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Abstract: We study timelike U-dualities acting in three and four directions of 11-dimen-

sional supergravity, which form the groups SL(2) × SL(3) and SL(5). Using generalised

geometry, we find that timelike U-dualities, despite previous conjectures, do not change the

signature of the spacetime. Furthermore, we prove that the spacetime signature must be

(−,+, . . . ,+) when the U-duality modular group is either SL(2)×SL(3)
SO(1,1)×SO(2,1) or

SL(5)
SO(3,2) . We find

that for some dual solutions it is necessary to include a trivector field which is related to

the existence of non-geometric fluxes in lower dimensions. In the second part of the paper,

we explicitly study the action of the dualities on supergravity solutions corresponding to

M2-branes. For a finite range of the transformation, the action of SL(2) × SL(3) on the

worldvolume of uncharged M2-branes charges them while it changes the charge of extreme

M2-branes. It thus acts as a Harrison transformation. At the limits of the range, we obtain

the “subtracted geometries” which correspond to an infinite Harrison boost. Outside this

range the trivector field becomes non-zero and we obtain a dual solution that cannot be

uniquely written in terms of a metric, 3-form and trivector. Instead it corresponds to a

family of solutions linked by a local SO(1, 1) rotation. The SL(5) duality is used to act

on a smeared extreme M2-brane giving a brane-like solution carrying momentum in the

transverse direction that the brane was delocalised along.

Keywords: Supergravity Models, M-Theory, String Duality

ArXiv ePrint: 1301.0543

c© SISSA 2013 doi:10.1007/JHEP11(2013)185

mailto:E.Malek@damtp.cam.ac.uk
http://arxiv.org/abs/1301.0543
http://dx.doi.org/10.1007/JHEP11(2013)185


J
H
E
P
1
1
(
2
0
1
3
)
1
8
5

Contents

1 Introduction 1

2 Generalised geometry 3

2.1 Generalised vielbeins 6

2.2 Spacelike dualities 8

3 Lorentzian generalised metric 10

3.1 Lorentzian coset space for d = 3 10

3.2 Lorentzian coset space for d = 4 12

3.3 Internal rotations, the 3-form and the trivector 12

4 Timelike dualities and change of signature 19

4.1 The spacetime signature 21

5 The transformation rules 23

5.1 Ω-shifts 24

5.2 Buscher duality 26

6 Timelike SL(5) duality 28

6.1 Transformation laws under UΩ 29

7 Examples 30

7.1 Uncharged black M2-brane 31

7.1.1 UΩ acting on uncharged black M2-brane 31

7.1.2 Buscher duality of uncharged M2-brane 34

7.2 Extreme M2-brane 35

7.2.1 UΩ acting on extreme M2-brane 35

7.2.2 Buscher duality of extreme M2-brane 37

7.3 SL(5) and generating momentum 37

8 Conclusions 42

1 Introduction

String and M-theory, in addition to the usual 10- and 11-dimensional Poincaré symmetry,

contain a group of non-perturbative “stringy” symmetries, the so-called T- and U-dualities.

These arise when studying compactified backgrounds because the extended nature of the

fundamental objects — strings and branes — allows them to wrap the compact dimen-

sions. In 10- and 11-dimensional supergravity, the low-energy descriptions of string and
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M-theory, these symmetries manifest themselves through a group of global non-compact

symmetries of the lower-dimensional theories obtained by dimensionally reducing along

Killing vectors [1–3]. These symmetries generate transformations, linking different “dual”

solutions which from the perspective of string / M-theory are equivalent.

We study the action of U-dualities by using generalised geometry [4–23] which makes

the duality symmetries of the supergravity manifest. The dualities then do not arise from

dimensional reduction but rather form the inherent symmetries of the theory. We ulti-

mately wish to make the E11 symmetry manifest, as it has been conjectured that it is the

underlying symmetry group of 11-dimensional supergravity [24–36] and so as a first step

we begin by restricting the dualities to act only in three and four “dualisable” dimensions.

In [37] we discussed the action of U-dualities along three and four spacelike directions of

11-dimensional supergravity. Because we do not require a compactification in order to give

rise to the duality symmetry, one may wish to dualise along time as well. After all, in

order to construct the 11-dimensional supergravity as a non-linear realisation of E11 we

must allow dualities along time. In this paper we study this question by including time

amongst three and four dualisable directions, thus paving the way for the construction of

a non-linear realisation of E11.

Previous works [38–40] have studied the action of T- and U-dualities along timelike

directions. There it was found that type IIA and type IIB string theories are related not to

each other by T-dualities but rather to two different string theories, the so-called type IIA∗

and type IIB∗ theories, both of Lorentzian signature but with the “wrong” signs for the

kinetic terms of the R-NS and R-R forms. The change of sign for the kinetic terms has been

observed in Double Field Theory as well [41, 42]. Similarly, M-theory and its low-energy

effective action, 11-dimensional supergravity, would not be invariant under the timelike du-

alities but would change signature, becoming the M∗ and M′ theories, containing various

timelike directions. In [37], we studied examples of dualities where we had Wick-rotated

M2-branes to obtain a Euclidean worldvolume along which we can dualise. Wick-rotating

back afterwards, we found Lorentzian solutions which exhibited some difficulties, for ex-

ample complex or even singular metrics. We suggested in [37] that these difficulties arise

because we are implicitly dualising along time and that when done explicitly, without

Wick-rotation, these problems should disappear.

Here we will reinvestigate timelike dualities and see how generalised geometry deals

with the problems that arise. We will briefly review generalised geometry in section 2,

before explaining how the metric and 3-form arise in the Euclidean generalised metric. We

will show that these arise from a specific parameterisation of the generalised vielbein and

that in the Euclidean case any vielbein can be brought into this form so that the descrip-

tion in terms of a generalised metric is always equivalent to the conventional one using a

spacetime metric and 3-form. However, after we construct the “Lorentzian” generalised

metric for when time is a dualisable directions in section 3, we will show that this gener-

alised metric is in general no longer equivalent to a spacetime metric and 3-form. Instead,

the generalised metric can be of four types. Two of these can always be expressed in terms

of a spacetime metric and 3-form but the other two need the inclusion of another bosonic

field, the trivector Ω3 with components Ωijk which are totally antisymmetric. We will
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then, in section 4, review the argument of how multiple timelike directions seem to appear

when dualising along time before showing that this does not occur when we use generalised

geometry. We also prove that the spacetime metric arising in the generalised metric will

always have signature (−,+, . . .+). In section 5 we find the transformation laws for the

bosonic fields for the three-dimensional case and we will see that a solution depending

only on a spacetime metric and 3-form may be dual to a theory that has a trivector which

cannot be gauged away. The four-dimensional case will be covered in section 6. Section 7

contains explicit examples of the dualities acting on M2-branes. We find that when the

duality transformation acts along the worldvolume of the brane, it acts like the Harrison

transformation, charging solutions. The difficulties found in the examples in [37] are now

removed, forcing us instead to describe the dual solutions using a trivector for those cases.

We also act with transformations of SL(5) on smeared extreme M2-branes and find that

the dual solutions carry momentum in the transverse direction that the brane was delo-

calised along. Finally, we will discuss our results and justify our interpretation of timelike

dualities, which is based on an analogy with geometry, in section 8.

2 Generalised geometry

In this section, we will give a brief overview of generalised geometry and how it can be

used to make the U-duality symmetry of 11-dimensional supergravity manifest. The aim is

to use it to find objects which transform as tensors under U-duality. We begin by looking

at the coordinates and will then see how to combine the bosonic fields.1

In string theory, T-duality exchanges momenta and string winding numbers

Pi ↔ W i , (2.1)

and, similarly in M-theory, U-duality mixes momenta and membrane wrapping modes. We

restrict the dualities to act only along d < 5 directions, forming the Ed duality group, as

listed in table 1 so that we only need to take into account the wrapping modes due to the

M2-brane. The other spacetime directions form a transverse undualisable spacetime and we

will impose certain requirements on the bosonic fields as we will shortly explain.2 The M2-

brane winding modes are labelled by an antisymmetric 2-tensor Zij so that U-dualities mix

Pi ↔ Zij , (2.2)

where the indices i, j = 1, . . . d label the dualisable spacetime directions.3 Just as the

momenta are conjugate to spacetime directions

xi =
δ

δPi
, (2.3)

where the derivatives are understood in the usual sense as acting on momentum eigenstates,

1We ignore fermions throughout.
2Although we refer to the “dualisable” spacetime and transverse spacetime, only one of these will include

time and will be a spacetime while the other is just a “space”. We do this because at this stage we want

to keep the discussion general and thus do not specify whether time is dualised or not.
3Readers familiar with 11-dimensional supergravity will recognize this as a central charge of the

supersymmetry algebra.
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d Ed Hd H̃d

3 SL(3)× SL(2) SO(3)× SO(2) SO(2, 1)× SO(1, 1)

4 SL(5) SO(5) SO(3, 2)

5 SO(5, 5) SO(5)× SO(5) SO(5, C)

6 E6 USp(8) USp(4, 4)

7 E7 SU(8) SU∗(8)
8 E8 SO(16) SO∗(16)

Table 1. The U-duality groups Ed, their maximal compact subgroups Hd and the non-compact

subgroups that arise in timelike dualities H̃d [40].

we can introduce “dual” coordinates yij , which are conjugate to these wrapping modes

yij =
δ

δZij
. (2.4)

It is important to note that the yij are antisymmetric and will, together with the dualisable

spacetime coordinates xi, form a representation space of the Ed duality group. We call

these the “generalised coordinates”,

XM =







xi

1√
2
yij

xA






, (2.5)

where we have also included the transverse spacetime coordinates, labelled by the index

A = d + 1, . . . , 11. For example, when d = 3, the three dualisable spacetime coordinates

and their three duals belong to the 6-dimensional representation of SL(2)×SL(3), while for

d = 4 they transform under the 10 = 4+6-dimensional representation of SL(5). We will see

explicitly how they transform under U-dualities in section 2.2. The transverse spacetime

coordinates xA transform as d̄-vectors under GL(d̄), where d̄ = 11 − d. This is the group

of rigid diffeomorphisms acting on the transverse spacetime.

Similarly, U-duality mixes the metric and 3-form and so in order to make the action of

U-duality manifest we combine them into a generalised metric. For four-dimensional duali-

ties this was originally found by studying dualities on the membrane worldvolume [43] and

has more recently been constructed as a non-linear realisation of Ed × GL(d̄) for duality

groups in d < 8 dimensions [11, 37]. The assumption is made that the spacetime metric is

factorisable so that it has no mixed components along the dualisable and transverse und-

ualisable spacetime and we can write its components as gab = (gij , gAB), where the indices

a, b = 1, . . . 11 label all eleven directions, while i, j = 1, . . . d label the dualisable directions

and A,B = d+1, . . . 11 label the transverse spacetime and there are no mixed components

giA. Similarly the 3-form C3 is taken to only have non-zero components along the dualisable

space, Cijk. For d = 3, 4 the result is similar to [8, 43] but differs by a conformal factor:

HMN = |g11|−1/2







gij +
1
2CimnC

mn
j

1√
2
C kl
i 0

1√
2
Cij

k gi[kgl]j 0

0 0 gAB






, (2.6)
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where |g11| is the determinant of the 11-dimensional metric. We will often drop the indices

and write this as

H = |g11|−1/2







g + 1
2Cg−1g−1C 1√

2
Cg−1 0

1√
2
g−1C g−1g−1 0

0 0 gd̄






, (2.7)

where g without a subscript will always be taken to signify the components along the dual-

isable directions. The conformal factor is crucial as otherwise the generalised metric does

not transform correctly under U-dualities, as shown in section 2.2.

It is useful to extend the definition of a U-duality from an element of Ed to an element

of Ed ≡ Ed ×GL(d̄) so that for Ue ∈ Ed the generalised metric transforms as

H → (Ue)
T HUe . (2.8)

The part of Ue belonging to GL(d̄) is trivial and we will often ignore it.4 Correspondingly

we write the generalised metric as

H = |g11|−1/2

(

g + 1
2Cg−1g−1C 1√

2
Cg−1

1√
2
g−1C g−1g−1

)

. (2.9)

Because the generalised metric transforms naturally under U-duality, we view it as the

fundamental physical variable describing the theory. One thus expects that the low-energy

effective action can be written in terms of H directly, rather than g11 and C3 separately.5

Under a U-duality, the generalised coordinates transform contravariantly

X → (Ue)
−1X . (2.10)

We define generalised derivatives corresponding to the generalised coordinates by

∂M ≡ ∂

∂XM

=







∂i
1√
2
∂ij

∂A






.

