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exotics can be pair produced at the LHC via electroweak interactions and their subsequent

decays produce a host of multi-lepton signals. Furthermore, the branching fractions for

events with distinct charged-leptons encode information about both the neutrino mass hi-

erarchy and the leptonic mixing phases. In large regions of parameter-space discovery at

the LHC with a 5σ significance is viable for masses approaching the TeV scale.
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1 Introduction

The Type-I [1–6] and Type-III [7] seesaw mechanisms offer a simple explanation for the ex-

istence of light Standard Model (SM) neutrinos. In these approaches the tree-level exchange

of heavy intermediate fermions achieves neutrino masses with an inverse dependence on the

heavy-fermion mass, mν ∼ 〈H0〉2/MF , suppressing the masses relative to the weak scale.

In the low-energy effective theory these masses are described by the non-renormalizable

operator Oν = (LH)2/Λ, which famously has mass-dimension d = 5 [8].

There exist generalizations of the Type-I and Type-III seesaws that can similarly ex-

plain the existence of light SM neutrinos. The basic point is that the Type-I and Type-III

seesaws can be described by a generic tree-level diagram with two external scalars and a

heavy intermediate fermion; see figure 1. The use of different intermediate fermions al-

lows for variant tree-level seesaws, where either one or both of the external scalars is a

beyond-SM field.

Naively it appears that many variant seesaws are possible. However, the vacuum expec-

tation values (VEVs) of the beyond-SM scalars are generally constrained by ρ-parameter

measurements to satisfy 〈S1,2〉 . O(GeV). Such small VEVs can arise naturally if they
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Figure 1. Generic tree-level diagram for a seesaw mechanism with a heavy intermediate fermion.

The simplest realizations are the Type-I and Type-III seesaws, for which the external scalars are

the SM doublet, S1 = S2 = H ∼ (1, 2, 1), and FL ≡ Fc
R is a Majorana fermion. In the generalized

seesaws the fermion can be either Majorana or Dirac and the external scalars can be beyond-

SM multiplets.

are induced and therefore develop an inverse dependence on the scalar masses, i.e. 〈S1,2〉 ∝
M−2

1,2 . Demanding such an explanation for the small VEVs greatly restricts the number

of minimal realizations of figure 1 [9]. Because the VEVs of the beyond-SM scalars are

induced, these generalized seesaws generate low-energy effective operators with d > 5. It

was shown that there are only four such minimal models that give effective operators with

d ≤ 9 [9]; namely the d = 7 model of ref. [10], the d = 9 models of refs. [11–13] and

refs. [14, 15], and the d = 9 model proposed in ref. [9].1

The generalized seesaws turn out to be more complicated creatures than their Type-I

and Type-III cousins. Extensions of the SM that permit the tree-level diagram of figure 1

automatically admit the term λH2S1S2 ⊂ V (H,S1, S2) in the scalar potential [9]. This

allows one to close the seesaw diagram in figure 1 to obtain the d = 5 loop-diagram in

figure 2. Thus, strictly speaking, the generalized models are not purely seesaw models,

nor are they purely radiative models, but instead they are something in between. Both

mechanisms are always present, with the tree-level mass being dominant in some regions of

parameter space and the radiative mass being dominant in other regions. If one envisions

the theory space for models with massive neutrinos, the generalized seesaws exist in the

intersection of the set of models with seesaw masses and the set of models with radiative

masses (see figure 3). Put succinctly, these are seesaw/radiative models, and they are

irreducible, in the sense that modifying the particle content to remove one effect necessarily

removes them both. As we shall see, this is manifest in an identical flavor structure for the

seesaw and radiative masses.

These distinctions give an important difference relative to the Type-I and Type-III

approaches. In the seesaw/radiative models neutrino mass is generated either by a tree-

level seesaw described by the operator Oν = L2Hd−3/Λd−4 with d > 5, or by a radiative

diagram generating a d = 5 operator with additional loop-suppression. In either case the

new physics is constrained to be much lighter than that allowed by the Type-I and Type-

III seesaws; e.g. one can have Λ . (〈H〉d−3/mν)
1

d−4 which decreases with increasing d.

1We list the particle content for these models, and show the explicit d > 5 nature of the associated

Feynman diagrams, in section 2; see table 1 and figure 4 respectively.
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Figure 2. The generic loop-diagram present in any model that realizes the tree-level seesaw in

figure 1.
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Figure 3. A Venn diagram for a portion of theory space with massive neutrinos.

Collider experiments at the energy frontier will therefore explore the parameter space for

these generalized models long before the full parameter space for the Type-I and Type-III

seesaws can be investigated.

In the present work, we detail the nature of neutrino mass in the newly proposed

model with d = 9, and study the collider phenomenology of the exotic fermions predicted

by the model. These fermions form an isospin-3/2 representation of SU(2)L and contain

a doubly-charged component. Collider production of the exotics is controlled by elec-

troweak interactions and depends only on the fermion mass. The decay properties of the

fermions, and therefore the expected signals at colliders like the LHC, have some sensitiv-

ity to model details and, in particular, depend on the mixing with SM leptons. However,

because the model predicts a basic relation amongst VEVs (〈S1〉 ≫ 〈S2〉), some decay

branching fractions can be largely determined; e.g. the total leptonic branching fractions

can be determined with essentially no dependence on the neutrino mass hierarchy. How-

ever, the relative branching fractions for decays to different charged leptons have remnant

dependence on the properties of the neutrino sector. We shall see that the number of

light charged-lepton events (ℓ = e, µ), relative to the number of tauon events, can encode

information regarding the neutrino mass hierarchy and the mixing phases.

A number of signals predicted by the model are reminiscent of those found in related

seesaw models like the Type-III seesaw and the d = 9 models [11, 12, 14, 15]. The branching
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fractions for lepton-number violating like-sign dilepton events is comparable to that found

in the Type-III seesaw [16], though the details of the events are different. In our analysis

we discuss differences between the models and indicate strategies for searching for the

exotic fermions; for example, the present model predicts lepton-number violating events

like ℓ±ℓ±W∓W∓ but not ℓ±ℓ±W∓Z, which is opposite to that expected in the Type-III

case [16] and the d = 9 model of ref. [11, 12]. Such events, and others that we outline,

lead to a host of multi-lepton final states. We shall see that the model also predicts a

doubly-charged fermion that can be discovered at the 5σ level for masses approaching the

TeV scale in optimistic cases.

In our presentation we make efforts to follow the structure of refs. [11, 12] and [14, 15],

which detail the collider phenomenology of related exotic fermions, to allow for easier

comparison. As shall be evident during our analysis, there are aspects of our work that are

relevant for the related models. In a partner paper we shall present a detailed comparative

analysis of the exotic fermions appearing in the models with d ≤ 9, including the triplets

F ∼ (1, 3, 2), which appear in the d = 7 model [10],2 and the quintuplet fermions from the

alternative d = 9 models [11, 12, 14, 15]. The partner paper further explores the doubly-

charged exotic fermions which are present in all four models; these provide a simple way

to obtain generic experimental constraints for this class of models.

Many works have studied production mechanisms and detection prospects for the heavy

neutrinos employed in the Type-I seesaw [24–34]. Both CMS [35] and ATLAS [36] have

searched for the corresponding signals in the LHC data. Similarly, the triplet fermions

in the Type-III seesaw are well studied [37–41], and ref. [42] ([43]) contains an ATLAS

(CMS) search for these exotics. A comparative study of LHC signals from the d = 5

seesaws has appeared [16], and more general discussion of TeV-scale exotics related to

neutrino mass [44, 45], and right-handed neutrinos [46], exists in the literature. For the

collider phenomenology of the exotic scalars in the d = 7 model see ref. [47] (also see [48]).

Note that perturbative unitarity gives general upper-bounds on the quantum numbers of

larger multiplets [49, 50], and that the quadruplet fermions of interest in this work were

previously considered as dark matter [51], and in relation to radiative neutrino-mass [52].

Alternative models of neutrino mass realizing low-energy effective operators with d > 5

exist [53–61], and an earlier work combined a seesaw model with a radiative model [62]

(also see ref. [63]).3 Also, it was recently shown that some versions of the inverse seesaw

mechanism can generate neutrino mass via a combination of both tree-level and radiative

masses, similar to the models discussed here [64].

The layout of this paper is as follows. In section 2 we introduce the d = 9 model and

discuss the symmetry-breaking sector. Section 3 details the origin of neutrino mass and

section 4 investigates the extent to which the parameters can be fixed by neutrino oscillation

2To date the collider phenomenology of these states have not been studied within the context of the

d = 7 model. A study of the bounds from flavor changing processes appeared in ref. [17], and they were

studied in different contexts in ref. [18–23].
3The models of interest here differ from these earlier works. In refs. [62, 63] distinct beyond-SM fields

generate the tree- and loop-masses; one can modify the particle spectrum to turn off one effect while

retaining the other. In the present models the same fields generate both the tree- and loop-masses, and

experimentally viable masses can be achieved from either effect.
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data. Collider production of exotic fermions is discussed in section 5. The mass-eigenstate

interaction Lagrangian is presented in section 6 and exotic fermion decays are detailed in

section 7. Detection signals are discussed in section 8 and the work concludes in section 9.

2 A seesaw/radiative model with d = 9

In this section we introduce the model of interest in this work and discuss aspects its scalar

sector. As noted already, there are only four minimal models of this type that produce

low-energy effective operators with 5 < d ≤ 9 [9]. We list the particle content for these

models in table 1.4 Each model generates the tree-level diagram in figure 1 and can thus

achieve seesaw neutrino masses. However, because the VEVs of the beyond-SM scalars are

induced the corresponding Feynman diagrams can be “opened up.” These “open” Feynman

diagrams reveal the d > 5 nature of the associated low-energy operators and are shown in

figure 4.

