
J
H
E
P
1
1
(
2
0
1
3
)
1
3
9

Published for SISSA by Springer

Received: October 30, 2013

Accepted: November 6, 2013

Published: November 18, 2013

Self-completeness and the generalized uncertainty

principle

Maximiliano Isi,a Jonas Mureikaa and Piero Nicolinib,c

aDepartment of Physics, Loyola Marymount University,

Los Angeles, CA 90045-2659, U.S.A.
bFrankfurt Institute for Advanced Studies,

Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main, Germany
cInstitut für Theoretische Physik, J.W. Goethe-Universität,

Max-von-Laue-Strasse 1, 60438 Frankfurt am Main, Germany

E-mail: misi@lion.lmu.edu, jmureika@lmu.edu,

nicolini@fias.uni-frankfurt.de

Abstract: The generalized uncertainty principle discloses a self-complete characteristic

of gravity, namely the possibility of masking any curvature singularity behind an event

horizon as a result of matter compression at the Planck scale. In this paper we extend the

above reasoning in order to overcome some current limitations to the framework, including

the absence of a consistent metric describing such Planck-scale black holes. We implement

a minimum-size black hole in terms of the extremal configuration of a neutral non-rotating

metric, which we derived by mimicking the effects of the generalized uncertainty principle

via a short scale modified version of Einstein gravity. In such a way, we find a self-

consistent scenario that reconciles the self-complete character of gravity and the generalized

uncertainty principle.

Keywords: Models of Quantum Gravity, Black Holes

c© SISSA 2013 doi:10.1007/JHEP11(2013)139

mailto:misi@lion.lmu.edu
mailto:jmureika@lmu.edu
mailto:nicolini@fias.uni-frankfurt.de
http://dx.doi.org/10.1007/JHEP11(2013)139


J
H
E
P
1
1
(
2
0
1
3
)
1
3
9

Contents

1 Introduction 1

2 Generalized uncertainty principle 4

3 Self-completeness 9

3.1 Wavelength correction 11

4 Conclusions 13

1 Introduction

It is a foregone conclusion that our classical understanding of gravitation is not applicable

in the quantum regime. A number of resolutions to this inadequacy involving modifications

to spacetime structure have been proposed, including string inspired models and spin-loop

networks. A noted feature that has gained much traction over the last decade is the

necessity of a minimal length scale that sets the quantum gravity threshold. This provides

a natural platform for self-regularization of quantum field theories [1], and furthermore

allows for quantum gravity to be realizable in (3 + 1)-dimensions.

Along these lines, it has been shown [2–5] that gravity may be considered self-complete,

in the sense that there exists a minimum horizon scale hiding curvature singularities. Specif-

ically, this distance is defined by the confluence of the classical Schwarzschild radius rH
and the Compton wavelength λC,

rH = λC =⇒ 2GMBH

c2
=

h

cMBH

. (1.1)

This gives the mass of the lightest black hole

MBH ≥
√

hc

2G
=
√
πMP (1.2)

and, at the same time, the mass of heaviest quantum mechanical particle. As a result

the Planck scale MP =
√

~c/G corresponds to the energy at which matter undergoes a

transition from a particle phase to a black hole one. By looking at the corresponding length

scale, one learns that the Planck length ℓP ≡ M−1
P is the minimal size for both particles

and black holes, which makes ℓP the smallest resolvable scale. From this perspective, the

sub-Planckian world is dominated by light objects described by quantum mechanics, while

the trans-Planckian world is dominated by classical objects described by GR.

The essence of self-completeness is also encoded in the generalized uncertainty principle

(GUP). A simple way to understand the GUP is by considering a light pulse traveling some
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Figure 1. Length vs. mass for standard Schwarzschild solution. The Compton wavelength (red)

and horizon radius (blue) curves intersect at M =
√
πMP, l = 2

√
πℓP (dot). Equation (1.3) ap-

proximates the behavior of both these curves (gray). The shaded area is excluded from experiment,

while sub-planckian black holes are allowed.

distance l. The physical measurement of l is affected by an uncertainty ∆lw ∼ λ, where λ

is the wavelength of the photon.