(2.11)

Using the generalised metric and coordinates one can write a manifestly duality invariant

Lagrangian, here given for d = 4.

L =
1

12
HMN∂MHPQ∂NHPQ − 1

2
HMN∂MHPQ∂PHNQ

+
1

108
HMN

(

HKL∂MHKL

) (

HPQ∂NHPQ

)

+
1

6
HMN∂M

(

|g11|1/2gAB
)

∂N

(

|g11|−1/2gAB

)

.

(2.12)

4We will use the phrase “trivial” throughout this paper for dualities that only act as gauge transforma-

tions.
5For fermions one would have to use the generalised vielbein instead.
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By using the solution to the section condition6

∂ijH = 0 , (2.13)

such that all fields depend only on the spacetime coordinates and not the dual yij , the

Lagrangian reduces to the conventional one

L =
√

|g11|
(

R− 1

48
F 2

)

, (2.14)

up to a boundary term that can also be put in a U-duality invariant form [44]. Here R is the

11-dimensional Ricci scalar and F = dC3 is the four-form field strength associated to C3.
7

2.1 Generalised vielbeins

The generalised metric parameterises the coset

Ed ×GL(d̄)

Hd × SO(d̄− 1, 1)
, (2.15)

where Hd is the maximal compact subgroup of Ed, as given in table 1. The coset

Ed

Hd
(2.16)

is parameterised by the bosonic fields along the dualisable directions, g and C3, while the

second factor, the coset
GL(d̄)

SO(d̄− 1, 1)
, (2.17)

is parameterised by the Lorentzian spacetime metric in the transverse space, gd̄. The

maximal compact subgroup Hd acts as a local symmetry group and its action can be made

explicit by decomposing the generalised metric in terms of a generalised vielbein

H = LT ηEL , (2.18)

where the generalised flat line element is

dS2 = dXT ηEdX

=
∑

i

dxidxi +
1

2

∑

i,j

dyijdyij + ηABdx
AdxB . (2.19)

Here ηAB is the d̄-dimensional Minkowski metric of the transverse space. An element of

the extended U-duality group Ed acts on the generalised vielbein through a right-action

L → LUe , (2.20)

6See [12] for a group-invariant section condition for E4 = SL(5) and [13] for the U-duality groups

E5 . . . E8.
7The Chern-Simons term vanishes here because the 3-form has non-vanishing components only in the

dualisable directions.
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while an element of the “extended” local symmetry group, h ∈ Hd × SO(d̄ − 1, 1), acts

through a left-action

L → hL . (2.21)

We see that the local symmetry group Hd × SO(d̄ − 1, 1) is the group of transformations

preserving the internal metric ηE .

The generalised vielbein can chosen to be lower-triangular, given by

LM̄
N = |ẽ11|−1/2







ẽj̄i 0 0
1√
2
Cīj̄k e

[i

[k̄
e

j]

l̄]
0

0 0 ẽĀB






, (2.22)

where M̄ labels the generalised flat tangent space coordinates XM̄ =
(

xī, 1√
2
yīj̄ , x

Ā
)

. We

will write this without explicit indices as

L = |ẽ11|−1/2







ẽ 0 0
1√
2
eeC ee 0

0 0 ẽd̄






. (2.23)

We will now drop the components along the transverse space for simplicity. One could

equally well have chosen an upper triangular vielbein

LΩ = |˜̄e11|−1/2

(

˜̄e 1√
2
˜̄eΩ

0 ēē

)

, (2.24)

where Ωijk is a trivector, totally antisymmetric in its indices. The generalised metric would

then be written as8

H = |ḡ11|−1/2

(

ḡ 1√
2
ḡΩ

1√
2
Ωḡ ḡ−1ḡ−1 + 1

2ΩḡΩ

)

. (2.25)

We will focus on the d = 3 case for most of this paper as it allows us to reach the physically

significant conclusions without the extra complication of more dimensions. We refer the

reader to [37] for details on d = 4 equations in the Euclidean case and section 6 for the

timelike case. We begin by defining the dualised 3-form and tri-vector

V = 1
3!ǫ

ijkCijk , W = 1
3! ǭijkΩ

ijk , (2.26)

where ǫijk is the Levi-Civita tensor in the three dimensions to be dualised defined with

respect to g while ǭijk is the three-dimensional Levi-Civita tensor with respect to ḡ. In

terms of these objects we can for d = 3 identify

ḡij = gij
(

1 + V 2
)2/3

,

Ωijk =
ǫijkV

1 + V 2
=

gimgjngkoCmno

1 + V 2
,

ḡAB = gAB

(

1 + V 2
)−1/3

(2.27)

8See [45] for a detailed discussion of this change of variables as used in the O(d, d) case.
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and inversely

gij = ḡij
(

1 +W 2
)−2/3

,

Cijk =
ǭijkW

1 +W 2
=

ḡimḡjnḡkoΩ
mno

1 +W 2
,

gAB = ḡAB

(

1 +W 2
)1/3

.

(2.28)

In the Euclidean case one can always choose to describe the generalised metric in terms

of the fields (g11, C3) or (ḡ11,Ω3) or a combination (ĝ11, C3,Ω3). This is a choice of frame

or a choice of “preferred fields” in the language of non-linear realisations and if we view the

generalised metric as the fundamental variable, they are both equally valid. The choice to

use the (g11, C3) frame can be seen as simply a convention. We can explicitly show that

the choice of frame is arbitrary because we can always rotate an upper triangular vielbein

into a lower triangular one

LC = HLΩ , (2.29)

where H ∈ SO(2) is given by

H =

(

cos θδī
k̄

1√
2
sin θǫīk̄l̄

1√
2
sin θǭij̄k̄ cos θδ k̄l̄

īj̄

)

, (2.30)

and the trivector is gauged away when choosing

tan θ = W . (2.31)

Here ǫ1̄2̄3̄ = −1 is the totally antisymmetric tensor in the tangent spacetime. Thus, the

trivector Ω3 can always be gauged away. However, we will see in section 3.3 this is not gen-

erally the case when time is included. A similar issue in the O(d, d) case is discussed in [45].

2.2 Spacelike dualities

Before we move on to include time amongst the dualisable coordinates, we will quickly

review the action of dualities in the Euclidean case. More details can be found in [37].

We can decompose the U-duality group Ed into its “geometric” SL(d) subgroup

USL(d) =

(

A 0

0 A−TA−T

)

, (2.32)

which mixes the dualisable directions and their duals amongst themselves:

xi → Ai
jx

j ,

yij →
(

A−1
) k

i

(

A−1
) l

j
ykl .

(2.33)

The quotient group Ed/SL(d) can be split into d!
3!(d−3)! non-commuting SL(2) sub-

groups, one for each set of three dualisable directions. Each of these SL(2) subgroups

contains the three elements

dilatations, Uα =

(

α−1 0

0 α

)

, (2.34)
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C-shifts, UC =

(

1 0
1√
2
C 1

)

, (2.35)

Ω-shifts, UΩ =

(

1 1√
2
Ω

0 1

)

, (2.36)

where C and Ω have only one non-zero component along the three directions to which the

SL(2) belongs. For d = 3 this is particularly simple because there is only one such SL(2)

subgroup as the duality group is E3 = SL(3) × SL(2). For d = 4 the duality group E4 =

SL(5) contains the geometric SL(4) subgroup and three SL(2) subgroups as outlined above.

The Uα acts by dilatations g → gα−1 while the C-shifts and Ω-shifts shift the 3-form C3

and trivector Ω3, respectively. Thus each of these last two transformations is trivial in some

frame but in the (g11, C3) frame the Ω-shift is non-trivial, while the C-shift is non-trivial

in the (ḡ11,Ω3) frame. In the (g11, C3), the action of the UΩ shift for d = 3 is given by

g′ij = gij
(

(1 +AC123)
2 +A2|g3|

)−2/3
,

g′AB = gAB

(

(1 +AC123)
2 +A2|g3|

)1/3
,

C ′
123 =

C123 (1 +AC123) +A|g3|
(1 +AC123)

2 +A2|g3|
.

(2.37)

One can also construct a Buscher duality [46, 47] by performing three successive transfor-

mations

UB = UCUΩUC

=

(

0 1√
2
Ω

1√
2
C 0

)

,
(2.38)

where

Ω123 = A ,

C123 = −1/A .
(2.39)

The transformed fields are

g′ij = gij
(

A2
(

C2
123 + |g3|

))−2/3
,

g′AB = gAB

(

A2
(

C2
123 + |g3|

))1/3
,

C ′
123 = − C123

A2
(

C2
123 + |g3|

) .

(2.40)

Under this SL(2), the generalised coordinates are split into three pairs, mixing the

spacetime and dual coordinates

(

x1

y23

)

,

(

x2

−y13

)

,

(

x3

y12

)

. (2.41)
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UC rotates the pairs one way (for C123 = A)

(

x1

y23

)

→
(

x1

y23 −Ax1

)

,

(

x2

−y13

)

→
(

x2

−y13 −Ax2

)

,

(

x3

y12

)

→
(

x3

y12 −Ax3

)

,

(2.42)

while UΩ rotates them the other way (for Ω123 = A)

(

x1

y23

)

→
(

x1 −Ay23
y23

)

,

(

x2

−y13

)

→
(

x2 +Ay13
−y13

)

,

(

x3

y12

)

→
(

x3 −Ay12
y12

)

,

(2.43)

and Uα acts on the doublets as

(

x1

y23

)

→
(

αx1

α−1y23

)

,

(

x2

−y13

)

→
(

αx2

−α−1y13

)

,

(

x3

y12

)

→
(

αx3

α−1y12

)

.

(2.44)

3 Lorentzian generalised metric

We now include time amongst the three dualisable directions and construct the generalised

metric in a similar fashion but using a different generalised flat line element. This gener-

alised flat line element will be preserved by the non-compact subgroups H̃d listed in table 1.

The generalised metric then parameterises the “Lorentzian” coset space

Ed ×GL(d̄)

H̃d × SO(d̄)
. (3.1)

3.1 Lorentzian coset space for d = 3

The U-duality group in the Lorentzian case is still Ed as is to be expected by analogy

with geometry. The d-dimensional metric parameterises the coset GL(d)
SO(d) in the Euclidean

and GL(d)
SO(d−1,1) in the Lorentzian case. Clearly it is the local symmetry group SO(d) vs.

– 10 –
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SO(d − 1, 1) which contains the information about the signature of the spacetime. Sim-

ilarly for U-duality we find that the local symmetry group Hd × SO(d̄ − 1, 1) changes to

H̃d × SO(d̄) with Hd and H̃d given in table 1.

To construct the generalised flat line element we want to interpret the action of

H̃3 = SO(1, 1) × SO(2, 1) on the generalised coordinates. To do so, we compare it to the

action of the U-duality group SL(2)×SL(3) where SO(2, 1) ⊂ SL(3) and SO(1, 1) ⊂ SL(2).

The SL(3) interchanges the three dualisable spacetime indices amongst each other and so

we interpret its non-compact subgroup SO(2, 1) as the local Lorentz group for the three

dualisable spacetime indices. As expected for the three dualisable spacetime directions the

flat line element then has to be Lorentzian

ds2 = −dt2 +
∑

µ

dxµdxµ . (3.2)

Here the indices µ = 2, 3 run over the spatial indices so that

xi = (t, xµ) . (3.3)

We have seen in section 2.2 that the SL(2) subgroup causes rotations within each of

the three doublets, here taking x1 → t
(

t

y23

)

,

(

x2

−yt3

)

,

(

x3

yt2

)

. (3.4)

Its local symmetry group is SO(1, 1) so that we associate a Lorentzian metric

ηSO(1,1) =

(

−1 0

0 1

)

(3.5)

with each doublet. This then gives the generalised flat line element as

dS2 = −dt2 +
∑

µ

dxµdxµ −
∑

µ

dytµdytµ +
1

2

∑

dyµνdyµν +
∑

A

dxAdxA . (3.6)

It is evident that the dual coordinates yµν are spacelike, while the ytµ are timelike.

