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1 Introduction

Geometrical CP violation (GCPV) was initially proposed in [1], defined as a situation

where CP is spontaneously violated by a vacuum expectation value (VEV) and the com-

plex phase of that VEV takes a specific value that is independent of the magnitudes of the

various parameters of the scalar potential (these specific complex phases are then referred

to as “calculable phases”). The concept has been developed further in [2–9]. Additionally,

CP violation in the lepton sector has also been considered independently of the scalar po-

tential for example in the two very general analyses [10] and [11] (the latter also briefly

addresses the ∆(27) case of GCPV and calculable phases as defined in [1]). The most

explored GCPV scenario is an extension of the Standard Model (SM) extended with a CP

symmetry and with ∆(27). For a ∆(27) triplet φ, as long as cubic terms are not allowed,

the renormalisable potential has the VEV [1]

〈φ〉 = v(ω, 1, 1) , (1.1)

with ω ≡ ei2π/3. Not all complex VEVs violate CP, as in many cases they can be eliminated

by a rephasing symmetry of the potential (see e.g. [4, 6]), but one can verify explictly that

the corresponding transformation U that relates eq. (1.1) to its conjugate is not a symmetry

of the potential:

〈φ〉 −→ 〈φ〉∗ = Uij〈Hj〉 , (1.2)

which is sufficient to prove that it spontaneously violates CP regardless [1]. The absence

of cubic terms has been traditionally guaranteed because the ∆(27) triplet is charged as

a doublet under the SM (see discussion in [4]). It is very constraining to use only this

∆(27) triplet VEV to produce viable patterns of fermion masses and mixing, although
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some promising leading order structures can be obtained [2]. A viable GCPV framework

focusing on the quark sector was presented first in [5] and improved recently in [9].

The lepton sector has also been considered, with some promising structures suggested

by [8]. Here we turn our focus to the lepton sector, investigating the viability of several

possibilities. One of our aims is to develop a leptonic sector that is not only viable by itself,

but fully compatible with the quark sector structures proposed in [5, 9]. In doing so we

intend to keep the U(1)F Froggatt-Nielsen (FN) symmetry [12] introduced in [9]. By finding

viable leptonic structures that are consistent with viable quark structures, we provide an

existence proof of a complete model of fermion masses and mixing featuring GCPV.

2 General considerations

One obstacle that the leptonic sector presents is that the simplest extensions of the ∆(27)

GCPV framework do not readily work. In order to understand this, we briefly review

the relevant properties of ∆(27): it is a discrete non-Abelian subgroup of SU(3) with 27

elements. Its irreducible representations are one-dimensional 1ij (i, j = 0, 1, 2 for a total

of nine) and the two three-dimensional 301 and 302 which act like anti-triplet and triplet.

The contractions are

30i × 30i = 30j + 30j + 30j , (2.1)

with the products between two antitriplets A, B being three triplets (and vice-versa) built

as (A1B1, A2B2, A3B3), (A2B3, A3B1, A1B2), and (A3B2, A1B3, A2B1), and

301 × 302 =
∑

i,j

1ij , (2.2)

with the product between an anti-triplet and triplet resulting in the singlets, the invariant

100 being constructed from a 301 A and a 302 B as A1B1+c.p., with A1B2+c.p. transforming

as 101 and A1B3 + c.p. as 102 (c.p. denotes cyclic permutations of the indices).

If H and L are respectively the scalar and lepton SM doublets, we wish to construct

charged lepton invariants of type HLτ c and effective neutrino mass terms are H†H†LL.1 If

H transforms as a triplet under ∆(27) (we assume a 301, without loss of generality), then in

order to have invariant neutrino mass terms H†H†LL, L must transform in the same triplet

representation of ∆(27) (e.g. both are 301). This then requires the SU(2) singlet charged

leptons to also transform as the same representation of ∆(27), which leads to mass struc-

tures that are not viable [1, 2]. By extending the field content we can avoid this obstacle,

in fact [8] obtained viable lepton masses simply by introducing additional SU(2) doublets

ζ transforming as ∆(27) singlets: then ζH†LL gives mass to the neutrinos, where L should

now be the conjugate triplet (a 302), with ec, µc and τ c transforming as singlets. Here we ex-

plore a different framework where we instead assign H as a trivial ∆(27) singlet and add φ,

a 301 and SM singlet, as shown in table 1. This separates the scalars responsible for break-

ing the SM,H, and φ, that breaks both ∆(27) and CP. While this has the disadvantage that

1We refer to non-renormalisable terms without the necessary mass suppressions, which remain implicit.

