
J
H
E
P
1
1
(
2
0
1
3
)
1
7
9

Published for SISSA by Springer

Received: August 20, 2013

Accepted: October 25, 2013

Published: November 25, 2013

Stability, tunneling and flux changing de Sitter

transitions in the large volume string scenario

S. de Alwis,a,b R. Gupta,b E. Hatefib and F. Quevedob,c

aUCB 390 Physics Dept., University of Colorado,

Boulder CO 80309, U.S.A.
bAbdus Salam ICTP,

Strada Costiera 11, Trieste 34014, Italy
cDAMTP, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, U.K.

E-mail: dealwiss@gmail.com, rgupta@ictp.it, ehatefi@ictp.it,

F.Quevedo@damtp.cam.ac.uk

Abstract: We study the non-perturbative stability of the Large Volume Scenario (LVS) of

IIB string compactifications, by analysing transitions mediated by the Brown-Teitelboim

(BT) brane nucleations and by Coleman De Luccia tunneling (CDL). We find that, as

long as the effective field theory description holds, the LVS AdS minima are stable despite

being non-supersymmetric. This opens the possibility of having a CFT dual. Metastable

de Sitter vacua behave differently depending on the uplifting mechanism. We find explicit

expressions for the different decay rates in terms of exponentials of the volume. Among

the transitions of dS to dS those with increasing volume and decreasing vacuum energy are

preferred, though dS decays to AdS (big-crunch sinks) have higher probability. Transitions

via the CDL mechanism to decompactification are exponentially suppressed compared to

these. The BT decays correspond to flux/D3 brane transitions mediated by the nucleation

of D5/NS5 branes. We compare our results with previous analysis for KKLT, type IIA, and

6D Einstein-Maxwell studies. In particular we find no indication for a bubble of nothing

decay.

Keywords: Flux compactifications, dS vacua in string theory, Superstring Vacua, Super-

symmetry Breaking

ArXiv ePrint: 1308.1222

c© SISSA 2013 doi:10.1007/JHEP11(2013)179

mailto:dealwiss@gmail.com
mailto:rgupta@ictp.it
mailto:ehatefi@ictp.it
mailto:F.Quevedo@damtp.cam.ac.uk
http://arxiv.org/abs/1308.1222
http://dx.doi.org/10.1007/JHEP11(2013)179


J
H
E
P
1
1
(
2
0
1
3
)
1
7
9

Contents

1 Introduction 1

2 Vacuum decay rates: general discussion 3

2.1 The Brown-Teitelboim mechanism 3

2.2 Different classes of BT transitions 5

3 Transitions and brane nucleation in string theory 7

3.1 Flux compactifications and flux/brane transitions 7

3.2 Review of the large volume scenario 9

4 Transitions between LVS minima 10

4.1 Case without uplift 10

4.2 Class I uplift term 12

4.3 Class II uplift term 15

5 BT processes and decay rates in LVS 17

6 Comparison with other scenarios 18

6.1 KKLT 18

6.2 Non-supersymmetric type IIA flux compactifications 19

6.3 Flux compactifications of 6D Einstein-Maxwell system 20

7 Conclusions 21

1 Introduction

Successful moduli stabilisation of string flux compactifications generically lead to a large

number of 4-dimensional scalar potentials, with local minima corresponding to Anti-de Sit-

ter (AdS), de Sitter (dS), or Minkowski space-time in 4-dimensions. In the case of super-

symmetric minima these vacua tend to be also non-perturbatively stable. But for non-

supersymmetric minima non-perturbative instabilities naturally arise. These may be due

to tunneling [1], brane nucleation [2] and other transitions such as to bubbles of nothing [3].

For KKLT moduli stabilisation [4] before uplifting, the minimum is supersymmetric and

stability is essentially guaranteed. Once an uplifting mechanism is added to AdS space,

giving dS space, supersymmetry is broken and the minimum becomes metastable, decaying

by tunneling to the decompactified 10-dimensional Minkowski space, but also by brane nu-

cleation to other vacua with different values of the vacuum energy obtained from varying

values of the fluxes and then, as long as effective field theory description is valid, populating

the landscape.
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In this article we consider the transitions for the large volume scenario (LVS) [5, 6] in

which Kähler moduli are stabilised yielding an exponentially large volume. Contrary to

KKLT the AdS minima are already non-supersymmetric and therefore subject to potential

instabilities. In particular there is a potential decay to a bubble of nothing. But also to

other minima with different values of the fluxes such as the KKLT minimum when it exists.

Uplifting to dS has been done in several ways and we consider the decay products in each

case. We consider both decay by the Brown-Teitelboim mechanism corresponding to brane

nucleation and by tunneling following the Coleman-De Luccia formalism.1 We summarise

our results as follows:

• We find that the (non-supersymmetric) AdS minimum in the LVS is stable as long as

the effective field theory is valid. This in particular indicates that despite the vacuum

not being supersymmetric, there is no obstacle for having a CFT dual and then a

proper non-perturbative description.

• The dS uplifted vacuum is metastable, tunneling as usual to decompactified 10-

dimensional minimum but also decaying by bubble nucleation to vacua with reducing

number of fluxes. The transitions are due to the nucleation of D5/NS5 branes similar

to but different in detail to the case studied in [12, 13].

• Even though all decay rates go like e−V
3

to leading order in the volume V expansion,

the decay rate of dS to dS is much bigger than the decompactification decay but

suppressed compared to the decay to AdS (big-crunch sinks) [14–16], all suppressed

by e−V . All decay rates are much larger than the Poincare recurrence rate.

• The dS to dS decays depend on the up-lifting terms. We consider the two general

classes of uplifts that have been proposed in the literature, based on whether or not

the uplift depends directly on the flux superpotential. We find in both cases higher

probability transitions towards increasing the volume and decreasing the cosmological

constant, although in one case with increasing and the other one with deceasing

superpotential.

• Within effective field theory we find no indication of the bubble of nothing decay [3,

17–25] if this follows the mechanism proposed in [21–25].

It is worth emphasising that our knowledge of the string landscape is very limited since

it relies on the validity and structure of an effective field theory (EFT) in 4 dimensions.2

For a given value of the integer fluxes it usually gives rise to one or a few local (A)dS

minima as well as the overall minimum corresponding to decompactified 10 dimensions.

The decay from a dS minimum to the decompactified one can be done by standard CDL

(or Hawking Moss (HM)) transition within one EFT. However the great degeneracy of

minima is generated by varying the quantised value of the fluxes which give rise to another

1Some other potential instabilities in the presence of dense matter have been studied [7, 8]. In this

paper we are considering decay via real valued instantons however complex valued instantons have also

been studied [9–11].
2See [26–28] for criticisms of the use of EFT treatment and [29] for an answer to some of the critics.
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4D scalar potential with its own collection of local minima. Transitions between vacua

with different values of the fluxes cannot be described by one single EFT. Therefore

the standard CDL and HM mechanisms cannot be used. For these flux transitions the

proper approach is through the Brown-Teitelboim (BT) process corresponding to a bubble

nucleated flux/brane transitions. Even though in practice this usually provides similar

results as the CDL mechanism in the thin wall approximation [30], we prefer to perform

the analysis directly using BT. We devote the next section to a review of the latter.

