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As a result, no large threshold corrections appear in our approach to inflation so that the

electroweak scale and the SM Higgs mass are not affected. The singlet field responsible
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1 Introduction

The discovery of the ' 125 GeV scalar particle [1, 2] with the properties of the Standard

Model Higgs boson together with the so far negative results for searches of supersymmetry

are pointing to a possibility of a very different model building paradigm based on a mini-

mally extended Standard Model with manifest classical scale invariance. In this paper we

will present the first, to the best of our knowledge, realisation of a slow-roll cosmological

inflation mechanism in a classically scale-invariant BSM theory.

The rational for advocating this ‘heretical’ approach to model building based on clas-

sical scale invariance is as follows.

(1.) First point in favour of (approximate) scale symmetry is a well-known ‘experimen-

tal’ fact that there is just a single occurrence of a non-dynamical scale in the Standard

Model (SM) — the Higgs mass-squared input parameter µ2
SM — appearing in the SM Higgs

potential,

V SM
cl (H) = µ2

SMH†H +
λH

2

(
H†H

)2
. (1.1)

By selecting a particular negative value for it, an expectation value v ' 246 GeV for the

Higgs field, and the Higgs mass mh ' 125 GeV are obtained, µ2
SM = − 1

2 m
2
h = − 1

2 λH v
2.

Classical scale invariance, broken by µ2
SM, is recovered by re-interpreting this scale in terms

of a vacuum expectation value of a new scalar φ, coupled to the SM via the Higgs portal

interaction, λP|H|2|φ|2,

Vcl(H,φ) =
λH

2
(H†H)2 +

λφ
4!
|φ|4 − λP(H†H)|φ|2 , µ2

SM = −λP|〈φ〉|2 . (1.2)

The classical theory described by (1.2) is scale-invariant, and insofar as the appropriate

natural value for 〈φ〉 � MUV can be generated quantum mechanically, it will trigger the

electroweak symmetry breaking.
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(2.) Already 40 years ago in ref. [3] Coleman and Weinberg discovered that a massless

scalar field φ coupled to a gauge field dynamically generates a vacuum expectation value

via dimensional transmutation of the logarithmically running coupling constants. The 〈φ〉
is non-vanishing, calculable in a weakly-coupled theory, and its value is naturally small (i.e.

exponentially suppressed) relative to the UV cutoff of the theory,

〈φ〉 ∼ MUV × exp

[
− const

g2
CW

]
�MUV , (1.3)

where gCW is the gauge coupling of φ. In the appendix we review the Coleman-Weinberg

mechanism to recall some of the key expressions for the convenience of the Reader.

In the SM×U(1)CW theory with the classical scalar potential (1.2), the φ-vev in (1.3)

then generates the Higgs vev v and the Higgs mass mh, as dictated by (1.2),

|〈φ〉|2 =
λH

λP

v2

2
|〈φ〉|2 =

1

λP

m2
h

2
, (1.4)

and one an set v = 246 GeV, mh = 125 GeV and λH =
m2
h

v2
. The U(1)CW theory coupled

to the SM via the Higgs portal with the scalar potential (1.2) was first considered in [4].

Note that no input mass scales are allowed in the Coleman-Weinberg theory and, in

the course of UV renormalisation, the subtraction scheme is chosen to set the renormalised

masses at the origin of the field space to zero,

m2|φ=0 := V ′′(φ)

∣∣∣∣
φ=0

= 0 , (1.5)

where V is the quantum-corrected effective potential. Does the masslessness condition (1.5)

amount to a fine-tuning?

A theory with no input mass-scales is classically scale invariant [5]. The scale invari-

ance is not exact, but neither it is broken by an arbitrary amount. The violation of scale

invariance is controlled in quantum theory by the anomaly in the trace of the energy-

momentum tensor, or in other words, by the logarithmic running of dimensionless coupling

constants and their dimensional transmutation scales which, in the weakly coupled per-

turbation theory, are much smaller than the UV cutoff. Bardeen has argued in [6] that

in order to maintain anomalously broken scale invariance, one should select a regularisa-

tion scheme which does not explicitly break classical scale invariance (so that it does not

introduce positive powers of the UV cutoff scale into renormalised quantities).

In dimensional regularisation, the equation (1.5) is satisfied automatically. Indeed, no

power-like dependences on the cutoff scale appear in dimensional regularisation, and in

theories like ours, which contain no explicit mass scales at the outset, no finite corrections

to mass terms at the origin of the field space can appear either. In this regularisation which

preserves classical scale invariance, the theory as it stands is not fine-tuned, at least, not

in the technical sense.

If the higher theory above the Planck scale breaks the classical scale invariance of its IR

effective theory, through heavy degrees of freedom coupled to the Standard Model,1 then

1Assuming that the higher theory maintains no symmetry principle which could cancel its heavy contri-

butions to the Higgs mass.
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from the perspective of this microscopic theory, the masslessness condition does amount

to a fine-tuning. But from the perspective of our sub-Planckian theory used for particle

physics computations, there is no fine-tuning, and no practical problems arise associated

e.g. with cancellations between large scales, etc.

Furthermore, once the masslessness condition is enforced at one scale, it holds at

all RG scales [7]. To summarise, within dimensional regularisation, the renormalisation

condition (1.5) and, more generally, equations,

∂2V (H,φ)

∂H†∂H

∣∣∣∣
H=φ=0

= 0 ,
∂2V (H,φ)

∂φ†∂φ

∣∣∣∣
H=φ=0

= 0 , (1.6)

are self-consistent, contain no fine-tuning in the theory at hand, and are independent of

the RG-scale.

The phenomenology of the SM×U(1)CW model (1.2) in the context of LHC, future

colliders and low energy measurements was analysed recently in [7]. The minimal model

has only two remaining free parameters, the portal coupling, λP and the mass of the second

scalar eigenstate mh2 (with mh1 being the observed Higgs mass),2 and it was shown that

the model is perfectly viable. In particular, the presently available Higgs data constrains

the portal coupling to be λP . 10−5 on the part of the parameter space where the second

scalar is in the region between 10−4 GeV and mh1/2. For heavier mh2 , the portal coupling

is much less constrained experimentally, and has a theoretical upper limit of λP . 10−2,

see figure 2 of ref. [7] for more detail.

Other related studies of classically scale-invariant models can be found in [8–18].

(3.) As the resulting theory has to be valid up to a very large UV scale, the classical scale

invariance provides a powerful principle for the BSM model building. No vastly different

scales3 can co-exist in the theory: first, it is difficult to generate a large hierarchy of scales

from the same 〈φ〉. Secondly, the large scales, if they do appear, would ultimately couple

to the Higgs and would destabilise it mass. The BSM theory is a minimal extension of

the SM which should address all the sub-Planckian shortcomings of the SM, such as the

generation of matter-anti-matter asymmetry, inflation, dark matter, stabilisation of the

SM Higgs potential, without introducing scales higher than 〈φ〉 which itself is not much

higher the electroweak scale.

