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Abstract: In arbitrary dimension D, we consider a self-interacting scalar field nonmini-

mally coupled with a gravity theory given by a particular Lovelock action indexed by an

integer k. To be more precise, the coefficients appearing in the Lovelock expansion are fixed

by requiring the theory to have a unique AdS vacuum with a fixed value of the cosmo-

logical constant. This yields to k = 1, 2, · · · ,
[

D−1
2

]

inequivalent possible gravity theories;

here the case k = 1 corresponds to the standard Einstein-Hilbert Lagrangian. For each

par (D, k), we derive two classes of AdS black hole solutions with planar event horizon

topology for particular values of the nonminimal coupling parameter. The first family of

solutions depends on a unique constant and is valid only for k ≥ 2. In fact, its GR coun-

terpart k = 1 reduces to the pure AdS metric with a vanishing scalar field. The second

family of solutions involves two independent constants and corresponds to a stealth black

hole configuration; that is a nontrivial scalar field together with a black hole metric such

that both side of the Einstein equations (gravity and matter parts) vanishes identically.

In this case, the standard GR case k = 1 reduces to the Schwarzschild-AdS-Tangherlini

black hole metric with a trivial scalar field. We show that the two-parametric stealth solu-

tion defined in D dimension can be promoted to the uniparametric black hole solution in

(D+1) dimension by fixing one of the two constants in term of the other and by adding a

transversal coordinate. In both cases, the existence of these solutions is strongly inherent

of the presence of the higher order curvature terms k ≥ 2 of the Lovelock gravity. We

also establish that these solutions emerge from a stealth configuration defined on the pure

AdS metric through a Kerr-Schild transformation. Finally, in the last part, we include

multiple exact (D − 1)−forms homogenously distributed and coupled to the scalar field.

For a specific coupling, we obtain black hole solutions for arbitrary value of the nonminimal

coupling parameter generalizing those obtained in the pure scalar field case.
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1 Introduction

Since the advent of string theory, the interests on higher-dimensional physics have grown

up in the last decades, and particulary concerning the higher-dimensional General Rela-

tivity (GR). String corrections to the standard higher-dimensional Einstein-Hilbert action

arise as a low energy expansion in powers in α′ and involve higher powers of the curva-

tures. As shown in [1] and [2], in order to the graviton amplitude to be ghost-free a special

combination of quadratic corrections which is nothing but the Gauss-Bonnet expression is

required. One of the interesting features of the Gauss-Bonnet Lagrangian lies in the fact

that its variation yields second-order field equations for the metric in spite of the presence of

quadratic terms in the curvature. The Einstein-Hilbert-Gauss-Bonnet gravity piece is part

of a more general gravity theory build out of the same principles as GR. Indeed, two of the

main fundamental assumptions in GR are the requirements of general covariance and the

fact that the field equations for the metric to be at most of second order. In view of this, it

is natural to describe the spacetime geometry in three or four dimensions by the standard

Einstein-Hilbert action (with eventually a cosmological constant term) while for dimensions

greater than four a more general theory can be used. This fact has been first noticed by

Lanczos in five dimensions [3] and then generalized in higher dimension D by Lovelock [4].

The resulting action is the so-called Lovelock gravity action which is a D−form constructed

out of the vielbein, the spin connection and their exterior derivative. By construction, the

Lovelock Lagrangian which contains higher powers of the curvatures remains invariant un-

der local Lorentz transformations. In odd dimension, this gauge symmetry can be extended

to a local anti de Sitter (AdS) or Poincaré symmetry through a particular choice of the
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coefficients appearing in the Lovelock expansion. In both cases, the resulting Lagrangian is

a Chern-Simons form since its exterior derivative is an invariant homogeneous polynomial

in the AdS or Poincaré curvatures, and their supersymmetric extensions are also known;

see [5] for a good review on Chern-Simons (super)gravity. The Lovelock gravity or its

Chern-Simons particular case have been shown to possess (topological) AdS black hole

solutions with interesting thermodynamical properties [6–9] generalizing those obtained in

the Einstein-Gauss-Bonnet case [10, 11]; for good reviews on Einstein-Gauss-Bonnet black

holes, see e.g. [12–14].

In the present work, we will consider a gravity action given by a particular Lovelock

Lagrangian with fixed coefficients such that the resulting theory has a unique anti-de Sitter

vacuum with a fixed cosmological constant while our matter action will be concerned with

a nonminimal self-interacting scalar field. For this Lovelock gravity model with nonmini-

mal scalar field source, we will look for topological black hole solutions with planar event

horizon topology. Note that the first examples of topological black holes in GR without

source were discussed in [15, 16]. The reasons of considering such a matter source are mul-

tiples. Firstly, the ideas behind the anti-de Sitter/Conformal Field Theory (AdS/CFT)

correspondence [17] have been recently extended to non-relativistic physics particularly to

gain a better understanding of some unconventional superconductors [18–20]. In this con-

text, black holes with scalar hair at low temperature which disappears at low temperature

play an important role since they will reproduce the correct behavior of the superconductor

phase diagram. It is well-known now from the BBMB solution (solution of the Einstein

equations with a conformal source given by a scalar field) in four dimensions [21, 22] that

scalar fields nonminimally coupled can be useful to escape standard no-hair theorems [23].

