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1 Introduction and summary

The N = 4 supersymmetric Yang-Mills (SYM) theory is a distinguished four dimensional

gauge theory that has been intensively studied in recent years. It is a finite, maximally

supersymmetric and quantum superconformal four dimensional gauge theory which may

be understood as an idealized version of QCD. In the planar limit the model with SU(N)

gauge group exhibits integrability, which manifests itself through an infinite dimensional

extension of the superconformal symmetry algebra of Yangian type. Not being a symmetry
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of the action integrability appears in gauge invariant observables of the theory with a non-

trivial dependence on the ’t Hooft coupling λ. Of course N = 4 SYM theory is also

the gauge theory with the best established string theory dual description in terms of the

AdS5 × S5 superstring. The string dynamics, described by a two-dimensional quantum

field theory on the worldsheet, also appears to be integrable.

So far integrable structures have been detected in N = 4 SYM for two- and three-point

functions of local gauge invariant operators. Our understanding for the case of two-point

functions which yield the local operator’s scaling dimensions is the most mature. Exact

results are obtained through a reformulation of the problem in terms of a dynamic super-

spin chain, associated Bethe ansätze and their generalizations, see [1] for a comprehensive

overview. This language was also successfully used recently for the study of three-point

functions [2–7]. A further sector is that of scattering amplitudes in the gauge theory which

are invariant under superconformal transformations, see [8] for an introduction. Here the

discovery of a hidden dual superconformal symmetry [9], which combines with the con-

ventional superconformal symmetry into a Yangian symmetry algebra [10] again points to

an underlying integrability. The Yangian invariance of tree-level super-amplitudes in the

theory was argued to extend to the loop-level integrands in [11]. The one-loop amplitudes

enjoy a deformed symmetry [12, 13]. In N = 4 SYM theory scattering amplitudes are dual

to supersymmetrically extended Wilson loops with light-like polygonal boundaries [14–

21]. A recent constructive application of integrability to the space-time S-matrix uses a

decomposition of the dual Wilson loop into pentagon blocks and yields non-perturbative

results in the form of an OPE-like expansion [22, 23]. All these developments point towards

rich integrable structure behind amplitudes/null-polygon Wilson loops, which is not com-

pletely uncovered yet, partly due to breakdown or deformation of the superconformal and

Yangian symmetries by the infrared (amplitudes) or ultraviolet (light-like Wilson loops)

divergencies.

In this paper we turn to a prominent further class of observables in N = 4 SYM and

its string-dual being almost as old as the AdS/CFT correspondence proposal [24] itself:

the Maldacena-Wilson loop operators [25, 26]. Here the loop-path variable couples next to

the gauge field also to the adjoint scalars in the form [25]

W (C) =
1

N
TrP exp

(
i

∮
C

dτ
(
Aµ(x)ẋµ + Φi(x)|ẋ|ni

))
with (ni)2 = 1 . (1.1)

The Maldacena-Wilson loop operators are locally 1/2 BPS symmetric, their expectation

values are finite for smooth loops and are invariant under conformal transformations. The

expectation value at strong coupling follows from the regularized minimal surface of an open

string in anti-de-Sitter space ending on the four dimensional boundary on the curve C of

the Wilson loop. As a direct consequence of integrability of the differential equations that

determine the shape of the minimal surface, the minimal area satisfies a number of Ward

identities of Yangian type which can be derived from the Hamilton-Jacobi formalism [27, 28]

following an unpublished idea of Polyakov [29]. For the expectation value of the circular

Maldacena-Wilson loop exact results to all orders in λ and 1/N are available [30, 31].

Given these properties it is natural to ask whether integrability in the sense of a hidden
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Yangian symmetry exists for smooth Maldacena-Wilson loops both at weak and at strong

coupling.1 Our goal is to investigate possible Yangian symmetries of Wilson loops in detail.

