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1 Introduction

Accurate theoretical predictions for the scattering amplitudes in Standard Model and be-

yond require perturbative calculations at high order. The feasibility of these calculations

crucially depends on our ability to evaluate the multiloop integrals. Remarkably, multiloop

integrals provide a fruitful ground for the application and development of methods coming

from various fields of mathematics, such as complex analysis, differential and difference

equations theory, algebraic geometry etc. In a few last decades, an enormous progress in

the calculation of the multiloop integrals has been made. Deep insights into the analytic

and geometric nature of the multiloop integrals have been gained. Many methods of the

calculation have been invented. However, each step up in the loop order is connected with

a jump in the computational complexity, so there is always a demand in new, yet more

powerful tools for the calculation of multiloop integrals.

One of the important tools that is relevant nowadays is the integration-by-part (IBP)

identities introduced in refs. [1, 2]. Using these identities, it is possible to reduce the cal-

culation of any multiloop integral with a given set of denominators to the calculation of a

finite number of the master integrals. An important feature of this reduction is the possi-

bility to construct differential and difference equations for the master integrals. From the

computational viewpoint, the IBP reduction is known to be quite complicated problem.

The reason is the absence of the general effective algorithm for this reduction. Almost all

publicly available programs, like FIRE [3] and Reduze [4, 5], heavily rely on the Laporta

algorithm, which includes a brute-force search of the reduction rules. Recently one of the

authors has presented LiteRed package [6] which performs a heuristic search of the reduc-

tion rules. Nevertheless, up to now the problem of the IBP reduction has not been solved.

This paper can be considered as a little step towards the construction of the effective

reduction algorithm. We present a simple recipe to determine the number of the master

integrals in the given sector.
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In the next section we show that it is possible to rewrite the parametric representation

in the form where the Symanzik polynomials F and U enter only in the combination

F +U . The integrals of the similar form have been considered in ref. [7]. In that paper the

rank of the corresponding cohomology group has been expressed via the volume of Newton

polytope under some non-degeneracy assumptions using the results of ref. [8]. In ref. [8] the

volume of Newton polytope has been related to a certain topological invariant of a critical

point, called Milnor number (see the definition below). In refs. [9–11] the homology group,

connected with the Laplace integral, has been considered. In these papers the independent

cycles were related to the steepest descent contours of the critical points of the Laplace

integral exponent. We combine the ideas of these papers to devise a simple algorithm for

counting the master integrals. Loosely speaking, it turns out that this number is equal to

the number of critical points of the sum of Symanzik polynomials F +U . We demonstrate

the efficiency of this recipe on the example of a family of 4-loop g − 2 integrals.

2 Parametric and Baikov representation

Suppose that we are interested in the calculation of the L-loop integral with M denomina-

tors in d dimensions depending on E external momenta

J (n) = J(n1, n2, . . . , nM ) =

∫ L∏
i=1

ddli

πd/2

M∏
α=1

D−nαα ,

Dα = Aijα li · lj + 2Bik
α li · pk + Cα . (2.1)

Here p1, . . . , pE are linearly independent external momenta, Aα are L×L matrices, Bα are

L× E matrices, and Cα are some constants.

Parametric representation. The parametric representation of J (n) has the form

J(n) =
Γ (|n| − Ld/2)∏

α Γ (nα)

∫ ∏
α

dzαz
nα−1
α δ

(
1−

∑
z
) FLd/2−|n|

U (L+1)d/2−|n| , (2.2)

where |n| =
∑M

α=0 nα, U and F are the homogeneous polynomials of degrees L and L+ 1,

respectively. These polynomials can be expressed in terms of quantities

Aij =
∑
α

zαA
ij
α , Bi =

∑
α

zαB
ij
α pj , C =

∑
α

zαCα (2.3)

as follows

U = det (A) , F = det (A) C −
(
AAdj

)ij
Bi ·Bj , (2.4)

where AAdj = det (A)A−1 is the adjoint matrix.

Remarkably, it is possible to rewrite (2.2) in the form, which contains U and F only in

the combination F +U . Indeed, it is easy to show that the following representation holds:

J(n) =
Γ (d/2)

Γ ((L+ 1) d/2− |n|)
∏
α Γ (nα)

∞∫
0

. . .

∞∫
0

∏
α

dzαz
nα−1
α G−d/2 , (2.5)

G = F + U . (2.6)
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In order to pass from (2.5) to (2.2) it is sufficient to insert 1 =
∫
dsδ(s−

∑
z), scale z → sz

and integrate over s. Usually, in addition to the denominators D1, . . . , DM , one considers

also the irreducible numerators DM+1, . . . , DN , see the next subsection. However, it can

be shown that the master integrals can be chosen to have no numerators. Therefore, the

representation (2.5), which describes the integrals without numerators, can be used for the

determination of the master integrals.