Note that the BBMB solution has been extended in presence of a cosmological constant

with a potential term in four dimensions and for the conformal nonminimal coupling pa-

rameter ξ = 1/6, [24–27]. In fact, scalar fields nonminimally coupled to curved spacetimes

play an important role in different branches of physics and are also of interest for pure

mathematical proposals (as for example for the Yamabe problem). The introduction of

nonminimal couplings in spite of complicating the calculations may be of extreme rele-

vance for many problems. For example, the nonminimal couplings are generated by quan-

tum corrections even if they are absent in the classical action [28], and they are required

in order to renormalize the theory or at least to enhance their renormalizability proper-

ties [29–31]. In cosmological context, it has been argued that in most of the inflationary

scenarios with scalar fields, the presence of the nonminimal coupling is unavoidable and its

correct value depends on the gravity and the scalar field models adopted [32, 33]. Secondly,

we have already considered such matter source in the case of a particular combination of

the Einstein-Hilbert-Gauss-Bonnet gravity action and establish the existence of some black

hole configurations for particular values of the nonminimal coupling parameter [34]. The

present work is then the natural extension of the work done in [34] in order to reinforce

our conviction that these black hole solutions are strongly inherent to the presence of the

higher-order curvature terms.

The plan of the paper is organized as follows. In the next section, we present the

model of a scalar field nonminimally coupled with a gravity action given by a particular
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Lovelock Lagrangian. After deriving the field equations, we will present two classes of

topological black hole solutions with planar base manifold. In section 3, we will add to the

starting action exact (D−1)−forms and obtain a more general class of black hole solutions

generalizing those obtained in the pure scalar field case. Finally, the last section is devoted

to our conclusions, comments and further works. Two appendices are also added. In

the first one, we show that these black hole solutions can be constructed from a stealth

configuration on the pure AdS metric through a Kerr-Schild transformation. In the second

appendix, we establish that the existence of these solutions is inherent to the higher-order

curvature terms k ≥ 2 of the Lovelock Lagrangian and they can not be promoted to black

hole solutions in the standard GR case k = 1.

2 Planar AdS black holes for a particular Lovelock gravity with a non-

minimal scalar field

We start with a generalization of the Einstein-Hilbert gravity action in arbitrary dimension

D yielding at most to second-order field equations for the metric and known as the Lovelock

Lagrangian. This latter is a D−form constructed with the vielbein ea, the spin connection

ωab, and their exterior derivatives without using the Hodge dual. The Lovelock action is

a polynomial of degree [D/2] (where [x] denotes the integer part of x) in the curvature

two-form, Rab = dωab + ωa
c ∧ ωcb as

∫ [D/2]
∑

p=0

αp L(p), (2.1a)

L(p) = ǫa1···adR
a1a2 · · ·Ra2p−1a2pea2p+1 · · · ead , (2.1b)

where the αp are arbitrary dimensionful coupling constants and where wedge products

between forms are understood. Here L(0) and L(1) are proportional respectively to the

cosmological term and the Einstein-Hilbert Lagrangian. Now, as shown in ref. [8], requiring

the Lovelock action to have a unique AdS vacuum with a unique cosmological constant,

fixes the αp yielding to a series of actions indexed by an integer k, and given by

Ik = − 1

2k(D − 3)!

∫ k
∑

p=0

Ck
p

(D − 2p)
L(p), 1 ≤ k ≤

[

D − 1

2

]

, (2.2)

where Ck
p corresponds to the combinatorial factor. The global factor in front of the integral

is chosen such that the gravity action (2.2) can be re-written in the standard fashion as

Ik =
1

2

∫

dDx
√
−g

[

R+
(D − 1)(D − 2)

k
+

(k − 1)

2(D − 3)(D − 4)
LGB +

(k − 1)(k − 2)

3!(D − 3)(D − 4)(D − 5)(D − 6)
L(3) + · · ·

]

, (2.3)
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where LGB = R2 − 4RµνR
µν +RαβµνR

αβµν stands for the Gauss-Bonnet Lagrangian, and

L(3) is given by

L(3) = R3 − 12RRµνR
µν + 16RµνR

µ
ρR

νρ + 24RµνRρσR
µρνσ + 3RRµνρσR

µνρσ

−24RµνR
µ
ρσκR

νρσκ + 4RµνρσR
µνηζRρσ

ηζ − 8RµρνσR
µ ν
η ζR

ρησζ .

Note that in odd dimension D = 2n−1 and for k = n−1, the corresponding action In−1 is

a Chern-Simons action, that is a (2n−1)−form whose exterior derivative can be written as

the contraction of an invariant tensor with the wedge product of n curvatures two-forms.