As we will discuss the conformal symmetry for the Maldacena-Wilson loop is repre-

sented through functional derivative operators acting on the space of paths xµ(τ) e.g. for

the special conformal transformations∫
ds kµ(s) 〈W (C)〉 = 0 , with kµ(s) = x2(s)

δ

δxµ(s)
− 2xµ(s)xν(s)

δ

δxν(s)
,

and similarly for the dilatations d(s) as well as Poincaré transformations. In order to estab-

lish the Yangian symmetry it turns out to be necessary to consider the supersymmetrization

of the Maldacena-Wilson loop operator (1.1) describing a path in an non-chiral superspace

{xµ(τ), θAα (τ), θ̄A α̇(τ)} with α, α̇ = 1, 2 and A = 1, 2, 3, 4. We establish this object up to

second-order in anti-commuting path variables and show its superconformal invariance at

leading order in perturbation theory. One can think of it as a smooth version of the light-

like polygonal non-chiral super-Wilson loops of [20, 21] although we have not yet detailed

the precise relation. At weak and strong coupling we show that a natural definition of the

level-one generators of the Yangian algebra of psu(2, 2|4) indeed annihilate the constructed

super Maldacena-Wilson loops 〈W(C)〉. Concretely for the level-one momentum generator

P
(1)
µ we show{∫

s1<s2

ds1ds2

(
d(s1) ηµν −mµν(s1)

)
pν(s2)− i

4
q̄A α̇(s1) σ̄µαα̇ q

α
A(s2)− (s1 ↔ s2)

+f(λ)

∫
ds

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
ẋµ
}
〈W(C)〉 = 0 (1.2)

at leading order in the weak or strong coupling expansion. Assuming that there are no

fermionic corrections at the leading order of strong coupling expansion our results indicate

that the function f(λ) has limiting behavior

f(λ� 1) =
7λ

96π2
, and f(λ� 1) =

λ

4π2
,

at weak and strong coupling. It would be interesting to understand the form of f(λ) beyond

these leading orders. Hence in this paper we provide good evidence for the existence of an

infinite dimensional hidden symmetry of the super Maldacena-Wilson loops

J (n)
a 〈W(C)〉 = 0 , J (n)

a ∈ Y [psu(2, 2|4)] , n ∈ N . (1.3)

We note that this uncovered hidden symmetry (1.3) has strong similarities to a more

than 30 year old speculation of Polyakov [32, 33] on the existence of a hidden symmetry

for Wilson loops in pure Yang-Mills theory related to the integrability of the non-linear

sigma model. In a sense (1.3) is a realization of this for N = 4 SYM. Parallel to these

works [32, 33] loop equations were proposed by Makeenko and Migdal [34, 35] in a related

attempt to reformulate QCD as the dynamics of Wilson loops. Indeed generalizations of

1This idea was jointly developed with N. Drukker, as well as independently with A. Sever and P. Vieira.
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the loop equations to super Maldacena-Wilson loops in the AdS/CFT context were studied

before in [27, 36, 37]. The Yangian symmetry generators (1.3) are somewhat different from

the loop Laplacian appearing in the loop equations. First of all, the Yangian generators are

non-local, unlike the Laplacian. They are also honest second-order variational operators

and, in contradistinction to the loop Laplacian, do not satisfy the Leibniz rule. In the

Makeenko-Migdal equations self-intersecting loops are very important. On the other hand

Yangian and conformal symmetries in general get broken by cusps or self-intersections, and

in this paper we only consider smooth, non-intersecting loops.

2 Maldacena-Wilson loop

The Maldacena-Wilson Loop operator in N = 4 Super-Yang Mills Theory in Lorentzian

signature ηµν = diag(+,−,−,−) is given by (1.1), where xµ(s) : [a, b]→ R1,3 parametrizes

the integration contour C, P denotes path-ordering and ni is a constant unit 6-vector which

specifies a point on S5. Note also that we define the modulus as |ẋ| :=
√
ẋ2, hence for

space-like velocity |ẋ| is imaginary, i.e. |ẋ| = i ‖ẋ‖. At leading order in perturbation theory

one easily derives the correlation function

〈W (C)〉 = 1− λ

16π2

∫
dτ1dτ2

ẋ1 · ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

+ . . . , (2.1)

where we have abbreviated xi := x(τi), see appendix A and B for our conventions and

propagators. In our discussion of the symmetries of the Maldacena-Wilson loop we will

initially focus on the one-loop contribution for which we introduce the notation

〈W (C)〉(1) = − λ

16π2

∫
dτ1dτ2 I12 where I12 :=

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

. (2.2)