Can one generate the matter-anti-matter asymmetry of the Universe in these settings?

It was shown in ref. [17] that the classically-invariant SM×U(1)CW theory (1.2) where

the Coleman-Weinberg U(1)CW sector is interpreted as the gauged B−L symmetry of the

SM, can indeed generate the observed value of matter-anti-matter asymmetry. The B −L
model [19–21] is an appealing extension of the SM as it automatically contains three gener-

ations of right-handed Majorana neutrinos necessary (needed to cancel the gauge anomaly

of U(1)B−L). The standard see-saw mechanism generates masses of visible neutrinos and

2The Higgs field and the CW field both have vevs and mix thus the mass of the second scalar eigenstate

is the relevant physical parameter rather than the mass of the CW scalar. This parameter can also be

traded for the mass of the CW gauge field Z′.
3Apart from the Planck scale M which is treated separately.
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facilitate neutrino oscillations. The CW field φ carries the B−L charge 2 and its vev gener-

ates the Majorana neutrino masses and the mass of the U(1)B−L Z
′ boson. In the classically

conformal settings, these models were first considered in [11, 13]. As well-known, however,

the standard thermal leptogenesis formalism [22] requires very heavy Majorana neutrino

masses of the order of 109 GeV, to generate the observed baryon asymmetry of the Universe.

Such heavy neutrino masses go against the grain of our classically scale-invariant approach.

Ref. [17] used a different realisation of the leptogenesis mechanism proposed in [23]

and further developed in [24, 25] — the leptogenesis due to flavour oscillations of the

right-handed Majorana neutrinos. It was shown in [17] that the the classically-invariant

SM×U(1)B−L model can generate the observed matter-anti-matter asymmetry on a large

portion of the model parameter space without introducing any additional mass scales and

without requiring any resonant fine-tuning. The Majorana masses are in the range be-

tween 200 MeV and 500 GeV; they, together with and a heavier mass for the Z’ boson, are

generated by the CW vev 〈φ〉.

(4.) Vacuum stability: it is well-known that in the Standard Model the Higgs quartic

coupling becomes negative rendering the Higgs effective potential unstable at above the

scale ' 1011 GeV. The next-to-next-to leading order analysis of the SM Higgs effective po-

tential carried out in [26] found the best-fit value of the Higgs self-coupling at the Planck

scale to be small but negative,

1

2
λH(MPl) = −0.0144 + 0.0028

( mh

GeV
− 125.66

)
± 0.0047Mt ± 0.0018αs ± 0.0028th , (1.7)

with further refinements carried out in [27].

It is remarkable that λH and its beta function nearly vanish at the Planck scale, but

without new physics, the absolute stability of the Standard Model Higgs potential is ruled

out [26, 27].

A minimal and robust way to repair the electroweak vacuum stability is provided by

the Higgs portal extension of the SM — and this is provided automatically in the classically

scale-invariant theory (1.2). There are two effects helping to stabilise the vacuum: first is

the fact that the portal coupling gives a positive contribution to the beta function of the

Higgs quartic coupling, ∆βλH ∼ +λ2
P. The second effect occurs due to a vev of the second

scalar, 〈φ〉 > v, leading to mixing between φ and the Higgs and resulting in a threshold cor-

rection lifting the SM Higgs self-coupling [28, 29]. In the present context of classically scale-

invariant SM × U(1)CW theory, the vacuum stabilisation was addressed in recent papers

refs. [13, 14, 16, 18]. The values and ranges of the couplings needed to stabilise the Higgs po-

tential depend on the model specific RG-running.4 The conclusion we draw from this work

4The authors of [16, 18] considered a model with the non-Abelian SU(2)CW gauge group. Ref. [16]

showed that for the values of the portal coupling λp = 2λP ' 4× 10−3 and the non-Abelian CW coupling

gCW ∼ 1, the vacuum stability is recovered (here the second scalar is heavy, mh2 ' 165 GeV). More

generally, in ref. [18] the allowed regions on the entire parameter space {λp, gCW} consistent with the

vacuum stability and perturbativity were determined for mh2 < mh1 and for mh2 > mh1 , we refer to their

figure 1 for more detail. Vacuum stability in the SM × U(1)B−L theory was addressed in [14] and [13]

following a more constrained than our approach, where the vanishing (rather than just positivity) of the

Higgs potential was requested at MPl.
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is that the vacuum stability up to the Planck scale is effectively restored on large portions of

the parameter space for classically conformally invariant extensions of the Standard Model.

We also mention that adding an additional singlet to the theory coupled to the Higgs

via a portal will further enhance the stability of the potential.

(5.-6.) Inflation and dark matter within the classically scale-invariant BSM formulation

is the subject of the present paper. In the following section we will extend the Higgs portal

model by introducing a single real scalar field s(x) with a non-minimal coupling to gravity.

An exponentially flat potential for the singlet will be generated, as required for a successful

implementation of a slow-roll cosmological inflation, preserving the classical scale invariance

of the model and without the need of perturbative unitarisation at sub-Planckian scales.

Quite pleasingly, the singlet is(x) s protected by a Z2 symmetry and gives a viable

candidate for dark matter. Thus the roles of the inflation and of the scalar dark matter

particle are unified and are straightforwardly incorporated in the context of the classically

scale-invariant Higgs-portal BSM model.

2 Singlet-field slow-roll inflation in the Higgs portal

In the standard Big Bang cosmology the cosmological inflation was proposed in [30–33]

to solve the flatness, isotropy, homogeneity, horizon and relic problems. Inflation is the

leading theory of the early universe, confirmed by observations including the recent data

from Planck satellite [34] which favour a simple inflationary scenario with only one slow

rolling scalar field. Slow-roll inflation occurs in many models constructed in the past,

although, in general, the underlying microscopic particle physics of many inflation models

is still unknown, as it involves energy scales far higher than can be probed at colliders.

We will focus on the approach based on renormalisable QFT Lagrangians, which are

then coupled to gravity, and in addition to the usual Einstein-Hilbert term also involve a

non-minimal coupling of a scalar field to gravity. By taking the non-minimal coupling ξ

to be large, a flat slow-roll potential is generated and inflation takes place, as originally

discussed in [35].

An interesting extremely minimal proposal which bridges cosmology with the Standard

Model particle physics is that the Higgs itself could play the role of the inflaton [36]. The

coupling ξ ∼ 104 however introduces two sub-Planckian scales in the theory, MPl/ξ and

MPl/
√
ξ, where the theory appears to violate unitarity, thus spoiling the self-consistency

of the inflationary approach, which has lead to a considerable debate in the literature as

to whether such models make sense quantum mechanically [37–42]. From now and for the

rest of this section we will be using the reduced Planck mass ∼ 1018 GeV and will refer to

it simply as M .