In even dimension D = 2n, the maximal value of k is n− 1, and in this case the resulting

gravity action has a Born-Infeld like structure since it can be written as the Pfaffian of

the 2−form R̄ab = Rab + eaeb. The gravity theories Ik have been shown to possess black

hole solutions with interesting features, in particular concerning their thermodynamics

properties, see [8] and [9]. In what follows, we will consider a scalar field nonminimally

coupled together with the gravity actions given by Ik, (2.2). More precisely, we will consider

the following action for any integer k ≥ 2,1

Sk =Ik −
∫

dDx
√
−g

[

1

2
∂µΦ∂

µΦ+
ξ

2
RΦ2 + U(Φ)

]

, (2.4)

The field equations read

G(k)
µν = Tµν , (2.5a)

�Φ = ξRΦ+
dU

dΦ
, (2.5b)

where G(k)
µν is the gravity tensor associated to the variation of the action Ik (2.2),

G(k)
µν = Gµν −

(D − 1)(D − 2)

2k
gµν +

(k − 1)

2(D − 3)(D − 4)
Kµν +

(k − 1)(k − 2)

3!(D − 3)(D − 4)(D − 5)(D − 6)
Sµν + · · ·

where Kµν is the Gauss-Bonnet tensor

Kµν = 2
(

RRµν − 2RµρR
ρ
ν − 2RρσRµρνσ +R ρσγ

µ Rνρσγ

)

− 1

2
gµνLGB

and Sµν arises from the variation of L(3),

Sµν = 3
(

R2Rµν − 4RRρµR
ρ
ν − 4RρσRρσRµν + 8RρσRρµRσν − 4RRρσRρµσν

+8RρκRσ
κRρµσν − 16RρσRκ

(µR|κσρ|ν) + 2RRρσκ
µRρσκν +RµνR

ρσκηRρσκη

−8Rρ
(µR

σκη
|ρ|R|σκη|ν) − 4RρσRκη

ρµRκησν + 8RρσR
ρκσηRκµην − 8RρσR

ρκη
µR

σ
κην

+4RρσκηRρσζµR
ζ

κη ν − 8RρκσηRζ
ρσµRζκην − 4Rρσκ

ηRρσκζR
η ζ
µ ν

)

− 1

2
gµνL(3).

1The standard GR case k = 1 will be discussed in the appendix.
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In the matter part of the equations (2.5), Tµν represents the energy-momentum tensor of

the scalar field given by

Tµν = ∂µΦ∂νΦ− gµν

(

1

2
∂σΦ∂

σΦ+ U(Φ)

)

+ ξ (gµν�−∇µ∇ν +Gµν) Φ
2, (2.6)

where the potential U(Φ) is given by a mass term

U(Φ) =
8 ξ D (D − 1)

(1− 4ξ)2
(ξ − ξD)(ξ − ξD+1)Φ

2, (2.7)

where ξD denotes the conformal coupling in D dimensions

ξD =
D − 2

4(D − 1)
. (2.8)

The choice of such potential will be justified in the appendix. Being a mass term and

because of the presence of the term ξRΦ2 in the action, one can define an effective mass

m2
eff in the case of solutions of constant curvature R = constant by

m2
eff = ξR+

16 ξ D (D − 1)

(1− 4ξ)2
(ξ − ξD)(ξ − ξD+1). (2.9)

As for the Einstein-Gauss-Bonnet case k = 2 [34], we will obtain the same two classes

of black hole solutions for generic value of k ≥ 2. More precisely, for each par (D, k) with

D ≥ 5 and k ≥ 2 , we will derive two classes of AdS black hole solutions with planar event

horizon topology for specific values of the nonminimal coupling parameter ξ.

2.1 Planar AdS black hole solutions

For k ≥ 2, an AdS black hole solution is obtained provided that the nonminimal parameter

ξ takes the following form

ξb.h
k,D =

(D − 2)(k − 1)

4
[

(D − 1)k − (D − 2)
] , (2.10)

which in turn implies that the potential (2.7) becomes

Ub.h
k,D(Φ) =

(k − 1)(D − 2)2(D − 2 + k)

8k2
[

(D − 1)k − (D − 2)
] Φ2. (2.11)

In this case, the metric solution and the scalar field are given by

ds2 = −F b.h
k,D(r)dt

2 +
dr2

F b.h
k,D(r)

+ r2d~x2D−2,

F b.h
k,D(r) = r2 − M

r
D−2(k+1)

k

, (2.12)

Φb.h
k,D(r) = M

k−1
2

√

4 [(D − 1)k − (D − 2)]

(k − 1)(D − 2)
r

(k−1)(2−D)
2k .
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Many comments can be made concerning this solution. Firstly, this black hole solution

depends on a unique integration constant M , and for even k the scalar field is always real

provided that M is positive constant while for odd k, the constant M can be positive or

negative. The scalar field is well defined at the horizon and blows-up at the singularity

r = 0. The solution given by (2.10), (2.11), (2.12) reduces to the one derived in the

Einstein-Gauss-Bonnet case for k = 2 [34]. It is interesting to note that the standard

GR-limit k = 1 (which yields to Einstein gravity with a negative cosmological constant) is

possible only in the limit M = 0 as it can be seen from the expression of the scalar field.

This is not surprising since for k = 1, the nonminimal coupling parameter (2.10) as well as

the potential (2.11) vanish, and in this case, no-hair theorems forbid the existence of black

hole solutions. We will come in detail to this point in the appendix. We would like also

to emphasize that the allowed value of the nonminimal coupling parameter (2.10) which

depends on (k,D) is bounded as ξb.h
k,D < 1/4 and its limit as k goes to infinity yields to

the conformal coupling in D dimensions, limk→∞ ξb.h
k,D = ξD. Finally, we may observe that

in even dimension given by D = 2(k + 1) which corresponds to the Born-Infeld case, the

lapse function F b.h
k,D(r) has a BTZ-like form [35] as it occurs in the vacuum case with a base

manifold chosen to be non-Einstein [36].