2.1 Conformal invariance at one-loop

Before our discussion of possible hidden symmetries of the Maldacena-Wilson Loop we

review its invariance under conformal transformations. We introduce the following natural

functional derivative representation of the conformal algebra acting on the path xµ(s) of

the loop contour C

Pµ =

∫
ds pµ(s) =

∫
ds

δ

δxµ(s)

Mµν =

∫
dsmµν(s) =

∫
ds

(
xµ(s)

δ

δxν(s)
− xν(s)

δ

δxµ(s)

)
D =

∫
ds d(s) =

∫
ds xµ(s)

δ

δxµ(s)

Kµ =

∫
ds kµ(s) =

∫
ds

(
x2(s)

δ

δxµ(s)
− 2xµ(s)xν(s)

δ

δxν(s)

)
, (2.3)

introducing the momentum and angular momentum densities pµ(s) and mµν(s) as well

as the dilatation d(s) and special conformal density kµ(s). These generators satisfy the

commutation relations (C.1).
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Let us now prove the conformal invariance of the one-loop expectation value 〈W (C)〉(1).

For this we note the functional derivatives

δxν(τ)

δxµ(s)
= ηµνδ(τ − s) ,

δẋµ(τ)

δxν(s)
= ηµν ∂τ δ(τ − s) ,

δ|ẋ(τ)|
δxν(s)

=
ẋν(τ)

|ẋ(τ)|
∂τ δ(τ − s) . (2.4)

It comes as no surprise that already the integrand I12 of 〈W (C)〉(1) is translation invariant

by acting on it with Pµ

Pµ I12 =

∫
ds

δ

δxµ(s)

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

=
1

(x1 − x2)2

[(
ẋµ(τ1)− |ẋ(τ1)|

|ẋ(τ2)|
ẋµ(τ2)

)∫
ds ∂τ2δ(τ2 − s) + (1↔ 2)

]
− 2

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)4

(x1µ − x2µ)

∫
ds
(
δ(τ1 − s)− δ(τ2 − s)

)
By virtue of

∂τi

∫
ds δ(τi − s) = 0 and

∫
ds
(
δ(τ1 − s)− δ(τ2 − s)

)
= 0 (2.5)

we indeed find invariance at the integrand level

Pµ I12 = 0 .

A similar computation reveals that Mµν I12 = 0 and the scale invariance of I12 is manifest.

For the generators Kµ of special conformal transformations the computation is a bit more

involved. We first calculate the action of Kµ on the integrand I12 writing x12 = x1 − x2

Kµ I12 =

∫
ds
(
x2(s)δνµ − 2xµ(s)xν(s)

) δ

δxν(s)

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)2

= −2

(
ẋ1,µ

ẋ2x12

x2
12

− ẋ2,µ
ẋ1x12

x2
12

)
= ẋ1,µ ∂2 ln(−x2

12) + ẋ2,µ ∂1 ln(−x2
12) ,

which is a total derivative in each term. Therefore the integrated expression for a closed

loop is invariant and we have

Kµ 〈W (C)〉(1) = 0 ,

as claimed. In fact the conformal invariance of 〈W (C)〉 may be shown via Ward identities

beyond perturbation theory.

2.2 Towards a hidden Yangian symmetry

Inspired by the Yangian symmetry discovered for scattering amplitudes in N = 4 SYM [10]

which are dual to light-like supersymmetric Wilson loops [14–19, 21] it is natural to search

for a parallel structure for the Maldacena-Wilson loop.
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Yangian symmetries traditionally appear in 2d integrable field theories (see [38] for a

review) and in fact our construction at strong coupling to be discussed in section 4 follows

this. The Yangian algebra Y (g) of a simple Lie algebra g was introduced by Drinfeld [39, 40].

It is a deformation of the loop-algebra spanned by the generators J
(n)
a with grading n ∈ N.