In [43] it was shown that the Higgs inflation model can be unitarised by introducing (or

integrating in) a new scalar with the mass M/ξ participating in the inflation. This allowed

the authors of [43] to raise the unitarity bound up to the Planck scale, well above the

inflationary scale ∼ M/
√
ξ. This approach however is incompatible with the requirement

of classical scale invariance of the theory which we want to maintain. The mass M/
√
ξ of

– 5 –
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the new scalar field, which interacts with the Higgs, is a non-dynamical input scale. Upon

integrating out this massive degree of freedom the Higgs mass is destabilised and requires

fine-tuning.

We take an alternative approach to inflation which is based on a classically massless

and vev-less real scalar field s. Our inflaton is neither the Higgs itself as in ref. [36], nor the

heavy scalar as in ref. [43]. Our approach is also different from the singlet-assisted Higgs

portal inflation of refs. [28, 44] where the inflaton was a combination of the Higgs and the

singlet with a non-vanishing vev (for earlier and related work see also [45–49] and references

therein). With the inflaton (or more precisely the non-minimally coupled to gravity scalar)

being a single-component field, we will be able to avoid problems with violations of unitarily

at intermediate scales in pure gravity and kinetic sectors, along the same lines as in [39, 41].

We start from the classical scalar potential (1.2) of the SM coupled to the CW sector

which we rewrite as

Vcl(H,φ) =
λH

2

(
|H|2 − λP

λH
|φ|2

)2

+
λ̃φ
4!
|φ|4 . (2.1)

Here the new φ-self-coupling λ̃φ is defined in terms of the original parameters of (1.2) via

a shift λ̃φ = λφ − 12λ2
P/λH .

We now extend this model by adding a single degree of freedom, a one-component real

scalar field s(x). It is a gauge singlet which is coupled to the SM × U(1)CW theory only

via the scalar portal interactions with the Higgs and φ,

Vcl(H,φ, s) =
λhs
2
|H|2s2 +

λφs
4
|φ|2s2 +

λs
4
s4 + Vcl(H,φ) , (2.2)

Equations (2.1)–(2.2) describe the general renormalisable gauge-invariant scalar potential

for the three massless scalars,

∂2V (H,φ, s)

∂s∂s

∣∣∣∣
s=H=φ=0

= 0 ,
∂2V (H,φ, s)

∂H†∂H

∣∣∣∣
s=H=φ=0

= 0 ,
∂2V (H,φ, s)

∂φ†∂φ

∣∣∣∣
s=H=φ=0

= 0 .

(2.3)

as required by the classical scale invariance of the theory.

The coupling constants in the potential (2.2) are taken to be all positive (or at least

non-negative), thus the potential is stable and the positivity of λhs and λφs ensure that no

vev is generated for the singlet s(x). Instead the CW vev 〈φ〉 generates the mass terms for

the singlet,

m2
s =

λhs
2
v2 +

λφss
2
|〈φ〉|2 , (2.4)

in the vacuum s = 0, φ = 〈φ〉, H = v√
2

=
√

λP
λH
|〈φ〉|.

We now proceed to couple our theory to gravity. To achieve the slow-roll inflation we

need to introduce large non-minimal couplings to gravity of at least some of the scalars [35,

36]. As noted earlier, the central point of our approach is to non-minimally couple only

– 6 –
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the singlet s, such that the Lagrangian takes the form,

LJ =
√
−gJ

(
−M

2

2
R − ξs

2
s2R +

1

2
gµνJ ∂µs ∂νs + gµνJ (DµH)†DνH +

1

2
gµνJ (Dµφ)†Dνφ

−λs
4
s4−λhs

2
|H|2s2−

λφs
4
|φ|2s2−V (H,φ)− 1

4
FµνFµν+Fermions+Yukawas

)
. (2.5)

The term (ξs/2) s2R is the non-minimal coupling of the singlet s to gravity, with R being

the scalar curvature. It will follow that for successful inflation the value of the non-minimal

coupling constant ξs should be relatively large, ∼ 104. For this reason, we will treat ξs (and√
ξs) as large parameters � 1. In this sense, s is distinguished from the two other scalars,

H and φ, which in our case have either vanishing or small loop-induced non-minimal grav-

itational couplings (ξH ∼ ξφ ∼ 1 � ξs and thus are neglected in (2.5) without loss of

generality).

M ∼ 1018 GeV denotes the reduced Planck mass; in the Lagrangian (2.5) M appears

only in the Einstein-Hilbert term and does not couple directly to non-gravitational de-

grees of freedom. For the time being we will treat it as an explicit scale characterising the

classical gravitational background.5 Finally, the subscript J in (2.5) defines the so-called

Jordan frame, where the scalar-to-gravity coupling is non-minimal and kinetic terms are

canonically normalised.

The second line on the r.h.s. of (2.5) contains the scalar potential (2.1) and (2.2),

plus radiative corrections, plus kinetic terms for gauge and fermion fields and Yukawa

interactions.

An immediate question arises concerning the non-minimal coupling of the singlet s

to gravity, ξs
2 s

2R in (2.5): will the appearance of the relatively large coupling ξs ∼ 104

render the theory ill-defined at an intermediate scale M/ξs which is below the high scale

M? If one expands around the flat space, gµν = ηµν + hµν/M , the non-minimal coupling

generates the dimension-5

∼ ξs
M

s2 ∂2 h

interaction. This interaction generates contributions to e.g. the 2s → 2s scattering pro-

cesses mediated by the graviton exchange. However, it was shown in ref. [41] that when

summed over s, t and u channels, the leading order in ξs contributions to this process

cancel, and the first non-vanishing effects are suppressed by the high scale (Planck mass

M); thus the theory in this sector appears to be safe up to the gravity scale M , and as such

is well-behaved at the intermediate scale M/ξs. For the cancellation to occur it is however

essential that there is only a single scalar non-minimally coupled to gravity [41]. So, the

theory coupled to grvity as defined by its Lagrangian (2.5) in the Jordan frame appears to

be safe up to the high UV scale M and the appearance of the relatively large non-minimal

coupling ξs does not immediately invalidate the theory at lower intermediate scales. We

will return to this point in what follows.

5To keep the scale invariance manifest in the full theory coupled to gravity, M can be recast in terms of

the vev of the dilation of the spontaneously broken local scale invariance. In dimensional regularisation, the

scale-invariance can be kept manifest in quantum theory. We will return to this point in the Conclusions

section.
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We now perform a metric transformation to the Einstein frame where the non-minimal

scalar to gravity interaction is removed,

gµν → Ω−2 gµν , Ω2 := 1 +
ξss

2

M2
, (2.6)

so that the Lagrangian becomes,

LE =
√
−gE

(
−1

2
M2R+

(
Ω2+ 6ξ2ss

2

M2

Ω4

)
gµνE ∂µs∂νs

2
+
gµνE (DµH)†DνH

Ω2
+

1

2

gµνE (Dµφ)†Dνφ

Ω2

− 1

Ω4

(
λs
4
s4+

λhs
2
|H|2s2+

λφs
4
|φ|2s2+V (H,φ)

)
− 1

4
FµνFµν+

Fermions

Ω3
+

Yukawas

Ω4

)
. (2.7)

As expected, the non-minimal interaction of s with the scalar curvature R has disappeared.