The new d = 9 model appears as model (c) in the table and is obtained by adding the

following multiplets to the SM:

F ≡ FL + FR ∼ (1, 4,−1),

S1 ∼ (1, 3, 0) ≡ ∆,

S∗
2 ∼ (1, 5, 2) ≡ S. (2.1)

These permit the following pertinent Yukawa terms

L ⊃ −λ∆ L̄FR∆− λ†
∆FRL∆− λS LcFLS − λ†

S FLL
cS∗, (2.2)

whose explicit SU(2) structure is

L ⊃ −λ∆ L̄a (FR)abc ǫ
cd∆ b

d − λ†
∆ (FR)

abc La∆
d
b ǫcd

− λS (Lc)a Sabcd(FL)b′c′d′ ǫ
bb′ ǫcc

′

ǫdd
′ − λ∗

S
(FR)

a′b′c′ (Lc)d (S
∗)abcd ǫaa′ ǫbb′ ǫcc′ . (2.3)

Here we write the fermion as a symmetric tensor Fabc, with components5

F111 = F+ , F112 =
1√
3
F0 , F122

1√
3
F− , F222 = F−− , (2.4)

and similarly the scalar S ∼ (1, 5, 2) is represented by the symmetric tensor Sabcd, with

components

S1111 = S+++ , S1112 =
1√
4
S++ , S1122 =

1√
6
S+ , S1222 =

1√
4
S0 , S2222 = S−,

(2.5)

where one should differentiate between S− and (S+)∗. The matrix form of the real triplet

is taken as

∆ ≡ ∆ b
a =

1

2

(

∆0
√
2∆+

√
2∆− −∆0

)

. (2.6)

4Note that model (b) can also be implemented as an inverse seesaw mechanism [65].
5Note that F− is not the anti-particle of F+: F+ 6= F−.
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Model S1 F S2 Mass Insertion [Oν ] Ref.

(a) (1, 4,−3) (1, 3, 2) (1, 2, 1) Dirac d = 7 [10]

(b) (1, 4, 1) (1, 5, 0) − Majorana d = 9 [11, 12]

(c) (1, 3, 0) (1, 4,−1) (1, 5,−2) Dirac d = 9 [9]

(d) (1, 4,−3) (1, 5, 2) (1, 4, 1) Dirac d = 9 [14, 15]

Table 1. Minimal Seesaw/Radiative Models with d ≤ 9 [9].

With the above, one can expand the Yukawa couplings to obtain the Lagrangian terms

of interest for the seesaw and radiative diagrams. The explicit expansions appear in ap-

pendix A. Note that flavor labels are suppressed in the above, so that λS = λS,ℓ with

ℓ ∈ {e, µ, τ} etc.

The scalar potential contains the terms

V (H,∆, S) ⊃ M2
∆Tr[∆∆] + µH†∆H (2.7)

where H ≡ Ha = (H+, H0)T is the SM doublet. The last term induces a VEV for ∆0 after

electroweak symmetry breaking:

〈∆0〉 ≃ µ〈H0〉2
2M2

∆

. (2.8)

The inverse mass-dependence in this expression shows that 〈∆0〉 is naturally suppressed

relative to the electroweak scale for M∆ ≫ 〈H0〉 ≃ 174GeV. Similarly the terms6

V (H,∆, S) ⊃ M2
S
S∗S − λH̃†∆S∗H +H.c., (2.9)

trigger a nonzero VEV for S0,

〈S0〉 ≃ λ
〈∆0〉〈H0〉2

2M2
S

≃ λ
µ 〈H0〉4
4M2

S
M2

∆

. (2.10)

These expressions show that 〈S0〉/〈∆0〉 ≃ λ〈H0〉2/(2M2
S
) ≪ 1 is generically expected for

λ . 0.1, given that direct searches for exotic charged fields require MS & O(100)GeV. We

work with λ . 0.1 throughout so that 〈S0〉/〈∆0〉 ≪ 1. This is a rather generic feature

of the model; we shall see that it influences both the decay properties and collider signals

of the exotic fermions. Note that in eq. (2.8) one can consider M∆ to denote the full

tree-level mass for ∆0, containing both the explicit mass-term for ∆0 in eq. (2.7) and the

additional subdominant contributions from the VEVs of the other scalars. Similarly for

MS in eq. (2.10).

The beyond-SM scalars S and ∆ contribute to electroweak symmetry breaking and

thus modify the tree-level value of the ρ parameter. The SM predicts the tree-level value

ρ = 1 [66], and the experimentally observed value is ρ = 1.0004+0.0009
−0.0012 at the 3σ level [67].

Consequently beyond-SM scalars with isospin Is 6= 1/2 must have small VEVs. In the

present model the tree-level ρ parameter is given by

ρ ≃ 1 + 2
〈∆0〉2
〈H0〉2 + 6

〈S0〉2
〈H0〉2 . (2.11)

6The expansion of the λ-term appears in appendix A.
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Figure 4. Feynman diagrams for the tree-level seesaws with 5 < d ≤ 9. Model (c) is the focus of

this work (labels match table 1).

The constraint requires

〈∆0〉2 + 3〈S0〉2 . 20 GeV2 , (2.12)

which reduces to

〈∆0〉 . 4.4 GeV for 〈S0〉 ≪ 〈∆0〉. (2.13)

Thus, we generically require 〈S0〉, 〈∆0〉 . 1GeV. Such small VEVs arise naturally due to

the inverse dependence on the scalar masses found in eqs. (2.8) and (2.10). We plot the

VEV 〈∆0〉 as a function of M∆ for the fixed values of µ/M∆ = {0.1, 1,
√
4π} in figure 5.

The nonzero VEVs for ∆0 and S0 induce mixing between these scalars and the SM

Higgs. For 〈S0〉/〈∆0〉 ≪ 1 the mixing of S0 with the Higgs is subdominant to the ∆0-H0

mixing, and to good approximation one can neglect the S0-H0 mixing. Shifting the neutral

scalars around their VEVs, H0 → 〈H0〉+ (h0 + iη0)/
√
2 and ∆0 → 〈∆0〉+∆0, the results

of ref. [68] allow one to approximate the neutral-scalar mixing as
(

h1
h2

)

=

(

cos θ0 sin θ0
− sin θ0 cos θ0

)(

h0

∆0

)

, (2.14)

where h1,2 are the mass eigenstates. For µ & 〈H0〉 the mixing angle obeys

tan 2θ0 ≈ 2
√
2〈∆0〉
〈H0〉 ≪ 1, (2.15)

– 7 –



J
H
E
P
1
1
(
2
0
1
3
)
1
3
1

1 10 100 1000 104

0.001

0.01

0.1

1

10

MD @TeVD

<
D
>
@G

eV
D

Figure 5. The VEV for the scalar ∆ ∼ (1, 3, 0) as a function of the scalar mass M∆, for fixed values

of the dimensionful coupling µ. The solid (dashed, dot-dashed) line is for µ/M∆ = 0.1 (1,
√
4π),

and the horizontal line is the upper bound on 〈∆〉 from the ρ parameter constraint.

giving θ0 ≈
√
2〈∆0〉/〈H0〉 ≪ 1. In what follows we denote the mostly-SM Higgs h1,

with mass m1 ≃ 125GeV, simply as h. Unfortunately the tiny mixing angle θ0 will not

be discernible at the LHC for the parameter space of interest in this work (see ref. [68]

for details).

3 Neutrino mass

Having described the model and introduced the scalar sector we now turn to the origin

of neutrino mass. The Yukawa Lagrangian (2.2) mixes the SM neutrinos with the neutral

fermions F0
L,R. In the basis V = (νL, F0

L, (F0
R)

c)T , we write the mass Lagrangian as

L ⊃ −1

2
VcMV + H.c.. (3.1)

The mass matrix is comprised of two parts; namely a tree-level term and a radiative term,

M = Mtree +Mloop. The most important radiative correction is the contribution to the

SM neutrino mass matrix, which results from the Feynman diagram in figure 2. One can

therefore write the leading order loop-induced mass matrix as Mloop = diag(Mloop
ν , 0, 0).

We will detail the form of 3 × 3 matrix Mloop
ν in section 3.2; for now it suffices to note

that the entries of the loop-induced mass matrix must be on the order of, or less than,

the observed SM neutrino masses. In what follows we consider the seesaw and radiative

masses in turn.

3.1 Tree-level seesaw masses

Extracting the mass terms from the Yukawa Lagrangian, one can write the mass La-

grangian as

L ⊃ −1

2
(νcL, (F0

L)
c, F0

R)







Mloop
ν MS M∆

MT
S

0 MF

MT
∆ MF 0













νL
F0
L

(F0
R)

c






, (3.2)
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where the Dirac mass-matrices are

MS = −
√
3

2
λS 〈S0〉 , M∆ =

1√
3
λ∗
∆ 〈∆0〉. (3.3)

In general, the heavy fermion mass matrix MF is an n × n matrix for n generations of

exotic fermions. We consider the minimal case of n = 1, for which MF = MF .
7 The mass

matrix can be partitioned into a standard seesaw form:

M =

(

Mloop
ν MD

MT
D MH

)

, (3.4)

where the Dirac mass matrix MD and the heavy-fermion mass matrix MH are

MD = (MS ,M∆) , MH =

(

0 MF

MF 0

)

. (3.5)

For MF ∼TeV and 〈S0〉 ≪ 〈∆0〉 .GeV, the entries of the distinct mass-matrices are

hierarchically separated, which we denote symbolically as:

Mloop
ν ≪ MD ≪ MF . (3.6)

With this hierarchy, a standard leading-order seesaw diagonalization can be performed.

The mass eigenstates are related to the interaction states via Vℓ = UℓiVi, where the

leading-order expression for the rotation U is

U =

(

Uν M∗
D M−1

H

−M−1
H MT

D Uν 1

)

=







Uν M∗
S
M−1

F M∗
∆M−1

F

−M−1
F MT

∆ Uν 1 0

−M−1
F MT

S
Uν 0 1






. (3.7)

The diagonalized mass matrix is

UT M U =

(

UT
ν (Mtree

ν +Mloop
ν )Uν 0

0 MH

)

, (3.8)

where Uν is the PMNS matrix which diagonalizes the mass matrix for the light SM neu-

trinos:

UT
ν (Mtree

ν +Mloop
ν )Uν = diag(m1, m2, m3). (3.9)

The heavy neutrinos receive mass corrections of order M∆MSM−1
F , which split the would-

be heavy Dirac fermion into a pseudo-Dirac pair. However, this splitting is tiny, being on

7Results written in terms of MF also hold for the more general case of n > 1, for which one can always

work in a basis where MF is diagonal, MF = diag(MF,1, MF,2, . . . , MF,n). Note that we do not include

the effects of Yukawa terms like FLFR∆ and FT
LC−1FLS. These are suppressed by the small VEVs, and

for simplicity we assume small-enough Yukawa couplings so they can be neglected.
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the order of the light neutrino masses, and can be neglected for all practical purposes. To

good approximation the heavy neutrinos can be treated as a Dirac particle.