Section 3 is dedicated to a brief review of the relevant aspects of flux compactifications

in IIB string theory, presenting the relevant quantities needed for our analysis, such as the

flux superpotential and tension of the branes. In particular the BT mechanism corresponds

to flux/D3-brane transitions caused by the nucleation of D5/NS5 branes. In the last part of

this section we briefly review the large volume scenario (LVS) emphasising the similarities

and differences with the KKLT scenario (exponentially large volume, non-supersymmetric

AdS minimum and generic O(1) flux superpotential).

Section 4 describes the stability analysis for unlifted AdS minima and the two general

classes of uplift terms that have been considered in the literature. In the first class, the

uplift term is proportional to |W0|2 as in the D-term induced F-term uplift. The second

class has an uplift term independent of the flux superpotential (as occurs in the original

anti D3 brane uplift and in non-perturbative superpotential from branes at singularities).

We work with general expressions for these uplift terms in order to capture general

classes of mechanisms rather than committing to one single proposal, since this is the most

model-dependent component of the moduli stabilisation process. We then discuss how the

BT mechanism applies to the dS/AdS transitions for the LVS, establishing the main results

of this article mentioned above. We end in section 6 with a general comparison between

our scenario and others that have been discussed in the literature, such as KKLT, type

IIA and 6-dimensional Einstein-Maxwell systems, in which also a landscape of flux induced

vacua exists, but with different physical properties from the LVS.

2 Vacuum decay rates: general discussion

2.1 The Brown-Teitelboim mechanism

The Brown-Teitelboim (BT) mechanism [2] describes changing the cosmological constant

(CC) by a dynamical process of brane nucleation. In this mechanism a field initially in

a metastable state, with some vacuum energy, undergoes a transition to another vacuum

state with different vacuum energy. In the initial state there is a spontaneous nucleation of

a domain wall which expands and divides the space-time into two regions having a different

value of fluxes and CC.

The probability per unit volume per unit time for brane nucleation in a vacuum with

CC Λo for decay to a vacuum with CC Λi is given by

P ∼ e−B, B = S[instanton]− S[background] , (2.1)

where S is the Euclidean action.
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In field theory there is a similar process, described by Colemann and De Luccia

(CDL) [1], of decay of false vacuum to true vacuum. However there is a very impor-

tant difference between CDL and BT processes. The former is a field theory process which

describes tunneling between two minima of a potential and stops once the field reaches in

its true minimum. However the membrane nucleation will always be (may be) repeated for

dS (AdS) with the inside value of flux and CC now become a background configuration.

In this sense the BT process is more suitable for describing the string landscape.

The probability per unit volume per unit time for brane nucleation is given in terms

of B. In [2] one has a universal expression for B valid for any decay. The corresponding B

is given by

B = 2π2ρ̄3T + 12π2

{
1

Λi

[
σi

(
1− Λi

3
ρ̄2

)3/2

− 1

]
− 1

Λo

[
σo

(
1− Λo

3
ρ̄2

)3/2

− 1

]}
. (2.2)

Here σo/i = ±1 is determined from

σo = Sign

[
ε

3
− T 2

4

]
, σi = Sign

[
ε

3
+
T 2

4

]
, (2.3)

T is the tension of the bubble wall and ε is defined as

ε = Λo − Λi . (2.4)

It is also obvious from (2.3) that

σi ≥ σo . (2.5)

The choice of σo/i gives many possibilities of decay. As we will see later, the choices which

are relevant to us are

σo = ±1 , σi = +1 . (2.6)

Here ρ̄ is the size of the bubble and is determined by extremizing B,

ρ̄ =

{
Λo
3

+
1

T 2

[
ε

3
− T 2

4

]2}−1/2

. (2.7)

From (2.7), we get the following condition[
ε

3
− T 2

4

]2

≥ −T
2Λo
3

. (2.8)

Thus if we start with de Sitter space for which Λo > 0, then this condition is automatically

satisfied. However for Λo < 0 which is the case of AdS space, this inequality has to be

satisfied in order to have a brane nucleation.

The outcomes of the BT brane nucleation process are:

1. As long as the the initial space-time is de Sitter, there will always be a nucleation of

a brane. Brane nucleation can increase or decrease the cosmological constant (CC).

However it is very simple to see that the brane nucleation which decreases the CC

occurs with greater probability. In fact in the limit when the tension of the brane is

very small, the brane nucleation which increases the CC is highly suppressed.

2. In Anti-de Sitter space as long as (2.8) is satisfied, the brane nucleation always occurs

and it decreases the CC.
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2.2 Different classes of BT transitions

According to Brown-Teitelboim, there are 5 possible decays from de-Sitter and one from

Anti de Sitter.

Case 1: σi = +1, Λo(i) > 0 dS→ dS.

In this case we have

B = 2π2ρ̄3T + 12π2

{
1

Λi

[(
1−Λi

3
ρ̄2

)3/2

−1

]
− 1

Λo

[
σo

(
1−Λo

3
ρ̄2

)3/2

−1

]}
. (2.9)

We have two possibilities here,

(i) σo = 1.

In this case we have

B = 2π2ρ̄3T +12π2

{
1

Λi

[(
1−Λi

3
ρ̄2

)3/2

−1

]
− 1

Λo

[(
1−Λo

3
ρ̄2

)3/2

−1

]}
. (2.10)

Since σo/i = +1, (2.3) implies that ε > 0. This will describe a process by which

bubble nucleation reduces the cosmological constant. However the tension of

the brane has an upper bound coming from the condition σo = +1 which is

T 2 <
4ε

3
. (2.11)

Thus when the tension satisfies the above bound, the bubble nucleation will

reduce the cosmological constant.

(ii) σo = −1.

In this case we have

B = 2π2ρ̄3T +12π2

{
1

Λi

[(
1−Λi

3
ρ̄2

)3/2

−1

]
+

1

Λo

[(
1−Λo

3
ρ̄2

)3/2

+1

]}
. (2.12)

Since σo = −1 and σi = 1, there are two possibilities depending on the sign of

ε. In both cases, the tension has lower bound T 2 > 4|ε|
3 .

In the case when ε > 0, the bubble nucleation will reduce the cosmological

constant. In the case when ε < 0, the bubble nucleation will increase the

cosmological constant.

Case 2: σi = −1, Λo(i) > 0, dS→ dS.

In this case we have only one possibility with σo = −1.