2.2 Planar AdS black hole stealth solutions

The black hole stealth solution for k ≥ 2 can be obtained in analogue way that the one

obtained in the Einstein-Gauss-Bonnet case k = 2 [34]; this means by combining the pure

gravity solution with planar base manifold [8, 9] with the stealth configuration. By stealth

configuration, we mean a non-trivial solution (with a non constant scalar field) of the

stealth equations

G(k)
µν = 0 = Tµν , (2.13)

where both side (gravity and matter part) vanishes.

In fact, it is not difficult to show that a self-interacting nonminimal scalar field given by

Φ(r) = Ar
2ξ

4ξ−1 , (2.14)

has a vanishing energy-momentum tensor (2.6) Tµν = 0 on the following ξ−dependent

spacetime geometry

ds2 = −
(

r2 − M

r
4(D−2)ξ−(D−3)

4ξ−1

)

dt2 +
dr2

(

r2 − M

r
4(D−2)ξ−(D−3)

4ξ−1

) + r2d~x2D−2. (2.15)

On the other hand, the pure gravity equations G(k)
µν = 0 has a black hole solution with a

lapse function F (r) given by [8, 9]

F (r) = r2 − M

r
D−(2k+1)

k

.
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Now, in order for this metric function to coincide with the stealth metric (2.15), the non-

minimal coupling parameter must be chosen as

ξstealth
k,D =

(D − 1)(k − 1)

4 [Dk − (D − 1)]
, (2.16)

and hence the mass term potential (2.7) becomes

U stealth
k,D (Φ) =

(k − 1)(D − 1)2(D − 1− k)

8k2 [Dk − (D − 1)]
Φ2. (2.17)

Consequently, a topological black hole stealth solution of the stealth equation (2.13) is

given by

ds2 = −F stealth
k,D (r)dt2 +

dr2

F stealth
k,D (r)

+ r2d~x2D−2,

F stealth
k,D (r) = r2 − M

r
D−(2k+1)

k

, (2.18)

Φstealth
k,D (r) = Ar

(k−1)(1−D)
2k .

We may note that in contrast with the previous solution, the black hole stealth solution

depends on two integration constants M and A, and in the vanishing M limit, the solution

reduces to a stealth solution on the pure AdS background [37]. The GR limit k = 1 is

also well defined yielding to a metric that is noting but the topological Schwarzschild-

AdS-Tangherlini spacetime. This is not surprising since in the GR limit case k = 1,

the nonminimal coupling parameter as well as the potential vanish while the scalar field

becomes constant, and hence the energy-momentum tensor vanishes Tµν = 0. In other

words, in the GR-limit, the stealth equations (2.13) are equivalent to the pure Einstein

equations Gµν − (D−1)(D−2)
2 gµν = 0. This class of solutions is of particular interest since,

up to now, the only black hole stealth solution was the one obtained in [38] in the three-

dimensional GR case with a static BTZ metric [35].

Let us go back to the ξ−dependent geometry (2.15) allowing the existence of solution

of Tµν = 0. It is clear from the expression of the metric that for a nonminimal coupling

parameter ξ ∈ [ξD+1,
1
4 [ where ξD+1 = (D − 1)/(4D) is the conformal coupling in (D + 1)

dimension, the asymptotic behavior of the metric as r → ∞ is faster than the usual AdS

one. However, requiring the metric to be also solution of the gravity part G(k)
µν = 0, we

have seen that the parameter ξ must take the form (2.16), and it is not difficult to prove

that ξstealth
k,D < ξD+1. To conclude, we would like to point out a certain symmetry between

the black hole and stealth solution as reflected by the following relations

ξstealth
k,D = ξb.h

k,D+1, F stealth
k,D = F b.h

k,D+1, U stealth
k,D = Ub.h

k,D+1, Φstealth
k,D ∝ Φb.h

k,D+1.

These relations can also be interpreted as follows: a particular two-parametric stealth

solution in D dimension given by (2.18) but with a constant A fixed in term of M as

A = M
k−1
2

√

4 [(D − 1)k − (D − 2)]

(k − 1)(D − 2)

can be promoted to the uniparametric black hole solution in (D + 1) dimension (2.12).
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3 Adding exact (D − 1)-forms

In the previous section, we have constructed two classes of topological black hole solutions

for a self-interacting nonminimal scalar field with a gravity theory given by a particular

Lovelock action. The base manifold of these solutions is planar and these configurations re-

quire a particular value of the nonminimal coupling parameter (2.10)–(2.16) which depends

on the dimension D and the gravity theory k ≥ 2. As it will be shown in the appendix, the

existence of these solutions is strongly inherent to the presence of the higher-order curva-

ture terms of the Lovelock theory. Indeed in the standard GR case k = 1, we will establish

that black hole solutions with planar base manifold for a scalar field nonminimally coupled

with a possible mass term potential are only possible in three dimensions yielding to the

Martinez-Zanelli solution [39].2 In the standard GR case, it has been shown recently that

the inclusion of multiple exact p−forms homogenously distributed permits the construction

of black holes with planar horizon [40, 41] without any restrictions on the dimension or on

the value of the nonminimal parameter [42]. Since, we are interested on such solutions, we

now propose to introduce appropriately some exact p−forms in order to obtain topological

black hole solutions with arbitrary nonminimal coupling parameter. More precisely, we

consider the following action in arbitrary D dimension

Sk = − 1

2k(D − 3)!