The tree-level piece of the SM neutrino mass-matrix has a standard seesaw form:

Mtree
ν = −MD M−1

H MT
D +O([MDM−1

H ]2)

= −M∆M−1
F MT

S
−MS M−1

F MT
∆ + . . . (3.10)

giving

(Mtree
ν )ℓℓ′ ≃

1

2
{(λ∗

∆)ℓ (λS)ℓ′ + (λS)ℓ (λ
∗
∆)ℓ′}

〈∆0〉〈S0〉
MF

, (3.11)

where ℓ, ℓ′ ∈ {e, µ, τ} label SM flavors. This expression has the familiar seesaw form of a

Dirac-mass-squared divided by a heavy fermion mass. Using eq. (2.10) one can manipulate

the tree-level mass matrix to obtain

(Mtree
ν )ℓℓ′ ≃

λ

4
{(λ∗

∆)ℓ (λS)ℓ′ + (λS)ℓ (λ
∗
∆)ℓ′}

〈∆0〉2
M2

S

〈H0〉2
MF

, (3.12)

which will be useful in what follows. Furthermore, denoting the beyond-SM dimensionful

parameters by a common scale Λ and using eq. (2.8) gives

(Mtree
ν )ℓℓ′ ≃

λ

16
{(λ∗

∆)ℓ (λS)ℓ′ + (λS)ℓ (λ
∗
∆)ℓ′}

〈H0〉6
Λ5

. (3.13)

This shows that the tree-level masses arise from a low-energy effective operator with d = 9,

giving mν . 〈H0〉6/Λ5 as expected.

3.2 Combined loop- and tree-level masses

In addition to the d = 9 tree-level diagram one must calculate the d = 5 radiative diagram in

figure 2. There are three distinct diagrams with different sets of virtual fields propagating

in the loops. One diagram contains the neutral fields {F0, ∆0, S0}, and the other two

have the singly-charged fields {F−, ∆+, S+} and {F+, ∆−, S−}, respectively.8 To good

approximation one can neglect the splitting between members of a given multiplet when

calculating the loop diagrams. The components of F have degenerate tree-level masses

that are lifted by radiative effects. We shall see in section 7 that these mass-splittings are

much smaller than the common tree-level mass. Similarly, the components of S receive

small radiative mass-splittings that can be neglected when calculating the loop-masses.9

With this approximation, the only differences between the loop-diagrams are the numerical

factors from the vertices, and the total mass-matrix for the SM neutrinos is

Mν = Mtree
ν + Mloop

ν (3.14)

≃ λ

4
{(λ∗

∆)ℓ (λS)ℓ′ + (λS)ℓ (λ
∗
∆)ℓ′}

〈H0〉2
MF

×
{

〈∆0〉2
M2

S

+
(3
√
2− 2)

48π2

M2
F

M2
S
−M2

∆

[

M2
S

M2
F −M2

S

log
M2

F

M2
S

− (MS → M∆)

]

}

.

8Recall that F− is not the anti-particle of F+, and that S− 6= (S+)∗.
9The components of S also receive tree-level splittings due to the VEVs of the various scalars. The only

contributions that can be sizable come from 〈H0〉 6= 0. However, constraints from the ρ parameter require

∆M2
S . O(10)GeV [69], consistent with such splittings being small.
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The tree- (loop-) mass is the first (second) term in the curly brackets. Observe that both

terms have an identical flavor structure; this is a signature feature of the seesaw/radiative

models, and it means the structure of the matrix that diagonalizes Mν does not depend

on whether the tree- or loop-mass is dominant. Furthermore, the ratio Mtree
ν /Mloop

ν is

insensitive to both the Yukawa couplings λ∆,S, and the quartic coupling λ; therefore the

small-λ limit, which makes 〈S0〉 small, does not affect Mtree
ν /Mloop

ν . We present various

limits of the radiative mass in appendix B.

It is interesting to determine the regions of parameter space in which the seesaw-

mass dominates. Eq. (3.14) shows that larger values of 〈∆0〉 tend to increase the ratio

Mtree
ν /Mloop

ν , while larger values of M∆ ≫ MS tend to suppress this ratio. We plot

Mtree
ν /Mloop

ν as a function of the fermion mass MF and the scalar mass MS in figure 6.

The fixed values M∆ = 7TeV and 〈∆0〉 = 4GeV are used. The plot shows the region

in the (MF ,MS) plane of greatest interest for the LHC. The tree-level mass is dominant

in much of this parameter space and the ratio satisfies Mtree
ν /Mloop

ν > 0.1 for the entire

region shown. As can be seen, keeping one of the masses small (. 300GeV), the other

can be taken large (≫ TeV) while retaining Mtree
ν /Mloop

ν > 1, while for MF ∼ MS the

loop-mass becomes dominant for MF ∼ MS &TeV. Thus, for heavy ∆ the tree-level region

of parameter space will be most relevant for colliders like the LHC.

We are interested in the collider phenomenology of the exotic fermion F and take it

as the lightest beyond-SM multiplet. We focus on the parameter space in which the triplet

∆ is the heaviest, namely

MF . MS ≪ M∆ . (3.15)

Within this range, the specific value of MS is not particularly important for the collider

phenomenology of F . The reader should keep in mind that, in terms of the mechanism of

neutrino mass, values of MS in the lower range of this interval tend to increase the ratio

Mtree
ν /Mloop

ν , while larger values have the reverse effect.

4 Fixing the Yukawa couplings

With three SM neutrinos, a generic mass matrix of the form

L ⊃ −1

2
(νcL, (F0

L)
c, F0

R)







0 MS M∆

MT
S

0 MF

MT
∆ MF 0













νL
F0
L

(F0
R)

c






, (4.1)

has a vanishing determinant. The mass eigenvalues therefore contain one massless and

two massive (mostly) SM neutrinos in addition to a pseudo-Dirac heavy exotic fermion.

The presence of a massless neutrino means the absolute neutrino mass scale is fixed by

the observed mass-squared differences. Furthermore, up to an overall scale factor, the

couplings can be largely expressed in terms of the oscillation observables.

Writing the PMNS mixing-matrix as

Uν =







c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s23 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c13c23






× Uα , (4.2)
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Figure 6. Ratio of the tree-level mass to the loop-mass, M tree
ν /M loop

ν , as a function of the

fermion (MF ) and scalar (MS) masses. The meshed (plain) region has M tree
ν /M loop

ν > 1 (< 1),

and M tree
ν /M loop

ν > 0.1 for the entire region.

the matrix Uα contains the Majorana phase, and can be taken as Uα = diag(e−iα, eiα, 1)

for our case with a massless neutrino [71]. The best-fit neutrino oscillation parameters are

listed in table 2 [70], and we use these for our numerics throughout. The CP phase δ and

the Majorana phase α are not experimentally known and can assume any value at the 2σ

level; we therefore treat these as free parameters.

We denote the ratio of mass-squared differences by

r =
|∆m2

12|
|∆m2

13|
≪ 1, (4.3)

and write the Yukawa couplings as

λS ≡ rS λ̂S and λ∆ ≡ r∆ λ̂∆. (4.4)

Here rS,∆ are the magnitudes of the flavor-space vectors λS,∆, so that λ̂S and λ̂∆ are complex

vectors of unit norm:
∑

ℓ

(λ̂∗
S
)ℓ (λ̂S)ℓ = 1 and

∑

ℓ

(λ̂∗
∆)ℓ (λ̂∆)ℓ = 1. (4.5)

In the following we obtain the form of these unit vectors for a normal hierarchy and an

inverted hierarchy. This information influences the collider signals of the model.

4.1 Normal hierarchy

Consider a region of parameter space in which the the seesaw mass is dominant and the

radiative mass can be neglected. Defining the quantity RN as

RN =

√
1 + r −√

r√
1 + r +

√
r
, (4.6)
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Parameter Best fit (±1σ)

Normal Hierarchy Inverted Hierarchy

∆m2
12 (10

−5 eV2) 7.59+0.20
−0.18 7.59+0.20

−0.18

∆m2
31 (10

−3 eV2) 2.50+0.09
−0.16 −2.40+0.08

−0.09

sin2 θ12 0.312+0.017
−0.015 0.312+0.017

−0.015

sin2 θ23 0.52+0.06
−0.07 0.52+0.06

−0.06

sin2 θ13 0.013+0.007
−0.005 0.016+0.008

−0.006

Table 2. Neutrino oscillation parameters [70].

the results of ref. [71] allow one to write the mass eigenvalues as

m1 = 0 ,

|m2| =
rS r∆
2

〈∆0〉〈S0〉
MF

× (1−RN ) ,

|m3| =
rS r∆
2

〈∆0〉〈S0〉
MF

× (1 +RN ) . (4.7)

Noting that

|m2| =
√

|∆m2
21| ≈

√

7.59× 10−5 eV,

|m3| =
√

|∆m2
31| ≈

√

2.5× 10−3 eV, (4.8)

fixes the product of parameters appearing in eq. (4.7) as

|m2|
(1−RN )

=
|m3|

(1 +RN )
≈ 0.029 eV. (4.9)

Due to the related flavor dependence of the seesaw and radiative masses, one can extend

these results to the more general case where the radiative mass is important/dominant.

Rewriting eq. (4.7) to include the loop mass in eq. (3.14) gives

|m2|
(1−RN )

=
|m3|

(1 +RN )
≃ rS r∆

|λ|
4

〈H0〉2
MF

{〈∆0〉2
M2

S

+ loop piece

}

. (4.10)

Combining eqs. (4.10) and (4.9) allows one to fix a combination of the parameters in terms

of the overall scale of the neutrino masses in the general case.

The Yukawa unit vectors can be fixed in terms of the oscillation observables:

λ̂S,ℓ =
1√
2

(

√

1 +RN (U∗
ν )ℓ3 +

√

1 +RN (U∗
ν )ℓ2

)

,

λ̂∆,ℓ =
1√
2

(

√

1 +RN (Uν)ℓ3 −
√

1 +RN (Uν)ℓ2

)

, (4.11)
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up to the dependence on the unknown phases δ and α. For example, with δ = α = 0, the

PMNS best-fit values give

λ̂S ≈ (0.32, 0.86, 0.39)T ,

λ̂∆ ≈ (−0.10, 0.46, 0.88)T . (4.12)

If the tree-level mass is dominant, or on the order of the loop-mass, one has

|m2,3|
(1∓RN )

≈
(√

3

2
rs 〈S0〉

)

(

1√
3
r∆ 〈∆0〉

)

1

MF
≡ |KS| |K∆|MF , (4.13)

where we introduce the dimensionless vectors

KS,∆ = MS,∆M−1
F , (4.14)

and write their magnitude as |KS,∆|. We shall see later that the quantities KS,∆ influence

the decay properties of the exotic fermions. Eqs. (4.9) and (4.13) give the relation

|KS| ≈ 5.8× 10−7 ×
√

GeV

MF
×
{

10−6
√

2500/(MF/GeV)

|K∆|

}

, (4.15)

for the case of a normal hierarchy. This fixes the relative size of |KS| and |K∆| in terms of

the overall scale of the SM neutrino masses. Provided the radiative mass is not significantly

larger than the tree-level mass, this relationship also provides a good approximation in the

presence of the loop-mass.