We can now construct the generalised metric as

H = LT
CMLC , (3.7)

where M is the generalised internal metric giving the generalised flat line element (3.6)

and LC is the generalised vielbein (2.23). This gives a generalised metric of the same form

as before, equation (5.3),

H = |g11|−1/2







g + 1
2Cg−1g−1C 1√

2
Cg−1g−1 0

1√
2
g−1g−1C g−1g−1 0

0 0 g8






, (3.8)

where now g is Lorentzian and g8 is Euclidean. The duality invariant action (2.12) can

now be expressed in terms of this “Lorentzian” generalised metric to include time.
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3.2 Lorentzian coset space for d = 4

We now wish to construct the generalised metric parameterising the coset

SL(5)×GL(7)

SO(3, 2)× SO(7)
. (3.9)

We begin by finding the generalised flat line element preserved by the local symmetry group

SO(3, 2)×SO(6). The latter factor is the local rotations group of the transverse undualisable

space. To understand how the first factor acts on the generalised coordinates we first write

the dualisable spacetime coordinates and their duals
(

xi, yij
)

in terms of SL(5) covariant

indices [12]. The 10 coordinates belong to the antisymmetric representation of SL(5)

Xm̂n̂ =

{

Xi5 = xi ,

Xij = 1
2ǫ

ijklykl ,
(3.10)

where m̂, n̂ = 1, . . . 5 are SL(5) indices and ǫijkl is the Levi-Civita tensor for the flat dualis-

able spacetime. Because the spacetime coordinates xi have one timelike and four spacelike

directions we associate the second timelike direction with the 5 index. We write

ηSO(3,2) =















−1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 −1















, (3.11)

so the generalised flat line element is

dS2 = −dXm̂n̂dX p̂q̂ηm̂p̂ηn̂q̂ +
∑

A

dxAdxA

= −dt2 +
∑

µ

dxµdxµ −
∑

µ

dytµdytµ +
1

2

∑

µ,ν

dyµνdyµν +
∑

A

dxAdxA ,
(3.12)

where µ, ν = 2, 3, 4 once again run over the spatial indices so that xi = (t, xµ). We are using

the minus sign in dS2 = −dXm̂n̂dX p̂q̂ηm̂p̂ηn̂q̂ to obtain a flat line element that is mostly

positive along the spacetime components in order to keep our conventions consistent. Once

again we find that the dual coordinates yij are spacelike for yµν and timelike for ytµ. The

generalised metric takes a similar form to the three-dimensional case

H = LT
CML

= |g11|−1/2







g + 1
2Cg−1g−1C 1√

2
Cg−1g−1 0

1√
2
g−1g−1C g−1g−1 0

0 0 g7






.

(3.13)

3.3 Internal rotations, the 3-form and the trivector

We will now focus on the case where the duality group acts in three directions, including

time. This example carries all the relevant physics but does not have the complication

– 12 –



J
H
E
P
1
1
(
2
0
1
3
)
1
8
5

coming from having four dimensions and thus possibly several independent non-zero com-

ponents of the 3-form and trivector. We will give the relevant formulae for the d = 4 case

in section 6.

The generalised vielbeins transform under the local symmetry group, H3 in the Eu-

clidean and H̃3 in the Lorentzian case. We have so far given it in lower-triangular form

LC = |ẽ11|−1/2







ẽ 0 0
1√
2
eeC ee 0

0 0 ẽ8






. (3.14)

In the Euclidean case, we have shown that one can always chose this parameterisation.

The caveat is for non-geometric backgrounds where topological obstructions hinder the

local rotation needed to remove the trivector field [45, 48–52]. Instead the trivector field

is shown in these works to give rise to non-geometric fluxes. Barring such obstructions the

trivector field can always be gauged away to obtain a supergravity solution containing a

metric and 3-form.

For timelike dualities we also encounter an obstruction. Now the local symmetry group

excluding Lorentz transformations, H̃3 = SO(1, 1), contains hyperbolic rotations. Starting

with an upper triangular vielbein LΩ we can rotate it into a lower triangular one LC = HLΩ

by

H =

(

cosh θδī
k̄

1√
2
sinh θǫīk̄l̄

− 1√
2
sinh θǭij̄k̄ cosh θδ k̄l̄

īj̄

)

, (3.15)

when choosing

tanh2 θ = W 2 . (3.16)

However, because tanh2 θ < 1 this choice is only possible when

W 2 < 1 . (3.17)

We find that if W 2 < 1 one can change the frame from the (ḡ11,Ω3) to the (g11, C3) frame,

finding

gij = ḡij
(

1−W 2
)−2/3

,

Cijk =
ǭijkW

1−W 2
=

ḡimḡjnḡkoΩ
mno

1−W 2
,

gAB = ḡAB

(

1−W 2
)1/3

.

(3.18)

Similarly, if V 2 < 1 one can change from the (g11, C3) to the (ḡ11,Ω3) frame by the inverse

transformation

ḡij = gij
(

1− V 2
)2/3

,

Ωijk =
ǫijkV

1− V 2
=

gimgjngkoCmno

1− V 2
,

ḡAB = gAB

(

1− V 2
)−1/3

.

(3.19)
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We see that there may be situations where one has to consider a non-zero trivector field

that cannot be gauged away because W 2 ≥ 1. We will construct explicit examples by the

use of timelike dualities in section 7.

We now briefly pause to make an analogy with geometry. There one describes the

system through a metric which we take to be two-dimensional for simplicity.

g =

(

g11 g12
g12 g22

)

. (3.20)

This is symmetric and parameterises the coset GL(2)
SO(2) in the Euclidean case. It thus can be

expressed in terms of a vielbein

eāb =

(

e1̄
1
e1̄

2

e2̄
1
e2̄

2

)

, (3.21)

but this can be simplified by local SO(2) rotations to give a vielbein in upper triangular

or lower triangular form

ẽ =

(

ẽ1̄
1

0

ẽ2̄
1
ẽ2̄

2

)

, (3.22)

ê =

(

ê1̄
1
ê1̄

2

0 ê2̄
2

)

. (3.23)

The metric can be expressed in terms of these two vielbeins as

g11 =
(

ẽ1̄1

)2
+
(

ẽ2̄1

)2
,

g12 = ẽ2̄1ẽ
2̄
2 ,

g22 =
(

ẽ2̄2

)2
,

(3.24)

and

g11 =
(

ê1̄1

)2
,

g12 = ê1̄1ê
1̄
2 ,

g22 =
(

ê2̄2

)2
+
(

ê1̄2

)2
.

(3.25)

The metric is the “physical” field and thus the choice of vielbein is arbitrary and un-

detectable.9 Similarly, we expect that the 3-form and trivector fields of 11-dimensional

supergravity should be treated on the same footing, and, in particular, that the gener-

alised metric is the object that one should focus on as carrying the physical information,

not the 3-form or trivector which are nothing but different parameterisations.

Now, we consider the Lorentzian case where we see that in geometry one may no longer

be able to express the metric through an upper triangular or lower triangular vielbein.

9This is not true for fermions which couple to the vielbein.
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Since the two-dimensional Minkowski metric, η2 is the internal flat metric, we decompose

the metric into its vielbein via

g = eT η2e , (3.26)

so that equations (3.24) and (3.25) become

g11 = −
(

ẽ1̄1

)2
+
(

ẽ2̄1

)2
,

g12 = ẽ2̄1ẽ
2̄
2 ,

g22 =
(

ẽ2̄2

)2

(3.27)

and

g11 = −
(

ê1̄1

)2
,

g12 = −ê1̄1ê
1̄
2 ,

g22 =
(

ê2̄2

)2
−
(

ê1̄2

)2
.

(3.28)

Clearly by using a lower triangular vielbein ẽ we find that the component g22 > 0. Con-

versely, the metric can be described in terms of a lower triangular vielbein only if

g22 > 0 , (3.29)

while from equation (3.28) we find that the metric can be described by an upper triangular

vielbein ê only if

g11 < 0 . (3.30)

Equivalently, an upper triangular vielbein ê can be rotated into a lower triangular one,

ẽ = Hê, only if g22 > 0 and thus
(

ẽ1̄
2

ẽ2̄
2

)2

< 1 . (3.31)

This is analogous to the statement for U-duality that the trivector can be gauged away

only if W 2 < 1.

Thus we see that this problem of not being able to gauge away the trivector field arises

generically in geometric constructions. It happens because we want to express our theory

in terms of the metric and 3-form, (g11, C3), but these are the “wrong” variables because

they do not remain invariant under the local symmetry group H̃d. The true physical field

is the generalised metric H which parameterises the appropriate coset

Ed ×GL(d̄)

H̃d × SO(d̄)
(3.32)

and remains invariant under the local symmetry group. One may in some cases express

the generalised metric in terms of a metric and 3-form (g11, C3) or a metric and trivector

(ḡ11,Ω3) but not in general, just as the two-dimensional Lorentzian metric may in some
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Type Hij Hij,kl Minimal valid frames

I (−,+,+) (−,−,+) (g11, C3) or (ḡ11,Ω3)

II (+,−,−) or 0 (−,−,+) (g11, C3)

III (−,+,+) (+,+,−) or 0 (ḡ11,Ω3)

IV (+,−,−) or 0 (+,+,−) or 0 (ĝ11, C3,Ω3)

Table 2. The conditions for being able to use a certain field frame (g11, C3) , (ḡ11,Ω3) , (ĝ11, C3,Ω3)

in terms of the signature of the components of the generalised metric Hij and Hij,kl. The min-

imal valid frames are those with the smallest number of bosonic fields that describe the physics.

(ĝ11, C3,Ω3) is always a valid frame but we only include it when it is the only valid frame because

it otherwise carries an unnecessary redundancy.

cases be expressed as a lower triangular vielbein or an upper triangular one but in general

neither.

We will see that there are four different scenarios that may arise. We classify the gener-

alised metric of these scenarios as one of four types, depending on the signature of the two

3× 3 matrices corresponding to the components Hij and Hij,kl, as summarised in table 2.

Type I. This corresponds to signatures

Hij = (−,+,+) ,

Hij,kl = (−,−,+) .
(3.33)

We can use both the (g11, C3) and (ḡ11,Ω3) frames.10 The generalised metric and its

generalised vielbein can correspondingly be written as either

H = |g11|−1/2







g
(

1− V 2
)

1√
2
Cg−1g−1 0

1√
2
g−1g−1C g−1g−1 0

0 0 g8






,

LC = |ẽ11|−1/2







ẽ 0 0
1√
2
eeC ee 0

0 0 ẽ8






,

(3.34)

or

H = |ḡ11|−1/2







ḡ 1√
2
ḡΩ 0

1√
2
Ωḡ ḡ−1ḡ−1

(

1−W 2
)

0

0 0 ḡ8






,

LΩ = |˜̄e11|−1/2







˜̄e 1√
2
˜̄eΩ 0

0 ēē 0

0 0 ˜̄e8






.

(3.35)

Because Hij = (−,+,+) we have V 2 < 1. Similarly, Hij,kl = (−,−,+) implies W 2 < 1.

This means we can rotate the vielbeins from lower triangular to upper triangular by some

H ∈ SO(1, 1) (see equations (3.17)–(3.19)) and this is why we can use both vielbeins.

10We will choose one of the (g11, C3) or (ḡ11,Ω3) frames whenever possible. One could, however, always

use a frame including both a non-zero 3-form and trivector.
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Type II. This corresponds to signatures

Hij = (+,−,−) or Hij = 0 ,

Hij,kl = (−,−,+) .
(3.36)

We can only use the (g11, C3) frame. The generalised metric and its generalised vielbein

are given by

H = |g11|−1/2







g
(

1− V 2
)

1√
2
Cg−1g−1 0

1√
2
g−1g−1C g−1g−1 0

0 0 g8






,

LC = |ẽ11|−1/2







ẽ 0 0
1√
2
eeC ee 0

0 0 ẽ8






.

(3.37)

In this case Hij = (+,−,−) or Hij = 0, implying V 2 ≥ 1, and thus we cannot rotate

LC 9 LΩ = HLC . This confirms that we cannot rotate the 3-form away.