The energy associated with the light pulse can, however, distort the background space-

time. The measure of l will correspondingly change by an amount ∆lg ∼ l(|φ|/c2), where
φ is the Newton potential due to a photon of energy ∼ ~ν, and c is the speed of light. As

a result of the above additional uncertainty, one can conclude that the total uncertainty

of l is given by ∆l ∼ ∆lw + ∆lg ∼ λ + ℓ2P/λ. Such a relation can be derived in several

additional Gedankenexperimente [6–12] and is corroborated by string theory [13–15]. One

can additionally extend this line of reasoning to generic particles of mass M to get

∆x ∼ ~

Mc
+

GM

c2
(1.3)

where ∆x is the position uncertainty (see figure 1). By minimizing the above expression

with respect to the mass, one discovers that the Planck length is again the minimal achiev-

able length scale and that it clearly separates particles (whose size is governed by the Comp-

ton wavelength ∼ ~/Mc) from black holes (whose size is governed by the Schwarzschild

radius ∼ GM/c2).

The fact that black holes cannot be smaller than the Planck length and accordingly

cannot be lighter than the Planck mass has repercussions on their emission spectra. The

Hawking temperature can be obtained in terms of the energy of the emitted particles

as T ∼ Mc2. By assuming in the vicinity of the black hole the uncertainty relation

M ∼ ~/c∆x with ∆x ∼ GM/c2, one can readily reproduce the Hawking result. Taking
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Figure 2. Black hole temperature vs. radius in a GUP framework (solid red) eq. (1.4) and Hawking

temperature for a regular Schwarzschild black hole (dashed gray). The presence of a hot remnant

is indicated by a red dot.

into consideration the relation (1.3), however, the Hawking temperature turns out to be

T ∼ ~c

2π

(

∆x

ℓ2P

)

(

1±
√

1− ℓ2P
∆x2

)

. (1.4)

The above equation reproduces the Hawking result in the limit ∆x ≫ ℓP if the negative

sign is chosen. Equation (1.4) shows relevant modifications when approaching scales ∼ ℓP
and implies the existence of hot Planck scale black hole remnants, as shown in figure 2 [16].

Despite its virtues, the above analysis is handicapped by several weak points. For

instance, we implicitly assume that quantum gravity effects can be treated semi-classically

at scales on the order of the Planck length. On the contrary, one expects that deviations

from the classical Schwarzschild radius should occur before the Planck scale, i.e. when one

reaches energies. MP. This possibility is supported by the inadequacy of the Schwarzschild

metric as an accurate description of the sub-Planckian spacetime.

In the particle phase, i.e. at energies < MP, matter is not sufficiently compressed

to collapse into a black hole. The Schwarzschild metric, however, allows for black holes

of any mass and size — even for MBH < MP and rH < ℓP — in sharp contrast to the

aforementioned self-complete character of gravity. Such limitations of the Schwarzschild

metric become more severe by noting that the temperature (1.4) cannot be derived by its

surface gravity or from that of any known black hole solution of GR.

The GUP additionally introduces an ambiguity of the sign in eq. (1.4), whose posi-

tive sign choice has no physical meaning. Lastly, the resulting black hole remnants have

been conjectured as a natural cold dark matter component. As mentioned above, these
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“remnants” do not have a vanishing temperature, as one would expect, but a Planckian

temperature. These issues consequently cast doubts about the stability of such black hole

remnants. By inspecting the heat capacity associated with eq. (1.4), i.e., C = dM/dT , one

finds that it is negative and asymptotically vanishes for rH → ℓP. This means that the

system is suffering from the equivalent instabilities of conventional black hole evaporation.

The emission persists as a runaway divergent process up to the Planckian regime. When

MBH ∼ T ∼ MP, however, the Schwarzschild metric cannot longer describe the system

“black hole + radiation” due to relevant quantum back reaction on the metric itself.

A viable solution to the above problems is offered by those families of quantum grav-

ity improved black hole metrics that admit an extremal configuration even in the neu-

tral, non-rotating case. Such metrics are inspired by a variety of formulations, includ-

ing non-commutative geometry (NCG) [17–19], non-local gravity [20, 21], asymptotically-

safe gravity [22], loop quantum gravity [23–26], vector ungravity [27] and Bardeen-like,

short scale, quantum gravity effects [28, 29]. The degeneracy of the horizon allows for a

minimum-size extremal black hole and lets one circumvent the above inconsistencies of the

Schwarzschild metric.