∫ k
∑

p=0

Ck
p

(D − 2p)
L(p) −

∫

dDx
√
−g

[

1

2
∂µΦ∂

µΦ+
ξ

2
RΦ2 + U(Φ)

]

−
∫

dDx
√
−g

[

ǫ(Φ)

2(D − 1)!

D−2
∑

i=1

H(i)
α1···αD−1H(i)α1···αD−1

]

,

where we have introduced (D − 2)- fields H(i) which are exact (D − 1)-forms, and where

the potential is again the mass term defined in (2.7). The coupling function between the

scalar field and the (D − 1)-forms, ǫ(Φ), depends on the scalar field Φ as

ǫ(Φ) = σΦ
2(2−3k)ξ+k−1

ξ(k−1) (3.1)

where σ is a coupling constant. We stress that the expression of this coupling ǫ is not well-

defined in the standard GR case k = 1. However, as mentioned before, the solutions in the

standard Einstein gravity have been obtained in [42] for a more general class of potential

than the one considered here (2.7). Note that there exists another particular value of the

nonminimal coupling parameter ξ = k−1
2(3k−2) for which the coupling ǫ becomes constant; we

will come to this point below.

The field equations obtained by varying the action with the different dynamical fields

gµν ,Φ and H(i) read

G(k)
µν = Tµν + T extra

µν , ∂α

(√
−g ǫ(Φ)H(i)αα1···αD−2

)

= 0, (3.2a)

�Φ = ξRΦ+
dU

dΦ
+

1

2

dǫ

dΦ

[

D−2
∑

i=1

1

(D − 1)!
H(i)

α1···αD−1H(i)α1···αD−1

]

= 0, (3.2b)

2We will obtain this result by considering an Ansatz for the metric that depends on a unique lapse

function.
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where the extra piece in the energy-momentum tensor reads

T extra
µν = ǫ(Φ)

D−2
∑

i=1

[

1

(D − 2)!
H(i)

µα1···αD−2H
(i)α1···αD−2
ν − gµν

2(D − 1)!
H(i)

α1···αD−1H(i)α1···αD−1

]

Looking for a purely electrically homogenous Ansatz for the (D − 1)−forms as

H(i) = H(i)
trx1···xi−1xi+1···xD−2

(r)dt ∧ dr ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxD−2, (3.3)

a solution of the field equations (3.2) is given by

ds2 = −
(

r2 − M

r
2[2(2k−1)ξ−(k−1)]

(k−1)(1−4ξ)

)

dt2 +
dr2

(

r2 − M

r
2[2(2k−1)ξ−(k−1)]

(k−1)(1−4ξ)

) + r2d~x2D−2, (3.4a)

Φ(r) =

√

Mk−1 [2 (3 k − 2) ξ − k + 1] (D − 2)
{

2 [2(D − 1)k −D] ξ − (k − 1)(D − 2)
}

kξ
r

2ξ
4ξ−1 , (3.4b)

H(i) =
p

ǫ(Φ)
rD−4dt ∧ dr ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxD−2, (3.4c)

where the constant p is defined by

p = B

√

√

√

√

−2σ
(

ξ − ξstealthk,D

)(

ξ − ξb.h
k,D

) [

Dk − (D − 1)
][

(D − 1)k − (D − 2)
]

k − 1
, (3.5)

and where the constants ξb.h
k,D and ξstealth

k,D are the particular values of the nonminimal

parameter for which we have derived the previous solutions in the pure scalar field

case (2.10)–(2.16). In this last expression, the constant B reads

B =
4 ξ

2(4 k−3)ξ−k+1
4ξ (k−1)

{[

2
(

2(D − 1)k −D
)

ξ − (k − 1)(D − 2)
]

k
}

2(2 k−1)ξ−k+1
4ξ (k−1)

M
(k−1)(1−4 ξ)

4ξ

(4 ξ − 1)
{[

2 (3 k − 2) ξ − k + 1
]

(D − 2)
}

2(3 k−2)ξ−k+1
4ξ (k−1)

As in the pure scalar field case, many comments can be made concerning the solution

obtained in the presence of these (D − 2) extra (D − 1)-forms H(i). Firstly, it is simple to

see that for ξ = ξstealth
k,D or ξ = ξb.h

k,D the constant p becomes zero and the solutions are those

found previously considering only a scalar field nonminimally coupled with a mass term

potential. From the expression of the metric solution, we can see that for ξ > 1/4, the

asymptotic behavior of the metric is faster than the usual AdS one while for ξ < 1/4, the

dominant term as r → ∞ is given by F (r) ∼ r2. From the expression of the scalar field,

it is easy to see that for a constant M > 0, the allowed values of ξ in order to deal with a

real solution are

ξ ∈ ]0,
k − 1

2(3k − 2)
]∪ ]ξcritical,+∞[, ξcritical :=

(k − 1)(D − 2)

2
[

2(D − 1)k −D
] ,
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while for M < 0, the ranges are

ξ ∈ ]0,
k − 1

2(3k − 2)
]∪ ]ξcritical,+∞[, for odd k,

ξ ∈ [
k − 1

2(3k − 2)
, ξcritical[, for even k.