One demands the level-zero and level-one commutation relations

[J (0)
a , J

(0)
b } = f cab J

(0)
c , [J (0)

a , J
(1)
b } = f cab J

(1)
c , (2.6)

where we use mixed brackets [., .} to denote the graded commutator. In fact the first two

level generators J
(0)
a and J

(1)
a span all of Y (g). In addition there is a set of representation

dependent Serre relations, a generalized Jacobi-like identity. The higher level generators

follow from commutators of the level-one generators. The distinguishing feature of the

Yangian is a non-trivial co-product for the level-one generators

∆(J (0)
a ) = J (0)

a ⊗ 1+ 1⊗ J (0)
a , ∆(J (1)

a ) = J (1)
a ⊗ 1+ 1⊗ J (1)

a + fa
bc J

(0)
b ⊗ J

(0)
c . (2.7)

Note that in the last term quadratic in J
(0)
a the structure constant with ‘inverted’ indices

appears. Indices are raised and lowered with the group metric 1
2 Tr(J

(0)
Ra J

(0)
Rb) with J

(0)
R,a in

the defining representation of g.

This is known as Drinfeld’s first realization of the Yangian. Importantly however, the

Yangian is closely related to the Yang-Baxter equation which is central to the quantum

inverse scattering method of integrability. Y (g) may be also given a Hopf algebra structure

by introducing a co-unit and an antipode, but that will be of no relevance here.

An integrable 2d field theory realizes these structures in physics. The above co-

products translate

J (0)
a =

∫
ds j(0)

a (s) , J (1)
a =

∫
ds j(1)

a (s) + fa
bc

∫
s1<s2

ds1 ds2 j
(0)
b (s1) j(0)

c (s2) . (2.8)

where the level-one generators contain a non-local piece related to the non-trivial co-

product of (2.7). The local contributions derive from a conserved current jm,a(s, τ) with

∂mjm,a = 0 (m = 0, 1) in the sense of j
(0)
a (s) = j0,a(s, 0) and j

(1)
a (s) = j1,a(s, 0). Eqs. (2.6)

are then obeyed at the classical level via Poisson-bracket relations.

For the case of our interest Y (psu(2, 2|4)) the level-zero generators of the superconfor-

mal group together with one level-one generator, e.g. the momentum P
(1)
µ , span the entire

Yangian

Y
(
psu(2, 2|4)

)
= span

(
P (0)
µ ,M (0)

µν ,K
(0)
µ , D(0), Q

α (0)
A , Q̄A α̇ (0) ;P (1)

µ

)
. (2.9)

The non-local terms in J
(1)
a for Y (psu(2, 2|4)) have been constructed in a discrete rep-

resentation in the context of super-amplitudes in [10]. For this representation the validity

of the super-Serre relations was established [41].

It is then straightforward to translate the result of [10] to the continuous case. To

begin with let us focus on the non-local contribution to the level-one momentum generator

– 6 –
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which reads

P
(1)µ
nl =

∫
ds1ds2

{(
d(s1) ηµν −mµν(s1)

)
pν(s2)− i

4
q̄A α̇(s1) σ̄µαα̇ q

α
A(s2)

− (s1 ↔ s2)

}
θ(s2 − s1) , (2.10)

where mµν(s), pµ(s) and d(s) denote the densities of (2.3). Let us postpone the form of

the super-charge densities qαA(s) and q̄A α̇(s) for the moment and focus on the bosonic part

of the level-one momentum generator denoted by P
(1)µ
bos .

Before we embark on the explicit evaluation of P
(1)µ
bos acting on 〈W (C)〉(1) we need

to discuss the regularization of (2.10). This is necessary as P
(1)µ
bos contains two functional

derivatives which may act on the same point along the Maldacena-Wilson loop giving rise

to ill defined terms such as δ(0). It is natural to introduce a point-splitting regulator ε

by demanding that s2 > s1 + ε holds. However, this condition is not reparametrization

invariant. For this one rather performs a point-splitting defined via a cut-off parametrized

by ε of the arc-length via

s1 < s2 − d(s2, ε) with

s2∫
s2−d(s2,ε)

ds ‖ẋ(s)‖= ε .