They are to be understood as the mass of some kind of messenger fields associated with some type of seesaw

mechanism or with the ultraviolet completion of the flavour model, as in e.g. [13–17].
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Q1 Q2 Q3 uc dc L ec µc τ c H φ ϕ θ

∆(27) 100 100 102 302 302 301 100 100 102 100 301 100 102
U(1)F 3 2 0 −p −p fL (p) fe (p) fµ (p) fτ (p) 0 p −1 −2

Table 1. The symmetry and field content of the models.

the interesting scalar sector properties discussed in [5] no longer apply to the SU(2) doublet

scalars, conversely it allows the scale of CP breaking to be higher, which may be necessary

for the generation of the baryon asymmetry of the universe (e.g. through leptogenesis).

The separation of H and φ also allows us to place L as a 301 and build HLφ†τ c consis-

tently with neutrino mass terms H†H†(LLφ) or H†H†(LLφ†φ†). Before proceeding into a

detailed analysis of possible lepton structures, two issues must be addressed. As mentioned

already, eq. (1.1) is valid in the absence of cubic φ terms in the potential. As φ is not an

SU(2) doublet, this has to be enforced by a different symmetry. As we are using a FN

symmetry, we require that φ is not neutral under it and that the specific assignment does

not allow any renormalisable terms cubic in φ. The second issue is that we need to make a

small adaptation compared to the quark structures of [5, 9]. Whereas there the invariants

are H†Quc and HQdc, with H, uc and dc respectively 301, 301 and 302 under ∆(27), they

should now be H†Qucφ and HQdcφ, with H, uc, dc and φ respectively 100, 302, 302 and 301
under ∆(27). Note that although this does not make a difference for the masses and CKM

mixing, it does change the up mass matrix: uc is now the 302 in the invariant contraction

(with φ, not φ†). So the leading order

Mu = v







x1ω x1 x1

x2ω x2 x2

x3 x3 x3ω






, (2.3)

can be compared with [9] where the equivalent structure has ω2 instead of ω, and the (32)−
(33) entries are swapped. Similarly, the invariants of type HQdc(HH†) that were required

to generate the complex phase in the CKM matrix are easily replaced by HQdcφ(φφ†) and

the quark sector remains equally viable. For further details about the specific structures

we refer the reader to [5, 9].

With a continuous U(1)F (or discrete ZN ) FN symmetry, the mass hierarchies of the

fermions can be addressed and the problematic scalar couplings of the GCPV scalar φ with

non-trivial ∆(27) singlets can be forbidden. We will revisit the extended scalar sector in

section 5. The FN fields ϕ and θ are SM gauge singlets, and charged under ∆(27) and U(1)F
as 100, −1 and 102, −2. The Higgs field H that breaks the SM SU(2) does not transform

under ∆(27), instead the ∆(27) triplet scalar, φ has some charge under FN, which we

denote as p in table 1 and only specify it when we discuss model implementations.2

2For GCPV, the requirement is that φ3, φ3θ, φ3θ†, φ3ϕ and φ3ϕ† are not invariant.
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3 Leptonic structures

With viable quark sector structures analogous to those of [5, 9] guaranteed, we focus now

on the different possibilities for the leptonic sector. In general we choose to have L trans-

form as a triplet. Due to this, the hermitian MlM
†
l combination is not going to be diagonal

at leading order as it was for the quarks. We assign the SU(2) singlet charged leptons ec,

µc, τ c as 100, 100 and 102 (note that these are not the singlets used in [8]). The leading

invariants are generically of the type H
[

(Lφ†)lci
]

, e.g.