As a by-product, the self-complete character of gravity is preserved in the case of

black hole decay through Hawking emission. Contrary to the Schwarzschild metric, in

which the curvature singularity can be exposed in the final stage of the evaporation, ex-

tremal configurations are zero temperature black holes also stable evaporation remnants. In

this spirit, NCG-inspired black holes have been exploited to improve the self-completeness

paradigm [30]. More recently, a Schwarzschild-like self-complete metric admitting hori-

zon extremisation has been derived solely in the realm of GR without invoking additional

principles like NCG, GUP, etc. [31]. In addition, such a new metric can pave the way

to a solution of the recently-uncovered incompatibility between self-completeness and an-

other widely expected character of quantum gravity, namely the spontaneous dimensional

reduction of spacetime at the Planck scale [32].

In this paper, we further the above line of research and reconcile the ideas of GUP

with the self-complete character of gravity in a consistent way. Rather than considering

wavelength corrections as in (1.3), we follow the route of implementing a minimal resolu-

tion length
√
β at the level of canonical commutators. Taking advantage of the resulting

modifications of integration measures in momentum space, we derive a non-local version

of the Schwarzschild geometry. We then exploit the properties of this new metric to draw

further conclusions about self-completeness and GUP with special attention to resulting

corrections at the Planck scale.

2 Generalized uncertainty principle

In regular quantum mechanics, the cannonical commutator,

[x,p] = i~ , (2.1)

results in Heisenberg’s well-known uncertainty relation between position and momentum

∆x∆p ≥ ~

2
. (2.2)

– 4 –
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However, if additional momentum dependent terms are added to eq. (2.1),

[xi,pj ] = iδij~(1 + βp2) , (2.3)

(β > 0) this will result in a modified uncertainty relation of the form

∆x∆p ≥ ~

2

(

1 + β(∆p)2
)

. (2.4)

Such modification is known in the literature as the GUP. In turn, eq. (2.4) introduces a

non-zero commutation between the coordinate operators

[xi,xj ] = 2i~β (pixj − pjxi) . (2.5)

Because this commutator is non-vanishing unless β = 0, the GUP introduces a non-zero

minimal uncertainty in position, which translates into the existence of a minimal length√
β (for recent reviews on the huge literature in this field see [33, 34]). This implies that

position eigenstates cannot exist and it is necessary to work with momentum eigenstates

or limit ourselves to minimal-uncertainty position states [1]. Furthermore, this results in a

momentum integration measure
∫

dnp

1 + β~p2
|p〉〈p| = 1 , (2.6)

which presents a UV cutoff of
√
β, where n is the Euclidean space dimension [1].

GUP approaches have found a myriad of applications in high energy physics and quan-

tum systems, including quantum field theory [35, 36], gauge theories [37], cosmology [38, 39]

and particle physics [40]. Applications to black hole thermodynamics are of particular in-

terest in the present context, and the interested reader is referred to [8, 10, 41–48] and

references therein.

For our purposes, the implementation of GUP effects in the gravitational field requires

certain discussion [21]. The suppression of the UV sector corresponds to a non-local defor-

mation of the integration measure due to the action of a infinite number of derivative terms.

As a result, GUP deformations can be encoded in non-local gravity actions. Such actions

have been proposed with the goal of formulating a perturbative, super-renormalizable, UV

finite approach to quantum gravity. In [49, 50], the following non-local Lagrangian has

been proposed:

LG =
√−g

{

β

κ2
R− β2

(

RµνR
µν − 1

3
R2

)

+ β0R
2 + λ̃

+

(

Rµν h2

(

− �̃

Λ2

)

Rµν − 1

3
Rh2

(

− �̃

Λ2

)

R

)

−Rh0(−
�̃

Λ2
)R

}

− 1

2ξ
fµ[g]w

(

− ∇
2

Λ2

)

fµ[g] + c̄µMµνc
ν , (2.7)

where �̃ = ∇µ∇µ and ∇2 respectively denote the covariant and ordinary D’Alembertian,

fµ[g] is the gauge-fixing function with gauge-term weight w, c̄µMµνc
ν is the Faddeev-

Popov term, κ2 = 16πG, Λ is some energy scale, λ̃ is the cosmological constant and h0,
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h2 are non-polynomial entire functions. The theory has been recently re-proposed in [51]

and applied to massive gravity [52], the Starobinksi model [53] and to resolve the initial

cosmological singularity [54]. A complementary formulation leading to the most general

covariant, ghost-free gravitational action has been presented in [55].