B = 2π2ρ̄3T − 12π2

{
1

Λi

[(
1−Λi

3
ρ̄2

)3/2

+1

]
− 1

Λo

[(
1−Λo

3
ρ̄2

)3/2

+1

]}
. (2.13)

Since in this case ε < 0, the bubble nucleation will increase the cosmological constant.

In this case the tension has lower bound T 2

4 < |ε|
3 .
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Case 3: σi = +1, Λo > 0, Λi < 0, dS→ AdS/flat.

(i) σo = 1.

In this case we have

B = 2π2ρ̄3T − 12π2

{
1

|Λi|

[(
1 +
|Λi|
3
ρ̄2

)3/2

− 1

]
+

1

Λo

[(
1− Λo

3
ρ̄2

)3/2

− 1

]}
.

(2.14)

In this case bubble nucleation will decrease the cosmological constant. The

tension has lower bound T 2 < 4ε
3 .

When Λi → 0, we get

B =
32π2

T 2
(

1 + T 2
c
T 2

)3

[(
2− T 2

c

T 2

)2

+
T 2
c

T 2

]
, T 2

c =
4Λo

3
(2.15)

(ii) σo = −1.

B = 2π2ρ̄3T + 12π2

{
− 1

|Λi|

[(
1 +
|Λi|
3
ρ̄2

)3/2

− 1

]
+

1

Λo

[(
1− Λo

3
ρ̄2

)3/2

+ 1

]}
(2.16)

In this case bubble nucleation decreases the cosmological constant. The tension

has lower bound T 2 > 4ε
3 .

We consider decay from dS to flat space Λi → 0, we get

ρ̄ =
4

T
(

1 + T 2
c
T 2

) , ε =
3T 2

c

4

B =
32π2

T 2
c

(
1 + T 2

c
T 2

)2 (2.17)

Case 4: σo = σi = +1, Λo(i) < 0, AdS→ AdS.

In this case we have

B = 2π2ρ̄3T+12π2

{
− 1

|Λi|

[(
1+
|Λi|
3
ρ̄2

)3/2

−1

]
+

1

|Λo|

[(
1+
|Λo|

3
ρ̄2

)3/2

−1

]}
(2.18)

In [2] it has been shown that this is the only case when we have decay between two

AdS spaces. From (2.3) we see that in this case ε
3 >

T 2

4 . Also we have inequality (2.8)

to satisfy in order to have decay. This inequality simplifies to

T 2 + 4

√
|Λo|

3
T − 4ε

3
≤ 0

T ≤
√

4

3

(√
(|Λo|+ ε)−

√
|Λo|

)
(2.19)

For decay from flat space (Λo = 0) to AdS space, we get

B = 2π2ρ̄3T + 6π2ρ̄2 − 12π2

|Λi|

[(
1 +
|Λi|
3
ρ̄2

)3/2

− 1

]
(2.20)
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Putting

ρ̄ =
T∣∣T 2

4 −
ε
3

∣∣ (2.21)

We get (note ε = −|Λi| here)

B =
27π2T 4

2ε3
1

[1− 3T 2/4ε]2
. (2.22)

3 Transitions and brane nucleation in string theory

3.1 Flux compactifications and flux/brane transitions

The minima that we consider are in large volume regions of moduli space so that we can

effectively ignore warping. Following [31] we consider the following metric ansatz:

ds2 = eφ/2
[
e−6u(x)gµν(x)dxµdxν + e2u(x)gmndy

mdyn
]
, (3.1)

where ds2 is the string frame metric, φ is the (10 D) dilaton, gµν is the 4D Einstein frame

metric, and gmn is a fiducial metric on the Calabi-Yau Orientifold (CYO) X. Here eu is

the radius of the internal space and V ∼ e6u is the volume of the internal space. The string

scale (tension) in string frame is M2
s = 1/2πα′ and when the moduli are stabilised (at a

minimum denoted by |0),
M2
s

M2
P

=
1

2
eφ/2e−6u|0 . (3.2)

As discussed in [31] the superpotential can be expanded in terms of integers that

characterize the NSNS (RR) fluxes ni (mi) threading the 3 cycles (A and B) of the CYO.

We introduce homogeneous coordinates on the complex structure moduli in the usual way

as integrals of the holomorphic three form Ω over these cycles and choose z0 = 1 (fixing

the scale of Ω). This gives

Wflux =

∫
X
G3 ∧ Ω =

h12∑
i=0

[
(niA − iSmi

A)Gi(z)− (nBi − iSmB
i )zi

]
≡ A(n, , z) +B(m, z)S . (3.3)

Here S is the axio-dilaton field with ReS = e−φ in type IIB case.3

The effect of elementary flux changing transitions with all fluxes except for the one indicated

unchanged are then given as follows:4

nBi → nBi ± 1 ∆W = ∓zi,
mB
i → mB

i ± 1 ∆W = ±iSzi,
niA → niA ± 1 ∆W = ±Gi ,
niA → niA ± 1 ∆W = ∓iSGi .

3For more details in the type IIB case see section 3.2.
4The discussion in this subsection is based on [32]. For an earlier work discussing the role of the same

configuration in relating vacua of different numbers of supersymmetry see [33].
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Any elementary transition in the geometric weak coupling regime will change W by O(1).

Following the logic of LVS compactifications [5, 6],5 to leading order in the inverse volume

expansion we may neglect the non-perturbative (NP) term in solving DSW = 0, DiW = 0,

i = 1, . . . , h12. Solving the first gives

S̄ = S̄0 ≡
A(n, z)

B(m, z)
(3.4)

Plugging into the second set of equations, gives

h12∑
i=1

[(
niAGij(z)− nBj

)
+ i

Ā(n, z̄)

B̄(m, z̄)

(
mB
j −mi

AGij(z)
)]

+KjW = 0 (3.5)

These equations (and their complex conjugates) are a set of 2h12 + 2 equations for 2h12 + 2

real variables Re z, Im z, ReS, ImS. A solution is not guaranteed for arbitrary sets of flux

integers — we need to scan over integer sets to get z = z0(n,m) and then S = S(n,m).

In other words, only some sets of elementary transitions will lead to potentials with the

z’s (and S) stabilized supersymmetrically in the region consistent with an effective field

theory analysis.

Note that in type IIB string theory the total number of fluxes is 4h21 + 4. So after

fixing the zi’s and S there are 2h21 + 2 fluxes left that can generate a discretuum that can

be used to find a small CC. Hence there are transitions in this theory that just change the

CC without having any effect on the moduli or the dilaton.

In order to change the flux through the three cycles and create a new 4D vacuum with

a different CC we need to nucleate a five-brane. This is the only type of BPS brane in

IIB string compactifications that can accomplish this since it needs to form an S2 in the

non-compact 3D space — thus dividing it into two domains with different physics — and

wrap a three cycle in the Calabi-Yau orientifold. The brane can be either a NSNS or a

D-brane — as long as the transitions we are discussing do not change the string coupling

drastically from gs . 1, the probability of nucleating either should be of similar magnitude.