Type III. This corresponds to

Hij = (−,+,+) ,

Hij,kl = (+,+,−) or Hij,kl = 0 .
(3.38)

We must use the (ḡ11,Ω3) frame. The generalised metric and its generalised vielbein are

given by

H = |ḡ11|−1/2







ḡ 1√
2
ḡΩ 0

1√
2
Ωḡ ḡ−1ḡ−1

(

1−W 2
)

0

0 0 ḡ8






,

LΩ = |˜̄e11|−1/2







˜̄e 1√
2
˜̄eΩ 0

0 ēē 0

0 0 ˜̄e8






.

(3.39)

Now Hij,kl = (+,+,−) and so we find W 2 > 1 meaning we cannot rotate the upper

triangular vielbein into a lower triangular one. Hence we cannot obtain the (g11, C3) frame.

Type IV. This arises when

Hij = (+,−,−) or Hij = 0 ,

Hij,kl = (+,+,−) or Hij,kl = 0 ,
(3.40)

and we have to use both a 3-form and a trivector. There are in fact two frames:
(

ĝ11, Ĉ3, Ω̂3

)

and
(

ǧ11, Č3, Ω̌3

)

. Corresponding to each of these frames we can parameterise the gener-
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alised metric and its generalised vielbein in one of two forms. The hatted frame gives

H = |ĝ11|−1/2











ĝ

[

(

1− Ŵ V̂
)2

− V̂ 2

]

1√
2

[

ĝΩ̂
(

1− Ŵ V̂
)

+ Ĉĝ−1ĝ−1
]

0

1√
2

[

Ω̂ĝ
(

1− Ŵ V̂
)

+ ĝ−1ĝ−1Ĉ
]

ĝ−1ĝ−1
(

1− Ŵ 2
)

0

0 0 ĝ8











,

L̂ = |˜̂e|−1/2









˜̂e
(

1− Ŵ V̂
)

1√
2
˜̂eΩ̂ 0

1√
2
êêĈ êê 0

0 0 ˆ̃e8









.

(3.41)

The generalised vielbein is fixed by the requirement that it is a group element of local

E3 ×GL(8) so it must be formed by

L̂ = UΩ(X)UC(X)Uα(X)USL(3)(X)UGL(8)(X) , (3.42)

where each factor is an element of E3 × GL(8) as given in (2.32), (2.34)–(2.36) and is

a function of the generalised coordinates. We can interpret each factor as turning on

a specific field, in particular UαUSL(3) turns on the gravitational field in the dualisable

direction while UGL(8) turns it on in the transverse space, while UΩ and UC turn on the

trivector and 3-form, respectively. However, because these elements are constructed from

the duality algebra, the trivector and 3-form obtained this way have tangent space indices

and thus they must always be on the left of the gravitational field factors UαUSL(3)UGL(8).

These last three factors commute and thus their order does not matter. On the other hand,

we could change the order of UΩUC . This gives rise to the generalised vielbein

Ľ = UC(X)UΩ(X)Uα(X)USL(3)(X)UGL(8)(X) . (3.43)

This is the checked frame’s vielbein

Ľ = |˜̌e|−1/2







˜̌e 1√
2
˜̌eΩ̌ 0

1√
2
ěěČ ěě

(

1− W̌ V̌
)

0

0 0 ˇ̃e8






, (3.44)

with generalised metric

H = |ǧ11|−1/2









ǧ
(

1− V̌
)2 1√

2

[

Čǧ−1ǧ−1
(

1− V̌ W̌
)

+ ǧΩ̌
]

0

1√
2

[

ǧ−1ǧ−1Č
(

1− V̌ W̌
)

+ Ω̌ǧ
]

ǧ−1ǧ−1
[

(

1− V̌ W̌
)2 − W̌ 2

]

0

0 0 ǧ8









.

(3.45)
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However, it is easy to check that these two frames are related by the field redefinition

ǧ = ĝ
∣

∣

∣
1− V̂ Ŵ

∣

∣

∣

4/3
,

ǧ8 = ĝ8

∣

∣

∣
1− V̂ Ŵ

∣

∣

∣

−2/3
,

Ω̌3 = Ω̂3

(

1− V̂ Ŵ
)−1

,

Č3 = Ĉ3

(

1− V̂ Ŵ
)

,

V̌ = V̂
(

1− V̂ Ŵ
)

,

W̌ = Ŵ
(

1− V̂ Ŵ
)−1

,

˜̌e = ˜̂e
(

1− V̂ Ŵ
)2/3

,

˜̌e8 = ˜̂e8

(

1− V̂ Ŵ
)−1/3

.

(3.46)

It is important to note that the metric, 3-form and trivector appearing in this gener-

alised metric are not unique. For a start, we can use the field redefinitions (3.46) to obtain

an equally valid set of fields. Also, the structure of L̂ is preserved by all internal rotations

H of the form

H =







cosh θδī
k̄

1√
2
sinh θǫīk̄l̄ 0

− 1√
2
sinh θǭij̄k̄ cosh θδ k̄l̄

īj̄
0

0 0 1






. (3.47)

Because the metric is of type IV there are no values for θ which turn the vielbein into a

lower triangular LC or upper triangular LΩ one.

4 Timelike dualities and change of signature

We will now review why it seems that M-theory changes signature under the action of time-

like dualities [38–40]. Conventionally, dualities arise when considering compactifications.

We start by compactifying 11-dimensional supergravity on a S1 of radius R1 and take the

limit R1 → 0 to obtain the type IIA 10-dimensional supergravity. A Kaluza-Klein Ansatz

for the compactification shows that the dilaton is related to this radius eφ = R
3/2
1 so that we

are considering the weak-coupling limit [53]. A further compactification on a circle of radius

R2 gives the T-dual IIB supergravity compactified on a dual circle of radius 1/R2. Thus

11-dimensional supergravity compactified on T 2 in the limit of R1, R2 → 0 is dual to a 10-

dimensional supergravity. From this analysis we see that for every two-cycle we compactify

on, we get a dimension opening up in the dual theory when the two-cycle shrinks to zero size.

Thus a compactification of 11-dimensional supergravity on T 3 is dual to a 11−3+1×3 = 11

dimensional theory when the T 3 has vanishing size because T 3 has three two-cycles.

Let us now see what happens when we compactify on Lorentzian torii. We denote by

T (n,p) the torus with n spacelike and p timelike directions. Now we consider compactifying

the 11-dimensional supergravity on a T (1,1). We use the spacelike circle to obtain the IIA
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theory (in the limit of vanishing radius R1) whereas the compactification on the timelike

circle of radius R2 relates the theory to a 10-dimensional theory compactified on a timelike

circle of dual radius 1/R2. In the limit of vanishing size we see that while one spatial and

one timelike direction disappear in the original solution a timelike one opens up in the

dual spacetime. Thus for every Lorentzian two-cycle that we compactify on we open up a

dual timelike direction whereas for each Euclidean two-cycle we open up a dual spacelike

direction. We summarise

Compactification Dual spacetime

Each shrinking Euclidean 2-cycle → New spacelike direction opens up

Each shrinking Lorentzian 2-cycle → New timelike direction opens up.

Now when we consider a compactification of 11-dimensional supergravity on T (2,1) we

go from a (1, 10) theory to a (1, 10)− (1, 2) + 2× (1, 0) + (0, 1) = (2, 9) theory, denoted by

M∗. This is because the T (2,1) has two Lorentzian two-cycles and one Euclidean two-cycle.

Using the notation of generalised geometry we naively get the same results. We see

that if we perform a Buscher duality, equation (2.38), along three directions t, x1, x2 we

will exchange the spacetime coordinates with their duals because

X → (UB)
−1X , (4.1)

where X are the generalised coordinates and

UB =







0 1√
2
D 0

1√
2
K 0 0

0 0 1






, (4.2)

where Dt12 = A and Kt12 = − 1
A . Explicitly we have for A = 1 (we will set A = 1

throughout this section unless specified otherwise)

t ↔ y12 ,

x1 ↔ −yt2 ,

x2 ↔ yt1 .

(4.3)

Equation (3.6) revealed that the dual coordinates ytµ for µ = 1, 2 are timelike while only

y12 is spacelike. Thus, we seem to obtain the same result as in [39] obtaining a dual theory

of signature (9, 2).

However, let us study this more carefully using the generalised metric. It can be

contracted with the generalised coordinates to give a U-duality invariant generalised line

element

dS2 = HMNdXMdXN . (4.4)

For vanishing 3-form this simplifies to

dS2 = gijdx
idxj +

1

2
gikgjldyijdykl + gABdx

AdxB , (4.5)
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and by studying the line element restricted along the spacetime coordinates,

ds2 = gabdx
adxb, we can obtain the metric. After applying UB the spacetime coor-

dinates are now made up of two “timelike”, yt1, yt2, and nine “spacelike” coordinates,

y12, x
3, . . . x10, and we would expect the metric to have changed signature. Implicitly we

are assuming that the 3-form vanishes. In the Euclidean case that would be true. Under

a Buscher duality along spacelike directions the fields transform as (2.40)

g′ij = gij
((

C2
123 + |g3|

))−2/3
,

g′AB = gAB

((

C2
123 + |g3|

))1/3
,

C ′
123 = − C123

(

C2
123 + |g3|

) ,

(4.6)

and it would be true that there is no dual 3-form if we started with a vanishing 3-form.

However, the generalised metric in the Lorentzian case transforms as

H′ = |g11|−1/2 (UB)
T







g 0 0

0 g−1g−1 0

0 0 g8






UB (4.7)

= |g11|−1/2







0 1√
2
D 0

1√
2
K 0 0

0 0 1













g 0 0

0 g−1g−1 0

0 0 g8













0 1√
2
K 0

1√
2
D 0 0

0 0 1






(4.8)

= |g11|−1/2







− 1
|g|g 0 0

0 −|g|g−1g−1 0

0 0 g8






. (4.9)

We see that the naive interpretation, that the metric along dualisable directions gij has

reversed signature gij → −gij , so that it now has two timelike and one spacelike direction,

is incorrect. Because H′ij,kl has signature (+,+,−) the generalised metric is now of type

IV and so we need to also include a trivector field. As we will explain in the next section,

we find the dual fields

ǧ = g (sinh θ)4/3 |g|2/3 ,
ǧ8 = g8 (sinh θ)

−2/3 |g|−1/3 ,

Čt12 = −cosh θ sinh θ
√

|g|
,

Ω̌t12 =
√

|g| coth θ ,

(4.10)

where A sinh θ ≥ 0 is required, i.e. θ has to be chosen to be the same sign as A. We see

that there is no change in signature. However, there is a trivector field and a family of

dual solutions, linked by local SO(1, 1) rotations. We emphasise that it is the existence of

the trivector field that saves us from a change of signature.

4.1 The spacetime signature

We can go further and prove the following theorem.
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Theorem 1. If the generalised metric parameterises the coset

SL(2)× SL(3)×GL(8)

SO(1, 1)× SO(2, 1)× SO(8)
, (4.11)

then the spacetime metric must be of signature (−,+, . . . ,+).

Proof. The generalised metric is symmetric and can thus be written in terms of a gener-

alised vielbein

H = LTML . (4.12)

As we have shown in section 3, the internal metric is fixed by the local symmetry group

SO(1, 1)× SO(2, 1)× SO(8) to be

M = diag (−,+,+,−,−,+)⊗ 18 , (4.13)

where the pseudo-Riemannian part is made from the components

Mij = ηij , (4.14)

Mij,kl = ηi[kηl]j , (4.15)

and the components for the transverse space are MAB = δAB. Here η is the three-

dimensional Minkowski metric.