Gravitation is widely expected to be asymptotically-safe [60]. This implies that, at

the fixed point of the theory, interaction terms turn out to be negligible. One can, as a

result, employ truncated versions of the Lagrangian (2.7) and derive the corresponding

field equations by considering just the effects of the modified propagator [56–59]. From

functional variation of the total action

S = SG + SM , (2.8)

one finds

A2(�)

(

Rµν −
1

2
gµνR

)

= 8πGTµν , (2.9)

where A(�) is a non-polynomial entire function (deriving from h0 and h2) of the dimen-

sionless generally covariant D’Alambertian operator, � = ℓ2gµν∇µ∇ν , with ℓ ≡ 1/Λ.

Following [21], the above equations can be cast in a more familiar form as

Rµν −
1

2
gµνR = 8πGTµν , (2.10)

with Tµν ≡ A−2(�)Tµν . In such a form, non-local effects are encoded into a non-standard

source term couple to ordinary Einstein gravity. In the case of a static, spherically symmet-

ric source, the conventional energy-momentum tensor displays an energy density peaked

at the origin [27, 61], i.e.,

T 0
0 = − M

4πr2
δ(r) , (2.11)

where δ(r) is the Dirac delta function. The line element solving (2.10) will be static and

spherically symmetric as usual:

ds2 = −f(r)dt2 + f−1(r)dr2 + r2dΩ2, (2.12)

f(r) = 1− 2GM(r)

r
, (2.13)

with the unknown functionM(r),

M(r) = −4π
∫ r

0

dr′r′2 T 0
0 , (2.14)

accounting for all non-local effects and necessarily satisfyingM(r)→M for r ≫ ℓ, where

M is total mass-energy of the system.

In order to find M(r), it is necessary to choose a particular A(�). Unfortunately,

there is to date no experimental information about quantum gravity and we possess no

experimental restrictions on A. We can nevertheless postulate the profile of the cuf-off

function by invoking some reasonable physical principle. Along this line of reasoning, one

can model the effect of the GUP by requiring the action of A−2 on T 0
0 to be given by

A−2(�)δ(~x) = (2π)−3

∫

d3p

1 + β~p2
ei~x·~p , (2.15)

– 6 –
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where ~x are free-falling, Cartesian-like coordinates, provided that β = ℓ2. From (2.15) it

follows that the profile of A must be

A(�) = (1−�)1/2 . (2.16)

By means of the Schwinger representation, the exponentiation of a generic differential

operator ∆̂ can be written as

∆̂α =
1

Γ(−α)

∞
∫

0

ds s−α−1 e−s∆̂ . (2.17)

As a consequence, by setting ∆̂ = 1−� and α = 1/2, one can represent A as

(1−�)1/2 = − 1

2
√
π

∞
∫

0

ds s−3/2 e−ses�. (2.18)

The above expression reconciles the GUP and non-local gravity: it is evident that A acts as

a non-polynomial entire function. Accordingly, A−2 can be obtained from the case α = −1.
It is now straightforward to compute the energy density by applying the operator on

the standard stress-energy tensor:

T 0
0 = −MA−2(�)δ(~x) = −M

β

e−|~x|/
√
β

4π|~x| . (2.19)

Finally, integrating (2.19) we find

M(r)/M = 1− e−r/
√
β − (r/

√

β)e−r/
√
β , (2.20)

which means, by substitution in (2.12), that the GUP inspired metric is given by

ds2 = −
(

1− 2
GM

c2r
γ
(

2; r/
√

β
)

)

dt2 −
(

1− 2
GM

c2r
γ
(

2; r/
√

β
)

)−1

dr2 + r2dΩ2 (2.21)

where γ(s;x) =
∫ x
0
ts−1e−tdt is the lower incomplete gamma function. The spacetime (2.21)

matches the Schwarzschild metric at large distances, (r ≫
√
β). However the horizon

structure is different. The corresponding metric coefficient is shown in figure 3.