For concreteness we will discuss the D5 brane case.

In the string frame (in units where 2π
√
α′ = 1) the tension of a D5 brane is given by

T s5 = 2πe−φ (3.6)

So the action of the D5 brane in the probe limit is

SD5 = 2π

∫
d3xd3ye−φ

√
G (3.7)

Here G is the string frame metric related to Einstein metric by GMN = eφ/2gMN and φ is

the dilaton.

The D5 action in Einstein frame is

SD5 = 2π

∫
d3xd3yeφ/2

√
ge−6u

= 2π

∫
Σ
d3y
√
g′
∫
d3xeφ/2

√
g(3)e−6u. (3.8)

5See next section for a short review.
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Here Σ is a 3-cycle which the brane is wrapping and g′mn is the induced metric along three

cycle.

Thus the effective tension of the bubble wall is given by

Twall = 2π

∫
Σ
d3y
√
g′eφ/2e−6u (3.9)

The D5-brane tension, which wraps riA, s
B
i times the ith A and B cycles respectively, is

Twall = 2π

∣∣∣∣∑
i

(riAGi + sBi z
i)

∣∣∣∣eφ/2e−6u (3.10)

Since V ∼ e6u, the tension of the wall goes like Twall ∼ 1/V.

If such a brane is nucleated the superpotential will change by (assuming for simplicity that

the change in the complex structure moduli can be ignored),

∆W =
∑
i

(riAGi + sBi z
i) . (3.11)

Similarly the nucleation of an NS brane — whose action will be given by the same formula

as above but with the factor eφ/2 replaced by e−φ/2 will cause a shift in the superpotential,

∆W =
∑
i

iS(riAGi + sBi z
i) . (3.12)

Such transitions however have to be accompanied by changes in the D3 brane charge

so as to be consistent with the tadpole cancellation condition

ND3 +
1

2κ2
10T3

∫
M6

H3 ∧ F3 =
χ

24
, (3.13)

where ND3 is the net D3 charge and χ is the Euler number of the 4-fold of the associated

F-theory.

3.2 Review of the large volume scenario

Here we will briefly review the relevant aspects of the large volume scenario. We follow the

notation and discussion of [5, 6]. We also set MP ≡ (8πGN )−1/2 = 2.4× 1018 GeV = 1.

The superpotential, Kähler potential and gauge kinetic function for the theory under

discussion are,

W = Wmod(Φ) + µ(Φ)H1H2 +
1

6
Yαβγ(Φ)CαCβCγ + . . . , (3.14)

K = Kmod(Φ, Φ̄) + K̃αβ̄(Φ, Φ̄)CαC β̄ + [Z(Φ, Φ̄)H1H2 + h.c.] + . . . (3.15)

fa = fa(Φ) . (3.16)

Here Φ = {ΦA} and Cα are chiral superfields (including the two Higgs doublets H1,2) that

correspond to the moduli and MSSM/GUT fields respectively. Also

Kmod = −2 ln

(
V +

ξ

2

(
(S + S̄)

2

)3/2
)
− ln

(
i

∫
Ω ∧ Ω̄(z, z̄)

)
− ln(S + S̄) , (3.17)

Wmod =

∫
G3 ∧ Ω +

∑
i

Aie
−arT r . (3.18)
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Here V is the volume (in Einstein frame) of the internal manifold and the ξ =

−(χζ(3)/2(2π)3) term is a correction term that is higher order in the α′ expansion. For

typical Calabi-Yau manifolds ξ ∼ O(1). S is the axio-dilaton, z = {zi} represents the set

of (i = 1, . . . , h21) complex structure moduli and T r (r = 1, . . . , h11) are the (complexified)

Kähler moduli. The second term in (3.18) is a sum of non-perturbative terms with the

parameters fixed by the condensing gauge groups (or string instantons). For simplicity

below we will just consider one such term.The Calabi-Yau manifolds that we consider are

of the ‘Swiss cheese’ type. In the simplest such manifold consistent with our requirements

the volume may be written as

V = kbτ
3/2
b − ksτ3/2

s . (3.19)

In the above the tau’s are Kähler moduli which control the volume of the four cycles with

τb effectively determining the overall size of the CY. The k’s are intersection numbers of

two-cycles. While in explicit calculations in the the rest of the paper, we will use (3.19)

for the sake of simplicity, it should be clear from the discussion that the results would hold

even in a more general CY manifold which would allow a LVS compactification.

The potential for the moduli is (assuming that the minimum would be at large V and

expanding in inverse powers of it)

V = VF + VD . (3.20)

VF =
4

3
g(a|A|)2

√
τse
−2aτs

V
− 2ga|AW0|

τse
−aτs

V2
+

3

8

ξ|W0|2

g1/2V3
+ . . . , (3.21)

VD =
f

2
D2, D = f−1kiKi . (3.22)

Note that extremizing with respect to τs gives us an exponentially large volume and the

three displayed terms in VF are all of order V−3. This would mean that at the classical

(negative) minimum found in [5, 6], the contribution to the F-term potential from the

dilaton and complex-structure moduli6 are zero at leading order in the volume expansion,

since they are O(1/V2). Also VD = 0 to this order in the large volume expansion, since it

is positive definite and of order 1/V2. The resulting minimum is AdS (with broken SUSY)

and in the next section we will first discuss transitions amongst such minima. Then we

discuss the possible uplift to dS minima and their transitions. Without loss of generality,

we will set the phases of A and W0 equal to zero. From now on for convenience we will use

A for |A| and W0 for |W0|.

4 Transitions between LVS minima

4.1 Case without uplift

In this case the LVS potential (upto higher order terms in the volume expansion) is given by

V =
4

3
g(aA)2

√
τse
−2aτs

V
− 2gaAWo

τse
−aτs

V2
+

3

8

ξW 2
0√

gV3
. (4.1)

Here V is the volume of CY and a = 2π
N , for SU(N).

6At this point we ignore uplifting issues.
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Minimising with respect to τs and V, we get respectively the following equations

e−aτs = 3
W0
√
τs

aAV
aτs − 1

4aτs − 1
=

W0

aAV
f(τs) , (4.2)

4

3

√
τsf

2(τs)− 4τsf(τs) +
9

8

ξ√
g3

= 0 . (4.3)

Here

f(τs) = 3
aτs − 1

4aτs − 1

√
τs . (4.4)

The value of the potential at the minima is

V0 = 2
gW 2

0

V3
0

[
4

9

√
τsf

2(τs)−
1

3
τsf(τs)

]
=

Ψ(g)

W0
, (4.5)

where in the second step we have again used (4.2) and (4.3).