The generalised vielbein has to be a group element and thus must be of the form

L = UΩ(X)UC(X)Uα(X)USL(3)(X)UGL(8)(X) , (4.16)

where each factor is a function of the generalised coordinates XM =
(

xi, yij , x
A
)

. The

indices are as usual i, j = 1, 2, 3 and A = 4, . . . 11. We have shown in section 3.3 that this

form is generic because the alternative,

L = UC(X)UΩ(X)Uα(X)USL(3)(X)UGL(8)(X) , (4.17)

can be obtained by the field redefinitions given in equations (3.46). Thus, we can without

loss of generality write the vielbein as

L = |ẽ|−1/2







ẽ (1−WV ) 1√
2
ẽΩ 0

1√
2
eeC ee 0

0 0 ẽ8






. (4.18)

The generalised metric is given by

H = |g11|−1/2









g
[

(1−WV )2 − V 2
]

1√
2

[

gΩ (1−WV ) + Cg−1g−1
]

0
1√
2

[

Ωg (1−WV ) + g−1g−1C
]

g−1g−1
(

1−W 2
)

0

0 0 g8









.

(4.19)
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For now we take g11 = g⊗g8, C3 and Ω3 to be some symmetric rank-two field, a 3-form

and a trivector, respectively, each of unknown physical significance. g is given by

g = ẽT ηẽ , (4.20)

and

g8 = ẽ T
8 ẽ8 . (4.21)

When Ω3 = 0, the fields g11 and C3 are the spacetime metric and 3-form, respectively. They

have to be because the low-energy effective action (2.12) must reduce to the Einstein-Hilbert

action when ∂y = 0. Also, the generalised metric can be found by considering the action of

dualities on the worldvolume of the supermembrane [43] and by comparison we see that g11
and C3 are the usual bosonic fields of 11-dimensional supergravity. By continuity g11 must

be the spacetime metric when the 3-form and trivector are non-vanishing. Thus the space-

time internal metric η⊗18 determines the spacetime signature to be (−,+,+,+, . . .+).

By a similar argument one can prove the relevant theorem for the Lorentzian modular

group of the four-dimensional duality group E4×GL(7)

H̃4×SO(7)
as given in table 1.

Theorem 2. If the generalised metric parameterises the coset

SL(5)×GL(7)

SO(3, 2)× SO(7)
, (4.22)

then the spacetime metric must be of signature (−,+, . . . ,+) .

5 The transformation rules

We can now repeat the analysis in [37] including time amongst the dualisable coordinates

in order to find the bosonic fields after the action of a duality. We will start with a type I

or type II generalised metric so that we can use the (g11, C3) frame. Including time means

that the dual generalised metric may have changed type and thus the dual fields may not

be expressible in the (g11, C3) frame.

The non-trivial dualities are generated by the SL(2) subgroup

{UC , UΩ, Uα} . (5.1)

In the (g11, C3) frame the UC shifts the 3-form and Uα always scales the coordinates. Thus,

these two transformations are clearly gauge transformations. However, UΩ transforms the

bosonic fields in a non-trivial manner. Another non-trivial transformation is generated by

the Buscher duality UB

UB = UCUΩUC , (5.2)

where Ωt12 = A and Ct12 = − 1
A . We consider their action on the bosonic fields in turn.
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5.1 Ω-shifts

We start with the generalised metric

H = |g11|−1/2

(

g
(

1− V 2
)

1√
2
Cg−1g−1

1√
2
g−1g−1C g−1g−1

)

. (5.3)

Applying a UΩ transformation we find

H′= |g11|−1/2





g
(

1− V 2
)

1√
2
Cg−1g−1

(

1 +A
√

|g|
(

1
V − V

)

)

1√
2
g−1g−1C

(

1 +A
√

|g|
(

1
V − V

)

)

g−1g−1
(

(

1−A
√
gV
)2 −A2|g|

)



 ,

(5.4)

where Ωt12 = A, so that Ωijk = ǫijk
√

|g|A. Equivalently, we can write

H′ = |g11|−1/2

(

g
(

1− V 2
)

1√
2
Cg−1g−1

(

1 +ACt12

(

1
V 2 − 1

))

1√
2
g−1g−1C

(

1 +ACt12

(

1
V 2 − 1

))

g−1g−1
(

(1 +ACt12)
2 −A2|g|

)

)

.

(5.5)

We see that H′ij,kl may reverse signature. If

(1 +ACt12)
2 −A2|g| > 0 , (5.6)

we can gauge away the trivector field and find that in the (g11, C3) frame, the transformed

fields are

g′ij = gij

(

(1 +ACt12)
2 −A2|g|

)−2/3
,

g′AB = gAB

(

(1 +ACt12)
2 −A2|g|

)1/3
,

C ′
t12 =

Ct12 (1 +ACt12)−A|g|
(1 +ACt12)

2 −A2|g|
.

(5.7)

However, if

(1 +ACt12)
2 −A2|g| ≤ 0 , (5.8)

H′ij,kl has reversed signature and the trivector field cannot be gauged away since the dual

generalised metric is of type III or IV. If V 2 < 1 the dual generalised metric is of type III

and we can gauge away the 3-form. To find the dual fields, we first gauge away the initial

3-form away so the initial fields are in the (g11,Ω3) frame given in equations (3.19), and

then add the trivector Ωt12 = A.

ḡij = gij
(

1− V 2
)2/3

,

Ωijk =
ǫijkV

1− V 2
+A

√

|g|ǫijk =
gimgjngkoCmno

1− V 2
+A

√

|g|ǫijk ,

ḡAB = gAB

(

1− V 2
)−1/3

.

(5.9)

On the other hand, if V 2 ≥ 1 the dual generalised metric is of type IV and we have to

use the 3-form and trivector. In the
(

ǧ11, Č3, Ω̌3

)

frame, the trivector can just be added
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to the metric and 3-form.

ǧ′ab = gab ,

Č ′
t12 = Ct12 ,

Ω̌′t12 = A .

(5.10)

In this frame fields linked by a SO(1, 1) rotation are equally valid. We thus find a family

of dual solutions given by

ǧ′ij = gij

(

cosh θ +
Ct12
√

|g|
sinh θ

)4/3

,

ǧ′AB = gAB

(

cosh θ +
Ct12
√

|g|
sinh θ

)−2/3

,

Č ′
t12 =

√

|g|
(

cosh θ +
Ct12
√

|g|
sinh θ

)(

Ct12
√

|g|
cosh θ + sinh θ

)

,

Ω̌′t12 =
A
√

|g| cosh θ + sinh θ (1 +ACt12)
√

|g| cosh θ + Ct12 sinh θ
,

(5.11)

which is valid for all θ satisfying cosh θ > V sinh θ. We highlight that the hyperbolic

angle can be chosen locally, θ = θ(X). One can also use the hatted frame by the field

redefinition (3.46).

ĝ′ij = gij

[

A
√

|g| sinh θ + cosh θ (1 +ACt12)
]−4/3

,

ĝ′AB = gAB

[

A
√

|g| sinh θ + cosh θ (1 +ACt12)
]2/3

,

Ω̂′t12 =
1
√

|g|

[

A
√

|g| cosh θ + sinh θ (1 +ACt12)
] [

A
√

|g| sinh θ + cosh θ (1 +ACt12)
]

,

Ĉ ′
t12 =

Ct12 cosh θ +
√

|g| sinh θ
A
√

|g| sinh θ + cosh θ (1 +ACt12)
.

(5.12)

We can check that if (1 +ACt12)
2 > A2|g|, we can rotate away the trivector field and

obtain the fields in the (g11, C3) frame as in equation (5.7). We need to choose

cosh θ = − sinh θ
1 +ACt12

A
√

|g|
, (5.13)

which then implies

sinh θ = sign

(

1 +ACt12

−A
√

|g|

)√

A2|g|
(1 +ACt12)

2 −A2|g|
. (5.14)
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For this choice it is easy to check that indeed the fields in both the hatted and checked

frames reduce as required to

g′ij = gij

(

(1 +ACt12)
2 −A2|g|

)−2/3
,

g′AB = gAB

(

(1 +ACt12)
2 −A2|g|

)1/3
,

C ′
t12 =

Ct12 (1 +ACt12)−A|g|
(1 +ACt12)

2 −A2|g|
.

(5.15)

5.2 Buscher duality

The other non-trivial duality is the Buscher duality

UB = UCUΩUC , (5.16)

where Ωt12 = A and Ct12 = − 1
A . In [37] we calculated the effect of this duality by changing

frames from (g11, C3) to (ḡ11,Ω3) and back so that at each step the transformation is just

a simple gauge shift

Ct12 → Ct12 −
1

A
,

Ωt12 → Ωt12 +A ,
(5.17)

etc. However, here we need a different approach as we cannot always change frames from

(g11, C3) to (ḡ11,Ω3) or vice versa. We must study the transformation of the generalised

metric directly. We first write the Buscher transformation as

UB =

(

0 1√
2
D

1√
2
K 0

)

, (5.18)

where Dt12 = A and Kt12 = − 1
A . We start again with a type I or II generalised metric ex-

pressible in the (g11, C3) frames. Under this transformation the generalised metric becomes

H′ = U T
B HUB

= (−1) |g11|−1/2

(

A−2|g|−1g 1√
2
Cg−1g−1

1√
2
g−1g−1C A2|g|

(

1− V 2
)

g−1g−1

)

. (5.19)

We note that because of the −1 pre-multiplying the generalised metric, the component

H′
ij = −|g11|−1/2A−2|g|−1g (5.20)

always has the reversed signature, (+,−,−). We therefore always have to use a 3-form,

C ′
ijk. If V 2 > 1 then the dual generalised metric is of type II and we can use the frame

(g11, C3) with the dual fields given by the “timelike Buscher rules” [46, 47]

g′ij = gijA
−4/3

(

C2
t12 − |g|

)−2/3
,

g′AB = gABA
2/3
(

C2
t12 − |g|

)1/3
,

C ′
t12 = − Ct12

A2
(

C2
t12 − |g|

) .

(5.21)
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If, on the other hand, V 2 ≤ 1, the generalised metric is of type IV and we must include

a non-zero trivector. The generalised vielbein becomes

L′ = |ẽ11|−1/2

(

0 1√
2
ẽD

1√
2
eeK −eeV A

√

|g|

)

, (5.22)

which can be rotated into the checked frame

Ľ = |˜̌e|−1/2

(

˜̌e 1√
2
˜̌eΩ̌

1√
2
ěěČ ěě

(

1− W̌ V̌
)

)

= HL′ ,

(5.23)

where H ∈ SO(1, 1) is given by equation (3.15)

H =

(

cosh θδī
k̄

− 1√
2
sinh θǫīk̄l̄

1√
2
sinh θǭij̄k̄ cosh θδk̄l̄

īj̄

)

. (5.24)

We find the dual solutions belonging to a family of solutions linked by internal SO(1, 1)

rotations (recall that the parameter θ(X) can be chosen locally)

ǧ′ij = gij

(

sinh θ

A
√

|g|

)4/3

,

ǧ′AB = gAB

(

sinh θ

A
√

|g|

)−2/3

,

Č ′
t12 = − sinh 2θ

2A2
√

|g|
,

Ω̌′t12 = A2
√

|g|
(

coth θ − Ct12
√

|g|

)

,

(5.25)

where A sinh θ > 0. We can also write the family of dual solutions in the hatted frame

ĝ′ij = gij

(

A
√

|g|
)−4/3

∣

∣

∣

∣

∣

sinh θ − Ct12
√

|g|
cosh θ

∣

∣

∣

∣

∣

−4/3

,

ĝ′AB = gAB

(

A
√

|g|
)2/3

∣

∣

∣

∣

∣

sinh θ − Ct12
√

|g|
cosh θ

∣

∣

∣

∣

∣

2/3

,

Ĉ ′
t12 =

[

A2
√

|g|
(

tanh θ − Ct12
√

|g|

)]−1

,

Ω̂′t12 = −A2
√

|g|
(

cosh θ − Ct12
√

|g|
sinh θ

)(

sinh θ − Ct12
√

|g|
cosh θ

)

.

(5.26)

Just as for the Ω-shift, it is worth checking that if V 2 > 1 we can rotate the trivector

field away. This would correspond to the choice

V sinh θ = cosh θ , (5.27)
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so that

sinh θ = sign(V )
1√

V 2 − 1
, (5.28)

and the fields in both frames collapse to (g11, C3) as expected

g′ij = gijA
−4/3

(

C2
t12 − |g|

)−2/3
,

g′AB = gABA
2/3
(

C2
t12 − |g|

)1/3
,

C ′
t12 = − Ct12

A2
(

C2
t12 − |g|

) .