Let us consider the identities which appear when the monomial
∏
α z

α−1 in the rep-

resentation (2.5) is replaced by some suitable polynomial in such a way that the whole

integrand is a total derivative. The explicit form of these relations is not important for the

present consideration. These identities are the counterparts of the IBP identities in the

momentum representation, and it is natural to expect that they lead to the same number

of master integrals. We only note that, in contrast to the momentum representation, the

integration domain in eq. (2.5) has a boundary (where some variables are equal to zero).

Thus the integration of a total derivative gives, in general, some surface terms. These terms

are expressed via the integrals in simpler sectors (the integrals with some denominators

missing). Therefore, if we want to determine the master integrals in the given sector, we

can safely neglect these surface terms.

Baikov representation. So far we considered parametric representation (2.5) of the

multiloop integrals. Another representation for the multiloop integrals has been introduced

in ref. [18]. Let us fix the notation

sij = qi · qj ,

qi =

{
li, i 6 L

pi−L i > L

Then, the simplest way to derive the Baikov representation is to pass from the integration

over the loop momenta to the integration over

sij , 1 6 i 6 L, i 6 j 6 L+ E , (2.7)

as described in ref. [19]. The total number of new variables is N = L (L+ 1) /2 + LE.

Assuming that the denominators D1, . . . , DM in eq. (2.5) are linearly independent, we can

choose N −M irreducible numerators DM+1, . . . DN . The resulting formula reads

J (n) =
π(L−N)/2S

(E+1−d)/2
E

Γ [(d− E − L+ 1) /2, . . . , (d− E) /2]

×
∫  L∏

i=1

L+E∏
j=i

dsij

S(d−E−L−1)/2
N∏
α=1

D−nαα ,

where now n = (n1, . . . nN ) and nk>M < 0. The quantities S and SE have the form

S = det
{
sij |i,j=1...L+E

}
, SE = det

{
sij |i,j=L+1...L+E

}
.
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The functions Dα are linear functions of the variables (2.7), so that
∏L
i=1

∏L+E
j=i dsij ∝

dD1 . . . dDN . Thus, we have

J (n) ∝
∫ ( N∏

α=1

D−nαα dDα

)
P (d−E−L−1)/2,

where P (D1, . . . DN ) is obtained from S by expressing sij via D1, . . . DN . This represen-

tation is very similar to (2.5), except that now the variables D1, . . . , DM are raised to the

negative powers. Following the Baikov‘s original idea, we choose the contours of integration

over these variables as sufficiently small circles around the origin of the complex plane. In

fact, this choice of the contours corresponds to the maximal unitary cut of the integral. Af-

ter this prescription, the integrals in the subsectors are all vanishing. Taking the integrals

over D1, . . . , DM by residues, we are left with the integrals of the form

∫ ( N∏
α=M+1

D−nαα dDα

)
P

(d−I)/2
0 , (2.8)

where P0 (DM+1, . . . DN ) = P (0, . . . , 0, DM+1, . . . , DN ), and I is some integer number.

So, one can see that both the parametric and Baikov representations can be written

in the form depending on a single polynomial, G and P0, respectively.

3 Number of master integrals, basis of M -cycles and critical points

For definiteness, let us consider here the parametric representation. The integration-by-

part identities determine equivalence in the space of J (n), and master integrals represent

the basis in the quotient space, which is known to be finite dimensional [12]. Naturally,

the question about the number of master integrals arises. Due to the well-known duality

between the homology and cohomology groups, the dimensionality of this quotient space,

i.e., the number of master integrals, is equal to the number of independent “contours” of

integration, generating no surface terms (and providing the convergence of the integral).

The homology group of these cycles has been considered by Pham in refs. [10, 11] and is

equivalent to the relative homology HM

(
CM\Z,B

)
. Here CM\Z is a 2M -dimensional real

variety obtained from CM by removing algebraic variety Z =
{
z ∈ CM , G (z) = 0

}
and

B =
{
z ∈ CM , |G (z)| > B

}
(B > 0 is large enough) is a set of points in CM where |G (z)|

is large enough. The number of master integrals is the rank of HM

(
CM\Z,B

)
. In this

section we specify the correspondence between the basis cycles of HM

(
CM\Z,B

)
and the

critical points of the polynomial G. One of the consequences of this correspondence is the

equality of the number of master integrals and the sum of Milnor numbers of the proper

critical points (see definition below).