The price for this is the non-canonical normalisation of the kinetic term for s. The factor

6ξ2
ss

2/M2 arises from the transformation of R,

−
√
−gJ Ω2R(gJ) = −

√
−gE Ω2R(gE) − 6Ω ∂µ(

√
−gE gµνE ∂νΩ) , (2.8)

followed by the integration by parts in the second term. This indeed gives

6 ξ2
s s

2

M2
×
gµνE
2 Ω2

∂µs ∂νs , (2.9)

which appears in (2.7).

The expression (2.9) describes a dimension-6 interaction suppressed by the scale M/ξs.

This appears to be a dangerously low scale for the successful investigation of inflation which

as we will see occurs at the larger scale M/
√
ξs. Of course this is the Einstein frame re-

flection of the same phenomenon we have already considered in the Jordan frame (see

the paragraph above (2.6)). For the same reason, in the class of models considered here,

where the non-minimal coupling to gravity involves a single real scalar, the appearance

of this scale in the kinetic term (2.9) is harmless. It turns out that the contribution to

2s → 2s scattering of the 4-point vertex (2.9) is vanishing when the external states are

put on-shell [41]. This is true at tree-level and continues to hold to arbitrary loop order.

The underlying reason for why the theory continues to be well-behaved at the intermediate

scale (at least in the scalar-kinetic sector and in the scalar-gravity sector) is the existence

of the field redefinition in the Einstein frame which will render the kinetic term canonical.

We will now proceed along these lines.

To bring the kinetic term for our singlet field s into the canonical form we perform the

field redefinition s = s(σ) following [36] and define the singlet field σ(x) via

σ = sign(s)

∫ s

0
ds

√
1

Ω2
+

6ξss2

M2Ω4
, (2.10)

so that

dσ

ds
=

√
1

Ω2
+

6ξss2

M2Ω4
=

√
Ω2 + 3

2M
2(∂sΩ2)2

Ω4
. (2.11)

– 8 –
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The kinetic term for the singlet in (2.6) is now brought to the canonical form,(
1

Ω2
+

6ξss
2

M2Ω4

)
gµνE ∂µs ∂νs

2
=

1

2
gµνE ∂µσ ∂νσ . (2.12)

We note that as pointed out in [41], this field redefinition is possible and works only for

the case of a single real scalar field coupled non-minimally to gravity — which is the case

we are considering.6

At small field values, for example at the electroweak scale and all the way up to

s . 1014 GeV, the field redefinition (2.10) amounts to

σ(x) = s(x) , for s�M/ξs . (2.13)

At higher values of s, it is easy to see that the solution for σ is well approximated by the

analytic expression [50]

σ(x) =

√
3

2
M log Ω2[s(x)] , for s� M

ξs
, (2.14)

or

s(x) =
M√
ξs

√
exp

(
2σ(x)√

6M

)
− 1 , for s� M

ξs
, (2.15)

At an even higher scale s�M/
√
ξs this gives,

s(x) =
M√
ξs
× exp

(
σ(x)√

6M

)
, for s� M√

ξs
. (2.16)

From (2.14) and (2.14) we can compute

s2(x)

Ω2
=

M2

ξs
×
(

1− exp

[
−2σ(x)√

6M

])
' M2

ξs
, for s� M

ξs
, (2.17)

and thus we find that at large field values, the singlet self-interaction potential in (2.7)

is exponentially flat when expressed in terms of the canonically normalised σ(x), and is

well-suited for the slow-roll inflation [36],

VE(s) :=
λs
4

s4(x)

Ω4
=

λsM
4

4 ξ2
s

(
1− exp

[
−2σ(x)√

6M

])2

, for s� M

ξs
. (2.18)

Next we need to take care of the inverse powers of Ω in the Lagrangian (2.7). The

appeared because the transformation (2.6) was a pure metric transformation, rather then

the full Weyl scaling transformation,

Weyl : gµν → Ω−2 gµν , scalars → Ω1 scalars , Aµ → Aµ , Ψ → Ω3/2 Ψ . (2.19)

6For multi-component scalars, such as for example the Higgs itself (4 real components) or the CW com-

plex scalar φ (2 real components), no field redefinition would have amounted to the canonical normalisation

of all field components. As a result, the perturbative unitarity would have been lost at the scale M/ξ

which is lower than the inflation scale ∼M/
√
ξ we want to study. The use of the unitary gauge where only

the radial component remains and the extra degrees of freedom are gauged away only shifts the unitarity

problem to the gauge-Higgs interactions and the longitudinal vector boson sector.
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We would now like to excise inverse factors of Ω from the Einstein-frame Lagrangian

in (2.7) to achieve the canonical normalisation for all the remaining kinetic terms. To

do this, we now transform the scalar fields H and φ (but not s or σ!) as well as the

fermions, as prescribed by the Weyl transformation (2.19). For the kinetic terms of non-

singlet scalar fields in (2.7) (here we introduce the simplifying notation ~ϕ = (H/
√

2, φ) =

(h1, h2, h3, h4, φ1, φ2) for all six real components of the Higgs and the CW scalar), with the

transformation ~ϕ → Ω ~ϕ we have,

1

2

gµνE ∂µ(Ω ~ϕ) ∂ν(Ω ~ϕ)

Ω2
=

1

2
gµνE (∂µ~ϕ) (∂ν ~ϕ)

+
1

2

|~ϕ|2

6M2
gµνE (∂µσ) (∂νσ) +

~ϕ · (∂µ~ϕ) gµνE (∂ν ~ϕ)√
6M

' 1

2
gµνE (∂µ~ϕ) (∂ν ~ϕ) , (2.20)

where we have used the substitution ∂µ log Ω = ∂µσ(x)/(
√

6M) valid at the singlet field

values s � M
ξs

. The key point we want to make is that the two terms on the second line

of (2.20) are suppressed by the Planck scale
√

6M � M/
√
ξs � M/ξs. The Planck

scale is treated as the large scale > than the UV cutoff in our effective field theory in the

gravitational background, and we can neglect the terms suppressed by M . The inflation

will happen at the parametrically lower scale ∼M/
√
ξs dictated but the exponential fall-off

of the potential (2.18), and is under control in the theory with the canonically normalised

kinetic terms, given by the last line of (2.20).