(5.29)

6 Timelike SL(5) duality

We saw in section 3.3 that there are four different types of generalised metric that one

ought to consider. These differ in the signature of the block-diagonal components of the

generalised metric, Hij and Hij,kl. In the four-dimensional case the generalised metric of

type I is given by

HMN = |g11|−1/2









gik

[

δkj
(

1− V 2
)

+ V kVj

]

1√
2
C mn
i 0

1√
2
Ckl

j gk[mgn]l 0

0 0 gAB









(6.1)

in the (g11, C3) frame and by

HMN = |ḡ11|−1/2









ḡij
1√
2
Ω mn
i 0

1√
2
Ωkl

j gkpgql
[

δmn
[pq]

(

1−W 2
)

+ δm[pWq]W
n
]

0

0 0 gAB









(6.2)

in the (ḡ11,Ω3) frame. We define

Cijk = ǫijklV
l , (6.3)

Ωijk = ǭijklWl , (6.4)

V 2 = V iV jgij , (6.5)

W 2 = WiWj ḡ
ij , (6.6)

where ǫijkl and ǭijkl are the components of the Levi-Civita tensors for g and ḡ, respec-

tively. By analogy with the three-dimensional case discussed in section 3.3 we study the

eigenvectors of the matrix

δij
(

1− V 2
)

+ V iVj , (6.7)

and find that it has eigenvalues λ = 1 of multiplicity one, corresponding to eigenvectors

parallel to V i and λ = 1 − V 2 of multiplicity three for eigenvectors perpendicular to

V i. Thus, it can either have four positive eigenvalues when V 2 < 1 or one positive

and three negative (or zero) eigenvalues when V 2 ≥ 1 with the singularity occurring

when V 2 = 1. The generalised metric of type I has signatures Hij = (−,+,+,+) and
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Type Hij Hij,kl Minimal valid frames

I (1, 3) (3, 3) (g11, C3) or (ḡ11,Ω3)

II (2, 2) or 0 (3, 3) (g11, C3)

III (1, 3) (4, 2) or 0 (ḡ11,Ω3)

IV (2, 2) or 0 (4, 2) or 0 (ĝ11, C3,Ω3)

Table 3. The conditions for being able to use a certain field frame (g11, C3) , (ḡ11,Ω3) , (ĝ11, C3,Ω3)

in terms of the signature of the components of the generalised metric Hij and Hij,kl. The signature

of p timelike and q spacelike directions is denoted by (p, q). The minimal valid frames are those

with the smallest number of bosonic fields that describe the physics. (ĝ11, C3,Ω3) is always a

valid frame but we only include it when it is the only valid frame because it otherwise carries an

unnecessary redundancy.

Hij,kl = (−,−,−,+,+,+) for these components and thus V 2 < 1. To simplify the

notation we will denote the signatures by (p, q) where p denotes the number of timelike

and q the number of spacelike directions. Thus, when V 2 < 1, Hij has the same signature

as gij , i.e. (1, 3). When V 2 ≥ 1, on the other hand, Hij has the opposite signature for

the three directions perpendicular to V i. Because V 2 ≥ 1, these always include time and

two spatial directions, thus giving signature (2, 2). Hij will never have signature (4, 0).

Similar arguments can be applied to the Hij,kl components to show that it could have

signature (3, 3) , (4, 2) or be singular. We see that the generalised metric will again be

of four types as summarised in table 3 and we see that we have similar structures as in

the three-dimensional case. For example, we need to check that the generalised metric

component Hij has not changed the sign along time and two spacelike directions. The

only complication arises because one may have various non-zero components of C3 and Ω3.

However, the “building blocks” are the same as for three dimensions. This should not be a

surprise: this structure is due to the 3-form and trivector which have three components.

6.1 Transformation laws under UΩ

We will now give the transformation law for the metric and 3-form under the UΩ trans-

formation where Ωijk = ǫijkzA
√

|g|. z is a placeholder labelling either a spacelike or a

timelike direction. We find

g′ij =
[

gij −A
√

|g4| (Viδ
z
i + Vjδ

z
i )−A2|g4|

(

1− V 2
)

δzi δ
z
j

]

×
[

(

1−AV z
√

|g4|
)2

−A2|g4|gzz
]−2/3

,

C ′
ijk =

Cijk

(

1−A
√

|g4|V z
)

+A
√

|g4|ǫijklglz
(

1−A
√

|g4|V z
)2

−A2|g4|gzz
.

(6.8)

This transformation law is valid when the function f =
(

1−A
√

|g4|V z
)2

− A2|g4|gzz is

positive definite. When this does not hold we must include a trivector as for SL(2)×SL(3).

Note that when z is timelike, gzz < 0 and so f > 0 is always satisfied. This should not be
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surprising because we are performing the duality along spacelike directions and so we can

always gauge away the trivector.

For a diagonal metric with only one non-zero component of V labelled by V w we split

the equations as xi = (xα, w, z) so that the transformed fields simplify to

ds′2 = ds2αβ
(

1−A2|g4|gzz
)−2/3

+ gww

(

dw −A
√

|g4|V wdz
)2
(

1−A2|g4|gzz
)−2/3

+ gzzdz
2
(

1−A2|g4|gzz
)1/3

,

C ′
zαβ =

Czαβ

1−A2|g4|gzz
,

C ′
αβw =

−A|g4|ηαβwzg
zz

1−A2|g4|gzz

(6.9)

and all other components vanishing. ηαβwz is the alternating symbol where η12wz = 1, etc.

We will see how this can be used to generate momentum in section 7.3.

7 Examples

In [37] we dualised specific examples of Euclidean 11-dimensional supergravity. We had

a glimpse at dualities acting in timelike directions by taking a Lorentzian solution but

first Wick-rotating to Euclidean 11-dimensional supergravity, then dualising and finally

Wick-rotating back. We found that this naive procedure can cause difficulties. For

example, a Buscher duality of the extreme M2-brane seems to give rise to a singular

solution, while the UΩ transformation acting on uncharged black M2-branes gives a black

M2-brane like solution but with harmonic functions that may be negative. The spacetime

metric is then complex. We now revisit these examples and find that these problems

arose because we were using the (g11, C3) frame even when it was not valid. Using the

right frame, (ḡ11,Ω3),
(

ĝ11, Ĉ3, Ω̂3

)

or
(

ǧ11, Č3, Ω̌3

)

, as listed in tables 2 and 3, we find

well-behaved dual solutions instead.

From equation (2.10) we see that under UΩ, the coordinates transform

xi → xi − 1

2
Ωijkyjk ,

yij → yij ,

xA → xA .

(7.1)

Thus, if we start with a conventional solution of the generalised Lagrangian (3.24), i.e.

having no dependence on the dual coordinates yij , the transformed solution will be

independent of the dual coordinates yij as long as Ωijk has non-zero components along

isometries only. Explicitly

∂i → ∂i ,

∂ij → ∂ij +Ωijk∂k ,
(7.2)

and we see that we preserve the sectioning condition ∂ij = 0 if we act with Ωijk along

isometries only. The supergravity solutions corresponding to M2-branes are then natural
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examples to consider since they contain three isometries, corresponding to the worldvolume

directions. We begin by acting with SL(2)×SL(3) along the worldvolume directions on un-

charged and extreme M2-brane solutions before studying the action of SL(5) in section 7.3.

7.1 Uncharged black M2-brane

We begin with the example of an uncharged black M2-brane [54].

ds2 = −Wdt2 + dy21 + dy22 +W−1dr2 + r2dΩ2
(7) ,

W = 1 + h/r6 ,

Ct12 = 0 , 11

(7.3)

where r is the radius in the six transverse directions, dΩ2
(7)

12 corresponds to the metric of

a S7 and ωd is the volume of a Sd

ωd =
2π

d+1
2

Γ(d+1
2 )

. (7.4)

The tension of the brane is

M2 = −9hω7

2κ2
, (7.5)

where κ2 = 8πG
(11)
N and G

(11)
N is the 11-dimensional Newton’s constant. The tension is

positive for h < 0 and we will write

− h = k > 0 . (7.6)

We want to act with the three-dimensional U-duality group E3 along the three world-

volume isometries. However, we know that there are only two families of non-trivial trans-

formations, generated by UΩ and UB.
13

7.1.1 UΩ acting on uncharged black M2-brane

We first consider UΩ where Ωt12 = A. We saw in section 3.3 that depending on the sign of

f ≡ 1−A2|g|
= 1−A2W

= 1−A2 +
A2k

r6
,

(7.7)

we may need to include the trivector. Because there is no initial 3-form, the dual

generalised metric is of type I if f > 0 and type III if f ≤ 0. We consider three cases

A2 < 1, A2 = 1 and A2 > 1.

11The indices 1, 2 correspond to y1, y2, respectively.
12The symbol Ω is used here for two different purposes: once in relation to a S7 and once for the trivector.

The context will make it clear what is being meant.
13By trivial we mean those dualities acting as gauge transformations, i.e. either rigid diffeomorphisms

and 3-form shifts.
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Case 1: A2 < 1. In this case f is positive everywhere and we can describe the solution

in the (g11, C3) frame. We rescale the coordinates in order to obtain an asymptotically

flat solution14

t → T = t(1−A2)−1/3 ,

y1 → Y1 = y1(1−A2)−1/3 ,

y2 → Y2 = y2(1−A2)−1/3 ,

r → R = r(1−A2)1/6 .

(7.8)

and obtain

ds′2 = G−2/3
(

−WdT 2 + dY 2
1 + dY 2

2

)

+G1/3
(

W−1dR2 +R2dΩ2
(7)

)

,

C ′
TY1Y2

= − 1

A
G−1 + const. ,

(7.9)

where now

G = 1 +
A2k

R6
,

W = 1− k(1−A2)

R6
.

(7.10)

We found this dual solution in [37] by Wick rotating before and after applying spacelike du-

alities, and noted that it is the solution of a charged M2-brane of tension and charge density

M2 → M ′
2 =

(

1− 1

3
A2

)

M2 ,

Q → Q′ = −2

3
AM2 = − 2AM ′

2

3−A2
.

(7.11)

We see that if A2 < 1 the UΩ transformation charges the brane solution. This is thus a

generalisation of the Harrison transformation of Einstein-Maxwell theory [55, 56].

Case 2: A2 = 1. This transformation belongs to the quantum group E3(Z) where

A ∈ Z is an integer.

f =
k

r6
(7.12)

is again positive everywhere so that we can use the (g11, C3) frame. We find the dual

solution

ds′2 = f−2/3
(

−Wdt2 + dy21 + dy22
)

+ f1/3
(

W−1dr2 + r2dΩ2
(7)

)

,

C ′
t12 =

r6

k
− 1 .

(7.13)

14Throughout this section this will mean asymptotically flat with respect to the transverse coordinates

when we say “asymptotically flat”.
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Upon changing coordinates to ρ = k−1/3

2 r2 we recognize this as a Schwarzschild-AdS4 ×S7

solution

ds′2=
( ρ

R

)2
[

−
(

1−
√
k

8ρ3

)

dt2+dy21+dy22

]

+

(

R

ρ

)2 1
(

1−
√
k

8ρ3

)dρ2+k1/3dΩ2
(7) , (7.14)

C ′
t12=

ρ3

k
− 1 , (7.15)

where R = k1/6

2 and the field strength of the 3-form gives the cosmological constant for

the Schwarzschild-AdS4 part and its dual gives the volume form of the S7. This can be

viewed as the 11-dimensional analogue of a “subtracted geometry” solution which can

be constructed by removing the asymptotically flat region of the original solution [57].

The subtracted geometry of a specific intersecting brane solution that gives rise to the

Kerr-Newman black hole upon compactification to four dimensions has recently been

shown to lie in the orbit of Harrison transformations acting on the initial solution [58].15

Case 3: A2 > 1. The function f is positive only close to the brane when

r <

(

A2k

A2 − 1

)1/6

, (7.16)

and so in this region we can describe the solution in the (g11, C3) frame to obtain

ds′2 = G−2/3
(

−WdT 2 + dY 2
1 + dY 2

2

)

+G1/3
(

W−1dR2 +R2dΩ2
(7)

)

,

C ′
TY1Y2

= A+
1

A

(

G−1 − 1
)

,
(7.17)

where now

G = −A2 + 1 +
A2k

r6
,

W = 1− A2k

r6
.