The above consideration is also valid for the Baikov representation with the replace-

ment G → P0. In ref. [20] a criterion of the existence of master integral in a given sector

has been formulated. In our notations, this criterion states, that if the polynomial P0 has

no proper critical points, there is no master integrals in the sector. It also states that
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Figure 1. Contour basis in the cut plane. Out of 5 contours Γ1, . . .Γ5 only 4 are independent, e.g.

Γ5 = −Γ1 − Γ2 − Γ3 − Γ4

the number of master integrals is bounded from below by the number of the nondegener-

ate isolated proper critical points of the polynomial P0. As far as it concerns the Baikov

representation, our counting recipe can be considered as a developement of ref. [20].

One-dimensional case. We consider the integral∫
dz zn−1

G (z)ν
, (3.1)

where G (z) is some polynomial of p-th degree of a single variable z. The integrand is

defined in the cut plane with cuts starting at zeros of G (z) and going to infinity. We want

to determine the number of independent contours of integration which do not give rise to

the surface terms. Obviously, for large enough positive ν those contours should start and

end at infinity, embracing one or more cuts. Of course, the result is known in advance:

this number is one less than the number of distinct zeros of the polynomial G (z). This

statement is demonstrated in figure 1. However, we would like to describe an approach

which can be generalized to the case of many variables.

Let z
(1)
0 , . . . , z

(k)
0 are distinct zeros of G with degeneracies p(1), . . . , p(k), so that∑

i p
(i) = p. Then, obviously, z

(i)
0 is also zero of ∂zG with degeneracy p(i) − 1 if p(i) > 1. If

z
(i)
0 is not degenerate (p(i) = 1), then necessarily ∂zG

(
z
(i)
0

)
6= 0. Then, out of p−1 zeros of

∂zG (called critical points of G in what follows) there are exactly p−1−
∑

i

(
p(i) − 1

)
= k−1

critical points which are not zeros of G. In what follows we will call them proper critical

points. So, the number of independent contours is equal to the number of proper critical

points of G (including degeneracy). This simple observation hints to a deep connection

between independent contours and proper critical points.
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Figure 2. Saddle-point contours Γ+

(
z(i)
)

and Γ−
(
z(i)
)

in the cut plane (respectively, solid and

dashed curves with arrows).

To reveal this connection, let us assume that all proper critical points z(1), . . . z(k−1) are

non-degenerate and all critical phases φ(i) = argG
(
z(i)
)

are distinct. Let us first consider

the curves in the complex plane of z defined by the condition argG (z) = φ, where φ is

some noncritical phase. From the Cauchy-Riemann condition, these curves are gradient

flow curves of h (z) = ln |G (z)|. For given φ one can draw such a curve starting from

each zero and going to infinity. These curves provide a natural choice for the cuts. Let us

now consider the curves defined by the condition argG (z) = φ(i), where φ(i) is the critical

phase. The corresponding critical point zi is a saddle point of h (z), i.e. it is an intersection

of the curves of the steepest descent Γ−
(
z(i)
)

and of the steepest ascent Γ+

(
z(i)
)
. The

curve Γ−
(
z(i)
)

obviously ends at zeros, while Γ+

(
z(i)
)

is going to infinity never passing

through zero. Let us consider a superposition Γ =
∑
ciΓ+

(
z(i)
)
. The integer coefficient ci

is equal to the intersection index of Γ with the contour Γ−
(
z(i)
)

for a suitable choice of the

orientation of Γ±
(
z(i)
)
. The intersection index is topological invariant, i.e., it can not be

changed by continuous deformations (in the cut plane). Therefore, Γ ∼ 0 (is contractible)

only when all ci are zero, which means that the contours

Γ1 = Γ+

(
z(1)
)
, . . . ,Γk−1 = Γ+

(
z(k−1)

)
are independent. In one-dimensional case the completeness of this set is obvious and

therefore this system forms a basis. Note that for negative ν the basis of contours can be

chosen as the set of Γ−
(
z(i)
)
.

Multidimensional case. Let us now briefly consider the multidimensional case. We

have the integral (3.1), where now z = (z1, . . . , zM ) and dzzn−1 = dz1z
n1−1
1 . . . dzMz

n1−1
M .

We want to determine the number of independent multidimensional “contours” of integra-

tion which are M -cycles in CM space.

– 6 –
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Zeros of G (z) are no more isolated points, but hypersurfaces of M −1 complex dimen-

sions. Remarkably, the solution of M complex equations for gradient ∂G/∂zα = 0 consists,

in non-degenerate case, of some isolated points, which we again call critical points of G (z).