Note that W0 depends both explicitly and implicitly on the fluxes. The nucleation of

a five brane will cause a change given by (3.11) or (3.12). While this formula does not

reflect the change due to the implicit dependence on the (stabilized values of) the complex

structure moduli and the string coupling, these should be secondary effects. Below we will

thus consider the nucleation of branes which will effectively change the flux superpotential

at the minimum; W0 →W0 + ∆W0 where the change is expected to be O(1).

Thus from (4.5) we have through brane nucleation,

∆V0 = −V0
∆W0

W0 + ∆W0
. (4.6)

Now from the Brown-Teitelboim analysis we have an upper bound on the tension of the

brane,

Tub =
|∆V0|√

3V0
=

√
V0

3

∆W0

W0 + ∆W0
=

√
g

3

|f̃(τs(g))|
V3/2

0

|W0∆W0|
|W0 + ∆W0|

. (4.7)

Here f̃ ∼ O(1) is the square root of the expression in square brackets in (4.5).

From (3.10) the tension of the brane can be written as:

T =
2π
√
g∆W0

V0
. (4.8)

Therefore Tub > T implies: √
V0 <

|f̃ |√
3

∣∣∣∣ W0

W0 + ∆W0

∣∣∣∣ . (4.9)

Since the right hand side is an O(1) quantity this inequality is not satisfied in the LVS.

Another way to read this is that this inequality would imply V0 . 1 in string units —

clearly vitiating the entire effective field theory analysis. Thus any brane nucleation take

us outside our framework. We then conclude that as long as the EFT treatment is valid

AdS vacua are stable despite being non-supersymmetric. This is the main result of this

section.

Next we will consider uplift of AdS minima to dS minima by adding a suitable uplift

term to the potential. We will classify these uplift terms as class I and class II. Uplift

terms of class I depend explicitly on W0 whereas the uplift terms of class II do not explicitly

depend on W0.
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4.2 Class I uplift term

We first consider a general uplift of the form

Vuplift =
gW 2

0 d

Vα
. (4.10)

Here d is positive and independent of τs and 1 < α < 3 in order to be able to ‘uplift’ the

minimum of the potential to de Sitter space. For instance [34, 35] combined D-terms and

matter F-terms can induce a term of the form:

Vuplift =
gpW 2

0

V8/3
, (4.11)

where p is an O(1) number related to the U(1) charge of a matter field living on the D3

brane.

We have similar uplift term from the combination of D-terms, F-terms and string loop

effect,

Vuplift =
g2/5µ̂W 2

0

V14/5
(4.12)

Here µ̂ is a complex structure dependent number which is generated by string loop effects.

For most of the discussion below we will treat α and d arbitrary. Thus the minimisation

equation with respect to τs remains unchanged, but minimisation with respect to V gives

− 8

3
f2(τs)

√
τs + 8f(τs)τs −

9

4

ξ√
g3
− 2α

d

Vα−3
= 0 . (4.13)

The potential at the minimum is

V0 = 2
gW 2

0

V3
0

Φ(Ŵ0, g) , (4.14)

with Φ given by

Φ =
2

3
(1− α−1)f2(τs)

√
τs − (1− 2α−1)f(τs)τs +

3

16
(1− 3α−1)

ξ√
g3
. (4.15)

In figure 1 we plot the potential against logarithm of volume, for α = 14
5 and the choice of

parameters mentioned below the figure, for τs determined by eq. (4.2) and (4.13).

One can see that the value of Φ is bounded from below and is given as

Φ > −6τ3/2
s

(aτs − 1)2

(4aτs − 1)2
. (4.16)

We would like to understand the decay in the landscape of de Sitter vacua. We assume

for simplicity that the the string coupling does not change under change of fluxes. As we

have argued earlier there are many flux changes that keep it fixed and in any cases the

string coupling g cannot change by more than a number . O(1) without violating the

effective field theory criteria. Similarly a brane nucleation that changes the z’s will have

– 12 –



J
H
E
P
1
1
(
2
0
1
3
)
1
7
9
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1. ´ 10-39

Log@volD

V
_0

Figure 1. For the uplift with α = 14
5 , we find the de Sitter vacuum with the set of parameter

g = 0.1, W0 = 0.1, a = 1, A = 1, ξ = 0.1, µ̂ = 0.1. The minima occurs at (τs = 29.75, lnV = 28.81)

and the potential at the minima is V0 = 1.83× 10−40.

an effect on the potential minimum only to the extent that it changes Wo. So effectively we

only need to investigate the changes of the potential due to changes in the superpotential.

Let us start with a de Sitter vacuum. Let (τs0,V0) be a de Sitter minimum and the

corresponding magnitude of the flux super potential be W0. If we change the flux, so that

W0 →W0 + ∆W0, the location of the minimum and the value of potential at the minimum

will also change. Let the new location of the minimum be (τs0 + ∆τ,V0 + ∆V).

From (4.2) the change of flux gives the following relation:

− a∆τ = ln

∣∣∣∣W0 + ∆W0

W0

∣∣∣∣+
∆f

f
− ∆V
V0

. (4.17)

The change in f(τs) can be expressed in terms of ∆τ as

∆f

f
=

∆τ

2τs(aτs − 1)(4aτs − 1)
(aτs + 4a2τ2

s + 1) . (4.18)

Using (4.13), we get the following relation among variations

αd(3− α)
∆V
V0

α−2 =
18a
√
τ3
s0∆τ

(4aτs0 − 1)3
J(τs0) . (4.19)

Here J(τs) is

J(τs) = (12a2τ2
s − 11aτs + 5) . (4.20)

From (4.19), we see that the coefficient of ∆V is positive if α < 3. Since J is positive,

it follows that the variations ∆V and ∆τ have the same sign. Thus if the change of flux

increases τs0, then the volume also increases and vice versa.

We substitute (4.18) and (4.19) in (4.17) to get the following relation

ln

∣∣∣∣W0 + ∆W0

W0

∣∣∣∣ = − ∆τV0
α−3

2τs0αd(4aτs0 − 1)(aτs0 − 1)
Hα(τs0) . (4.21)
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Figure 2. H for g = 0.1, α = 14
5 and a = 1.

Here Hα(τs) is given by

Hα(τs) =

(
4τsf −

4

3
f2√τs −

9

8

ξ√
g3

)
(3aτs + 1− 6a2τ2

s + 8a3τ3
s )

−36
aτ2
s
√
τs(aτs − 1)

(4aτs − 1)2(3− α)
(12a2τ2

s − 11aτs + 5) . (4.22)

For α < 3, in the large volume and aτs � 1 limit, the expression for (3 − α)Hα can be

approximated as

(3− α)Hα ∼
9
√
τ3
s

4
(aτs)

[
8(3− α)a2τ2

s − (30− 6α)aτs + 20− 3α
]
. (4.23)

Thus we see that for aτs � 1, (3 − α)Hα is a positive and monotonically increasing

function. To see its behaviour for lower value of τs, we have ploted Hα against τs in figure 2.