4.2 Inverted hierarchy

The same procedure can be followed for the inverted hierarchy; defining

RI =

√
1 + r − 1√
1 + r + 1

, (4.16)

the light-neutrino mass eigenvalues are

|m1| =
1

2
rS r∆

〈∆0〉〈S0〉
MF

× (1−RI) ,

|m2| =
1

2
rS r∆

〈∆0〉〈S0〉
MF

× (1 +RI) ,

m3 = 0, (4.17)

when the tree-level mass dominates. The nonzero mass-eigenvalues are fixed via the ob-

served mass-squared differences, giving

|m1|
(1−RI)

=
|m2|

(1 +RN )
≈ 0.049 eV. (4.18)

Including the loop mass gives

|m1| = rS r∆
|λ|
4

〈H0〉2
MF

{〈∆0〉2
M2

S

+ loop piece

}

× (1−RI) ,

|m2| = rS r∆
|λ|
4

〈H0〉2
MF

{〈∆0〉2
M2

S

+ loop piece

}

× (1 +RI) , (4.19)
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allowing one to fix the overall scale via (4.18). The Yukawa unit-vectors are fixed to be

λ̂S,ℓ =
1√
2

(

√

1 +RI (U
∗
ν )ℓ2 +

√

1 +RI (U
∗
ν )ℓ1

)

,

λ̂∆,ℓ =
1√
2

(

√

1 +RI (Uν)ℓ2 −
√

1 +RI (Uν)ℓ1

)

. (4.20)

When the tree-level mass is dominant, or on the order of the loop-mass, one has

|m1,2|
(1∓RI)

≈
(√

3

2
rs 〈S0〉

)

(

1√
3
r∆ 〈∆0〉

)

1

MF
= |KS| |K∆|MF . (4.21)

giving the relation

|KS| ≈ 3.4× 10−7 ×
√

GeV

MF
×
{

10−6
√

2500/(MF/GeV)

|K∆|

}

, (4.22)

for the inverted hierarchy.

5 Collider production of exotic fermions

We now consider the production of exotic fermions at the LHC. The exotics are most readily

produced in pairs via electroweak interactions.10 The interactions of F with electroweak

gauge bosons arise from the kinetic Lagrangian

L ⊃ iFDµγ
µF , (5.1)

where the covariant derivative has the standard form

DµF =

[

∂µ − igTaW
a
µ − ig′

Y

2
Bµ

]

F . (5.2)

Writing the fermion as

F = (F+, F0, F−, F−−)T , (5.3)

a suitable set of generators Ta for the quadruplet (isospin-3/2) representation of SU(2) is

T1 =
1

2











0
√
3 0 0√

3 0 2 0

0 2 0
√
3

0 0
√
3 0











, T2 =
1

2











0 −i
√
3 0 0

i
√
3 0 −2i 0

0 2i 0 −
√
3i

0 0
√
3i 0











,

T3 = diag(3/2, 1/2, −1/2, −3/2) . (5.4)

10This differs from the composite-fermion model of ref. [72], which has a sizable Wℓ+F−− vertex and

gives single-fermion production, qq̄′ → F−−ℓ. In our context pair-production is favored due to the Yukawa

suppression of, e.g., the Wℓ+F−− coupling when MF ∼TeV.
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The interaction Lagrangian contains the terms

L ⊃ g

{

√

3

2
F+γµF0 +

√
2F0γµF− +

√

3

2
F−γµF−−

}

W+
µ

+g

{

√

3

2
F0γµF+ +

√
2F−γµF0 +

√

3

2
F−−γµF−

}

W−
µ (5.5)

+e
{

F+γµF+ − F−γµF− − 2F−−γµF−−
}

Aµ

+
g

cW

{

gZF+F+γµF+ + gZF0F0γµF0 + gZF− F−γµF− + gZF−− F−−γµF−−
}

Zµ ,

where the couplings to the Z-boson have the standard form, gZF = (IF

3 − s2
W
QF), giving

gZF+ =
1

2

(

3− 2s2
W

)

, gZF0 =
1

2
, gZF− =

1

2

(

−1 + 2s2
W

)

, gZF−− =
1

2

(

−3 + 4s2
W

)

.

We define gWF =
√

3/2 or gWF =
√
2, depending on which pairs of fermions the W is

coupling to (the correct choice can be read off the Lagrangian above).

The partonic-level cross section for pair production of the exotic fermions may be

written as

σ̂(qq̄ → F F ; ŝ) =
β(3− β2)

48π2
ŝ (|VL|2 + |VR|2), (5.6)

where ŝ = (pq + pq̄)
2 is the usual Mandelstam variable, evaluated for the incoming partons

q and q̄. The exotic-fermion velocity is denoted by β =
√

1− 4M2
F/ŝ, and the couplings

VL,R have the form

V γ+Z
L,R =

QF Qq e
2

ŝ
+

gZF g
q
L,R g2

c2
W
(ŝ−M2

Z
)
, (5.7)

V W−

L =
[

V W+

L

]∗

=
gWF g

2 Vud√
2 (ŝ−M2

W
)
. (5.8)

The right-chiral coupling for the W boson vanishes, V W±

R = 0, and the quark couplings

are gqL,R = T q
3 − s2

W
Qq.

The partonic-level cross section must be convoluted with an appropriate parton distri-

bution function (PDF) to determine the cross section for a hadron collider. This gives

σ(pp → FF) =
1

Nc

∑

q=u,d,...

∑

q̄=ū,d̄,...

∫ 1

0
dx1

∫ 1

0
dx2 σ̂(qq̄ → F F ; ŝ = x1x2s)

×
{

fq/p(x1, µ
2)fq̄/p(x2, µ

2) + fq/p(x2, µ
2)fq̄/p(x1, µ

2)
}

, (5.9)

where fq/p(x, µ
2) are the PDFs, for which we employ the MSTW08 set [73] with the

factorization scale set at µ2 = M2
F . Here

√
s is the pp beam energy and the color pre-factor

accounts for the average over initial-state colors. The cross section is multiplied by the

standard initial-state K-factor [74, 75],

Ki(q
2) ≈ 1 +

αs(q
2)

2π

4

3

(

1 +
4π2

3

)

, (5.10)

to incorporate QCD corrections.
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Figure 7. Neutral-current production cross section for exotic fermion pairs at the LHC. The left

(right) plot is for
√
s = 7 (14)TeV.
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Figure 8. Charged-current production cross section for exotic fermion pairs at the LHC. The left

(right) plot is for
√
s = 7 (14)TeV.

Let us consider which final-states are possible in qq̄ → F F processes. The neutral-

current process qq̄ → F0F0 is mediated by the Z boson, while the final states F+F+,

F−F−, or F−−F−−, can all be realized via an intermediate Z or a photon. We plot the

LHC production cross sections for these processes in figure 7 for
√
s = 7TeV and 14TeV.

Production via an intermediate W boson, on the other hand, gives the final states F0F+,

F−F0, or F−−F− (for W+), and F+F0, F0F−, or F−F−− (for W−). The analogous

LHC production cross sections are plotted in figure 8.

Note that, once the beam energy is specified, the production cross section for FF
pairs depends on the single free parameter MF . As seen in the plots, the cross sections

have typical weak-interaction values; for an LHC operating energy of
√
s = 7TeV the

total production cross section for FF pairs is O(102) fb for MF ∼ 350GeV. At higher

operating energies of
√
s = 14TeV this increases to O(103) fb for the same value of MF .

Thus, integrated luminosities of ∼ 5 fb−1 should yield ∼ 500 (5000) production events in

this mass range for
√
s = 7 (14)TeV. These values are typical for the d > 5 models in

table 1 [11, 12, 14, 15]; fermion production cross-sections are determined for a given value

of MF , with values typical of those for weak interactions.

The production cross-sections for F-pairs are insensitive to the details of the underlying

neutrino-mass mechanism. For a given fixed MF they are determined once the quantum
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numbers for F are specified, independent of any connection to neutrino mass. To con-

nect the exotic fermions to the mechanism of neutrino mass one must study their decay

properties. We shall see that these are sensitive to the details of the neutrino sector.

6 Mass eigenstate interactions

The relationship between the exotics and neutrino mass is encoded in the Yukawa La-

grangian, which induces mass-mixing between F and SM leptons, thereby influencing the

decay channels and branching fractions. The mixing in the neutral-fermion sector was

detailed in section 3; here we account for the mass mixing amongst charged fermions, then

determine the mass-eigenstate interaction Lagrangian.

The charged fermions have the following mass Lagrangian:

L ⊃ − (ℓR, F−
R , (F+

L )c)







Mℓ 0 0

m∆ MF 0

mS 0 MT
F













ℓL
F−
L

(F+
R )c






−MFF−−

R F−−
L +H.c.,

where Mℓ (MF ) is a diagonal mass matrix for the SM leptons (singly-charged exotics).11

The mixing matrices have the form

m∆ =
λ†
∆√
3
〈∆0〉 and mS = −λT

S

2
〈S0〉 . (6.1)

The mass matrix is diagonalized via a bi-unitary transformation

U †
R







Mℓ 0 0

m∆ MF 0

mS 0 MT
F






UL ≈ diag(Mℓ, MF , MT

F ), (6.2)

where we anticipate the fact that the corrections to the charged-lepton mass matrix are on

the order of the SM neutrino masses and can be neglected for all practical purposes. To

leading order the rotation matrices take the form

UL =







1 m†
∆M−1

F m†
S M−1

F

−M−1
F m∆ 1 0

−M−1
F mS 0 1






,

UR =







1 Mℓm
†
∆M−2

F Mℓm
†
S M−2

F

−M−2
F m∆Mℓ 1 0

−M−2
F mS Mℓ 0 1






. (6.3)

The mass-mixing couples the exotics and the SM leptons via the charged and neutral

currents. The singly-charged fermion interaction-eigenstates have the following couplings

to the Z boson:

LZ,± =
g

cW

{

gZF+F+γµF+ + gZF−F−γµF− + gℓLℓLγ
µℓL + gℓRℓRγ

µℓR

}

Zµ. (6.4)

11For a single generation of exotics one has MF = MF .
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Rotating to the mass-basis, the interactions between mass eigenstates and the Z boson are

LZ,± =
g

cW

{

gZF+F+γµF+ + gZF−F−γµF− + gℓLℓLγ
µℓL + gℓRℓRγ

µℓR

+(gℓL − gZF−) (ℓLm
†
∆M−1

F γµF−
L + F−

L M−1
F m∆γ

µℓL)

−(gℓL + gZF+) (ℓcLmT
S
M−1

F γµF+
R + F+

R M−1
F m∗

S
γµ ℓcL)

}

Zµ. (6.5)

Using the specific values of the coupling constants gives

LZ,± =
g

cW

{

gZF+F+γµF+ + gZF−F−γµF− + gℓLℓLγ
µℓL + gℓRℓRγ

µℓR

− (ℓcLmT
S
M−1

F γµF+
R + F+

R M−1
F m∗

S
γµ ℓcL)

}

Zµ. (6.6)

Observe that the leading-order coupling between ℓL and F−
L has canceled out, due to the

relation gℓL = gZF− .