We consider non-degenerate case in the following sense:

1. There is a finite number of proper critical points z(1), . . . , z(k−1) defined as the solu-

tions of

∂G/∂zα = 0, α = 1, . . . , N

G (z) 6= 0 (3.2)

2. The Hessian matrix ∂2G
∂zα∂zβ

(
z(i)
)

at each critical point is invertible.

3. The critical phases φ(i) = argG
(
z(i)
)

are all distinct.

Now the consideration of the previous subsection can be easily generalized. We can follow

a usual construction of Morse theory using h (z) = ln |G (z)| as a Morse function and xα =

<zα, yα = =zα as coordinates. The Morse theory is formulated for a Riemannian manifold,

which in our case has a flat metrics. Then the gradient flow equations have the form

dxα
dt

=
∂h

∂xα
, (3.3)

dyα
dt

=
∂h

∂yα
.

This system can be written in the form

dzα
dt

=
∂h

∂z̄α
. (3.4)

We determine Γ±
(
z(i)
)

as the union of the trajectories of eqs. (3.4) subject to the condition

z (t)
t→∓∞−→ z(i). The varieties Γ±

(
z(i)
)

are nothing but the Lefschetz thimbles [11, 13], see

also ref. [14]. Due to Cauchy-Riemann conditions, the phase of G (z) on Γ±
(
z(i)
)

remains

constant and is equal to φi, so that the contours Γ+

(
z(i)
)

and Γ−
(
z(j)
)

intersect only for

i = j. Then the independence of Γ+

(
z(i)
)

can be proved in the same way as in 1d case.

In fact, it is known, that Lefschetz thimbles constitute the basis of the relative homology

HM

(
CM\Z,B

)
, see ref. [11]. In particular, it means that the rank of the relative homology

group is equal to the number of critical points if conditions 1-3 are satisfied.

If the conditions 2,3 are not fulfilled for G, we can perform a small perturbations

G (z)→ Gε (z) = G (z) + εg (z), where g (z) is some suitable polynomial and consider only

those critical points of Gε (z), which are close to z(i). The number of the critical points of

Gε (z) in the vicinity of z(i) is the “multiplicity” of z(i), an invariant called Milnor number

of G (z) at z = z(i), see, e.g. ref. [15]. So, we come to the following conclusion: If G (z)

has only isolated proper critical points, the number of independent contours of integration

(M -cycles) is equal to the sum of Milnor numbers of the proper critical points of G (z).

Zeros of the polynomial G are the branching points of the integrand in eq. (2.5). The

cuts can be chosen as (2M − 1) real dimensional variety Cφ determined by the condition

– 7 –
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argG (z) = φ, where φ is a fixed noncritical value of the phase. Note that the contours

Γ+

(
z(i)
)

do not intersect the cuts.

Let us consider now the case when G (z) has non-isolated proper critical points. It

means that the set of points, where eq. (3.2) is satisfied, forms a critical variety of dimension

≥ 1. In practical applications, as illustrated in section 5, non-isolated proper critical points

are rather rare. In this case one can still construct the basis of M -cycles, but it requires

somewhat more work. The solution of eq. (3.2) is a union of several algebraic varieties

— the irreducible parts. Some of these irreducible parts may be isolated points, and they

should be treated as explained above.

Let V be an irreducible component of dimension s > 0. In order to construct the

M -cycles passing through V one has to consider the compact s-cycles of V (the elements

of the middle homology group). For each s-cycle from the basis of this homology group

one has to consider the union of upward gradient flow lines Γ+ starting on the points of

that cycle. For each point of the cycle, these lines form a variety of dimension M − s.
Altogether, these lines form the M -cycle, a member of the basis we are looking for. This

consideration assumes non-degeneracy of V. However, it can happen, that the critical

variety V is degenerate, that is the Hessian matrix has zero modes which are not tangent

to V. In this case there are several M -cycles per each s-cycle. To sum up, the number

of the independent M -cycles is equal to the sum of Milnor numbers of isolated proper

critical points plus the number of independent s-cycles, on the s-dimensional components

(s > 0) of the critical set (counted with multiplicity, if the component is degenerate). Let

us iterate, that in the applications to multiloop integrals the non-isolated critical points

appear very rarely, and the more so do the degenerate non-isolated critical points.

In conclusion of this section we note that similar ideas appeared earlier in refs. [16, 17].