H
[

y3(Lφ
†)01τ

c + y2(Lφ
†)02µ

c(θ2) + y1(Lφ
†)00e

c(θ3)
]

. (3.1)

The corresponding mass matrix is

Ml =







y1ω
2 y2 y3

y1 y2 y3ω
2

y1 y2ω
2 y3






, (3.2)

where we have reabsorbed the VEVs into the yi. The hermitian combination

MlM
†
l =







y21 + y22 + y23 y21ω
2 + y22 + y23ω y21ω

2 + y22ω + y23
y21ω

2 + y22 + y23ω y21 + y22 + y23 y21 + y22ω + y23ω
2

y21ω
2 + y22ω + y23 y21 + y22ω + y23ω

2 y21 + y22 + y23






, (3.3)

is diagonalized by

Vl =
1√
3







ω2 ω 1

1 ω ω2

1 1 1






. (3.4)

Vl has no free parameters and the parameters yi are fixed by the charged lepton masses.

As a brief aside that illustrates to some extent the difficulty in obtaining fermion

masses and mixing in this framework, it is interesting to consider a couple of scenarios.

With (LLφ) invariants we readily encounter promising structures where the mixing in

the neutrino sector is approximately tribimaximal (TB). Had the charged leptons been

diagonal, these solutions would be viable, but with the Vl in eq. (3.4) the mixing gets

spoiled. One would need to contract L with a different triplet field aligned as (1, 0, 0)

in the charged lepton sector to make these neutrino solutions viable. Conversely, had we

assigned instead the charged lepton SU(2) singlets generations as a ∆(27) triplet and L1,

L2, L3 as 100, 101, 102, we could have a leading order neutrino mass matrix where the

only non-zero entries are 11, 23 and 32. This µ − τ interchange could be a promising

starting point to obtain viable mixing in combination with the Vl in eq. (3.4), but if the Li

are singlets we obtain diagonal charged lepton masses (in analogy with the leading quark

structures). Once again, one would need a field aligned in the (1, 0, 0) direction, this time

contracted with the LL operator to obtain the µ−τ interchange structure for the neutrinos

together with eq. (3.4). In both cases the symmetry would be broken to different directions
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in each sector, the traditional strategy to generate (near) TB mixing with a discrete group.

But because we want to preserve GCPV, we avoid introducing additional triplet scalars.

We proceed now with the detailed discussion of invariants of type H†H†(LLφ). There

are two symmetrical 302 constructed from LL that contract with φ, each generating one

of each ∆(27) singlet. The two distinct H†H†(LLφ)00 invariants are not enough for viable

masses and mixing, so we consider in general that there are auxiliary (or spurion) fields ξ, ξ′

and ξ′′ transforming as 100, 101 and 102, all sharing the opposite FN charge of H†H†(LLφ)

(these spurions can be constructed from combinations of the physical fields ϕ and θ, see

section 4). Then we have two invariants for each auxiliary field:

H†H†ξ [z1(LiLiφi)00 + z4(LiLjφk)00] (3.5)

H†H†ξ′ [z2(LiLiφi)02 + z5(LiLjφk)02] (3.6)

H†H†ξ′′ [z3(LiLiφi)01 + z6(LiLjφk)01] , (3.7)

where the ijk invariant denotes the symmetric contraction, e.g.

(LiLjφk)00 = L2L3φ1 + L3L1φ2 + L1L2φ3 (3.8)

(LiLjφk)02 = L2L3φ2 + L3L1φ3 + L1L2φ1 (3.9)

The invariants correspond to mass structures

Mξ =







z1ω
2 z4 z4

z4 z1 z4ω
2

z4 z4ω
2 z1






, (3.10)

Mξ′ =







z2 z5ω
2 z5

z5ω
2 z2 z5

z5 z5 z2ω
2






, (3.11)

Mξ′′ =







z3 z6 z6ω
2

z6 z3ω
2 z6

z6ω
2 z6 z3






. (3.12)

In a phenomenological scan, we have 6 free zi parameters and need to obtain the mass

splittings and mixing angles (with Vl taken into account). While the mass structures in

eqs. (3.10)–(3.12) are fairly constraining, we found regions of parameter space with viable

squared mass splittings and mixing angles in the 3-σ ranges of [18]. Table 3 contains one

example for each hierarchy, the inverted (IH) and the normal (NH).

We now consider also invariants of the type H†H†(Lφ†)(Lφ†), namely

H†H†
[

A(Lφ†)00(Lφ
†)00 +B(Lφ†)01(Lφ

†)02

]

(3.13)

With the additional parameters A, B, minimal models only require contributions from two

of the auxiliary fields. We scanned the three classes of models and obtained for each large

regions of viable parameter space. Tables 4, 5 and 6 have some examples.