Similarly, the neutral-fermion interaction-eigenstates couple to the Z boson as follows

LZ,0 =
g

cW

{

gZF0F0γµF0 + gννLγ
µνL

}

Zµ. (6.7)

Rotating to the mass basis gives

LZ,0 =
g

cW

{

gZF0F0γµF0 + gννLγ
µνL

(gν − gZF0) (νL U †
ν M∗

∆M−1
F γµF0

L + F0
LM−1

F M∗
∆ γµ Uν νL)

−(gν + gZF0) (νcL UT
ν MS M−1

F γµF0
R + F0

R M−1
F M†

S γ
µ U∗

ν ν
c
L)
}

Zµ,

and employing the specific values of the couplings reduces this to

LZ,0 =
g

cW

{

gZF0F0γµF0 + gννLγ
µνL

− (νcL UT
ν MS M−1

F γµF0
R + F0

R M−1
F M†

S γ
µ U∗

ν ν
c
L)
}

Zµ,

where once again a cancellation has occurred.

The interaction Lagrangian for the W boson and the leptons is

LW = g

{

√

3

2
F+γµF0 +

√
2F0γµF− +

√

3

2
F−γµF−− +

1√
2
νLγ

µℓL

}

W+
µ . (6.8)

Rotating to the mass basis gives a somewhat complicated expression,

LW = g

{

√

3

2
F+γµF0 +

√
2F0γµF− +

√

3

2
F−γµF−− +

1√
2
νLγ

µℓL

}

W+
µ

+g

{

−
√

3

2
ℓLm†

∆M−1
F γµF−−

L +
1√
2
F0
LM−1

F

[

MT
S
− 2m∆

]

γµ ℓL

+
1√
2
νL U †

ν

[

m†
∆ − 2M∗

∆

]

M−1
F γµF−

L − 1√
2
ℓcL

[√
3mT

S
+M∆

]

M−1
F γµF0

R

− 1√
2
F+
R M−1

F

[√
3M†

S +m∗
S

]

γµ U∗
ν ν

c
L −

√
2 νcL UT

ν MS M−1
F γµF−

R

−
√

3

2
F+
L γµM−1

F MT
∆ Uν νL

}

W+
µ . (6.9)
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These expressions for the charged- and neutral-current interactions are simplified

by noting the relationship between the mass-mixing matrices in the charged and neu-

tral sectors:

m†
∆ = M∆ and mS =

1√
3
MT

S
, (6.10)

and recalling the definition of the matrix-valued quantities:

KS,∆ = MS,∆M−1
F , (6.11)

where we suppress the flavor index: KS,∆ ≡ Kℓ
S,∆. The Z boson interaction-Lagrangians

then take the form:

LZ,± =
g

cW

{

gZF+F+γµF+ + gZF−F−γµF− + gℓLℓLγ
µℓL + gℓRℓRγ

µℓR

− 1√
3

[

ℓcLKS γ
µF+

R + F+
R γµK†

S ℓ
c
L

]

}

Zµ, (6.12)

LZ,0 =
g

cW

{

gZF0F0γµF0 + gννLγ
µνL − (νcL UT

ν KS γ
µF0

R + F0
R γµK†

S U
∗
ν ν

c
L)
}

Zµ,

while the interaction Lagrangian for the W boson becomes

LW = g

{

√

3

2
F+γµF0 +

√
2F0γµF− +

√

3

2
F−γµF−− +

1√
2
νLγ

µℓL

}

W+
µ

+g

{

−
√

3

2
ℓLK∗

∆ γµF−−
L +

1√
2
F0
L

[

KT
S
− 2KT

∆

]

γµ ℓL − 1√
2
νL U †

ν K∗
∆ γµF−

L

− 1√
2
ℓcL [KS +K∆] γ

µF0
R − 4√

6
F+
R γµK†

S U
∗
ν ν

c
L −

√
2 νcL UT

ν KS γ
µF−

R

−
√

3

2
F+
L γµKT

∆ Uν νL

}

W+
µ + H.c.. (6.13)

To determine the decay properties of the exotics one must also account for the mass-

mixing with the Higgs boson. As mentioned already, due to the relation 〈S0〉 ≪ 〈∆0〉 one
can neglect the mixing of S0 with H0 relative to the (already small) mixing between ∆0 and

H0. Writing the Yukawa Lagrangian for ∆ in terms of the mass eigenstates, eq. (A.1) gives

L ⊃ −λ∆L̄FR∆ ≃ − θ0√
3
λ∆ h (νL U †

ν F0
R + eLF−

R ) + . . . (6.14)

where h denotes the SM-like neutral scalar and θ0 is the mixing angle. These vertices open-

up additional decay channels for the exotic fermions F0 and F− to final-states containing

the SM-like scalar. With this information we can proceed to study the decay properties of

the exotics.

7 Exotic fermion decays

There are two classes of decays available to the exotic fermions. Decays into purely SM

final-states, for example F → SM + SM ′, are sensitive to the mass-mixing and depend
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on the Yukawa coupling matrices. Decays of the heavier exotics into the lighter ones,

FQ → FQ′

+ SM , do not depend on the parameters in the Yukawa Lagrangian. We

consider both types of decays in what follows but first we must discuss the mass-splitting

between the components of F .

Neglecting the tiny mixing with charged SM leptons, the components of F are de-

generate at tree-level. This mass degeneracy is lifted by radiative corrections, with the

dominant effect coming from loops with SM gauge bosons for MF in the range of interest

for the LHC.12 At the one-loop level, the SM gauge bosons give the following calculable

mass-splitting between the charged components FQ and FQ′

[51],

∆MQ,Q′ ≡ MQ −MQ′

=
αMF

4π

{

(Q2 −Q′2)f(rZ) + s−2
W

(Q−Q′)(Q+Q′ − Y )[f(rW )− f(rZ)]
}

,

where rZ,W = MZ,W /MF and the hypercharge value is Y = −1 in the present case. For

fermionic multiplets the function f(r) has the form

f(r) =
r

2

{

2r3 ln r − 2r + (r2 − 4)1/2(r2 + 2) ln

[

r2 − 2− r
√
r2 − 4

2

]}

. (7.1)

We plot this loop-induced mass-splitting ∆MQ,Q′ in figure 9. For the range of interest at

the LHC, namely MF . 1TeV, the mass ordering is:

MF−− > MF− > MF+ > MF0 . (7.2)

As an example, for MF = 300GeV the splittings are

MF−− −MF− ≈ 600 MeV ,

MF− −MF0 ≈ 300 MeV , (7.3)

MF+ −MF0 ≈ 20 MeV.

The plot shows that increasing MF does not affect the ordering of F−− and F−, but the

ordering of F+ and F0 can change to MF0 −MF+ = O(1 MeV) > 0 for MF & 2TeV. This

is seen in the figure, where M+1,0 becomes negative for larger values of MF . However, for

MF . 1TeV the charged components are always heaviest. Observe that all splittings are

below the mass of the ρ(770) resonance.

7.1 Decays to standard model final-states

We first discuss the decays F → SM , which are dominated by two-body final states.

These decays arise in two ways. Firstly, the mass-mixing with leptons induces a coupling

between F and SM leptons via the charged and neutral currents. Secondly, the Yukawa

Lagrangian allows decays to SM final-states due to the mass-mixing between the SM Higgs

and the exotic scalars. However, as discussed in section 2, one expects 〈S0〉 ≪ 〈∆0〉, given
12SmallerMF likely implies some Yukawa suppression of the the neutrino masses, which in turn suppresses

Yukawa-induced loop-corrections to the exotic fermion masses.
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Figure 9. Radiative mass-splitting due to loops with SM gauge bosons: ∆MQ,Q′ = MFQ −M
FQ′ .

The solid (dashed, dot-dashed) line corresponds to ∆M−2,−1 (∆M−1,0, ∆M+1,0). For MF .

1.5TeV the mass ordering is MF−− > MF− > MF+ > MF0 .

that the former is induced by the latter. Consequently the mixing between S0 and H0 is

smaller than the (already small) mixing between ∆0 and H0, and can be neglected. Decays

induced by scalar mass-mixing therefore proceed predominantly through the couplings

λ∆, or equivalently the matrices K∆. Gauge-mediated decays can proceed through both

coupling matrices K∆ and KS, but due the relation 〈S0〉 ≪ 〈∆0〉 one expects the K∆-

dependent pieces to dominate. These features play a role in the following.

Consider the neutral fermion F0. It has two-body SM decays containing a final state

W boson, with the decay widths

Γ(F0 → W+ℓ−) =
α

8s2
W

1

2
|Kℓ

S
− 2Kℓ

∆|2
M3

F

M2
W

(

1− M2
W

M2
F

)2(

1 +
2M2

W

M2
F

)

,

Γ(F0 → W−ℓ+) =
α

8s2
W

1

2
|Kℓ

S
+Kℓ

∆|2
M3

F

M2
W

(

1− M2
W

M2
F

)2(

1 +
2M2

W

M2
F

)

. (7.4)

Neutral-current decays are also possible:

3
∑

i=1

Γ(F0 → Zνi) =
∑

ℓ

α

8s2
W
c2
W

|Kℓ
S
|2M

3
F

M2
Z

(

1− M2
Z

M2
F

)2(

1 +
2M2

Z

M2
F

)

. (7.5)

To leading order, decays to the SM-like neutral scalar h have the width

∑

i

Γ(F0 → νi h) =
∑

ℓ

θ20
96π

|λ∆,ℓ|2MF

(

1− M2
h

M2
F

)2

=
∑

ℓ

1

16π
|Kℓ

∆|2
M3

F

〈H0〉2
(

1− M2
h

M2
F

)2

. (7.6)

Due to the KS-dependence in eq. (7.5), decays to Z bosons are suppressed relative to

the other channels. The dominant decays are
∑

iF0 → νih and F0 → W+ℓ−, with the
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Figure 10. Dominant branching fractions for the neutral fermion F0. Solid line =
∑

ν Γ(F0 → νh),

dotted =
∑

ℓ ℓ
−W+, dashed =

∑

ℓ ℓ
+W−.