The terms in (2.7) involving portal interactions or the singlet s with other scalars, at

large values of the singlet field (where s2/Ω2 = M2/ξs) become

1

Ω4

(
λhs
2
|ΩH|2s2 +

λφs
4
|Ωφ|2s2

)
' λhsM

2

2ξs
|H|2 +

λφsM
2

4ξs
|φ|2 , (2.21)

giving the mass terms for the Higgs and the CW field in this large-s-field regime, with the

singlet s being (exponentially) decoupled from the rest of the theory, cf. eq. (2.17). Finally,

the Higgs portal potential V (H,φ) is the homogeneous degree-4 expression in terms of

scalars, given by the classical potential (2.1) plus the radiative corrections also involving

log(φ/〈φ〉), such as the 1-loop CW expression, (see the appendix),

VCW(φ) = Vcl +
3

4
α2

CW|φ|4
[
log

(
|φ|2

〈|φ|2〉

)
− 25

6

]
. (2.22)

Since V goes as a sclar field to the 4th power, the factors of Ω cancel,

1

Ω4
V (ΩH,Ωφ) = V (H,φ) . (2.23)

To summarise, the Einstein-frame Lagrangian after the Weyl transformation of all the

fields, except for the singlet s(x) which is substituted by the field redefinition (2.10), at large

values of the singlet field takes the canonical form. The singlet in this regime is effectively
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decoupled from the SM degrees of freedom and the exponentially flat potential (2.18),

LE√
−gE

=−1

2
M2R+

1

2
∂µσ∂µσ −

λsM
4

4ξ2
s

(
1− exp

[
− 2σ√

6M

])2

− 1

4
FµνFµν + Fermions

+(DµH)†DµH+
1

2
(Dµφ)†Dµφ−

λhsM
2

2ξs
|H|2−

λφsM
2

4ξs
|φ|2−V (H,φ)+Yukawas. (2.24)

In the equation above we have used the exponential form potential (2.18) for the canon-

ically normalised σ-singlet which is the correct description at large field values. At the

same time, to simplify the formulae, in the terms involving portal interactions between the

singlet and other scalars, we used the asymptotic values for s2/Ω2 as in (2.21), emphasising

the emerging large mass terms for H and φ, but neglecting exponentially suppressed cor-

rections involving σ. These are small exponentially suppressed effects which are not going

to modify the analysis of inflation.

The inflaton is the σ-field and the inflation is generated by the self-interacting part of

the potential in (2.24),

V (σ) =
λsM

4

4 ξ2
s

(
1− exp

[
−2σ(x)√

6M

])2

. (2.25)

It is exponentially flat for large field values and is suitable for the slow-roll inflation [36].

The slow-roll inflation parameter is

ε :=
M2

2

(
V (σ)/dσ

V (σ)

)2

=
4M4

3 ξ2
s s

2
. (2.26)

Inflation ends when εend = 1 which corresponds to send = (4/3)1/4M/
√
ξs or σend ' 0.94M .

Inflation starts at the singlet field value [50] s0 ' 9.14M/
√
ξs. The CMB normalisation

condition,
V

ε
(s = so) ' (0.0276M)4 , (2.27)

which determines the non-minimal singlet coupling to gravity [36, 50],

ξs ' 4.7× 104
√
λs . (2.28)

The spectral index and the tensor-to-scalar perturbation ratios in this model are the

same as computed in the Bezrukov-Shaposhnikov Higgs-inflation model [36]. They are

found to be in excellent agreement [50] with the latest Planck measurements, [34].

Our realisation of inflation in (2.24) is a one-field slow-roll inflation model. The singlet

field σ plays the role of the inflaton, while the other degrees of freedom, such as the Higgs

and the CW scalar at the inflation scale being much heavier than the Hubble expansion

parameter during inflation, H =
√

λs
12

M
ξs
.

mh =

√
λhs
2

M√
ξs

and mφ =

√
λφs
2

M√
ξs

� H =

√
λs
12

M

ξs
. (2.29)

The main technical advantage of the singlet field realisation of inflation presented here,

compared to the original Higgs inflation model [36] and the subsequent implementations
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with other multi-component non-minimally coupled scalars, as in [28, 44], is that our model

does not require introduction of new physics effects associated with the ‘low’ M/ξs and

‘intermediate’ scale M/
√
ξs. Indeed, the appearance of the low-scale dimension-6 operator

in (2.9) was rendered harmless by the field redefinition of the one-component field s(x).

At the same time we should note that the field redefinition (2.10)–(2.11) when applied

in the regime of small field values, s�M/ξs, does introduce higher-dimensional corrections

in the Einstein-frame potential for the singlet, cf (2.18),

VE(s) =
λs
4

s4(x)

Ω4
=

λσ
4
s4(x) − λs

4

ξ2
s

M2
σ6(x) + . . . , for s� M

ξs
. (2.30)

If one considers multi-particle (2-to-4 and higher) scattering processes, this appears to break

unitarity at scales M
ξs

in the perturbative regime of the theory when expanding at small

values of σ. These scattering processes are relevant for the theory in the ‘collider regime’

i.e. in the regime where we are using perturbation theory around vanishing background

field values. However in the collider regime the theory is safe: scales ∼ M
ξs

are of course

inaccessibly high for any collider experiments. On the other hand, in order to probe the

theory around inflation scale, the more appropriate approach is to expand around a non-

trivial background. In this case, as argued in ref. [42], the effective UV-cutoff scale of the

theory itself depends on the background field values (i.e. in our case it depends on s̄ or σ̄)

and rises with these values appropriately. The (slightly simplified) results of the analysis

in [42] imply for the effective UV cut-off of theory, Λeff(s̄) ∼ M
ξs

for s̄� M
ξs

; Λeff(s̄) ∼ ξs s̄2

M

for M
ξs
� s̄ � M√

ξs
, and finally, Λeff(s̄) ∼ M for s̄ � M√

ξs
in the inflationary regime. We

conclude that the effective potential of the theory is likely to remain safe at all relevant

energy scales (below the Planck scale) when evaluated at the appropriate background field

value (see ref. [42] and references therein for the detailed analysis of quantum corrections).

We also note that the fact that all the terms for the non-singlet scalars, H and φ,

are already canonically normalised in the Lagrangian (2.24) implies that there are no non-

renormalisable interactions in the theory involving the sub-Planckian scales. Indeed, the

only terms we dropped in (2.20) were suppressed by the high scale M . This is different from

the case of the Higgs-driven inflation where the gauge and fermion interactions of the Higgs

are modified and have to be cut-off at the intermediate scale M/
√
ξs, as pointed out in [43].

It is important to note that if the new physics was required to be included at the

scales below the UV cutoff M , this would have destroyed the classical scale invariance of

our model and induced large threshold contributions to the masses of the Higgs and the

CW scalar, reintroducing the fine-tinning problem into the SM. For this reason the elegant

construction of ref. [43] which integrates in a massive linear sigma-model field at the scale

M/ξs to restore the perturbative unitarity of the Higgs inflation model does not work in

our classically scale-invariant case.