The difference with our approach is that in refs. [16, 17] the critical points of Symanzik

polynomials U and F were studied separately. These points tend to be non-isolated, which

makes their treatment more difficult. In order to apply this approach to counting the master

integrals, it is necessary to consider the critical points of the map (U , F ): CM → C2, with

the additional condition U = 1. It can be shown that this approach, up to some details, is

equivalent to one presented above.

Pedagogical example. From the above consideration it follows that we can count the

number of master integrals in a given sector by counting the number of proper critical

points (accounting for their possible multiplicity) of the polynomial F +U . As an example,

let us consider the following family of sunrise integrals

J (n1, n2, n3) =

∫
ddl1d

dl2(
iπd/2

)2 [l21 + 1
]−n1

[
l22 + 1

]−n2
[
(l1 + l2 − p)2 + 1

]−n3

– 8 –
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In[1]:= << LiteRed‘

In[2]:= Declare@8l1, l2, p<, VectorD;

SetDim@dD;

In[4]:= NewBasis@s2,

81 + sp@l1D, 1 + sp@l2D, 1 + sp@l1 + l2 - pD, sp@l1, pD, sp@l2, pD<, 8l1, l2<D;

GenerateIBP@

s2D

In[6]:= SolvejSector@js@s2, 1, 1, 1, 0, 0D, SR ® FalseD

Sector js@s2, 1, 1, 1, 0, 0D

Master integrals found: j@s2, 1, 1, 1, 0, 0D,

j@s2, 1, 1, 2, 0, 0D, j@s2, 1, 2, 1, 0, 0D, j@s2, 2, 1, 1, 0, 0D.

jRules@s2, 1, 1, 1, 0, 0D � reduction rules for the sector.

MIs@s2D � updated list of the masters.

Out[6]= 4

Figure 3. Finding reduction rules for J (n1, n2, n3) with LiteRed.

where ni ∈ N. Note that we need not introduce irreducible numerators. We have

J(n1, n2, n3) =

Γ (d/2)
∞∫∫∫
0

dz1z
n1−1
1 dz2z

n2−1
2 dz3z

n3−1
3 G−d/2

Γ (3d/2− n1 − n2 − n3, n1, n2, n3)
,

G = F + U = z1z2 + z1z3 + z2z3

+ z21z3 + z22z3 + z1z
2
2 + z1z

2
3 + z2z

2
3 + z21z2 +

(
p2 + 3

)
z1z2z3 .

The polynomial G has eight critical points (the solutions of ∇G = 0)

z(1)=−
(
p2 − 1, 1, 1

)
3 (p2 + 1)

, z(2)=−
(
1, p2 − 1, 1

)
3 (p2 + 1)

, z(3)=−
(
1, 1, p2 − 1

)
3 (p2 + 1)

, z(4)=−2 (1, 1, 1)

p2 + 9
,

z(5)=(0, 0,−1), z(6)=(0,−1, 0), z(7)=(−1, 0, 0), z(8)=(0, 0, 0)

of which the first four are proper. All four proper critical points z(1), . . . , z(4) are non-

degenerate, therefore there are four master integrals in this sector. Indeed, running the sim-

ple Mathematica program using LiteRed package, see figure 3 reveals four master integrals.

Note the option SR→ False, which forbids LiteRed to use symmetries of the integral

with respect to permutations of indices. If we used the default setting SR→ True instead,

LiteRed would clearly find only two independent integrals J (1, 1, 1) and J (2, 1, 1). It

is easy to account for the permutation symmetries also for critical points z(1), . . . , z(4).

Namely, there are two orbits of the permutation group acting on the critical points: {z(4)}
and {z(1), z(2), z(3)}. We see that the number of orbits gives the number of master integrals

with the account of symmetries.

In order to use the Baikov representation, we need to introduce two irreducible

numerators D4, D5. This can be done quite arbitrarily, provided that, together with
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D1 = l21 + 1, D2 = l22 + 1, D3 = (l1 + l2 − p)2 + 1, they form a complete basis. We choose

D4 = (l1 − p)2 , D5 = (l2 − p)2

We have

P0 =
D4D5

4

(
p2 − 3−D4 −D5

)
+

(
p2 + 1

)2
4

There are four critical points z(i) =
(
D

(i)
4 , D

(i)
5

)
:

z(1) = (0, 0) , z(2) =
(
0, p2 − 3

)
, z(3) =

(
p2 − 3, 0

)
, z(4) =

1

3

(
p2 − 3, p2 − 3

)
.

Each point is non-degenerate and proper, so we again conclude that there are 4 master

integrals if we neglect the symmetry relations.