(7.18)

We see this solution causes problems only where r ≥
(

A2k
A2−1

)1/6
which is where it is not

valid. Because the solution is not valid globally, we cannot describe its charge or mass

through the Komar procedure.

Alternatively, we can construct a global dual solution in the (ḡ11,Ω3) frame since the

generalised metric is of type III. We saw in section 4 that the UΩ transformation just

shifts Ωijk

Ωt12 → Ωt12 +A . (7.19)

15Subtracted geometries of four-dimensional Kerr-Newman black holes manifestly exhibit the “hidden”

conformal symmetry of the black hole solutions [57, 59–63]. These conformal symmetries are important

for the Kerr/CFT correspondence. For a comprehensive review of the Kerr/CFT correspondence, see [64].

They are also useful because the scalar wave equation becomes separable. Thermodynamic quantities,

which remain invariant under the “subtraction”, can then be computed with ease.
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As a result the dual fields in the (ḡ11,Ω3) frame are

ds̄′2 = −Wdt2 + dy21 + dy22 +W−1dr2 + r2dΩ2
(7) ,

Ω′t12 = A .
(7.20)

The solutions (7.9) fit into a one-parameter family of charged and uncharged non-extremal

black branes, including solutions corresponding to negative mass when A2 > 3. If we had

naively used the timelike transformation rules as in equation (5.7), without checking that

we are using the right frame, we would have obtained these negative-mass solutions. This

is what happened in [37] but here we see that the family of dual solutions contains the

uncharged black M2-brane corresponding to A = 0, charged black ones obtained by the

Harrison transformation when A2 < 1, the subtracted geometry solution for A2 = 1 and

finally dual solutions including a trivector, given by equation (7.20), when A2 > 1. The

duality orbit avoids the unphysical solutions thanks to the trivector.

In [58] the subtracted geometry of a different spacetime is generated by Harrison

transformations. There the dualities are used as a solution-generating mechanism on

dimensionally reduced spaces. Our result confirms this finding for a much simpler

example but does so directly at the level of the 11-dimensional solutions without the

need to dimensionally reduce. We can thus see that the subtracted geometry of a brane

configuration can be generated by the UΩ transformation which is a generalisation of the

Harrison transformation. Furthermore, we see by comparison that here the value A2 = 1

corresponds to an “infinite” Harrison boost. Thus, the transformations for A2 > 1 do

not arise in the conventional picture of dualities. In the context of generalised geometry,

on the other hand, there is no reason to cut off the parameter at A2 = 1 except that

dualities for A2 > 1 will include a non-zero trivector and thus go beyond the conventional

description of 11-dimensional supergravity.

7.1.2 Buscher duality of uncharged M2-brane

We can go through the same procedure when acting with UB

UB =

(

0 1√
2
D

1√
2
K 0

)

, (7.21)

where Dt12 = A and Kt12 = − 1
A . The dual generalised metric

H′ = |g11|−1/2

(

−A−2|g|−1g 0

0 −A2|g|g−1g−1

)

(7.22)

is of type IV and thus can only be interpreted using both the 3-form and trivector. Using

equations (5.25) and (5.26) we obtain the fields in the checked frame

dš2 =

(

sinh θ

A
√
W

)4/3
(

−Wdt2 + dy21 + dy22
)

+

(

sinh θ

A
√
W

)−2/3
(

W−1dr2 + r2dΩ2
(7)

)

,

Čt12 = − sinh 2θ

2A2
√
W

,

Ω̌t12 = A2
√
W coth θ ,

(7.23)
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and in the hatted frame

dŝ2 =
(

A
√
W sinh θ

)−4/3
(

−Wdt2 + dy21 + dy22
)

+
(

A
√
W sinh θ

)2/3 (

W−1dr2 + r2dΩ2
(7)

)

,

Ĉt12 = −
(

A2
√
W coth θ

)−1
,

Ω̂t12 =
A2

√
W sinh 2θ

2
.

(7.24)

The concepts of mass and charge are not well-defined here because of the appearance

of the trivector. Furthermore, because the parameter θ can be chosen locally, we may

be better off using the generalised metric instead of this decomposition in terms of the

metric, 3-form and trivector.

Once again, if we had used the timelike Buscher rules (5.21) naively without checking

the validity of the (g11, C3) frame we would have obtained a solution corresponding to a

negative mass. But the trivector saves us so that we do not get “unphysical” dual solutions.

7.2 Extreme M2-brane

We will now repeat the analysis for the extreme M2-brane [65] with the following coordinate

and gauge choice

ds2 = H−2/3
(

−dt2 + dy21 + dy22
)

+H1/3
(

dr2 + r2dΩ2
(7)

)

,

Ct12 = H−1 + n ,

H = 1 +
h

r6
.

(7.25)

7.2.1 UΩ acting on extreme M2-brane

Acing with UΩ, where Ωt12 = A, we have to study the sign of the function

f = (1 +An)2 + 2AH−1 . (7.26)

Because V 2 = 1, the dual generalised metric is of type II when f > 0 and thus expressible

in the (ḡ11, C3). If, on the other hand, f ≤ 0 we have to include the trivector and will

obtain a family of dual solutions, linked by local SO(1, 1) rotations, as before.

Case 1: (1 + An)2 + 2A > 0. Now f > 0 everywhere so we can remove the trivector

field by a gauge transformation. We then obtain the dual spacetime from equation (5.7)

ds′2 = G−2/3
(

−dT 2 + dY 2
1 + dY 2

2

)

+G1/3
(

dR2 +R2dΩ2
(7)

)

,

C ′
TY1Y2

= G−1 + const. ,

G = 1 + (1 +An)2
h

R6
.

(7.27)
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Here the coordinates T, Y1, Y2, R are chosen to make the solution asymptotically flat. This

is the same result as obtained by Wick-rotations in [37] and corresponds to a new extreme

M2-brane of different tension and charge. These are given by

M ′
2 = M2 (1 +An)2 ,

Q′ = Q (1 +An)2 ,
(7.28)

and we see that if we use the quantum U-duality group E3(Z) so that A, n ∈ Z are

integers, we obtain a dual extreme M2-brane with tension and charge that are multiples

of the old ones. Thus, mass and charge quantisation would be preserved by the discrete

quantum duality group. We also notice that there is a large degeneracy amongst the

solutions we generate: while we have two free parameters in the duality A, n, the dual

solutions depend only on the combination An. Thus, if n = 0 we always obtain the same

extreme M2-brane as the one we started with just as we found in [37].

Case 2: (1 + An)2 + 2A = 0. We still have f > 0 everywhere so that we can use

the (g11, C3) frame but we cannot make the solution asymptotically flat. This is analogous

to the case of the uncharged black M2-brane in section 7.1.1. We obtain the solution

corresponding to the “subtracted” geometry [57] which is given by

ds′2=

[

(1+An)2
h

r6

]−2/3
(

−dt2+dy21+dy22
)

+

[

(1+An)2
h

r6

]1/3
(

dr2+r2dΩ2
(7)

)

,

C ′
t12=

1− (1 +An)An2

(1 +An)2 h
r6 +

n

1 +An
.

(7.29)

Here the subtracted geometry is just the near-horizon limit of the M2-brane, AdS4 ×
S7, because there is only one harmonic function, in contrast to the uncharged case, so

subtracting the asymptotically flat region will give the near-horizon limit.

Case 3: (1 + An)2 + 2A < 0. In this case f ≤ 0 in some regions and the dual

generalised metric is of type IV. Thus we need to include the trivector and the checked and

hatted frame fields can be calculated from equations (5.11) and (5.12).

dš′2 =

(

eθ√
H

+ n
√
H sinh θ

)4/3
(

−dt2 + dy21 + dy22
)

+

(

eθ√
H

+ n
√
H sinh θ

)−2/3
(

dr2 + r2dΩ2
(7)

)

,

Č ′
t12 =

(

eθ√
H

+ n
√
H sinh θ

)(

eθ√
H

+ n
√
H cosh θ

)

,

Ω̌′t12 =
AH−1eθ + sinh θ (1 +An)

H−1eθ + n sinh θ
,

(7.30)

– 36 –



J
H
E
P
1
1
(
2
0
1
3
)
1
8
5

and

dŝ′2 =

[

A
eθ√
H

+ cosh θ
√
H (1 +An)

]−4/3
(

−dt2 + dy21 + dy22
)

+

[

A
eθ√
H

+ cosh θ
√
H (1 +An)

]2/3
(

dr2 + r2dΩ2
(7)

)

,

Ĉ ′
t12 =

H−1eθ + n cosh θ

AH−1eθ + cosh θ (1 +An)
,

Ω̂′t12 =

[

A
eθ√
H

+
√
H sinh θ (1 +An)

] [

A
eθ√
H

+
√
H cosh θ (1 +An)

]

.

(7.31)

7.2.2 Buscher duality of extreme M2-brane

If we act with a Buscher duality UB, the dual generalised metric is given in equation (5.19)

H′ = (−1) |g11|−1/2

(

A−2|g|−1g 1√
2
Cg−1g−1

1√
2
g−1g−1C A2|g|

(

1− V 2
)

g−1g−1

)

. (7.32)

Case 1 n > 0.

V 2 = (1 + nH)2 > 1 (7.33)

everywhere if n > 0. We can then describe the dual solution in the (g11, C3) frame. Using

equation (5.21) and rescaling the coordinates to make the solution asymptotically flat we

find

ds′2 = G−2/3
(

−dt2 + dy21 + dy22
)

+G1/3
(

dr2 + r2dΩ2
(7)

)

,

C ′
t12 = G−1 − 2− n ,

G = 1 +A2n2 h

R6
.

(7.34)

We see that this is once again an extreme M2-brane with different tension and charge

proportional to the initial ones

M ′
2 = A2n2M2 ,

Q′ = A2n2Q .
(7.35)

Again this means that if we use the quantum U-duality group E3(Z) and A, n ∈ Z are

integers, mass and charge remain quantised appropriately.

Case 2: n ≤ 0. This now means that we have to use a trivector field in the checked or

hatted frames. We can find the fields using equations (5.25) and (5.26) but we will omit

them.

7.3 SL(5) and generating momentum

We want to act with SL(5) on brane-like solutions but in a way that does not simply reduce

to SL(2)× SL(3). In order to achieve this, we perform a gauge transformation to have two
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non-zero components of C3. We start with the seed solution

ds2 = H−2/3
(

−dt2 + dy21 + dy22
)

+H1/3
(

dx23 + dz24 + . . .+ dz210
)

,

Ct12 = H−1 + n ,

C123 = k .

(7.36)

We first consider acting with Ωt12 so that we can take H = 1 + h
r6

and

r2 = x23 + z24 + . . .+ z210.
16

Because the duality acts along t, y1, y2 only, we can perform a x3-dependent gauge

transformation on C123 before dualising so that k = k(x3) in general. In this case, the

resultant solution is

ds′2 =
[

− (dt−Ak(x3)dx3)
2 +

−→
dy2
]

j−2/3 +
[

dx23 +
−→
dz2
]

j1/3 ,

C ′
t12 =

1 + 2An+ (1 +An)nH

j
,

C ′
123 = f(x3)

A+ (1 +An)H

j
,

(7.37)

where j = H (1 +An)2 + 2A (1 +An). By using a different coordinate frame

T = [(1 +An) (1 +An+ 2A)]−1/3

(

t−A

∫

f(x3)dx3

)

,

−→
Y = −→y [(1 +An) (1 +An+ 2A)]−1/3 ,

X3 = x3 [(1 +An) (1 +An+ 2A)]1/6 ,
−→
Z = −→z [(1 +An) (1 +An+ 2A)]1/6 ,

R = r [(1 +An) (1 +An+ 2A)]1/6 ,

(7.38)

we see that the solution corresponds to another extreme M2-brane:

ds′2 =
[

−dT 2 +
−→
dY 2

]

G−2/3 +
[

dX2
3 +

−→
dZ2

]

G1/3 ,

C ′
TY1Y2

=
1

G
+ const. ,

C ′
Y1Y2X3

= 0 ,

(7.39)

where

G = 1 + (1 +An)2
h

R6
. (7.40)

Thus, the resultant tension and charge are mutliples of the initial ones

M ′ = M (1 +An)2 ,

Q′ = Q (1 +An)2 ,
(7.41)

giving the same results as for k = 0.