Finally, we would like to briefly comment on the role of loop-induced quantum cor-

rections to the effective potential. As explained in the Introduction, our calculational ap-

proach is based on the use of dimensional regularisation where no power like divergencies
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can appear. At the 1-loop level we have the Coleman-Weinberg corrected potential,

V1−loop(σ) = Vcl(σ) +
1

64π2

(
V ′′cl (σ)

)2
log
(
V ′′cl (σ)/M2

UV

)2
, (2.31)

which entails the derivatives of the exponentially slowly varying potential in the background

of a large σ-field. Higher loop orders will involve higher derivatives of the flat potential

enhanced by only a logarithmic dependence on the UV-cutoff. As a result, it is quite likely

that quantum corrections computed in the dimensional regularisation scheme in the back-

ground perturbation theory around a large σ-field will be small and not affect the picture of

inflation at the leading order, see also [42] for a more comprehensive discussion of this point.

3 Dark matter

Singlet scalar dark matter (DM) models [51–53] are the simplest possible UV-complete

models of dark matter containing a weakly interacting massive particle (WIMP) — in this

case a scalar interacting with the Higgs via the portal interaction.

In the classically scale-invariant SM×U(1)CW theory with the real singlet s(x) and the

scalar potential (2.2), the stability of the singlet is protected by a Z2 symmetry, s → −s,
giving a natural dark matter candidate. Indeed, the Z2 symmetry of the potential (2.2)

is an automatic consequence of the renormalisability (dimension 4), scale-invariance and

gauge invariance (which does not allow odd powers of H and φ) of the theory.

As shown in the previous section, at large field values, s(x) > M/
√
ξs, the singlet (or

more precisely its log in (2.16)) plays the role of the inflaton field which during the inflation

slowly rolls in an exponentially flat potential (2.25). In this regime, the inflaton gives large

masses (2.29) to the SM fields and otherwise decouples from the rest of the theory.

After inflation is completed, the singlet enters the regime s(x) � M/ξs where it is

canonically normalised, its potential is no longer flat and given by (2.2), and the large

masses of the SM fields are no longer there. The singlet now assumes the role of the dark

matter in the classically scale-invariant theory.

There are only two phenomenologically relevant parameters of this singlet dark matter

model, the coupling λhs of the dark matter particle to the SM Higgs, and the induced mass

of the singlet, ms ≡ mDM in eq. (2.4) which gives the dark matter mass. Expressed in

terms of these two parameters, the DM phenomenology of this classically scale-invariant

model is the same as that of the usual singlet scalar DM model.

Papers [54–59] contain the recent comprehensive studies of the singlet scalar DM, see

also references therein. Here we give only a very brief summary of their results. The al-

lowed/excluded portions of the λhs, ms parameter space are shown on figure 1 taken from

ref. [59].

1. The relic density of singlet scalar dark matter, ΩS , should not exceed the full DM

relic density ΩDM. The DM relic density is determined by the (in-)efficiency of the DM

particles annihilating into the SM degrees of freedom. These processes are dominated by

the Higgs-mediated s-channel. Essentially the constraint ΩS/ΩDM ≤ 1 amounts to a lower

bound on the coupling λhs. The excluded region is the lower portion of the parameter

space shown in dark grey on both plots of figure 1.
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Figure 1. DM exclusion contours from ref. [59] on the λhs, ms plane. Left plot is a close-up on the

region ms . mh/2. The dark-shaded lower region is ruled out by the upper bound on the singlet

DM relic density, ΩS/ΩDM ≤ 1. The region in the upper-left corner is ruled out by constraints

on invisible Higgs decays. Right plot is over a wide mass range 45 GeV ≤ ms ≤ 5 TeV. The DM

relic density exclusion is shown superimposed with the current bound from XENON100 and bounds

from future direct detection experiments (in lighter shades of blue).

2. Indirect detection of dark matter constraints arise from annihilation of DM to SM

particles. For singlet scalar DM these constraints work much in the same way as the relic

density constraint above, and for ms > mh/2 provide a slight improvement on the relic

density contours.

3. When ms <
1
2 mh the DM can be produced via invisible Higgs decays at the LHC

with the Higgs partial decay widths into the singlet DM particles given by

Γh→ss =
λ2
hs v

2
√

1− 4m2
s/m

2
h

16πmh
. (3.1)

The upper bounds on the invisible Higgs decays from the LHC give the exclusion contour

shown in red on the upper-left corner of the left plot of figure 1 which zooms into the

singlet mass region between 45 and 70 GeV. Not surprisingly, the bounds from invisible

Higgs decays and from the DM relic density work in the opposite way, with the former

excluding larger values of the coupling λhs in the kinematically allowed phase space.

4. Direct detection experiments provide upper bounds on the DM-nucleon cross-

sections. Here DM interacts elastically with nuclei through the Higgs boson exchange.

The resulting nuclear recoil is then interpreted in terms of the DM mass and DM-nucleon

cross section. The spin-independent cross-section is

σSI =
λ2
hs

4πm4
h

m4
Nf

2
N

(ms +mN )2
, (3.2)

where fN parameterises the Higgs-nucleon coupling. These bounds are translated into

exclusion contours on the (λhs, ms) plane, which essentially are lower bounds on the scalar
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DM mass ms. Constraints from the current XENON100 direct detection experiment [60]

are shown in dark blue on the left of second plot in figure 1 together with the future reach

of XENON upgrades in lighter shades of blue, as computed in ref. [59].

To summarise, the singlet scalar DM model is perfectly viable at present on a large

portion of its parameter space for ms >
1
2 mh. At lower values of mh in the region between

55 GeV and 1
2 mh, there is only a small triangle (in white) left unexplored, as can be seen

from the plot on the left. More generally, the XENON100 upgrade and the XENON1T di-

rect detection experiment should be able to probe the entire parameter space of the singlet

DM model [56, 59].

4 Conclusions

In this paper we considered a classically scale-invariant SM theory extended with the

Coleman-Weinberg sector and an additional real singlet field, both coupled to the SM via

the Higgs portal interactions. The singlet classically massless field s(x) was shown to give

rise to the inflaton and to the dark matter candidate.

We have presented for the first time an implementation of the slow-roll inflation mech-

anism in a BSM theory with classical scale invariance. Our model is a single-real-field

inflationary model which does not suffer from a breakdown of unitarity at scales below or

comparable to the scale of inflation. The model maintains its classical scale invariance and

is self-consistent all the way up to the Planck-scale UV cutoff. The SM Higgs potential is

stabilised by the Higgs portal interactions with the Coleman-Weinberg scalar. The Higgs

mass and the scale of the electroweak symmetry breaking are unaffected by the inflaton

and its interactions. Furthermore, the singlet field responsible for inflation also gives a

viable scalar dark matter candidate in our model.

When discussing cosmological inflation in section 2, our classically scale invariant quan-

tum field theory was coupled to a gravitational background with an explicit dependence

on the reduced Planck scale M . How does this fit with classical scale invariance of the

non-gravitational theory?