The account of the symmetry relations is somewhat less obvious in this representa-

tion than in the parametric representation. The reason is that the numerators are trans-

formed one-to-many upon the symmetry, in contrast to the one-to-one transformation of

the denominators. Nevertheless, we can find the action of the symmetries on D4 and D5

from the corresponding mapping of loop momenta. In the linear subspace determined by

D1 = D2 = D3 = 0 they read

1.D4 → D4, D5 → D5

2.D4 → D5, D5 → D4

3.D4 → D4, D5 → p2 − 3−D4 −D5

4.D4 → D5, D5 → p2 − 3−D4 −D5

5.D4 → p2 − 3−D4 −D5, D5 → D5

6.D4 → p2 − 3−D4 −D5, D5 → D4

Now it is trivial to find the orbits of this symmetry group: they are {z(4)} and

{z(1), z(2), z(3)}. Therefore, we again conclude, that after the account of the symmetries,

there are two master integrals.

4 Algebraic treatment

There is a well-known correspondence between algebraic varieties and ideals in the polyno-

mial rings. Due to this correspondence, in order to find the sum of Milnor numbers of proper

critical points, one need not explicitly solve the polynomial system of equations (3.2). In-

stead, one may calculate the dimensionality of the quotient ring of the polynomial ideal we

will describe in a moment. If we were interested in the sum of Milnor numbers of all critical

points (including non-proper ones), we would choose Jacobian ideal, which is generated by

∂G/∂z1, . . . , ∂G/∂zM . The condition G 6= 0 can be taken into account by introducing an

extra variable z0 and considering the ideal

I = 〈∂G/∂z1, . . . , ∂G/∂zM , z0G− 1〉 . (4.1)

Choosing some monomial ordering and constructing the Groebner basis, we can determine

the set of irreducible monomials. Then the dimensionality of the quotient space is just the

number of those monomials.
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In[1]:= << Mint‘

In[2]:= Declare@8k1, k2, k3, k4, p<, VectorD;

sp@p, pD = 1;

In[4]:= Timing@CountMIs@8-sp@k1D, -sp@k2D, -sp@k3D,

-sp@k4D, 1 - sp@k1 + pD, 1 - sp@k1 + k2 + pD, 1 - sp@k1 + k2 + k3 + pD,

1 - sp@k2 + k3 + k4 + pD, 1 - sp@k3 + k4 + pD, 1 - sp@k4 + pD<, 8k1, k2, k3, k4<DD

Out[4]= 83.468750, 2<

Figure 4. Example of using Mint.

Symmetries. The above method gives us the number of master integrals without the

account of possible symmetry relations between them. In terms of the polynomial G, those

symmetries are such permutations of the variables z1, . . . zM , which leave G intact. They

form a permutation group P .

The most straightforward way to take those symmetries into account is the fol-

lowing. For each irreducible monomial m = zn1
1 zn2

2 . . . znMM and for each permutation

p = (p1, p2, . . . , pM ) ∈ P we construct and reduce with respect to I the polynomial

m − pm = zn1
1 zn2

2 . . . znMM − zn1
p1 z

n2
p2 . . . z

nM
pM

. Let us denote as r the number of linearly

independent remainders. Then, the number of the master integrals surviving the symme-

try relations is just the number of irreducible monomials minus r.

Non-isolated critical points. The existence of non-isolated proper critical points can be

easily seen as infinite dimensionality of the quotient ring of I. Then one needs to determine

the irreducible components of the critical set, together with their possible degeneracy.

This problem can be naturally solved with algebraic approach by performing the primary

decomposition of I, i.e., finding the decomposition

I =
⋂
Ii ,

where each Ii is a primary ideal corresponding to some irreducible component. If Ii
is also prime, the corresponding critical variety is non-degenerate. The number of

middle-dimensional cycles in this critical variety can be also determined by the algebraic

method (see next section), but the discussion of the most general case is beyond the scope

of this paper.

Mathematica package Mint. From the above consideration it follows, that, apart from

the case of non-isolated critical points, the problem of determination of the number of

independent M -cycles (equal to the number of master integrals) can be easily solved on

any modern computer algebra system. We have developed a simple Mathematica package

Mint, [21], which finds the number of the master integrals with a given set of denominators

if the proper critical points of the corresponding polynomial F +U are isolated. If it is not

the case, the program returns Indeterminate. The example of its usage is shown in figure 4

Note that, knowing the number M of master integrals (with account of symmetry) in a

given sector, one can select as masters almost any M integrals, provided that no two of
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In[5]:= Timing@FindMIs@8-sp@k1D, -sp@k2D, -sp@k3D,

-sp@k4D, 1 - sp@k1 + pD, 1 - sp@k1 + k2 + pD, 1 - sp@k1 + k2 + k3 + pD,

1 - sp@k2 + k3 + k4 + pD, 1 - sp@k3 + k4 + pD, 1 - sp@k4 + pD<, 8k1, k2, k3, k4<DD

Out[5]= 84.343750, 881, 1, 1, 1, 1, 1, 1, 1, 1, 1<, 82, 1, 1, 1, 1, 1, 1, 1, 1, 1<

Figure 5. Finding the master integrals with FindMIs.