By studying the horizon equation g−1
rr = 0 we can distinguish three cases depending

on the value of the total mass M with respect to a mass scale M0:

i) for MBH = M > M0 we have two horizons r±. In the limit when M ≫M0, the outer

radius coincides with the standard value (r+ → 2GM/c2), while the inner one vanishes

(r− → 0);

ii) for MBH = M = M0 the two horizons coalesce into a single degenerate horizon r+ =

r− = r0, corresponding to an extremal black hole solution;

iii) forM < M0 the horizon equation cannot be solved and one has a horizon-less geometry.

– 7 –
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Figure 3. Metric coefficient for GUP metric (2.21) with
√
β = 1.45ℓP. Notice naked singularity,

extremal and regular black hole cases. The Schwarzschild (SBH) case for M = 5MP is showed

for comparison. The minimum of the extremal case takes place at M0 ≈ 1.67
√
βc2/G and a

r0 ≈ 1.79
√
β for all values of β.

Note that the extremal configuration has a mass M0 ≈ 1.66
√
βc2/G and a radius r0 ≈

1.73
√
β (figure 3). Finally, at short scale, r ≈ 0, the curvature singularity is softened but

persists. This means that the vacuum energy associated to the virtual graviton exchange is

divergent or, in other words, that the graviton propagator is not UV finite. One can verify

this by looking at the short scale behavior of the energy density in (2.19): GUP effects can

spread the Dirac into a distribution that is less pathological but still divergent as r−1. We

note that an unpleasant drawback of this is the exposure of the (naked) singularity in the

horizon-less geometry case (M < M0).

The above results do not come as a surprise. The UV finiteness of any non-local

theory like that in (2.7) is guaranteed at any order only for a certain degree of convergence

of the entire function A. According to the definition given in [62, 63], such a global

convergence occurs for entire functions of order higher than 1/2. As an example, NCG

inspired black holes [17–19, 64–69] and the associated quantum field theory [70–72] are

non-local formulations employing such a kind of entire function [20]. At the level of free

fields the convergence is achieved also in the case of order 1/2. However, one can show

that the GUP is represented by an entire function (2.15) of order lower than 1/2, de facto

failing to improve the classical spacetime geometry [21]. For a full analysis of the geometry

and the thermodynamics of the solution (2.21) see [21].

Despite the fact that the GUP inspired gravity fails to be UV finite, we wonder whether

it may be at least self-complete, i.e. whether it is “always” able to mask this bad short-

distance behaviour behind an event horizon. If this were the case also the previously raised

issue of the naked singularity would turn to be circumvented.
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3 Self-completeness

The metric (2.21) is an important step forward en route to a reconciliation between GUP

and self-completeness. The presence of an extremal configuration naturally prevents the

existence of black holes smaller than r0. Furthermore, in the case of Hawking emission the

usual black hole temperature definition T = κ/2π, where κ is the surface gravity of the

metric (2.21), gives

T =
~c

4πr+

(

1− r2+
β

e−r+/
√
β

γ(2; r/
√
β)

)

. (3.1)

This temperature improves the result in (1.4), which cannot be associated to any surface

gravity. (3.1) possesses a zero for a finite, positive value of r+. Such a zero implies the

existence of an evaporation remnant and has to coincide with the radius r0 of the extremal

configuration according to a general property of the horizon extremisation. This is a first

step in the direction of self-completeness: one cannot probe the curvature singularity during

the process of black hole decay.

We notice that such an evaporation end-point exhibits intriguing new properties. At

r+ = rmax ≈ 4.20
√
β the temperature admits a maximum Tmax ≡ T (rmax) ≈ 1.35 ×

10−2
~c/
√
β. This fact has important repercussions for the stability of the evaporation

remnant. By examining the form of the heat capacity

C =
∂M

∂r+

(

∂T

∂r+

)−1

one can distinguish three regimes: C < 0 for r+ > rmax, C → ±∞ for r+ → (rmax)∓ and

C > 0 for r0 < r+ < rmax. The profile of C is controlled by the derivative of the temperature

(sign and extremal points), being ∂M/∂r+0 positive and finite for r+ > r0 (see figure 4).