W+ℓ− final state preferred over the W−ℓ+ mode by a factor of

Γ(F0 → W+ℓ−)

Γ(F0 → W−ℓ+)
≈ 4 for |K∆| ≫ |KS| . (7.7)

The relative branching fractions for electrons, muons and tauons is somewhat sensitive

to the neutrino mass hierarchy, as will be discussed in the next section. However, this

dependence drops out after summing over flavors. Note that, because F0 is the lightest

exotic in the parameter space of interest for the LHC, no decays of the type F0 → F ′+SM

are possible.

In figure 10 we plot the branching fractions for F0 as a function of MF , with |K∆| =
10−6

√

2500
(MF/GeV) ≃ 150 × |KS|. For |K∆| ≫ |KS| the branching fractions are not very

sensitive to the overall scale of |K∆|. The dominant modes are the W±ℓ∓ and νh channels,

as expected; the νZ mode is greatly suppressed by the small factor |KS|2/|K∆|2 ≪ 1 and

does not appear on the figure. The key features observed in figure 10 persist as one increases

the hierarchy between |K∆| and |KS|.13 Values of |K∆| ≫ 150|KS| tend to further suppress

the already-small branching fraction for
∑

ν F0 → νZ, while the similarity of the widths

for the νh and ℓ−W+ channels persists. Furthermore the width for the ℓ+W− channel

remains smaller by an O(1) factor, as in eq. (7.7). Figure 10 therefore provides a relatively

robust representation of the dominant decay channels for F0.

Turning now to the positively charged fermion F+, it has two-body decays to SM final

states containing neutrinos:

3
∑

i=1

Γ(F+ → W+νi) =
∑

ℓ

α

8s2
W

[

3

2
|Kℓ

∆|2 +
8

3
|Kℓ

S
|2
]

M3
F

M2
W

(

1− M2
W

M2
F

)2(

1 +
2M2

W

M2
F

)

,

(7.8)

13A larger hierarchy can arise naturally given that 〈S0〉 6= 0 is induced by 〈∆0〉 6= 0 and that 〈S0〉 ∝ λ.
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and charged leptons:

Γ(F+ → Zℓ+) =
α

8s2
W
c2
W

1

3
|Kℓ

S
|2M

3
F

M2
Z

(

1− M2
Z

M2
F

)2(

1 +
2M2

Z

M2
F

)

. (7.9)

There is also a decay F+ → F0 + SM , however, we will see in section 7.2 that the

corresponding width is negligible compared with the above. Therefore the W+ν mode

is dominant, with a branching fraction of ∼ 100%, given the KS-dependence of the Zℓ+

mode. This feature is generic in the present model; F+ is expected to decay dominantly

as F+ → W+ν, giving signals with large amounts of missing energy.

The negatively-charged fermions F− and F−− can decay to two-body SM final-states

and to states with lighter exotic fermions (see below). The fermion F− has two-body

decays to a W boson and a neutrino:

3
∑

i=1

Γ
(

F− → W−νi
)

=
∑

ℓ

α

8s2
W

(2|Kℓ
S
|2 + 1

2
|Kℓ

∆|2)
M3

F

M2
W

(

1− M2
W

M2
F

)2(

1 +
2M2

W

M2
F

)

.

(7.10)

The decay F− → Zℓ− does not happen at leading order due to the cancellation in the

neutral-current interaction Lagrangian, resulting from the equality gℓL = gZF− . The width

for F− → ℓ− + h has the leading-order value

Γ(F− → ℓ− h) =
θ20
96π

|λ∆,ℓ|2MF

(

1− M2
h

M2
F

)2

=
1

16π
|Kℓ

∆|2
M3

F

〈H0〉2
(

1− M2
h

M2
F

)2

. (7.11)

Observe that for |K∆| ≫ |KS| one expects

∑

i

Γ(F− → W−νi) ∼
∑

ℓ

Γ(F− → ℓ− h) , (7.12)

which is contrary to F+, for which the decay F+ → W+νi dominates the charged-

lepton modes.

The doubly-charged fermion F−− has a single two-body decay mode to SM states. It

proceeds via the charged current and has the width:

Γ(F−− → W−ℓ−) =
α

8s2
W

3

2
|Kℓ

∆|2
M3

F

M2
W

(

1− M2
W

M2
F

)2(

1 +
2M2

W

M2
F

)

. (7.13)

7.2 Decays to light exotic fermions

In addition to the two-body decays F → SM+ SM′, the heavier fermions can decay to

the lighter ones, F → F ′ + SM. The widths for these decays do not depend on any

unknown parameters; they are determined by the mass-splitting between F and F ′, which

depends only weakly on the mass MF , as seen in figure 9. For the region for interest at the

LHC, the widths are essentially independent of MF and are determined by the quantum

numbers of F .
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Figure 11. Branching fractions for the negatively-charged fermion F−. Solid line =
∑

ν Γ(F− →
W−ν), dashed =

∑

ℓ ℓ
−h, dotdashed = F0π−, dotted =

∑

ℓ=e,µ F0ℓ−ν.
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Figure 12. Branching fractions for the doubly-charged fermion F−−. Solid line =
∑

ℓ Γ(F−− →
W−ℓ−), dashed = F−π−, dotted =

∑

ℓ=µ,e F−ℓ−ν, dotdashed = F−K−.

The negatively-charged fermions can decay to single-pion final states, with partial

decay widths given by

Γ(FQ → FQ+1 π−) =
2g2

WF
|Vud|2
π

G2
F f2

π (∆M)3
(

1− m2
π

(∆M)2

)1/2

. (7.14)

Here Q < 0, and the couplings are g2
WF

= {3/2, 2} for Q = {−2,−1}, which can be read

off eq. (6.13). The mass-splitting between the fermions is denoted by ∆M . For F−− the

kaon mode F−− → F−K− is also kinematically accessible, but the width is suppressed

relative to the pion mode by the small CKM factor |Vus|2 ≪ |Vud|2. The three-body decay

F−− → W−π−π0 is also kinematically allowed. However, the mass-splitting between F−−

and F− is ∆M ≈ 600MeV, which is below the mass of the ρ(770) resonance. The width

is therefore suppressed by the three-body phase space and the small mass differences.

Three-body decays to kinematically accessible final-state leptons are also available for the
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negatively charged fermions:

Γ(FQ → FQ+1 ℓ−ν) =
2g2

WF

15π3
G2

F (∆M)5
(

1− m2
ℓ

(∆M)2

)1/2

P (mℓ/∆M), (7.15)

where

P (X) = 1− 9

2
X2 − 4X4 +

15X4

2
√
1−X2

tanh−1
√

1−X2. (7.16)

These widths are also suppressed by the small mass difference, particularly for F−.

The positively-charged fermion cannot kinematically access final-states containing

tauons, pions or muons, due to the small O(10 MeV) mass-splitting between F+ and

F0. The only kinematically-accessible decay of the type F+ → F0+SM is to a three-body

final state with a positron:

Γ(F+ → F0 e+ν) =
3

15π3
G2

F (∆M)5
(

1− m2
e

(∆M)2

)1/2

. (7.17)

However, this decay is highly suppressed due to the tiny mass-splitting between F+ and

F0, and can be ignored.

With the above results we can plot the branching fractions for F− and F−−, as shown

in figures 11 and 12, respectively. The following features can be noted. In both cases the

modes F → F ′ + SM are subdominant to the F → SM + SM ′ modes. For example,

one has

∑

ℓ

BR(F−− → W−ℓ−) > 99.9% for MF = 400 GeV, (7.18)

and BR(F− → SM + SM ′) is even larger. The relative size of the widths for the F →
SM + SM ′ modes and the F → F ′ + SM modes depends on |K∆|. However, given that

|K∆| ≫ |KS| is expected and that mν ∼ K∆MFKS, the demand of mν ∼ 0.1 eV means that

|K∆| is not expected to be small enough to change the relation Γ(F → SM+SM ′) > Γ(F →
F ′ + SM) for MF .TeV. Increasing the hierarchy between |K∆| and |KS| increases this

inequality so that both F− and F−− are expected to decay dominantly as F → SM+SM ′,

as in figures 11 and 12. This means that F− always has a sizable width to two-body

final-states with charged leptons.

8 Collider signals

We have seen that the dominant decay modes for the exotic fermions are of the type

F → SM lepton + SM boson, (8.1)

where the boson can be a W , Z or h. Collider production of fermion pairs thus leads to

events with pairs of SM leptons and bosons. We list the events with two charged-leptons

in table 3, along with the branching fractions, for MF = 300GeV. The results in the
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table have limited (no) sensitivity to the neutrino mass ordering (mixing phases), though

we shall see later that the flavor content of the charged leptons is sensitive to both the

mass-hierarchy and the phases. We include the modes F+ → ℓ+Z in the table, despite

their tiny branching fractions, to emphasize the absence of such events. The table uses

|K∆| ≃ 150|KS| and we checked numerically that increasing the hierarchy between |K∆|
and |KS| barely changes the branching fractions.

The events listed in table 3 are in direct correspondence with those given in ref. [16]

for the Type-III seesaw. The table shows that a number of dilepton events are possible,

including like-sign dilepton events, which break lepton-number symmetry and do not arise

in the SM. The subsequent decay of final-state bosons produces various three- and four-

lepton final states, giving a host of multi-lepton signatures whose discovery prospects are

largely detailed in ref. [16]. The like-sign dilepton events have the branching fractions

BR(F0F0 → ℓ+ℓ+W−W−) = BR(F0F0 → ℓ−ℓ−W+W+) ≃ 5%,

BR(F−F0 → ℓ−ℓ−W+h) = BR(F0F− → ℓ+ℓ+W−h) ≃ 8%. (8.2)

These values are similar to those quoted for the Type-III seesaw, which can be probed

at the LHC [16]. Note, however, that the bosonic content of the like-sign dilepton events

differs for the two models; whereas the like-sign dileptons come with WW or Wh pairs in

the present model, they are partnered with ZW or Wh pairs in the Type-III seesaw.