16The convention of labelling the transverse coordinates by (x3, z4 . . . z10) has been chosen to facilitate

the discussion of the smeared M2-brane.
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We can also smear the brane in the x3 direction so that H = 1 + h
r5

where

r2 = z24 + . . . + z210. Now, there are four isometries t, y1, y2, x3 and we can also act with

Ω123. This will give a dual spacetime metric with off-diagonal components due to Ct12.

Using equations (6.8) we get

ds′2 =
(

gttdt
2 + gABdx

AdxB
) (

(1−AC123)
2 −A2|g4|gtt

)1/3

+
(

g33 (dx3 +ACt12dt)
2 + gαβdx

αdxβ
)

(

(1−AC123)
2 −A2|g4|gtt

)−2/3
,

(7.42)

and the transformed 3-forms are

C ′
t12 =

Ct12 (1−AC123)

(1−AC123)
2 −A2|g4|gtt

,

C ′
123 =

C123 (1−AC123) +A|g4|gtt
(1−AC123)

2 −A2|g4|gtt
.

(7.43)

Here the indices A,B still label the transverse undualisable directions but α, β label

dualisable directions other than t and x3. In the case at hand xα = (y1, y2) and

xA = (z4, . . . z10) ≡ −→z . This expression can be evaluated to be

ds′2 =
[

(1−Ak)2H +A2
]1/3

(

dz2 −H−1dt2
)

+
[

(1−Ak)2H +A2
]−2/3 (

dy2 +H
(

dx3 +AH−1(1 + nH)dt
)2
)

,

C ′
t12 =

(1 + nH) (1−Ak)

(1−Ak)2H +A2
,

C ′
123 =

−A+ kH (1−Ak)

(1−Ak)2H +A2
,

(7.44)

where y2 = y21 + y22 and z2 = z24 + . . .+ z210. By an appropriate coordinate transformation

we write the solution in the more suggestive form

ds′2 = P−2/3
{

−Q [dt− Ldx3]
2 + dy2

}

+ P 1/3
{

dz2 +Q−1dx23
}

,

F ′
ry1y2x3

= −βP−2∂rP ,

F ′
try1y2 = −αP−2∂rP .

(7.45)

Case 1: (1 − Ak)2 6= 2A2n (2 + n). In this case the functions P,Q,L are given by

P = 1 +
γ

r5
,

Q = 1 +
δ

r5
,

L =
ǫ

1 + r5

δ

, ,

(7.46)
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with the constants

α = − (1−Ak)2 −A2n

(1−Ak)
[

(1−Ak)2 −A2n (2 + n)
]1/2

,

β =
An
[

(1−Ak)2 +A2
]1/2

(1−Ak)
[

(1−Ak)2 −A2n (2 + n)
]1/2

,

γ =
h (1−Ak)2

[(1−Ak) +A2]1/6
,

δ = −
A2n2h

[

(1−Ak)2 +A2
]5/6

(1−Ak)2 −A2n (2 + n)
,

ǫ = − (1−Ak)2 −A2n

An
[

(1−Ak)2 +A2
]1/2

.

(7.47)

In fact, if one uses equations (7.45) and (7.46) as an Ansatz for a solution to Einstein’s

equations one finds that they are solved provided the constants satisfy the relations

α = m
ǫ√

ǫ2 − 1
,

β = m
1√

ǫ2 − 1
,

γ = δ
(

1− ǫ2
)

,

(7.48)

where m = ±1. Thus we find two branches of a two-parameter family of solutions where

the free parameters are δ and ǫ and the two branches correspond to positive and nega-

tive charges, m = ±1. It is trivial to check that the constants given by (7.47) indeed

satisfy (7.48). We note that although the dual solution has three independent parameters

(A, n, k), the family of solutions only depends on two parameters δ, ǫ. This means that some

combinations of (A, n, k) give the same physical solutions. This is similar to the extreme

M2-brane where when n = 0 the duality always gives the same extreme M2-brane solutions.

These solutions are delocalised along the three worldvolume directions t, y1, y2 as well

as along x3 and is asymptotically flat along the other seven transverse directions z4, . . . , z10.

The solutions carry momentum along the x3 direction and upon compactifying along x3 we

obtain a ten-dimensional type IIA solution where this Kaluza-Klein momentum gives rise
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to a Ramond-Ramond 1-form, At. The type IIA solution in the string frame is given by

ds210 = − 1√
H

dt2 +
√
Hdz2 +

√
HP−1dy2 ,

By1y2 =
β

P
,

Cty1y2 = −α

P
,

At = ǫH−1 δ

r5
,

φ =
3

4
lnH − 1

2
lnP ,

(7.49)

where P and H are given by

P = 1 +
γ

r5
,

H = 1− ǫ2δ

r5
.

(7.50)

We can calculate the tension and charge densities of the solutions by Komar integrals

T = −5fMω(6)δ

(

1

3
+

2

3
ǫ2
)

,

Q = 5fQω(6)nδǫ
√

ǫ2 − 1 ,

(7.51)

where the density is also over the x3 coordinate.

Finally, let us mention that the singularity at r = 0 is not regular. The Kretschmann

scalar giverges

RabcdR
abcd ∝ r−2/3 , (7.52)

which is exactly the same kind of singularity as for the smeared M2-brane. Thus, the

solution is singular at r = 0 but no more singular than our seed solution. However, in the

case of the smeared M2-brane, the singularity can be resolved by noticing that the solution

is the zero-mode of an array of extreme M2-branes. Including the higher mass modes, we

obtain a regular solution. Thus, the smeared M2-brane should not be taken seriously near

r = 0. We wonder whether there is a similar way to lift the singularity in the rotating case.

Case 2: (1 − Ak)2 = A2n (2 + n). Now the metric can still be put into the form (7.45)

but the functions become

P = 1 +
γ

r5
,

Q =
δ

r5
,

L = ǫ+ φr5 ,

(7.53)
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with the constants given by

γ = n (2 + n)A5/3h (1 + n)−1/3 ,

δ = φ = −1 ,

ǫ = −nA5/3h (1 + n)2/3 ,

α = − (1 + n)1/6

A5/6
√

nh (2 + n)
,

β = − A5/6
√
nh

(1 + n)1/6
√
2 + n

.

(7.54)

One can once again take equations (7.45) and (7.53) as an Ansatz to solve the Einstein

equations. The equations of motion then restrict the constants to be

φ =
m

δ
,

γ = − δ

α2
,

β =
m+ α2ǫ

α
,

(7.55)

where m = ±1. We note that δ
γ is strictly negative. If γ < 0 we can redefine r → −r and

make it positive again. Thus, we can without loss of generality take γ > 0 and δ < 0. In

particular, this means that gtt > 0 and thus the coordinate t is not timelike. By changing

coordinates, however, we find that this solution corresponds to a smeared M2-brane. We

have to take

X3 = αǫx3 − αt ,

T = −mαt+mβx3 ,
(7.56)

to get

ds2 = P−2/3
(

−dT 2 + dY 2
1 + dY 2

2

)

+ P 1/3
(

dX2
3 + dZ2

4 + . . .+ dZ2
10

)

,

CTY1Y2 = mP−1 ,

CY1Y2X3 = 0 .

(7.57)

8 Conclusions

One of our aims was to see whether the signature of the spacetime metric may change

under timelike dualities as was conjectured in [38–40]. We found that instead of a signature

change, generalised geometry forces us to include the trivector. This is not a dynamical

field as it can usually be gauged away except when there are topological obstructions.

We can view the difficulty of removing the trivector in the timelike case as a topological

obstruction as well. We have also proven that the spacetime metric has to be of signature

(−,+, . . . ,+) if the generalised metric parameterises the coset

SL(2)× SL(3)×GL(8)

SO(1, 1)× SO(2, 1)× SO(8)
, (8.1)
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which is the modular group of dualities acting along two spacelike and one timelike

direction.17

One may argue that instead of including the trivector in the dual solution where it

cannot be gauged away, such dualities should not be allowed. However, these dualities do

arise when we act along the worldvolume of M2-branes, which are fundamental objects

of 11-dimensional supergravity, and thus seem “natural”. Furthermore, the trivector is

needed if the generalised vielbein cannot be lower triangular which arises generically when

the generalised metric is Lorentzian. This is analogous to the geometric example given

in section 3.3. The aim of generalised geometry is to treat the whole 11-dimensional

supergravity geometrically, not just the spacetime metric. Thus, if we take the generalised

geometry program seriously, we should proceed in the same fashion as in geometry and

consider the solutions including a non-zero trivector seriously. Yet, another reason is that

if we dimensionally reduce to a type IIA solution and then Buscher dualise along a single

direction to obtain a type IIB solution, we find that the Kähler parameter of the SL(2)

duality group [37] gets mapped to a geometric SL(2) in the type IIB solution, corresponding

to a coordinate change [66]. Thus, the duality in type IIA, viewed from the perspective

of type IIB is geometric! Finally, the trivector is known to play a role in non-geometric

backgrounds [45, 48–52] and thus we should not be deterred by the fact it arises here as

well. Rather, this seems to be telling us that some geometric solutions will be linked to

non-geometric ones through timelike dualities.

In section 7 we studied some examples of timelike SL(2) × SL(3) dualities acting on

M2-brane solutions. We found that the resulting dual solutions belong to one of three

types. The first type, obtained for a certain range of the duality parameter Ωt12 = A, are

dual solutions which can be expressed in the (g11, C3) frame. We found that in this range

the duality acts like a Harrison transformation, charging the uncharged black M2-brane

and changing the charge of the extreme M2-brane. It is noteworthy that as in [37] we found

that these new extreme M2-branes would have quantised tensions and charges if we use the

quantum U-duality group E3(Z). The second type of dual solutions, obtained by transfor-

mations outside this range, include a trivector that cannot be gauged away. They need to

be described in the
(

ĝ11, Ĉ3, Ω̂3

)

frames where the individual bosonic fields are not uniquely

defined but rather form a family of solutions lying in the orbit of the local symmetry group

SO(1, 1). If we had extrapolated the first type of solutions to arbitrary large values of the

duality parameter A we would have obtained pathological solutions, for example solutions

with negative tension. These are the solutions we naively found in [37] but we now saw that

they are not obtained by duality because we ought to include a trivector. The third type of

solutions were obtained by dualities at the ends of the range for which the trivector can be

removed in the dual solutions. These correspond to 11-dimensional analogues of subtracted

geometries [61] obtained by an “infinite” Harrison boost in the conventional picture. We

also considered the action of SL(5) on smeared M2-branes and found new solutions which

contain momentum in the direction the brane is delocalised along. Because they are ob-

tained by dualising along three spacelike directions the trivector can always be removed.

17Actually, the factor GL(8)
SO(8)

is parameterised by the metric in the eight-dimensional transverse space.
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The solutions contain a curvature singularity at the center of the polar coordinates, at

r = 0, of the same nature as the original smeared M2-brane solution, suggesting that there

may be a stringy resolution of the singularity although this remains an open question.

Clearly, the trivector plays a fundamental role in the generalised geometry formulation

of 11-dimensional supergravity. It remains an open question of how solutions including a

trivector should be treated and how a M2-brane couples to these backgrounds. In partic-

ular, one may wonder what becomes of physical quantities such as mass and the 3-form

charge when there is a non-zero trivector although progress has recently been made in

understanding the geometry of the trivector in the context of string theory [50]. We wish

to address these questions in a future publication.

The duality groups SO(5, 5), E6, E7 and E8 can be used to act on intersecting

M2-branes, M5-branes and their intersections, and the Kaluza-Klein Monopole. We

expect to find charging transformation when acting along their worldvolumes, including

a transformation that gives a “subtracted geometry”, and to be able to create momenta

along delocalised transverse directions.
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theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

[52] G. Dibitetto, J. Fernandez-Melgarejo, D. Marques and D. Roest, Duality orbits of

non-geometric fluxes, Fortsch. Phys. 60 (2012) 1123 [arXiv:1203.6562] [INSPIRE].

[53] E. Witten, String theory dynamics in various dimensions, Nucl. Phys. B 443 (1995) 85

[hep-th/9503124] [INSPIRE].
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