From the above analysis one can conclude that, at the maximum temperature Tmax, the

system undergoes a transition from an unstable negative heat capacity phase to a stable

positive heat capacity cooling down towards a cold extremal configuration. The latter is

characterized by both vanishing temperature and vanishing heat capacity (∂M/∂r+ = 0

for r+ = r0) becoming a reliable candidate for cold dark matter component. We stress that

during the process no relevant quantum back reaction occurs and no further short scale

corrections have to be taken into account for the metric (2.21). This can be seen by noting

that T ≪MBH during all the evaporation, being T/MBH < Tmax/M0 ≈ 8.06×10−3G~/(βc).

To prove that the above scenario correctly describes the self-complete character of

gravity, however, we need to show how the transition “particle ↔ black hole” takes place.

Following the prescription outlined in [30], we start by deriving the radius of the

extremal configuration. From the horizon condition 1/grr = 0 one can define the mass

parameter M as a function of the radius r+,

M ≡MBH(r+) =
c2

2G

r+

γ(2; r+/
√
β)

. (3.2)

– 9 –
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Figure 4. New GUP black hole temperature eq. (3.1) for
√
β = 1.45ℓP (solid blue) and the

regular Hawking temperature (dashed gray). The black hole achieves a maximum temparture

Tmax ≈ 9.34× 10−3TP at rmax ≈ 4.20
√
β. Unlike the old GUP temperature (cf. figure 2), our new

solution yields a cold remnant (blue dot).

The minimum of this function can be calculated by considering dM(r+)/dr+ = 0, whose

solution r0, given by

γ(2; r0/
√

β)−
(

r0√
β

)2

e−r0/
√
β = 0, (3.3)

identifies the radius of the extremal configuration for which the temperature (3.1) vanishes

as expected.

Black holes can have radii r+ ≥ r0, while at shorter scales the horizon equation has no

solutions. That is: for r+ ≤ r0 only quantum mechanical particles can exist. As a result,

we assume that r0 is the transition point between the two aforementioned phases. This

fact is summarized in a the condition

h

cM0
= r0. (3.4)

where M0 ≡ MBH(r0). We note that eq. (3.3) is independent of the parameter β and can

be solved in terms of the dimensionless quantity x0 ≡ r0/
√
β. This allows us to fix the

value of the parameter β in order to fulfil eq. (3.4) as

β = 4π
γ(2;x0)

x20
ℓ2P. (3.5)

By introducing the dimensionless quantity m0 ≡ M0G/
√
βc2, one can write the above

relation as β = (2π/x0m0)ℓ
2
P. Accordingly we obtain

r0 =

√

2πx0
m0

ℓP M0 =

√

2πm0

x0
MP. (3.6)

– 10 –



J
H
E
P
1
1
(
2
0
1
3
)
1
3
9

1 2 3 4 5
Mass HMPL

2

4

6

8

10

Length H{PL

Figure 5. Plot of length vs. mass including new GUP corrections for
√
β ≈ 1.45ℓP. The Compton

wavelength (red) and horizon radius (blue) curves intersect at (M0, r0), marked by a dot. The

shaded area is excluded from experiment, meaning there can never be an exposed singularity.

Recalling that numerical estimates give x0 ≈ 1.79 and m0 ≈ 1.68, we obtain
√
β ≈ 1.45ℓP,

r0 ≈ 2.59ℓP and M0 ≈ 2.42MP (see figure 5).

From here on, we can promote r0 and M0 as the new “fundamental scales”. Indeed,

these parameters identify a consistent transition between the two phases in both directions,

i.e. during the compression (“particle → black hole”) and during the decay (“particle ←
black hole”). We stress that the decay is correctly described in terms of thermal emission

at the temperature associated with the surface gravity of the metric (2.21) without any

ambiguity. In addition, the singularity can never be exposed during any of the two afore-

mentioned processes, a fact that virtually eliminates the threat of a of naked singularity

for M < M0.

3.1 Wavelength correction

In light of the above results, we are now ready to re-formulate the Gedankenexperiment

described in the introductory section. By writing eq. (2.21) as

ds2 = −(1 + 2φGUP)dt
2 + (1 + 2φGUP)

−1dr2 + r2dΩ2 (3.7)

one obtains an improved Newtonian potential φGUP that linearly vanishes at the origin,

φGUP ∼ −GMr/β, and matches the standard Newtonian potential, φGUP ≈ −GM/r at

large distances. Such a quantity allows us to estimate the local spacetime distortion in terms

of the GUP inspired non-local gravity, rather than in terms of standard Einstein gravity.