In addition to the events shown in table 3 there are various events containing neutrinos.

Events with one charged lepton are possible, like ℓ−W−W+ν, and there are also events

with no charged leptons; for example, pair production of F+F+ gives W+W−νν final

states with a branching fraction of ∼ 100%. Both classes of events give signals with large

amounts of missing energy.

The events in table 3 can be compared with the corresponding table in ref. [11], where

similar signals are listed for the seesaw/radiative model (b), which employs the fermion

F ∼ (1, 5, 0) (see table 2 in ref. [11]). Similar to the Type-III seesaw, model (b) predicts

ℓ±ℓ±W∓Z events but not ℓ±ℓ±W∓W∓ events [11, 12], which is opposite to the present

model. The difference arises because the neutral beyond-SM fermion has zero hypercharge

in both model (b) and the Type-III seesaw; production of neutral fermion pairs, which would

otherwise give the lepton-number violating event ℓ±ℓ±W∓W∓, is not available in those

models.14 The present model allows neutral-fermion pair-production and thus predicts

ℓ±ℓ±W∓W∓ events, but does not give an observable number of ℓ±ℓ±W∓Z events due to

the relations gℓL = gZF− and |KS| ≪ |K∆|.
Though the ℓ±ℓ±W∓W∓ state is not expected in either model (b) or the Type-III

seesaw, the actual experimental signal requires one to decay the W bosons. If these decay

leptonically one obtains four-lepton events via the chain

pp → F̄0F0 → ℓ±ℓ±W∓W∓ → ℓ±ℓ±ℓ∓ℓ∓ +missing energy . (8.3)

This four-lepton signal can arise via other intermediate states in all three models. However,

the kinematics for the lepton-number violating channel ℓ±ℓ±W∓W∓ are quite distinct; one

14More accurately, it can only proceed via Lagrangian terms containing two insertions of the small mass-

mixing parameters and is therefore highly suppressed.
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F−− → ℓ+W+ F0 → ℓ+W− F0 → ℓ−W+ F+ → ℓ−Z F− → ℓ+h

(0.998) (0.49) (0.10) (10−5) (0.77)

F−− → ℓ−W− ℓ−ℓ+W−W+ − − − ℓ−ℓ+W−h

(0.998) (0.99) (0.75)

F0 → ℓ−W+ − ℓ−ℓ+W−W+ ℓ−ℓ−W+W+ ℓ−ℓ−W+Z ℓ−ℓ+W+h

(0.49) (0.26) (0.05) (10−5) (0.38)

F0 → ℓ+W− − ℓ+ℓ+W−W− ℓ−ℓ+W−W+ ℓ−ℓ+W−Z ℓ+ℓ+W−h

(0.10) (0.05) (0.01) (10−6) (0.08)

F+ → ℓ+Z − ℓ+ℓ+W−Z ℓ−ℓ+W+Z ℓ−ℓ+ZZ −
(10−5) (10−5) (10−6) (10−10)

F− → ℓ−h ℓ−ℓ+W+h ℓ−ℓ+W−h ℓ−ℓ−W+h − ℓ−ℓ+hh

(0.77) (0.75) (0.38) (0.08) (0.56)

Table 3. Events due to exotic fermion decays to charged-leptons, ℓ = e, µ, τ . Like-sign dilepton

events are possible and branching fractions are shown for MF = 300GeV. Results are basically

the same for both the normal and inverted hierarchies, and hold for arbitrary values of the neu-

trino phases.
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Figure 13. Normal hierarchy: branching fraction BR(F0 → ℓ−W+) as a function of the mixing

phase α. Left (right) plot is for δ = 0 (δ = 3π/4).

expects two like-sign hard leptons of a given charge and two like-sign softer-leptons with

the opposite charge. This differs from the analogous state in both model (b) and the Type-

III seesaw (and also from other channels in the present model), for which one expects two

opposite-sign hard leptons and two opposite-sign softer leptons.

Note that ℓ±ℓ±W∓W∓ events can also arise in model (d), which employs the fermion

F ∼ (1, 5, 2) and contains a neutral fermion with nonzero hypercharge [14, 15]. The branch-

ing fractions for such events have additional parameter dependence in model (d) because

the analogues of K∆ and KS are essentially independent parameters (the VEV appearing in

one parameter is not induced by the VEV appearing in the other). However, there remains

a simple means of discriminating the two models — model (d) contains a triply charged
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F−− → ℓ+W+ F0 → ℓ+W− F0 → ℓ−W+ F− → ℓ+h

F−− → ℓ−W− ℓ−ℓ+W−W+ − − ℓ−ℓ+W−h

(0.05) (0.60) (0.04) (0.45)

F0 → ℓ−W+ − ℓ−ℓ+W−W+ ℓ−ℓ−W+W+ ℓ−ℓ+W+h

(0.01) (0.16) (0.003) (0.03) (0.02) (0.23)

F0 → ℓ+W− − ℓ+ℓ+W−W− ℓ−ℓ+W−W+ ℓ+ℓ+W−h

(0.003) (0.03) (0.001) (0.01) (0.004) (0.05)

F− → ℓ−h ℓ−ℓ+W+h ℓ−ℓ+W−h ℓ−ℓ−W+h ℓ−ℓ+hh

(0.04) (0.45) (0.02) (0.23) (0.004) (0.05) (0.03) (0.34)

Table 4. Normal hierarchy: branching fractions for events containing light charged-leptons (ℓ =

e, µ) for MF = 300GeV. The first (second) value corresponds to neutrino-mixing phases of α = δ =

0 (α = 5/2, δ = 3π/4), which exemplify the pessimistic (optimistic) scenario for light-lepton events.

fermion that gives striking “golden” decays of the type F+++ → W+W+ℓ+ [14, 15]. These

lead to a class of prominent signals [14, 15] that will be absent if model (c) is realized in

nature. The observation of ℓ±ℓ±W∓W∓ events in conjunction with the non-observation of

both ℓ±ℓ±W∓Z events and golden decays would favor the present model over model (d).

The branching fractions in table 3 are largely insensitive to the mass ordering and the

mixing phases α and δ. However, it is important to differentiate between electron/muon

events and tauon events as the former provide a much cleaner signal. We find that the

branching fractions for distinct charged-leptons are sensitive to both the mass ordering

and the mixing phases. To demonstrate this dependence we plot BR(F0 → ℓ−W+) as a

function of the phase α, with δ = 0 and δ = 3π/4, for the case of a normal (inverted) mass

hierarchy in figure 13 (14). One observes significant differences between the two figures. For

example, with a normal hierarchy the branching fraction for F0 → e−W+ is always small:

BR(F0 → e−W+)
∑

ℓBR(F0 → ℓ−W+)
. 0.09, (8.4)

while the relative size of the muon and tauon fractions varies with α, as seen in figure 13.

On the other hand, for an inverted hierarchy there are large portions of parameter space

in which the electron modes are dominant, with values as large as

BR(F0 → e−W+)
∑

ℓBR(F0 → ℓ−W+)
> 0.94, (8.5)

in some regions. Furthermore the tauon fraction can be vanishingly small in regions of

parameter space.15

In table 4 we reproduce the charged-lepton events of table 3 for the case of a normal

hierarchy, restricting attention to light-lepton events (ℓ = e, µ). We select values of α and

15A similar phase-dependence of decay branching fractions occurs for a Type-II seesaw [77] but only when

purely leptonic decays dominate [78].
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Figure 14. Inverted hierarchy: branching fraction BR(F0 → ℓ−W+) as a function of the mixing

phase α. Left (right) plot is for δ = 0 (δ = 3π/4).

F−− → ℓ+W+ F0 → ℓ+W− F0 → ℓ−W+ F− → ℓ+h

F−− → ℓ−W− ℓ−ℓ+W−W+ − − ℓ−ℓ+W−h

(0.27) (0.98) (0.20) (0.74)

F0 → ℓ−W+ − ℓ−ℓ+W−W+ ℓ−ℓ−W+W+ ℓ−ℓ+W+h

(0.07) (0.26) (0.01) (0.05) (0.11) (0.38)

F0 → ℓ+W− − ℓ+ℓ+W−W− ℓ−ℓ+W−W+ ℓ+ℓ+W−h

(0.01) (0.05) (0.003) (0.01) (0.02) (0.07)

F− → ℓ−h ℓ−ℓ+W+h ℓ−ℓ+W−h ℓ−ℓ−W+h ℓ−ℓ+hh

(0.20) (0.74) (0.11) (0.38) (0.02) (0.07) (0.15) (0.55)

Table 5. Inverted hierarchy: branching fractions for events containing light charged-leptons (ℓ =

e, µ) for MF = 300GeV. The first (second) value corresponds to neutrino-mixing phases of α = δ =

0 (α = 3/2, δ = 3π/4), which exemplify the pessimistic (optimistic) scenario for light-lepton events.

δ that demonstrate the range of branching fractions expected. Comparison with table 3

shows that the branching fractions for light-lepton events can be less than, or on the order

of, the branching fraction for tauon events. A sizable fraction of tauon events will of course

reduce the signal for light-lepton searches.16

Table 5 lists the branching fractions for light charged-lepton events in the case of an in-

verted hierarchy for α = δ = 0 and α = 3/2, δ = 3π/4. These values demonstrate the range

of branching fractions expected and can be compared with table 4. The branching frac-

tions are generally larger for the inverted hierarchy and in many instances the discrepancy

is significant.

The discussion regarding the relative size of BR(F0 → ℓ−W+) for different leptons

ℓ generalizes for the decays of the other components of F . The doubly-charged fermion

16The tauons will be very hard, however, so the daughter lighter-leptons remain hard. Ref. [76] argues

that hard-daughter light-leptons can pass experimental selections with reasonable efficiency in the case of

a Type-III seesaw. These arguments appear to hold in the present context.

– 30 –



J
H
E
P
1
1
(
2
0
1
3
)
1
3
1

is of particular interest and we plot BR(F−− → ℓ−W−) as a function of the phase α

in figure 15, with selected values of δ that demonstrate the range of branching fractions

available. The α-dependence of the relative branching fractions is similar to those found

for F0, up to an overall scaling. In the figure the branching fraction for decays to light

charged-leptons lies roughly in the range

BR(F−− → (e or µ) +W−) ∈
{

[0.22, 0.85] for a normal hierarchy

[0.47, 0.99] for an inverted hierarchy,
(8.6)

giving large regions of parameter space in which light lepton events are dominant, partic-

ularly for an inverted hierarchy.