Thus we see from (4.21) that since Hα is positive for large τs, with the decrease of W0, τs
and hence the volume V increases.

We can also check how the minimum of the potential changes as we change the flux. To

do this we write the potential at the minimum as

V0 =
2g

W0
(aA)3

(
e−aτs0

f(τs0)

)3

Φ . (4.24)

Here we have used (4.2) to replace V interms of τs and W0.

Thus the change in minima due to change in flux can be given as

ln

(
V0 + ∆V0

V0

)
= − ln

∣∣∣∣W0 + ∆W0

W0

∣∣∣∣− 3a∆τ − 3
∆f

f
+

∆Φ

Φ
. (4.25)

Here Φ is given in (4.15). Using (4.18), we can calculate the variation in Φ,

∆Φ =
f(τs)∆τ

2τs(aτs − 1)(4aτs − 1)
L(τs, α) , (4.26)
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Figure 3. Q for g = 0.1, α = 14
5 and a = 1.

where

L(τs, α) = 2

(
1− 1

α

)
√
τsf(τs)(4a

2τ2
s − aτs+1)− 3τs

(
1− 2

α

)
[(4a2τ2

s +1)− 3aτs] . (4.27)

Substituting (4.18), (4.21) and (4.26) in (4.25), we get following relation

ln

(
V0 + ∆V0

V0

)
=

∆τsVα−3

2αdτs(aτs − 1)(4aτs − 1)
Q(τs0, α) , (4.28)

with

Q(τs, α) = −F (τs) +
f(τs)L(τs, α)

Φ
B(τs) (4.29)

and B(τs) and F (τs) defined as

B(τs) = 4τsf(τs)−
4

3
f2(τs)

√
τs −

9

8

ξ√
g3
, (4.30)

F (τs) = 2B(τs)(3aτs + 1− 6a2τ2
s + 8a3τ3

s ) + 36aτ2
s

√
τs

(aτs − 1)J(τs)

(4aτs − 1)2(3− α)
. (4.31)

In order to see the behaviour of Q we will also plot Q as a function of τs in figure 3.

Thus we see that for large τs, Q is negative. This together with (4.28) and (4.19) imply

that as τs and V increase, the CC decreases.

In summary we conclude that a decrease in the magnitude of W0 produces vacua with

smaller vacuum energy and larger volume and τs.

4.3 Class II uplift term

In this section we will look at the uplift of the form

Vuplift =
K

Vα
, 1 < α < 3 . (4.32)
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Here K is independent of flux. For example the uplift generated by non perturbative effect

has the form [36]

Vuplift = gh2 e
−2b/g

V
. (4.33)

Here b and h are independent of τs.

Thus apart from (4.2), we get the following minimisation equation

α
K

gW 2
0 Vα−3

= 4τsf(τs)−
4

3
f(τs)

2√τs −
9

8

ξ√
g3
. (4.34)

Using (4.2), we can eliminate the volume dependence in the above equation and write it

in the form
αK

gWα−1
0

(
feaτ

aA

)3−α
= 4τf − 4

3
f2√τ − 9

8

ξ√
g3
. (4.35)

The potential at the minimum again given by (4.14) with Φ given by (4.15).

In particular in the case of uplift with α = 1, the above minimisation equation simplifies to

Ke2aτsf(τs)
2

(aA)2
= 4τsf(τs)−

4

3
f(τs)

2√τs −
9

8

ξ√
g3
. (4.36)

Thus in this case if we change the flux keeping g fixed, then τs is fixed for all such changes

of flux. Since the sign of the potential at the minima depends on Φ(τs, g), if we start with

de Sitter, it will remain de Sitter as τs does not change with flux.

Also the potential at the minima is given by

V0 =
2g

W0

(
e−aτs0aA

f(τs0)

)3

Φ(τs0, g) . (4.37)

Thus we see that in the case for α = 1, the changes of flux which increases W0, will reduce

the CC.

Now let us consider cases for general α. Taking the variation of the relation (4.35)7

(α− 1) ln

∣∣∣∣W0 + ∆W0

W0

∣∣∣∣ = (3− α)
∆f

f
+ a(3− α)∆τ − ∆B

B
. (4.38)

B is positive because of the relation (4.36). Using (4.18), we get the following relation

(α− 1) ln

∣∣∣∣W0 + ∆W0

W0

∣∣∣∣ =
(3− α)Hα

2τs(aτs − 1)(4aτs − 1)

(
gW 2

0 Vα−3

αK

)
∆τ . (4.39)

Here (3 − α)Hα is given in (4.22) and is positive for α < 3 and large aτs. Thus for

1 < α < 3, an increase in W0 increases τs. As a special case we see that for α = 1,

∆τ = 0. Comparing (4.21) and (4.39), we see that apart from some positive factors, the

major difference is the sign. Thus in the case of uplift of class II, we expect the opposite

behaviour as a function of W0 for τs, V and V0.

7Here we again assume that g does not change so much. However in order to see the effect of the

variation g on τ , we can use non-perturbative uplift where τ dependence on flux through g. In this case we

get ∆τH1
τ(aτ−1)(4aτ−1)

= ∆g
g2

[
27ξ

16
√
g
− 2bB

]
which in large aτ limit reduces to ∆τ = − b

a
∆g
g2

.
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We also have relation

(3− α)(α− 1)
∆V
V

=
1

B(4aτs − 1)

[
18a(α− 1)

√
τ3
s J

(4aτs − 1)2
+

(3− α)Hα

τs(aτs − 1)

]
∆τ (4.40)

For 1 < α < 3, the r.h.s. is positive. Hence V changes in the same manner as τs with the

change of W0.

We also calculate the change in minimum of the potential

(α− 1) ln

∣∣∣∣1 +
∆V

V0

∣∣∣∣ =
gW 2

0 V(α−3)∆τs
2ατsK(aτs − 1)(4aτs − 1)

[(α− 1)Q− 2Hα] . (4.41)

Now for α > 1 and large aτs, [(α− 1)Q− 2Hα] is negative. This implies that V0 decreases

as τs and V increase.

In summary we conclude that in this case, in contrast to the previous case, an increase in

the value of W0 implies smaller vacuum energy with larger volume and τs.