In order to have an idea of the fine-tuning, we have relied on the procedure discussed

in [19]: we use dFT as a quantitative measure of the fine-tuning, a dimensionless quantity
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defined as the sum of the absolute values of ratios between all parameters and respective

errors, where these errors are themselves defined as the deviation in that parameter that

leads to an increase of χ2 by 1 (while the other parameters remain at their fitted values).

In [19], another similar quantity dData is introduced, defined simply the sum of the absolute

values of ratios between the data and respective errors - we also present this number in the

appendix.

4 Specific models

In this section we present an example of how to build concrete models by assigning specific

FN charges to the lepton sector in a way that is consistent with the desired quark terms.

We leave H neutral for simplicity and retain the charges of ϕ, θ. The charges of uc, dc are

adjusted to cancel the charge of φ, such that the combinations H†Qucφ and HQdcφ are

overall neutral under U(1)F . The charges of the different Qi generations select different

combinations of ϕ and θ producing exactly the same FN suppressions as in [9].

An important distinction is whether any hierarchy in the effective couplings zi is be-

tween terms involving different ξ, ξ′ and ξ′′ or not: a large hierarchy within the two

invariants involving the same spurion is unnatural, as the invariants correspond to the

same physical field combination. An hierarchy between A, B is similarly not desirable. We

first selected solutions where there are only natural couplings (avoiding the issue described

above), then chose two particularly interesting types where the FN charges look simpler.

These cases have z1, z4 about one order of magnitude larger than A,B, z2, z5, z3, z6,

illustrated in table 7. dFT is also shown for these examples.

We have one type of model with

H†H†(θ3)†
[

A(Lφ†)00(Lφ
†)00 +B(Lφ†)01(Lφ

†)02

]

(4.1)

+H†H†θ3 [z1(LiLiφi)00 + z4(LiLjφk)00] (4.2)

+H†H†θ2ϕ2 [z2(LiLiφi)02 + z5(LiLjφk)02] . (4.3)

Another type of model has

H†H†θ3
[

A(Lφ†)00(Lφ
†)00 +B(Lφ†)01(Lφ

†)02

]

(4.4)

+H†H†(θ3)† [z1(LiLiφi)00 + z4(LiLjφk)00] (4.5)

+H†H†(θ2ϕ2)† [z3(LiLiφi)01 + z6(LiLjφk)01] . (4.6)

At this stage it is clear that we can identify the auxiliary fields ξ, ξ′ or ξ′′ as combina-

tions of ϕ and θ. In any case, z1, z4 appear in invariants with 8 field insertions compared

to the other neutrino mass invariants at 9 field insertions, so the hierarchy between them

is natural as it is accounted for by the FN assignments listed in table 2. The charges of

L and φ are selected to make H†H†(Lφ†)(Lφ†) invariant either with θ3 or (θ3)† (9 field

insertions for the A, B parameters).3

3The other two combinations where H†H†(Lφ†)(Lφ†) has the same overall FN charge as H†H†(LLφ)

corresponds to the charge assignment p = 0, which is not compatible with our requirement for the scalar

potential not to have he term φ3.
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L φ ec µc τ c

100+101 -1 -4 3 1 -3

100+102 1 4 9 7 3

Table 2. Specific U(1)F charges for two sample models that are considered natural in terms of

hierarchies.

5 Scalar potential

We consider now the full renormalisable scalar potential. As long as problematic FN charge

assignments for φ (such as p = 0) are carefully avoided, there are no renormalisable terms

that are cubic in φ. Similarly, the FN assignments of ϕ and θ guarantee the absence of

terms such as (φ†φ)01θ, (φ
†φ)02θ

† or any other phase-dependent φ invariants that would

spoil GCPV as in [9]. The potential is then

V (H,φ, ϕ, θ) = m2
HHH† +m2

ϕϕϕ
† +m2

θθθ
† (5.1)

+ λH(HH†)2 + λϕ(ϕϕ
†)2 + λθ(θθ

†)2 + λϕθ(ϕϕ
†)(θθ†) (5.2)

+
(

λϕHϕϕ† + λθHθθ†
)(

HH†
)

(5.3)

+m2
φ

[

φiφ
†
i

]

+λ1

[

(φiφ
†
i )

2

]

+λ2

(

φ1φ
†
1
φ2φ

†
2
+φ2φ

†
2
φ3φ

†
3
+φ3φ

†
3
φ1φ

†
1

)

(5.4)

+ λ3

(

φ1φ
†
2
φ1φ

†
3
+ φ2φ

†
3
φ2φ

†
1
+ φ3φ

†
1
φ3φ

†
2
+ h.c.