In[1]:= << LiteRed‘

<< Mint‘

In[3]:= Declare@8k1, k2, k3, k4, p<, VectorD;

sp@p, pD = 1;

In[5]:= NewBasis@gnp,

8-2 sp@k1, k2D, -2 sp@k3, k4D, -2 sp@k2, k3D, -sp@k1D, -sp@k2D, -sp@k3D, -sp@k4D,

1 - sp@k1 + pD, 1 - sp@k1 + k2 + pD, 1 - sp@k1 + k2 + k3 + pD, 1 - sp@k1 + k2 + k3 + k4 + pD,

1 - sp@k2 + k3 + k4 + pD, 1 - sp@k3 + k4 + pD, 1 - sp@k4 + pD<, 8k1, k2, k3, k4<D;

In[6]:= CountMIs@js@gnp, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1DD

Out[6]= 2

In[7]:= FindMIs@js@gnp, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1DD

Out[7]= 8j@gnp, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1D,

j@gnp, 0, 0, 0, 2, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1

Figure 6. Example of using Mint together with LiteRed.

them are equal due to symmetry relation. The accidental linear dependency between them,

though may happen in principle, is very unlikely. The Mint package contains a procedure

FindMIs which suggests the simplest integrals which can be chosen as masters. Its output

is a list of multi-indices, corresponding to a possible choice of the master integrals, see

figure 5. If Mint is loaded after LiteRed, the procedures CountMIs and FindMIs can

be called directly for the sectors, see the example in figure 6

By default, the Mint package uses parametric representation to count the master in-

tegrals. If used with LiteRed, it can also rely on the Baikov representation. Presumably,

this approach should be useful for higher sectors, when the number of numerators is small.

The corresponding call of the procedures CountMIs and FindMIs should include op-

tion Method→ ”GramP”. Before this call, the LiteRed‘s procedure FindSymmetries

should be called in order to determine the symmetries of the numerators. We should notice

that both methods, the one based on parametric representation and the one based on the

Baikov representation worked equally effective for the complicated cases, such as the one

described in the next section. Moreover, the non-isolated critical points seem to appear

simultaneously in both approaches.

5 Example: 4-loop onshell g − 2 integrals

As a nontrivial example of the application of the above method, let us consider the family

of the integrals shown in figure 7.

– 12 –



J
H
E
P
1
1
(
2
0
1
3
)
1
6
5

n5

n1

n6

n2

n7

n3

n8

n4

n9 n10 n11

Figure 7. The family of integrals considered.

#15:1(1) #31:1(1) #55:1(1) #182:2(4) #342:1(4) #398:1(1) #428:1(1) #484:3(5) #908:1(1) #968:1(1) #1928:1(1)

#63:1(1) #119:1(1) #246:3(3) #350:2(3) #430:1(1) #462:1(1) #470:3(5) #486:1(1) #492:1(1) #813:4(5) #853:1(1)

#940:3(3) #970:2(3) #972:1(1) #1930:1(1) #1938:2(2) #1940:2(2) #1954:1(1) #127:1(1) #431:1(1) #446:1(1) #478:1(2)

#493:1(2) #494:1(1) #502:1(2) #829:2(2) #855:1(1) #861:1(1) #941:1(1) #956:1(1) #971:1(1) #973:1(1) #974:1(1)

#982:1(1) #986:1(1) #988:1(1) #1207:1(2) #1239:1(1) #1494:1(1) #1509:1(1) #1510:1(1) #1939:1(1) #1948:1(1) #1962:1(1)

#1993:1(1) #495:2(2) #510:2(2) #863:2(2) #975:2(3) #990:1(1) #1005:1(1) #1020:3(3) #1271:2(2) #1511:2(3) #1526:1(1)

#1963:1(1) #1965:1(1) #1966:1(1) #1973:1(1) #1974:1(1) #2005:1(1) #1967:2(2) #1975:1(1) #1979:1(1) #1981:1(1) #1982:2(2)

#2007:2(2) #2011:1(1) #2013:1(1) #2027:2(2) #1983:2(2) #2015:2(2) #2031:2(2) #2039:2(2) #2047:1(1)

Figure 8. Master integrals.