5 BT processes and decay rates in LVS

In LVS we have Λ ∼ 1/V3 and T ∼ 1/V. Thus Λ/T 2 ∼ 1/V is a small expansion parameter

for V � 1. We also note that the only allowed values of σo/i (see (2.3)) are σ0 = −1,

σi = +1. So for B we have the expression given in (2.12). Expanding this we get,

B =
24π2

Λo
+ 2π2ρ̄3T − 12π2ρ̄2 +

π2

2
(Λi + Λo)ρ̄

4 +O(1) . (5.1)

Note that the first term is O(V3) the second and third are both of O(V2) (since ρ̄ ∼ 1/T ∼ V
— see below) while the fourth term is O(V). Similarly expanding the bubble radius (2.7)

we get

ρ̄ =
4

T

{
1− 4

3T 2
(Λi + Λ0) +O

(
1

V2

)}
. (5.2)

Note that ρ̄T = 4 +O(1/V). Using this expansion in (5.1) we have,

B =
24π2

Λ0
− 64π2

T 2
+

128π2

T 4
(Λo + Λi) +O(1) . (5.3)

First note that the decay probability P ∼ e−B is suppressed as ∼ e−V
3

to leading order.

Nevertheless the decay time scale is parametrically smaller than the Poincare recurrence

time tr = e24π2/Λr ;

tdecay ∼
1

Pdecay
∼ e−

64π2

T2 tr � tr .

Let us now compute the ratio of the decay proabilities to two different vacua with CC’s

Λ
(1)
i ,Λ

(2)
i . We find (with Pr ≡ exp{−B(Λo → Λ

(r)
i )})

P1

P2
= exp

[
− 128π2

T 4
(Λ

(1)
i − Λ

(2)
i )

]
. (5.4)

This formula implies in particular that up trasitions are suppressed compared to down

transitions, for taking Λ
(1)
i > Λo > Λ

(2)
i we have P1/P2 ∼ e−V . Similarly the decays from
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dS to dS (with a lower CC) is suppressed compared to decays from dS to AdS since in

that case (with Λ
(1)
i > 0 and Λ

(2)
i = −|Λ(2)

i | so that the exponent is again negative and

P1/P2 ∼ e−V .

Let us now estimate the decay to decompactification by tunneling through the barrier

in the uplifted potential. Note that this does not involve any change in flux — it is simply

a transition in the same point in the flux landscape and is thus described by the CDL

analysis. In this case also the effective B ∼ V3 and gives a similarly suppressed rate as the

BT process for a flux changing decay. This fits with the general statements of [37].

However in this case CDL tunneling for decompactification is suppressed compared to decay

via BT. One can see this as follows.

In CDL analysis the tension of the bubble wall is given as

TCDL
wall =

∫ ∞
V

dV
√

2V ∼ 1√
V
> T 5 brane

wall . (5.5)

Thus the ratio of decay probabilities to decompactification and is given by

P (CDL)

P (dS)
∼ e−64π2V2

. (5.6)

Thus the decay via CDL tunneling (to decompactification) is suppressed compared to decay

to another de Sitter via BT.

6 Comparison with other scenarios

In this section we will compare our results with the results that have been reported for other

related scenarios of flux compactifications namely: the type IIB KKLT scenario of moduli

stabilisation, non-supersymmetric type IIA flux compactifications and (non-stringy) flux

compactifications of the simple 6D Einstein-Maxwell theory.8

6.1 KKLT

As mentioned in the introduction, the KKLT scenario was the first one to be considered

in the context of the landscape. Even though the flux compactification part is the same as

that considered in LVS (following GKP [31] to stabilise the dilaton and complex structure

moduli from fluxes), the fixing of the Kähler moduli has some distinguishing features that

makes this scenario very different from the LVS.

8Note that in the presence of D̄3 branes in a more general background, for some choice of fluxes, one can

still get metastable AdS instead of dS. In this case one might wonder whether the uplifted AdS can decay

via the KPV process [12, 13]. In the KPV process, the D̄3 branes expand into a fuzzy NS5 brane which

has topology of R4 × S2. For a sufficiently small number of D̄3 branes, KPV showed that this NS5 brane

settles down in a metastable minimum. However this metastable minimum decays to the SUSY vacuum

via the nucleation of another NS5 brane as bubble wall. However we have already shown that in AdS space

(in the LVS) there is no nucleation of a NS5 brane and hence this decay will not happen in the effective

field theory description.
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• In KKLT the flux superpotential has to be tuned to be very small in order that it

becomes of the same order as the hierarchically small non-perturbative superpoten-

tial. This usually requires W0 ∼ 10−10 in string units. This is very different from

LVS in which the superpotential is . O(1). The small parameter in LVS is not W0

but (effectively) the inverse of the volume, which is determined dynamically to be

exponentially large in the inverse string coupling at the AdS minimum before up-

lifting. As seen in the previous section, the transitions naturally give both the flux

superpotential W0 and its variation after the transition ∆W0 to be of order 1. Tuning

W0 and W0 + ∆W0 makes these transitions very unlikely, while in LVS generic values

of W0 [38–40] are used, making them comparatively less suppressed.

• In KKLT the original AdS minimum is supersymmetric and therefore is automati-

cally stable. In LVS the AdS minimum before uplift is already non-supersymmetric.

Therefore we needed to study carefully the potential instability of the system. We

found that as long as the EFT is trustable the decay does not occur.

• The situation after uplift is similar in both cases, as long as the uplift mechanism ap-

plies also to KKLT.9 In particular the CDL induced decay to the decompactification

vacuum is similar in both cases. But as mentioned before the difference in magnitude

of the flux superpotential makes the transition between flux vacua very different in

both cases. In particular in LVS the volume increases in the transition from dS to

dS whereas in KKLT the volume remains similar.

6.2 Non-supersymmetric type IIA flux compactifications

In [41] the non-perturbative decays of non-supersymmetric AdS minima in type IIA massive

theory compactified on an orientifold of the T 6/(Z3 × Z3) orbifold were analysed. In this

model there are 3 Kähler moduli, corresponding to the 3 T 2’s, nine blow up modes (coming

from blowing up 9 singular points), the dialton-axion, and no complex structure moduli.

The moduli are fixed by turning on 4-form fluxes through 4-cycles in T 6 and blow up cycles.

In this case the decay is mediated by the nucleation of the domain wall which carries D4

brane charge. In the thin wall approximation the domain wall can be approximated as a

D4 brane which wraps two cycles in the internal space and extends along 3 non-compact

direction in AdS4. The tension of the domain wall goes like 1
V13/6 .

The potential at the minima goes like 1
V3 and the gravitino mass goes like 1√

V in the

large volume limit. Unlike in the IIB case the dilation eφ in IIA case goes like 1√
V . In

their analysis [41] found that the vacua, which are related to susy vacua by reversing the

sign of all fluxes, are stable within the context of the effective field theory analysis. This

is similar to our finding for IIB LVS vacua before uplifting. However other vacua, which

are perturbatively stable, are unstable and decay via nucleation of D4 brane. The tadpole

cancellation condition does not put any constraint on the 4-form charges and hence they do

not play any role in their analysis. However in our case the tadpole cancellation condition

9Notice that since vanishing F-terms imply vanishing D-terms the AdS minimum is supersymmetric,

D-term uplift does not work in KKLT but it can work in LVS.
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involves relation between net D3 brane charge and 3-form charge and the nucleation of

domain wall changes the 3-form flux. Finally we remark that uplifted vacua in the type

IIA case have not been discussed in [41] or elsewhere as far as we know.