)

(5.5)

+
(

λHφHH† + λϕφϕϕ
† + λθφθθ

†
) [

φiφ
†
i

]

. (5.6)

The notable property of this potential that leads to GCPV is precisely that there is only

one invariant that depends on complex phases, and when λ3 is positive the VEV for φ is of

the form shown eq. (1.1). The magnitudes of the VEVs of H, φ, ϕ and θ are controlled by

the various mass terms and quartic couplings and can readily be distinct. It is only when

all the scalars acquire their respective VEVs that the electroweak symmetry, ∆(27) and

the FN symmetry are broken, and through this breaking the three generations of fermions

acquire their masses.

6 Summary

For different frameworks, we performed an extensive phenomenological scan and found

several regions of parameter space where viable lepton masses and mixing are obtained. We

then constructed specific models for some promising examples where the model parameters

are natural. These models are entirely consistent with the previously found solution for

the quark sector, so we have formulated an existence proof of models of quark and lepton

masses and mixing that feature geometrical CP violation.
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z1 z2 z3 z4 z5 z6 χ2 dFT

-0.00554161 -0.00340302 -0.00227104 -0.0141038 0.0175277 0.0170266 0.46992 640.595

0.00967825 -0.0118758 -0.00670678 -0.0160151 -0.00629062 -0.00653824 0.187884 246.89

Table 3. Sample hits for the 6 zi model. First row is for IH, second row for NH.

A B z1 z4 z2 z5 χ2 dFT

-0.00353652 0.00107432 -0.0524306 -0.00585345 -0.00696862 0.0118005 1.161 516.293

0.0109313 -0.0215866 0.0172491 0.0154776 -0.00496799 -0.00163566 0.247987 1480.21

0.00907931 -0.0256511 -0.00227895 0.0142952 0.00284323 0.00881012 0.389833 1074.57

Table 4. Sample hits for the contractions ξ and ξ′ in the A,B class of models.

A B z1 z4 z3 z6 χ2 dFT

-0.00941157 0.00922199 0.0190035 -0.0103075 -0.0277012 -0.045596 0.791304 3546.25

-0.0141045 0.0349938 -0.00117646 -0.00713608 -0.00700718 0.00389799 0.277284 2234.42

Table 5. Sample hits for the contractions ξ and ξ′′ in the A,B class of models.

A B z2 z5 z3 z6 χ2 dFT

0.0099768 -0.0387091 -0.00543329 0.00613746 -0.0101139 0.0284193 0.607939 4035.83

0.00438667 -0.0049329 0.00337298 -0.00261386 0.0616697 -0.0127218 0.132725 1301.91

0.00476606 -0.00529681 0.0608295 -0.0129415 0.00381149 -0.00135987 0.915034 1269.28

Table 6. Sample hits for the contractions ξ′ and ξ′′ in the A,B class of models.

A B z1 z4 z2 z5 χ2 dFT

0.00245874 -0.00750093 0.0561966 0.0143339 0.0045167 -0.00187831 0.901573 725.276

A B z1 z4 z3 z6 χ2 dFT

0.00153913 -0.00573201 0.0427374 0.0325508 0.00544977 -0.0013738 0.249697 640.799

Table 7. A sample hit for the contractions ξ and ξ′ (top) and the ξ and ξ′′ (bottom) in the A,B

class of models matching the natural hierarchies associated with the FN charges listed in table 2.

A Tables containing numerical results

This appendix contains tables with sample numerical values for the parameters in different

classes of models. For each class we found many sets of values (hits) that lead to viable

respective mixing angles and neutrino squared mass splittings (not displayed), within the

3σ experimentally allowed ranges.

Table 3 corresponds to models with the full set of 6 zi parameters, whereas tables 4, 5

and 6 have some examples for each of the three classes with A, B. Table 7 has examples

where z1, z4 is larger by one order of magnitude.

For comparison, dData = 39.4773. As can be seen in the tables below, for the hits we

display, dFT is no more than one or two orders of magnitude higher than dData.
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