Solutions of constant scalar curvature R = −D(D − 1) are obtained for two values of

the nonminimal parameter

ξ =
(k − 1)D

4(D(k − 1) + 1)
, ξ =

(k − 1)(D − 1)

4 [(D − 1)k − (D − 2)]
.

For this last value of the parameter ξ, the effective square mass (2.9) becomes

m2
eff =

(k − 1)(k − 3)(D − 1)2

4
,

and it is intriguing to note that it saturates the Breitenlohner-Freedman bound for

k = 2 [34] while for k = 3, the solution becomes massless.

Pure axionic solution: in order to be complete, we may look for pure axionic solutions.

This means a solution of the field equations without considering the contribution of the

scalar field,

G(k)
µν = T extra

µν . (3.6)

Considering an Ansatz for the metric involving a unique metric function, the integration

of the field equations yields

ds2 = −
(

r2 −Mr
2(k−1)

k

)

dt2 +
dr2

(

r2 −Mr
2(k−1)

k

) + r2d~x2D−2, (3.7a)

H(i) = −M
k
2

√

D − 3

kσ
rD−4dt ∧ dr ∧ · · · ∧ dxi−1 ∧ dxi+1 ∧ · · · ∧ dxD−2. (3.7b)

We note that this solution can be obtained from the solutions with scalar field (3.4) by

taking the well-defined limit ξ = k−1
2(3k−2) . This is not surprising owing to the choice of

our coupling function ǫ defined in (3.1) which becomes constant for ξ = k−1
2(3k−2) . It is also

interesting to note that in this case, since the contribution of the scalar field is not longer

present, the GR limit k = 1 is well-defined yielding a metric function of the BTZ form [40].

4 Comments and conclusions

Here, we have considered a gravity theory given by a particular Lovelock Lagrangian labeled

by an integer k for which the coefficients are fixed in order to have an unique AdS vacuum

with a fixed value of the cosmological constant. The matter part of our action is concerned

with a self-interacting scalar field nonminimally coupled with a potential given by a mass

term. For this model labeled by the dimension D and the integer k, we have derived two

classes of black hole solutions with planar event horizon topology for particular values of
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the nonminimal coupling parameter depending on D and k. The first class of solutions

is uniparametric and reduces to the pure AdS metric without scalar field in the vanishing

limit of the parameter. The second class of solutions depends on two parameters and is

interpreted as a black hole stealth configuration. To be more precise, we have shown the

existence of a nontrivial self-interacting scalar field with a vanishing energy-momentum

tensor with a black hole metric solving the pure gravity equations. In the last section, we

have added to the starting action exact (D−1)−forms minimally coupled to the scalar field.

In this case and for an appropriate coupling, we have been able to construct more general

black hole solutions with planar event horizon topology. All these solutions generalize for

an arbitrary k ≥ 2 those obtained in [34] in the Einstein-Gauss-Bonnet case k = 2. In

the appendix, we have established that these solutions may be viewed as originated from a

stealth configuration on a pure AdS background through a Kerr-Schild transformation. We

have also shown that their standard GR counterpart k = 1 can not be obtained along the

same lines, and hence the occurrence of such solutions is strongly inherent to the presence

of the higher-order curvature terms of the Lovelock gravity theory. It seems then that the

emergence of these black hole solutions with planar event horizon topology is a consequence

of the higher-order curvature terms combined with the existence of a stealth configuration

on the pure AdS metric. Indeed, as shown in [37], static stealth configurations given by a

scalar field nonminimally coupled require the base manifold to be planar. Indeed, stealth

solutions with spherical or hyperboloid base manifold are possible only in the non static

case [37]. It will be interesting to see whether these non static stealth configurations with

spherical or hyperboloid base manifold can be promoted as black hole solutions through

a similar Kerr-Schild transformation. In this case, since the scalar field depends explicitly

on the time as well as on the radial coordinates, the metric function generated through the

Kerr-Schild transformation must probably depend also on these two coordinates. This will

considerably complicate the task of integrating the metric function.

In this paper, we have also derived a class of black hole stealth configuration whose

metric is a black hole solution of the pure gravity equations [8, 9]. These metrics can be

promoted to electrically charged black hole solutions with a standard Maxwell source [8, 9].

It is then natural to ask whether one can derive the electrically charged version of the

solutions found here. As a first task, it will be useful to derive, if possible, the electrically

charged version of the stealth configuration found in [37].

We have seen that the existence of these solutions is strongly inherent to the higher-

order curvature terms of the Lovelock theories. As it is well-known, the field equations

associated to the Lovelock gravity are of second order in spite of the presence of these

terms. In ref. [43], a cubic gravity theory has been constructed in five dimensions by

requiring the trace of the field equations to be proportional to the Lagrangian which in

turn implies that for an Ansatz metric of the “spherical” form, the field equations are of

second-order. It will be interesting to explore if this five-dimensional cubic gravity theory

and its generalizations to higher odd dimension can accommodate the classes of solutions

found here.

In ref. [8, 9], the authors have done a complete study of the thermodynamical prop-

erties of the pure gravity solutions. The black hole stealth solutions obtained here have
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the same lapse metric with a nontrivial matter source, and hence it will be more than

interesting to investigate the effects on the thermodynamical quantities of the presence of

this nontrivial source. Note that the thermodynamics of general Lovelock gravity has been

analyzed in [44].