6.3 Flux compactifications of 6D Einstein-Maxwell system

In references [17–25] a detailed study of the transitions in the simple 6D Einstein Maxwell

system compactified on a 2-sphere with non-trivial magnetic fluxes was made. The ad-

vantage of this system over string models is that it is a very simple system in which the

metric is known, and shares some of the properties of more complicated string models.

The structure of the vacua is determined by three contributions to the scalar potential:

the contribution from curvature of the compact two-sphere, the positive contribution from

the flux of the E&M field and the original positive 6D cosmological constant. Depending

on the value of the fluxes the minimum is dS, Minkowski or AdS. For large fluxes the

vacuum is dS, reducing the value of the quantised fluxes reduces the value of the vacuum

energy until it moves to Minkowski, then AdS and finally in the absence of fluxes the

potential becomes unbounded from below. This last stage is interpreted as a bubble of

nothing transition by [21–25]. Reducing the value of the fluxes not only reduces the value

of the vacuum energy but also the value of the radius of the extra dimensions. However

the limit towards zero flux gives very small values of the extra dimensions for which the

effective field theory is not valid.

In LVS the scalar potential also has at least three terms but of different origin, since

there are neither curvature terms nor a higher dimensional cosmological constant. The

terms include the positive term coming from the nonperturbative superpotential Wnp that

by itself gives a runaway to infinite volume, the negative term coming from the combined

non-perturbative and flux superpotentials, the α′ corrections to the Kähler potential which

provides a positive term proportional to the square of the flux superpotential W0 � Wnp,

and finally a fourth positive term which provides the dS uplift. Note that even without the

uplift term the scalar potential goes to zero from above for large volume. Using the flux

superpotential W0 as a parameter (instead of the fluxes themselves) we can easily see that

for a a relatively large |W0| the volume is large V ∼W0e
a/g while the vacuum energy goes

like |W0|2/V3.

Reducing |W0| (keeping g fixed) the vacuum energy gets smaller as does the volume,

in the AdS regime, but since V0 ∼ |W0|2/V3 ∼ 1/|W0| the magnitude of the vacuum energy

increases linearly with the reduction of W0. However for a critical value of |W0|, when

it gets of the order of the non-perturbative superpotential W0 ∼ Wnp the volume has no

significant dependence on W0 and then the vacuum energy becomes of order V0 ∼ |W0|2 as

in KKLT.

Therefore instead of continuing to become a deeper AdS as in the 6D case, V0 reverses

direction and grows to less negative values [42]. For comparison see figure 4. In the limit

of zero fluxes |W0| → 0 the potential shows the runaway behaviour of the pure (positive)

non-perturbative effect. Therefore, contrary to the 6D case (in which zero fluxes leads to

unbounded from below potential), there is no indication of a bubble of nothing decay. Of

course once the volume at the minimum reaches values of order the string scale, the effective
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Figure 4. Change of the vacuum energy and value of the volume (horizontal axis) at the minimum

as fluxes change for the LVS (left) and the 6D Einstein-Maxwell system (right). Notice that in both

cases the vacuum energy and volume are initially reduced but even though in the 6D case they

continue decreasing until reaching a potential unbounded from below (bubble of nothing) in the

absence of fluxes, in the LVS case the process is reversed and the vacuum energy gets bigger after

a critical value leading to the runaway behaviour in the absence of fluxes. Warning: the arrows do

not mean transitions, only changes when the superpotential is reduced.

field theory description loses meaning and a definite statement regarding the behaviour of

the system close to vanishing size of the extra dimensions, as happens in the bubble of

nothing, is beyond our theoretical framework.

7 Conclusions

In this article we have discussed the non-perturbative stability of the large volume scenario.

This is in general relevant for discussions related to the landscape of IIB flux compactifica-

tions since this is the scenario applicable for typical values of the flux superpotential. We

have arrived at a few general conclusions. In particular we established that the unlifted

AdS vacuum is stable (within the effective field theory context) even though it corresponds

to spontaneously broken supersymmetry. This opens the possibility that these vacua may

have CFT duals (since an instability could be seen as departure from conformality). It

would be interesting to identify and characterise these potential duals.

The behaviour of the dS minima is more model dependent depending crucially on the

uplifting mechanism. In the more studied KKLT case the uplifting by anti D3 branes in a

warped region has been the standard for studies of the landscape and its population. The

LVS allows for different uplifting mechanisms and we classified them into two general classes

that capture the main proposed scenarios. In all cases we found that either increasing or
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decreasing the flux superpotential gives rise to smaller vacuum energies and volumes. We

computed the decay rates from dS to dS and dS to the decompactified minimum using

the Brown-Teitelboim and Coleman-De Luccia formalisms. The results can be captured in

exponentials of powers of the volume. Roughly each rate is suppressed by approximately

e−V
3+.... The leading order in the exponential gives the inverse of the Poincaré recursion

time. It is then important that the next-to-leading order term in the exponential is positive

to make the decay rate much faster than the Poincaré recursion time. This is indeed the

case. Then the relevant quantities are the relative ratios.

We found that the ratio of probabilities from a given dS minimum towards negative

cosmological constant (big crunch sinks) Pbc dominates over the probability of decay to

another dS minimum PdS by a factor of order Pbc/PdS ∼ eV . A similar behaviour has

been found in other context within the landscape [14–16]. Also within dS transitions,

decays towards larger volume and smaller vacuum energy are dominant, proportional to

eV . Finally decays to dS are dominant over the CDL transition to decompactification by a

factor of order eV
2
. This quantification of ratios of probabilities as functions of the volume

establishes an interesting hierarchy of decays that should be useful in global studies of the

dynamics of the landscape.

We compared our results with studies on IIA compactifications as well as KKLT and

6D Maxwell-Einstein and found similarities but also important differences with all of them.

In particular, contrary to the 6D case, we found no indications for decay to a bubble of

nothing. However a proper stringy study of the potential of a bubble of nothing decay is

beyond the scope of this article.

The fact that the generic values of the flux superpotential are of order O(1) as is

the difference of the flux superpotentials between two different vacua, makes the detailed

study of the LVS in any discussion of the landscape of IIB flux compactifications worth

considering.

Implications about the age of de Sitter and the appearance of the scale of supersym-

metry breaking in studies of the landscape may have to be reconsidered. The fact that the

transitions change the fluxes and then also the effective number of D3 branes should have

interesting phenomenological and cosmological implications. The location of the D3 branes

induced in this process and their physical implications deserve further study. We also hope

this work will be useful for further formal studies of the string landscape, including the

measure problem, bounds on de Sitter lifetime, etc.
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