There are 261 nonzero nonequivalent sectors in this family. Application of our counting

method gives 84 sectors containing in total 119 master integrals. The graphs for each

sector, together with the number of master integrals, are shown in figure 8. The sectors

are numbered in the following way: for each sector its number is the string of indices of its

simplest integral understood as binary number. E.g., #350 = 001010111102 corresponds to

the integrals with denominators d3, d5, d7, d8, d9, d10. The label above each diagram should

be read as follows: #350 : 2(3) means that the sector #350 has 2 masters (3 masters) if

the symmetries are used (not used).

Treating non-isolated critical points. Almost for all nonzero nonequivalent sectors

the polynomials G = F + U have isolated proper critical points. Out of 261 sectors there

are 7 exceptions: sectors #246, #350, #414, #429, #821, #924, and #969. In each case

there is a 1-dimensional critical variety. Let us explain how we determined the number of

independent M -cycles for these cases on the example of sector #350. For this sector we
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have

G = F + U = (z2356 + 1) (y1235 + y1236 + y1256 + y1356 + y2356)

+ z4z25 (z23456 + 1) (y13 + y16 + y36) ,

where we have used the abbreviations zij...k = zi + zj + . . . zk, yij...k = zizj . . . zk. The

quotient algebra for the ideal I, eq. (4.1), is infinite dimensional, which indicates non-

isolated critical points. Then we calculate the primary decomposition of I, e.g., by using

Sage [22]. We have

I = I1 ∩ I2,

where

I1 =
〈
5z5 + 1, 5z4 + 1, 5z3 + 5z6 + 1, 5z2 + 1, 5z1 − 1, 4z0 + 3125, 25z26 + 5z6 − 1

〉
,

I2 = 〈10z6 + 3, 10z3 + 3, 5z2 + 5z5 + 1, 20z1 − 3, 27z0 + 50000,

100z24 + 100z25 + 20z4 + 20z5 − 3
〉
.

Both ideals are prime. The quotient space of the first ideal is 2-dimensional, in accordance

with the fact, that the corresponding polynomial system has two solutions:

z(1) =
1

5
(1,−1, 1/ϕ,−1,−1,−ϕ) ,

z(2) =
1

5
(1,−1,−ϕ,−1,−1, 1/ϕ) ,

where ϕ =
(√

5 + 1
)
/2. The quotient space of I2 is infinite dimensional. The middle

homology of the algebraic variety determined by I2 obviously coincides with that of the

variety in C2 determined by the equation G̃ (z4, z5) = 0, where

G̃ (z4, z5) = 100z24 + 100z25 + 20z4 + 20z5 − 3 .

Remarkably, the basis of this homology can be found by exactly the same method that

we used before, see, e.g. [15]. In fact, the homology basis is formed by the cycles (called

the vanishing cycles) which are the intersection of the Lefschetz thimbles with the variety

determined by G̃ (z4, z5) = 0. We simply calculate the dimensionality of the quotient space

of the ideal

Ĩ = 〈∂G̃/∂z4, ∂G̃/∂z5, z0G̃− 1〉 .

This dimensionality is equal to 1, which corresponds to one solution

z̃(3) = − 1

10
(1, 1) .

In total we have two M -cycles passing through z(1) and z(2) and one M -cycle passing

through the algebraic variety, corresponding to I2. Therefore, before taking the symmetry

into account, there are 3 independent M -cycles, which corresponds to 3 master integrals.

The symmetry of the integral z3 ↔ z6 results in z(1) ↔ z(2) , therefore, the two contours

passing through z(1) and z(2) are symmetry equivalent. Thus, the account of symmetry

relations leaves us with 2 master integrals.
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6 Conclusion

We have shown that the number of master integrals with a given set of denominators can

be determined by examining the critical set of the polynomial G = U +F , where U and F

are two Symanzik polynomials entering the parametric representation. Alternatively, one

can consider critical set of the polynomial P (D1 = 0, . . . DM = 0, DM+1, . . . DN ) entering

Baikov representation. In the case of isolated proper critical points, the number of master

integrals is just the number of proper critical points counted with multiplicity. This equality

follows from the construction of the independent integration contours as Lefschetz thimbles

attached to the critical points. It seems that this geometrical construction should have some

other applications beyond a simple counting of the master integrals. We have presented a

simple Mathematica package Mint which automatically finds the number of master integrals

with a given set of denominators.
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