As a final remark, in ref. [45], the authors constructed conformal coupling to arbitrary

higher-order Euler densities. It will be interesting to see whether such matter source can

accommodate the kind of solutions derived here.
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A Complements concerning the solutions

A.1 Stealth origin of the solutions

In this appendix, we will show that the AdS black hole solutions obtained here can be

viewed as originated from a stealth configuration defined on the pure AdS metric through

a Kerr-Schild transformation.

Let us start with a self-interacting scalar field Φ nonminimally coupled whose stress

tensor Tµν is given by

Tµν = ∂µΦ∂νΦ− gµν

(

1

2
∂σΦ∂

σΦ+ U(Φ)

)

+ ξ (gµν�−∇µ∇ν +Gµν) Φ
2. (A.1)

As shown in ref. [37], a solution of the equation Tµν = 0 on the pure AdS metric

ds2 = −r2dt2 +
dr2

r2
+ r2d~x2D−2 (A.2)

is given by the following configuration

U(Φ) =
ξ

(1−4ξ)2

[

2 ξ b2Φ
1−2ξ

ξ − 8(D−1) (ξ − ξD)
(

2 ξ bΦ
1
2ξ −D (ξ − ξD+1) Φ

2
)]

, (A.3a)

Φ(r) = (Ar + b)
2ξ

4ξ−1 . (A.3b)

For technical reasons, we will restrict ourselves to the case b = 0,3 which in turn implies

that the stealth potential (A.3a) reduces to the mass term considered in this paper (2.7).

Let us first operate a Kerr-Schild transformation on the AdS metric (A.2) with a null and

3In fact, one can follows the analysis with b 6= 0, but, the remaining independent Einstein equations will

impose A = 0 or b = 0 in order to deal with a nontrivial metric function. The case A = 0 implies that the

scalar field is constant and the solution reduces to the pure Lovelock solution with a suitable redefinition

of the cosmological constant.
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geodesic vector l = dt − dr
r2
, and this without affecting the scalar field. The transformed

metric becomes after redefining the time coordinate

ds2 = −r2
(

1− f(r)
)

dt2 +
dr2

r2
(

1− f(r)
) + r2d~x2D−2. (A.4)

It is easy to see that the components on-shell4 of the energy-momentum tensor (A.1) and

the gravity tensor satisfy the following identities

G(k)t
t = G(k)r

r , G(k)i
i =

1

(D − 2)

[

r
(

G(k)t
t

)′
+ G(k)t

t (D − 2)
]

(A.5a)

T t
t = T r

r , T i
i =

(4ξ − 1)

4ξ(D − 1)− (D − 2)

[

r
(

T t
t

)′
+ T t

t (D − 2)
]

(A.5b)

Because of these relations (A.5), a necessary condition for the field equations G(k)
µν = Tµν

to be satisfied is that ξ = 0 or T i
i = 0 = G(k)i

i . The condition T i
i = 0 yields a second-order

Cauchy equation for the metric function f whose solution reads

f(r) =
M1

r
4(D−1)ξ−(D−2)

4ξ−1

+
M2

r
(4ξ−1)D+1

4ξ−1

, (A.6)

where M1 and M2 are two integration constants. Injecting this metric function (A.6) into

the condition G(k)i
i = 0 yields

M2
1

(

ξ − ξ(1)
)(

ξ − ξb.h
k,D

)

r2 + β2M1M2

(

ξ − ξstealth
k,D

)(

ξ − ξb.h
k,D

)

r

+β3M
2
2

(

ξ − ξstealth
k,D

)(

ξ − ξ(2)
)

= 0 (A.7)

where the βi are non-vanishing constants and where we have defined

ξ(1) =
1

4

[

(k − 1)D − 2k + 1

(k − 1)(D − 1)

]

, ξ(2) =
1

4

[

(k − 1)D − k + 2

D(k − 1) + 2

]

.

As it can seen from ξ(1), these relations are valid only for k ≥ 2. In fact, apart from the

trivial solution M1 = M2 = 0 that yields to the pure AdS metric, there exists a priori four

options to solve the previous constraint (A.7)

Option I :
{

M1 = 0, ξ = ξstealth
k,D

}

, Option II :
{

M1 = 0, ξ = ξ(2)
}

,

Option III :
{

M2 = 0, ξ = ξb.h
k,D

}

, Option IV:
{

M2 = 0, ξ = ξ(1)
}

.

The options I and IV give rise to a metric function given by the stealth metric F stealth
k,D while

for the options II and III, the metric becomes F b.h
k,D. However, it remains one independent

Einstein equation to be satisfied, that is G(k)t
t = T

(k)t
t . In doing so, the options I and III

precisely yield to the two classes of solutions derived in this paper. For the options II,

the solution reduces to the stealth configuration on the pure AdS metric [37], and for the

option IV besides to the stealth configuration, there exists the possibility with a vanishing

scalar field defined on the stealth metric F stealth
k,D .