As a result, one obtains a gravitational uncertainty ∆λg = 2πℓ2Pγ(2, 2π~G/cλ
√
β)/λ. By

– 11 –
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Figure 6. Length vs. mass plot including GUP corrections for
√
β ≈ 1.45ℓP. Relation (3.8),

shown in gray, approximates the behavior of both the Compton wavelength (red) and the GUP

horizon radius (blue). The shaded area is excluded from experiment, meaning there can never be

an exposed singularity.

considering the full uncertainty for an arbitrary massive particle, one can write

∆x ∼ 2π
~

Mc
+ 2

GM

c2
γ
(

2;∆x/
√

β
)

(3.8)

in place of (1.3). As shown in figure 6, away from the Planck scale, the above relation

works as (1.3), namely ∆x ≈ 2π ~

Mc for quantum particles (M ≪ MP), and ∆x ≈ GM
c2

for

classical black holes (M ≫ MP). At the Planck scale (M ∼ MP), however, the gamma

function in (3.8) departs from unity, 0 < γ
(

2;∆x(MP)/
√
β
)

< 1. This corresponds to

accounting for a crucial non-local gravity effect, namely the minimal black hole mass M0.

One then finds that for M ∼M0

∆x ≈ 2π
~

M0c
+ 2

GM0

c2
γ
(

2; r0/
√

β
)

= 2r0 (3.9)

We stress that, contrary to the case in (1.3), the scale M0 is corroborated by the corre-

sponding metric. In this sense (3.8) provides a Planck scale completion of (1.3).

As a related comment we note that (3.8) is not in conflict with the uncertainty relations

in (2.4). Rather, it is the “translation” of the deformed integration measure in (2.15) from

locally flat coordinates to curvilinear ones. In such a transformation, the GUP inspired

non-local gravity works in a more complicated way than Einstein gravity, by introducing

nontrivial terms like the incomplete gamma function.

– 12 –
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4 Conclusions

In this paper we showed how to reconcile the self-complete character of gravity with the

GUP. We started by stressing that the conventional ideas at the heart of the GUP fail to

be accurate at the Planck scale. Among these various limitations, the GUP implies the

existence of black hole remnants that are not compatible with a neutral, classical metric

like the Schwarzschild geometry. As a result, one ends up with an ambiguity between

particles and black holes in the sub-Planckian regime.

Against this background, we exploited the idea of GUP at the level of integration mea-

sure in momentum space in order to construct a non-local version of Einstein’s equations.

By deriving the corresponding static, neutral black hole solution, we showed that Planck

scale black hole remnants naturally emerge from the metric coefficients as extremal zero

temperature configurations. This fact paves the way to a consistent scenario for the self-

completeness that overcomes the standard case limitations. Black holes form as a result

of matter compression to sizes of the order of the radius of the extremal configuration

(∼ ℓP). A further increase of energy leads to bigger black holes that approach classical

solutions of GR.

The reverse process is also free from pathologies. A black hole cannot endlessly decay.

The evaporation end-point is represented again in terms of the aforementioned extremal

configuration, which fulfils the special and unique feature of being at the same time the

heaviest quantum particle and the lightest black hole. In addition, they enjoy the property

of having both zero temperature and zero heat capacity, thus becoming a reliable candidate

for dark matter component.

In principle GUP deformations of the integration measure in momentum space could

be exploited to account for further corrections to the spectra of particles emitted by the

black hole. Preliminary studies in this direction concerning the case of NCG-inspired black

holes, however, show that these kind of corrections lead only to sub-leading effects [73].

Such a result is consistent with the general property of metrics admitting a maximum black

hole temperature: the nature of the radiation is of secondary concern being the quantum

backreaction negligible during the complete evaporation process.

Lastly, we considered a Gedenkenexperiment that summarizes the above results and

improves the conventional reasoning. We introduced a new GUP that improves the conven-

tional relations presented in [6–11] with non-local gravity corrections at the Planck scale.

This satisfies all limiting cases for the expected black hole behavior by replacing standard

Einstein gravity with the GUP inspired version.
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