The Planck scale M , as it appears in our effective Lagrangians (2.5) and (2.24) does

not cause problems to the effective field theory. At the scale M and above, the theory

coupled to gravity of course becomes non-renormalisable, but M is above the UV cutoff

scale of our theory and gravity is treated as an external background. One can continue

using dimensional regularisation in the curved background for all QFT processes. The

interesting for us phenomena, such as the cosmological inflation, happen at large values

of the singlet field set by the intermediate scale M/
√
ξs � M , at this scale the theory is

robust, the scalar inflaton σ(x) is exponentially decoupled from the SM degrees of freedom

(in the relevant for inflation regime of large field values) and there are no heavy degrees of

freedom coupled to the SM sector present in the theory.

Still it is desirable to not have an explicit scale M present in the theory which is

supposed to become classically scale-less when gravity decouples. One can do this and

embed the classical scale-invariance of the theory in the IR into the scale invariance as a

fundamental symmetry of nature - including gravity - with the Planck scale being set by
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the vev of the dilaton. We stress first that this is not a necessary requirement, the classical

scale invariance of the IR theory can in principle exist even if the UV-complete theory is

not scale-invariant. Secondly, as we will explain below, the classical scale invariance of

the effective QFT does not automatically follow from the (broken) scale invariance of the

gravitational theory. It has to be seen as an additional constraint.

To proceed, we impose the scale-invariance on the full theory including gravity and

assume that this is a local symmetry which is non-linearly realised — i.e. spontaneously

broken by the dilaton field with the vev 〈ϕdil〉 = M . Very recently there has been a

resurgence of interest in such an approach to gravity and cosmology, see refs. [61, 62]

and also [63–65] and references to earlier work therein for other related approaches which

assume or utilise full quantum scale invariance of the underlying theory.

Thus our original Lagrangian (2.5) can be written in a manifestly locally scale-invariant

(Weyl-invariant) form if we retrofit the Planck scale in terms of the dilaton vev, 〈ϕdil〉 = M

and introduce the kinetic term for the dilaton (see section III of [62] for a review of a general

construction),

LJ =
√
−gJ

(
−
ϕ2

dil + ξss
2

2
R − 1

2
gµνJ ∂µϕdil ∂νϕdil +

1

2
gµνJ ∂µs ∂νs + . . . + V

)
, (4.1)

where the dots indicate omitted kinetic terms of other fields, and V is the scalar poten-

tial which must scale as the 4th power of the scalars, which our potential does (see the

discussion above (2.22)). The dilaton can be expressed as,

ϕdil(x) = M × exp

(
χ(x)

M

)
, (4.2)

where χ transforms linearly under local scale transformations. Note that the dilaton ki-

netic term in (4.1) has the ‘wrong’ sign, but this is not a problem [61, 62], since the dilaton

is not a physical degree of freedom - it can be gauged away. (This also means that there

are no additional massless or light degrees of freedom arising from the dilaton, thus no

complications for the SM.) In the unitary gauge we have ϕdil = M.

The dilaton spontaneously breaks local scale invariance of the gravitational theory

at the scale M , and gives the mass gap ∼ M to heavy gravitational states. In order to

maintain the classical scale invariance of the SM theory, the graviton should not couple

to any of the SM states in the potential V in (4.1). This should be seen as an additional

requirement (rather than an automatic consequence) to the local scale invariance of the

microscopic theory.

When Weyl transforming to the Einstein frame, as in section 2, we now promote M

to the dilaton field and maintain the manifest local scale invariance, or gauge fix to the

unitary gauge and keep M as in section 2. Quantum effects are computed in dimensional

regularisation in the manifestly scale-invariant way.

In the flat background and without scale invariance, the dimensionless coupling con-

stants acquire the dependence on the RG scale µ in D = 4+ε dimensions, λ→ λµε. In the

gravitational background, one treats the metric tensor gµν as a (4+ ε)× (4+ ε) matrix, and

in the Einstein frame, it introduces the dependence on the dilaton. The result is that in
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our theory with spontaneously broken (or non-linearly realised scale-invariance), the every

appearance of the RG scale µ in the effective potential is now substituted by, see ref. [66],

µ → µ× exp

(
χ(x)

M

)
, (4.3)

which now transforms under scale-transformations. This gives a manifestly scale-invariant

formulation in quantum theory regularised in dimensional regularisation.

The message we take from the above discussion is that the classical scale invariance

of the effective SM theory can be compatible with, and form a natural part of the full

local scale invariance of the full theory. This, however, is not automatic and requires an

additional constraint that the dilaton vev 〈ϕdil〉 = M does not appear in the SM potential,

though ϕdil/M can appear in the logarithms. After the gravity is decoupled, together with

the heavy states whose masses are set by the dilaton mss gap, the SM × CW × s theory

in the IR is classically scale invariant. This classical scale invariance has its own pseudo-

dilaton — the CW field φ, which is a physical degree of freedom and has nothing to do

with the heavy dilaton of the gravitational theory.
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A Mass generation in a classically massless theory

The simplest theory where the CW mechanism [3] is realised is the massless scalar QED

with the classical potential

Vcl =
λφ
4!
|φ|4 . (A.1)

The field φ is the Coleman-Weinberg complex scalar, it is charged under the U(1)CW gauge

symmetry with the usual covariant derivative coupling, Dµφ = ∂µφ+ igCW Aµ φ.

Normalisation conditions for φ are chosen to be the same as in [3], φ = φ1 + iφ2,

with canonical kinetic terms for its real and imaginary part components 1
2(∂µφ1∂

µφ1 +

∂µφ2∂
µφ2). This is related to the canonically normalised complex scalar Φ = (φ1 +iφ2)/

√
2

via a simple rescaling, Φ = φ/
√

2.

The 1-loop corrected scalar potential is given by the usual Coleman-Weinberg expres-

sion [3],

V (φ) = Vcl + ∆V1−loop =
λφ
4!
|φ|4 +

(
5λ2

φ

1152π2
+

3g4
CW

64π2

)
|φ|4

[
log

(
|φ|2

µ2

)
− 25

6

]
, (A.2)
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where µ is the RG scale. The effective potential above is computed in the massless theory,

in the UV subtraction scheme is chosen to set the renormalised mass at the origin of the

field space to zero,

m2(φ = 0;µ) = V ′′(φ)

∣∣∣∣
φ=0

= 0 . (A.3)

We use dimensional regularisation which preserves classical scale-invariance of the theory.

In dimensional regularisation the equation (A.3) is satisfied automatically and is indepen-

dent of the RG scale µ.

