itself acts as a reflecting box, therefore

if we were to probe down to smaller black hole radii, we might expect to see differences

from the vacuum case.

Another interesting issue to consider are the various other instabilities of scalar fields

in Kerr/AdS, such as the scalar cloud effect [11, 12] (see also [58] for earlier related work).

In this case, a scalar field develops a Q-ball type of instability, where higher angular

momentum modes of the scalar phase become excited by a super-radiance effect, and form

a cloud around the black hole where the phase of the scalar is time dependent, rather like

a Q-ball. We would not expect this type of instability in our gauged Higgs field, but as

these instabilities have not been investigated for charged scalars, perhaps there is a mode

of bound photons/Higgs-balls which could lead to an interesting distortion of the vortex in

the vicinity of the horizon.

Vortices in the bulk can be interpreted as defects in the dual CFT [37, 45], where in

the IR they are heavy pointlike excitations in a superfluid around which the phase of the

condensate winds. A vortex must have a core radius since the vanishing of the condensate

at its location is energetically costly and so must happen over some finite region. A recent

study [45] of vortices with planar black holes has indicated that their IR physics can be

understood from the viewpoint of a defect or boundary CFT [59]. A study of holographic

superconductivity in the context of (topologically spherical) rotating black holes [60] found

that the superconducting state in the dual theory (for certain choices of parameters) can be
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destroyed for sufficiently large rotation. The localization of the condensate depends on the

sign of the mass-squared term of the scalar, with a droplet/ring-like structure appearing for

positive/negative values of this term. The instability towards forming vortex anti-vortex

pairs depends on this sign [60].

It would be interesting to study these effects further in light of our results. There are

two main cases that seem to be worth further exploration. First, while the Meissner effect

we observed for small extremal rotating black holes is probably not relevant, as (in the grand

canonical ensemble) these black holes are on the unstable branch of the Hawking-Page phase

diagram, we noted that without rotation we obtain a Meissner effect independent of the

AdS length scale for extremally charged black holes. This would indicate some second order

phase transition (or first if even a small amount of rotation were present) from expulsion

to absorption of the vortex (or perhaps in correlations between other parameters). Their

interpretation in the context of the boundary theory (as well as distinguishing them from

the flux-pierced case) remains to be understood, perhaps in terms of the absence of a mass

gap for the flux-expelled case.

The second case of interest is that of the vortex terminating on the black hole [22–26].

We have not particularly focussed on this case, as for probe vortices there is little difference

in the analysis (either analytical or numerical). However, for the backreacted vortex, there

is of course a difference, as one corresponds to a static metric (the Aryal-Ford-Vilenkin

solution in vacuum [21]) and the other, a C-metric [20]. From the perspective of the

boundary, these will be distinguishable (although we have not checked the back-reaction

properties here) and that might also result in interesting phenomenology.
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A Lower bound argument

Following [30], assume a piercing solution exists. Then (3.22) and (3.23) have smooth

solutions for X and P in which X increases from zero at the poles to a maximum, Xm

at the equator, and P decreases from 1 at the poles to a minimum, Pm, at the equator.

– 19 –



J
H
E
P
1
1
(
2
0
1
4
)
0
1
0

Evaluating (3.22) and (3.23) at the equator gives the relations:

X ′′
(π

2

)
= Xm

[
P 2
m +

r2+
2

(
X2
m − 1

)]
≤ 0 ⇒ P 2

m ≤
r2+
2

(
1−X2

m

)
≤
r2+
2
, (A.1)

P ′′
(π

2

)
= Pm

[
X2
mr

2
+

β
− 2a2

r2+

(
1−

r2+
`2

)]
≥ 0 ⇒ r4+ ≥ X2

mr
4
+ ≥ 2a2β

(
1−

r2+
`2

)
. (A.2)

Since P ≤ 1, the first relation gives no new information unless r+ <
√

2, so we will assume

this from now on. The second relation clearly gives no information if a = 0; however,

for nonzero a and sufficiently small q, the bound (A.2) is violated at sufficiently low `, or

indeed if q < a . 0.6 for all `.