4By on-shell, we mean using the expression of the potential (A.3), scalar field (A.3b) and the Ansatz

metric (A.4) with b = 0.
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A.2 Particular case of Einstein gravity k = 1

We will now consider the standard GR case k = 1, and we will establish that the unique

black hole solution with planar base manifold (with a unique metric function) of a scalar

field nonminimally coupled with a possible mass term potential is the Martinez-Zanelli

solution in D = 3 [39].5 Hence, we consider the following action

S =

∫

dDx
√
−g

[

1

2
(R− 2Λ)

]

−
∫

dDx
√
−g

(

1

2
∂µΦ∂

µΦ+
ξ

2
RΦ2 + αΦ2

)

, (A.8)

where Λ = −1
2(D − 1)(D − 2) is the cosmological constant and the potential is given by a

mass term U(Φ) = αΦ2 where α is a constant. The field equations of (A.8) obtained by

varying the action with respect to the different dynamical fields read

Eµν := Gµν + Λgµν−∂µΦ∂νΦ+ gµν

(

1

2
∂σΦ∂

σΦ+ αΦ2

)

−ξ (gµν�−∇µ∇ν+Gµν) Φ
2=0,

�Φ = ξRΦ+
dU

dΦ
.

We look for an Ansatz metric of the form

ds2 = −F (r) dt2 +
dr2

F (r)
+ r2d~x2D−2, (A.9)

while the scalar field is assumed to depend only on the radial coordinates, Φ = Φ(r). The

combination of the Einstein equations combination Et
t − Er

r = 0 implies that the scalar

field must be given by

Φ(r) =
A

(r +B)
2ξ

1−4ξ

(A.10)

where A and B are two integration constants. Substituting this expression (A.10) into the

equation Et
t = 0 (or equivalently Er

r = 0), the metric function is obtained as

F (r) =
4 (r +B)1+δ

[

(D − 2) (1 + δ) r2 − Cr−D+3 − αh(r)
]

4 (1 + δ) (D − 2) (r +B)1+δ +A2
[

(δ −D + 2) r −B (D − 2)
]

δ
, (A.11)

where for convenience, we have defined δ = 4ξ/(1 − 4ξ) and where C is an integration

constant. In this expression, the function h(r) can be given in an integral form as

h(r) = 2 r−D+3A2 (1 + δ)

∫

rD−2 (r +B)−δ dr

or by a finite series

h(r) = 2 r−D+3A2 (1 + δ)

[

rD−2(r +B)1−δ

(1− δ)
+

D−2
∑

k=1

(−1)k(D − 2)(D − 3) . . . (D − k − 1)

(1− δ)(2− δ) . . . (k + 1− δ)

rD−k−2 (r +B)k+1−δ

]

,

which is only valid for δ 6= 1, 2, . . . , (D − 1).

5We also assume that the scalar field as well as the metric function only depends on the coordinate r.
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The remaining of the analysis must be divided in two cases depending if the coupling

constant associated to the potential α is chosen to be zero or not. For a non-vanishing α,

the remaining independent Einstein equation Ei
i = 0 will imply that

α =
δ (δ −D + 2) (δ −D + 1)

8 (δ + 1)
, (A.12)

and B = C = 0. This solution is nothing but a particular stealth solution on the pure

AdS metric.

We now turn to the case with a vanishing coupling constant α = 0, and we split

the analysis in two branches depending on the sign of the constant δ (the option δ = 0 is

equivalent to ξ = 0). In fact, for δ 6= 0, we note that substituting the metric function (A.11)

with α = 0 into the equation Ei
i = 0, we get the following complicated expression after

some algebraic manipulations

(y −B)D

(

7
∑

k=2

αky
2δ+k +

7
∑

k=1

βky
δ+k +

7
∑

k=2

γky
k

)

+ C

[ 8
∑

k=2

ǫky
2δ+k +

8
∑

k=1

ηky
δ+k (A.13)

+A4Bδ2 (−δ +D − 2) y2 (−y +B)5
]

= 0.

Here, we have defined y = r + B and the different constants appearing in this expression

are not reported for simplicity. For δ < 0, the highest power of (A.13) is D + 7, and the

vanishing of the corresponding coefficient γ7 implies that A = 0 and hence the scalar field

Φ = 0. It is also easy to see that the coefficient of y2δ+D+7 never vanishes and finally we

conclude that solutions do not exist for δ < 0. Let us now consider the case δ > 0 for

which the highest power of (A.13) is 2δ + D + 7 and its corresponding coefficient is α7.

In this situation, we have only two possible solutions for a generic dimension D which are

δ = D − 1 or δ = D − 2. For the first option δ = D − 1, the constant B must vanish and

C = −1
4A

2(D − 1), yielding again to a particular stealth configuration on the pure AdS

metric. The remaining option δ = D−2 is the most interesting one. Indeed, the eq. (A.13)

becomes now

(y −B)D

(

5
∑

k=2

αk,D y2D+k−4 +
6
∑

k=1

βk,D yD+k−2 +
5
∑

k=2

γk,D yk

)

+ (A.14)

C

(

8
∑

k=2

ǫk,D y2D+k−4 +

7
∑

k=1

ηk,D yD+k−2

)

= 0.

The highest possible powers are given by y3D+1 and y2D+4 and these latter coincide only in

three dimension D = 3. Otherwise for D > 3, the highest power is y3D+1, and after some

computations we obtain that B = C = 0 yielding again a particular stealth configuration

on the pure AdS metric. The case D = 3 has already been analyzed in details in [46], and

the only black hole solution is the Martinez-Zanelli solution [39].
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