A promising way to study the doubly-charged fermion at the LHC is via neutral-current

pair-production, giving

pp → F−−F−− → ℓ+W+ℓ−W− → ℓ+ℓ+νℓ− + jets, (8.7)

where one W decays leptonically to enable charge identification and the other decays

hadronically to enable mass reconstruction. In optimistic cases with an inverted hierar-

chy the branching fraction for light charged-lepton events is ∼ 1 and the only significant

branching-fraction suppression of the signal comes from decaying the W ’s. In the more

pessimistic case of a normal hierarchy the branching fraction suppression can be important.

The results of ref. [18] allow one to deduce that, for large regions of parameter space,

there exists good discovery potential for F−− at the LHC. Ref. [18] identified the pro-

cess (8.7) as a leading way to probe the doubly-charged fermion F−−
T ∈ FT ∼ (1, 3,−2),

and their analysis appears to carry through for F−− in the present model, modulo three

exceptions; the coupling between FT and the Z boson differs from gZF−− by a factor of

g2
ZF−−/g

2
ZT−− ≃ 3.7, increasing the neutral-current cross section for pair production in the

present model; ref. [18] assumed equal branching fractions of 1/3 for decays of F−−
T to

distinct charged leptons; and there are additional background events in the present model

from the process

pp → F0F0 → ℓ+W−ℓ−W+ → ℓ+ℓ−νℓ− + jets. (8.8)

However, the production cross section for this background is always smaller than the signal

cross section by an O(1) factor (see figure 7). Furthermore the branching-fraction suppres-

sion when F decays is more severe for the background process (8.8) than the signal (8.7)

(by a factor of . 1/4; see tables 4 and 5). Selections should further suppress the back-

ground; ref [18] imposes a mass cut requiring that the invariant mass Mℓ−ℓ−ν be close to

Mjjℓ+ , whereas the background from (8.8) gives Mℓ−ℓ+ν close to Mjjℓ+ . Thus, the addi-

tional background should not significantly diminish ones ability to extract a signal from

the process (8.7).

Given that the production cross section is larger in the present model, one expects

the discovery reach for F−− at the LHC to exceed the discovery reach for F−−
T quoted

in ref. [18] for the entire region of parameter space with BR(F−− → (e or µ) + W−) ≥
2/3. This includes most of the parameter space for the case of an inverted hierarchy and
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Figure 15. Leptonic branching fractions for the doubly-charged fermion, BR(F−− → ℓ−W−), as

a function of the neutrino-mixing phase α. The left (right) plot is for a normal (inverted) mass

hierarchy with δ = 0 (δ = 3π/4), which is the more pessimistic (optimistic) scenario for discovery

via light-lepton events.

a sizable fraction of the parameter space for a normal hierarchy, giving a 5σ discovery

reach of at least MF . 500 (700) TeV with 102 fb−1 of data at the 7 (14) TeV LHC

for BR(F−− → (e or µ) + W−) = 2/3 [18]. Greater (reduced) reach is expected as

one increases (decreases) this branching fraction and/or the integrated luminosity; see

figure 7 of ref. [18]. For example, in the most optimistic case of an inverted hierarchy with

BR(F−− → (e or µ) +W−) ∼ 1 the 5σ discovery reach will be at least MF . 1TeV with

102 fb−1 of data at the 14TeV LHC.

These numbers are a rough guide but none the less suggest that good discovery reach

can be achieved at the LHC. We hope to refine these numbers in a partner paper, where

we shall present a detailed comparative analysis of the exotic fermions in all the see-

saw/radiative models. Note that each of the models (a) through (d) in table 1 contain a

doubly-charged fermion. Therefore an LHC search for exotic doubly-charged fermions via

the process (8.7) would give generic bounds applicable to all of the models (or, optimisti-

cally, generate evidence for the origin of neutrino mass). Such an analysis appears to be

the simplest experimental search capable of probing all of the models, as we shall detail in

the partner paper.

9 Conclusion

The Type-I and Type-III seesaw mechanisms are part of a larger, generalized set of tree-

level seesaws that can achieve small neutrino mass via heavy fermion exchange [9]. The

generalized seesaw mechanisms differ from their simpler counterparts in two main ways;

firstly, they realize mass via low-energy effective operators with mass-dimension d > 5,

and, secondly, they allow radiative masses that can dominate the seesaw mass in regions of

parameter space. The models are therefore something of a hybrid between the traditional

seesaw mechanisms and the traditional radiative models of neutrino mass; see figure 3.

There are only four minimal model of this type that give effective operators with

d ≤ 9 [9]. In this work we studied the remaining d = 9 model, detailing the origin of neu-
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trino mass and investigating the collider phenomenology of the exotic quadruplet fermions

predicted in the model [F ∼ (1, 4,−1)]. Collider production of these exotics proceeds via

electroweak interactions with cross sections that are fixed, modulo their dependence on

the fermion mass scale. The decay properties of the fermions encodes information about

their connection to neutrino mass; for example the branching ratio for F+ → ℓ+Z is highly

suppressed relative to BR(F+ → νW+) due to the suppression of 〈S0〉 inherent in the

model. Furthermore the branching fractions for charged leptons of different families are

sensitive to both the neutrino mass hierarchy and the mixing phases.

Lepton number violating like-sign dilepton events, which have no SM background, are

a key feature of the model. As an example, with MF ∼ 300GeV a production cross section

for F−F0 or F0F− pairs of ∼ 500 fb is expected for the LHC operating at
√
s = 14TeV,

giving ∼ 300 same-sign dilepton events of the type ℓ±ℓ±W∓h, for 5 fb−1 of data. For a

normal hierarchy the electron-fraction in these events is suppressed relative to the tauon

and muon fractions; for an inverted hierarchy the leptons can be predominantly electrons,

allowing a simpler extraction of the signal. These and other similar events give a host

of multi-lepton signals, much like those found in related models like the Type-III seesaw.

Our analysis suggests that the doubly-charged exotic F−− could be discovered at the 5σ

level for MF . 500 (700) GeV with 100 fb−1 of data at the 7 (14) TeV LHC. This reach

extends higher in more optimistic regions of parameter space. We briefly discussed ways to

differentiate the distinct fermions in the various seesaw/radiative models, and noted that

a dedicated LHC search for exotic doubly-charged fermions would provide generic bounds

applicable to all of the models (or discover evidence for the origin of neutrino mass). In a

partner paper we shall present a more detailed comparative analysis of the exotic fermions

in the four d ≤ 9 models, to better illustrate both the LHC discovery reach and ways to

discriminate the models.

Note added. After completion of this work ref. [79] appeared, in which the analysis of

ref. [18] was extended.
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A Expanded Lagrangian terms

The Yukawa Lagrangian for ∆ can be expanded to obtain

L ⊃ −λ∆ L̄FR∆−λ†
∆FRL∆ (A.1)

≡ −λ∆ L̄a (FR)abc ǫ
cd∆ b

d −λ†
∆ (FR)

abc La∆
d
b ǫcd

= −λ∆√
2

{

∆−

[

νLF+
R +

1√
3
eLF0

R

]

−∆+

[

1√
3
νLF

−
R +eLF−−

R

]

+

√

2

3
∆0
[

νLF0
R+eLF

−
R

]

}

− λ†
∆√
2

{

∆+

[

F+
R νL+

1√
3
F0
ReL

]

−∆−

[

1√
3
F−
R νL+F−−

R eL

]

+

√

2

3
∆0
[

F0
RνL+F−

R eL

]

}

,
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and similarly the Yukawa Lagrangian for S gives

L ⊃ −λS LcFLS − λ†
S FLL

cS∗

≡ −λS (Lc)d Sabcd(FL)a′b′c′ ǫ
aa′ ǫbb

′

ǫcc
′ − λ∗

S
(FR)

a′b′c′ (Lc)d (S
∗)abcd ǫaa′ ǫbb′ ǫcc′

= −λS

{[

ecLS
+++ − 1√

4
νcLS

++

]

F−−
L − 3

[

1√
4
ecLS

++ − 1√
6
νcLS

+

]

1√
3
F−
L

+ 3

[

1√
6
ecLS

+ − 1√
4
νcLS

0

]

1√
3
F0
L −

[

1√
4
ecLS

0 − νcLS
−

]

F+
L

}

+H.c.

We suppress flavor labels in the above. The quartic scalar coupling responsible for inducing

a nonzero VEV for S is expanded as follows:

V ⊃ −λH̃†∆S∗H +H.c.

≡ −λ (H̃†)a
′

∆ c′

b (S∗)abcdHd ǫaa′ ǫcc′ +H.c.

= −λ

2
H+H+

{

1√
3
(S+)∗∆− + S−−∆0 −

√
2S−−−∆+

}

− λ√
2
H+H0

{

S0∗∆− +

√

2

3
(S+)∗∆0 − S−−∆+

}

− λ√
2
H0H0

{

(S−)∗∆− +
1√
2
S0∗∆0 − 1√

6
(S+)∗∆+

}

+H.c. (A.2)

B Limits for the loop mass

Here we present approximate expressions for the loop mass in a number of limits. The

general expression for the loop mass is

(Mloop
ν )ℓℓ′ ≃

(2− 3
√
2)

6

[(λ∗
∆)ℓ (λS)ℓ′ + (λS)ℓ (λ

∗
∆)ℓ′ ]

32π2
MF ×

λ 〈H0〉2
M2

S −M2
∆

[

M2
S

M2
F −M2

S

log
M2

F

M2
S

− (MS → M∆)

]

. (B.1)

Writing this mass as

(Mloop
ν )ℓℓ′ ≃

(2− 3
√
2)

6

[(λ∗
∆)ℓ (λS)ℓ′ + (λS)ℓ (λ

∗
∆)ℓ′ ]

32π2
λ 〈H0〉2 × I, (B.2)

we can determine the factor I for various limits of interest.

I ≃ 1

2MF
for M2

F ≃ M2
∆ ≃ M2

S
,

I ≃ MF

M2
S
−M2

∆

log
M2

S

M2
∆

for M2
F ≪ M2

∆, M
2
S
,

I ≃ MF

M2
S

for M2
F ≪ M2

∆ ≈ M2
S
,

I ≃ −MF

M2
∆

[

M2
S

M2
F −M2

S

log
M2

F

M2
S

− log
M2

F

M2
∆

]

for M2
F ,M2

S
≪ M2

∆. (B.3)
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