If a is sufficiently small that (A.2) does not give useful information, then we can bound

r+ by a generalisation of the argument in [30]. Assuming a piercing solution, (A.2) bounds

P ′′(π/2) above by:

P ′′
(π

2

)
≤ r+√

2

[
X2
mr

2
+

β
− 2a2

r2+

(
1−

r2+
`2

)]√
1−X2

m ≤
√

2r3+

3
√

3β

(
1− 2a2β

r4+

(
1−

r2+
`2

))3/2

,

(A.3)

where we use (A.1), and maximise over Xm in the second inequality.

To get a lower bound on P ′′ we use P ′′(π/2) ≥ −P ′(θ0)/(π/2− θ0), where θ0 is where

P ′ is maximally negative, (3.23) giving:

P ′ (θ0) = −P tan θ

β

Σ2
+X

2 − 2a2β sin2 θ
(
1− r2+/`2

)
S(Σ+ − 2a2 sin2 θ)− 4Σ+(a2/`2) sin2 θ

∣∣∣∣∣
θ=θ0

. (A.4)

Thus∣∣P ′ (θ0)∣∣ ≤ P (θ0) tan θ0
β

Σ2
+(θ0)− 2a2β sin2 θ0

(
1− r2+/`2

)
S(θ0)(Σ+(θ0)− 2a2 sin2 θ0)− 4Σ+(θ0)(a2/`2) sin2 θ0

≤
(
r4+ − 2a2β

(
1− r2+/`2

))
tan θ0(

r2+(1− 4a2/`2)− 2a2
)
β

.

(A.5)

Clearly for this bound to be meaningful, we also require r2+(1 − 4a2/`2) > 2a2, so we will

assume this going forward. We therefore have that

π

2
− θ0 < cot θ0 ≤

r4+ − 2a2β
(
1− r2+/`2

)(
r2+(1− 4a2/`2)− 2a2

)
β |P ′0|

, (A.6)

meanwhile

1− π

2
|P ′0| < Pm <

r+√
2

⇒ |P ′0| >
2

π

(
1− r+√

2

)
, (A.7)

giving

P ′′
(π

2

)
≥ |P ′0|
π/2− θ0

≥ β|P ′0|2
r2+(1− 4a2/`2)− 2a2

r4+ − 2a2β
(
1− r2+/`2

) . (A.8)

Folding this in with the upper bound on P ′′(π/2), we see that for a piercing solution to

exist the following inequality must hold:

6
√

6β2

π2

(
1− r+√

2

)2(
1− 2a2β

r4+

(
1−

r2+
`2

))−5/2 r2+(1− 4a2/`2)− 2a2

r7+
< 1 , (A.9)
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Figure 8. Expulsion bound: an illustration of the running of the lower bound with a. The bound

is plotted for ` = 0.5, 1, 2, 10,∞ as labeled. For ` > 5, the curve changes very little, as can be seen

by the infinite ` curve depicted by a thin red line. The value at a = 0 is the RN value obtained

in [30], and is shown as the horizontal solid black line.

with 2 > r2+ > 2a2/(1 − 4a2/`2) and r4+ + 2a2r2+/`
2 > 2a2β. The former of these bounds

places a stronger constraint on a, but in fact the constraint (A.9) breaks down before even

this is violated. Since the value of r+ satisfying (A.9) is quite low (just less than one),

the relation gives no useful information once a gives a significant contribution to r+. For

large `, this happens around a ∼ 0.7, but for ` of order unity or below, this happens at a

much lower value (∼ 0.3 for ` = 1). We illustrate the running of this lower bound with a

in figure 8.

The actual value of this bound is less important than the fact it exists, which then

implies the existence of a phase transition on the event horizon and flux expulsion.
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