The minimum of the Coleman-Weinberg effective potential occurs at φ = 〈φ〉 where the

first derivative of (A.2) vanishes. Validity of weakly-coupled perturbative approach requires

that λφ ∼ α2
CW in the minimum (rather than the more usual relation λφ ∼ α1

CW) where

we defined αCW = g2
CW/(4π). This is because the minimum of the effective potential (A.2)

is determined [3] by ballancing the tree-level contribution ∼ λφ against the 1-loop term

∼ α2
CW. Thus one can neglect in the λ2

φ ∼ α4
CW 1-loop contribution on the right hand side

of (A.2) which is subleading relative to the α2
CW term. Choosing the value of the RG scale

µ = 〈φ〉, the minimum of the 1-loop corrected effective potential occurs at [3]

∂φV =

(
λφ
6
− 11α2

CW

)
〈φ〉3 = 0 (A.4)

and the vev 〈φ〉 is determined by the condition on the couplings renormalised at the scale

of the vev,

λφ(〈φ〉) = 66α2
CW(〈φ〉) ≡ 33

8π2
g4

CW(〈φ〉) . (A.5)

An RG point can always be found (in the right theory) where this relation between the

two couplings holds. In the CW settings the beta function for λφ is positive,

dλφ
dt

= βλφ =
1

4π2

(
9g4

CW − 3g2
CWλφ +

5

6
λ2
φ

)
> 0 , t := log(µ/MUV) . (A.6)

Thus starting in the UV at a positive initial value of λ̃φ and following the RG running to

the IR, one reaches the critical value of the RG scale where λφ crosses zero. Before this

happens, at λφ � 1 and positive, the λφ trajectory necessarily crosses the α2
CW trajec-

tory. At the RG point where the constraint (A.5) is satisfied, the vacuum is reached, the

condensate 〈φ〉 develops and the coupling freezes.

Since the couplings run only logarithmically, the vev fixed by the condition (A.5)

depends exponentially on the coupling constants. In fact, in weakly coupled perturbation

theory the vev is naturally generated at the scale which is exponentially smaller than the

UV cutoff MUV. By solving the leading-order RG-running equation for the coupling gCW,

dgCW

dt
=

g3
CW

48π2
, (A.7)

we find

〈φ〉 = MUV × exp

[
−6π

(
1

αCW(〈φ〉)
− 1

αCW(MUV)

)]
�MUV . (A.8)
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The CW gauge group is spontaneously broken by 〈φ〉 and the gauge boson acquires

the mass, mZ′ = gCW|〈φ〉|. The mass of the CW scalar is follows from expanding (A.2)

to the second order in ϕ = φ− 〈φ〉,

m2
ϕ =

3g4
CW

8π2
|〈φ〉|2 . (A.9)

It is parametrically (1-loop) suppressed relative to the corresponding vector boson mass,

m2
ϕ = 3

2αCWm
2
Z′ � m2

Z′ .

To adapt the expressions above to a more general CW theory, e.g. the B-L theory

where the CW field φ has charge Qφ = 2 under the U(1)CW gauge group, and other mat-

ter fields are coupled to the latter with their B − L charges, or other models, we can

re-write (A.2), (A.5) and (A.9) as

V (φ) =
1

4!

(
λφ(µ) + βλφ

[
log

(
φ

µ

)
− 25

12

])
, (A.10)

λφ(〈φ〉) =
11

6
βλφ(〈φ〉) , (A.11)

m2
ϕ

m2
Z′

=
3

8π2
(Qφ gCW)2 |〈φ〉|2 . (A.12)

Note that eq. (A.10) is manifestly RG-invariant but it also incorporates the finite contribu-

tion C = 25
12 , as in (A.2). The last two equations take these finite contributions into account,

e.g. (A.11) originates from λφ = −
βλφ

4 + Cβλφ = 11
6 βλφ and both, the log-dependent and

the finite effects are important.

Generalising now this simple model to the SM × U(1)CW theory, the classical scalar

potential in conventions of [7] reads,

Vcl(H,φ) =
λH

2
(H†H)2 +

λφ
4!
|φ|4 − λP(H†H)|φ|2 . (A.13)

Here H is the usual SM Higgs complex doublet, which in the unitary gauge takes the form

HT (x) = 1√
2
(0, v + h(x)). The field CW field φ is normalised as before, and the Higgs is

canonically normalised, |DµH|2. All scalars have vanishing renormalised masses,

∂2V (H,φ)

∂H†∂H

∣∣∣∣
H=φ=0

= 0 ,
∂2V (H,φ)

∂φ†∂φ

∣∣∣∣
H=φ=0

= 0 . (A.14)

Once these conditions are enforced at one scale, they hold [7] at all RG scales in dimensional

regularisation maintaining classical scale invariance of the model.

This potential can be re-written as,

Vcl(H,φ) =
λH

2

(
|H|2 − λP

λH
|φ|2

)2

+
λ̃φ
4!
|φ|4 , where λ̃φ = λφ − 12λ2

P/λH . (A.15)

For small positive portal coupling λP, the radiative generation of the CW vev proceeds

exactly as before with the substitution λφ → λ̃φ.
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The value of 〈φ〉 is given by (A.8) and it induces the Higgs vev required to minimise the

potential (2.1) such that |〈H〉| := v√
2

=
√

λP
λH
|〈φ〉| and triggers the electroweak symmetry

breaking. The Higgs self-coupling and the portal coupling responsible for the emergence

of EWSB are then determined from 〈φ〉 through [7],

1

λP

1

2
(125 GeV)2 =

λH

λP

(246 GeV)2

2
= |〈φ〉|2 , (A.16)

where we have set mh = 125 GeV and v = 246 GeV.

Of course one can argue that the theory under consideration (or for this matter any

theory which does not include quantum gravity or in addition has Landau poles in the

non-asymptotically free couplings, e.g. the hyper charge, even if these Landau poles occur

at above the Planck scale) must have a UV cutoff above which it breaks down. In this

case the unknown more microscopic theory above the cutoff, could (or should(?)) contain

heavy ∼MPl degrees of freedom which after being integrated out produce large threshold

contributions to the Higgs mass. The quadratic cutoff contributions to the Higgs mass in

non-dimensional regularisation schemes is an effective realisation of these physical effects

and implies that the masslessness requirement (A.15) is the fine-tuning. The vanishing

masses in (A.14) in this reading correspond to an exact cancellation of all the ∼ M2
UV

terms between the bare masses terms and the counterterms.

One can also take the view that the unknown microscopic theory might after all not

generate such large corrections to the Higgs in order to preserve the classical scale invari-

ance of its sub-Planckian effective theory.

The more practical outcome of this discussion is that from the perspective of our clas-

sically scale invariant effective theory which should be valid below and up to the Planck

scale, there are no cancellations between large scales in dimensional regularisation of this

theory and no associated problems or uncertainties. Technically the SM×CW theory is

natural and there is no fine-tuning.

The computational approach we take is to first define the maximal scale above which

the theory should not be used, effectively the Planck scale, and in this theory regulate

all integrals using the analytic continuation prescribed by the dimensional regularisation.

With that, the maximal UV scale becomes irrelevant, if one wishes it can be safely taken

to infinity, the integrals are convergent in the UV. No powers of the cutoff scale appear in

the integrals, the poles in epsilon are subtracted in the usual way in the MS or MS scheme

and only the logarithms of the RG scale remain.
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