If one parametrizes the curve by arc-length, i.e. ẋ2 = −1, as we always do in concrete

calculations, this subtlety disappears and one simply has d(s2, ε) = ε. The regularized

level-one momentum generator follows from (2.10) by replacing

θ(s2 − s1)→ θ
(
s2 − s1 − d(s2, ε)

)
.

Of course one may not confine oneself to arc length parametrization ẋ2 = −1 before one

has acted with the variational derivatives. After taking the derivatives one may then set

d(s2, ε) = ε. This being understood the bosonic part of the level-one momentum generator

may be written as

P
(1)µ
bos, ε =

∫
ds1ds2

{(
d(s1) ηµν −mµν(s1)

)
pν(s2)− (s1 ↔ s2)

}
θ(s2 − s1 − ε)

=

∫
ds1ds2

(
d(s1) ηµν −mµν(s1)

)
pν(s2)

(
θ(s2 − s1 − ε) + θ(s2 − s1 + ε)

)
−
∫

ds1

(
d(s1) ηµν −mµν(s1)

) ∫
ds2 pν(s2) ,

where we have used θ(x) = 1−θ(−x) in the last step. The last term in the above factorizes

into (Mµν −Dηµν)Pν and we know already that it annihilates I12 defined in (2.2). Hence

we only need to study the action of the generator

P̃
(1)µ
bos, ε =

∫
ds1ds2

(
d(s1) ηµν −mµν(s1)

)
pν(s2) θ(s2 − s1 − ε) + (ε→ −ε) (2.11)

– 7 –
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on the vacuum expectation value of the Maldacena-Wilson loop. Details of this rather

tedious calculation may be found in the appendix E. The final result we obtained reads

P
(1)µ
bos, ε〈W (C)〉(1) =

λ

16π2

{
1

6

∫
dτ ẋµ(τ)

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
(2.12)

+ 16

∫
dτ1dτ2

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)4

(xµ1 − x
µ
2 ) θ
(
τ2 − τ1 − d(τ2, ε)

)}
suppressing contributions proportional to δ(ε) as well as O(ε) terms, see (E.22) in the

appendix for the full result.

We hence see that a bi-local expression remains under the action of P
(1)µ
bos, ε which is

to be expected as we have not taken into account the fermionic piece of the level-one

momentum generator P
(1)µ
ferm, ε in (2.10). The natural guess then is that the supersymmetric

completion of the bosonic Maldacena-Wilson loop will be invariant under the full Yangian

symmetry, as the functional form of the bi-local term above is that of a fermion-propagator

in configuration space.

Hence the fermionic completion of the level-one momentum generator

P
(1)µ
ferm, ε = − i

4

∫
ds1ds2 q̄

Aα̇(s1) σ̄µαα̇ q
α
A(s2)

(
θ(s2 − s1 − ε)− θ(s1 − s2 − ε)

)
, (2.13)

acting on the additional fermionic terms in the Maldacena-Wilson loop correlator to be

established should cancel the unwanted bi-local term in (2.12).

3 Supersymmetric completion of the Maldacena-Wilson loop

The possibility of a supersymmetric completion of the Maldacena-Wilson loop (1.1) was

already discussed in the early work on the subject [36]. Implicitly it was even constructed

before that in [42] which established the super-connection for N = 1 super Yang-Mills in

10d. The Maldacena-Wilson loop is then a specific light-like path in this higher dimensional

superspace with 10d bosonic base. We will need the explicit form of the operator to higher

orders in anticommuting coordinates. Also we work in a 4d formulation from the outset.

3.1 Construction of the super Maldacena-Wilson loop

The construction principle is clear: as we saw the bosonic Maldacena-Wilson loop is invari-

ant under conformal transformations generated by operators acting as first-order functional

derivatives in the space of bosonic loops xµ(s). In order to supersymmetrize this we need

to define paths in superspace. We choose a full non-chiral superspace parametrized by

xα̇α(s) = σµα̇α xµ(s) , θAα (s) , θ̄A α̇(s) . (3.1)

The need for a non-chiral superspace is easy to see: in order to cancel the bi-local con-

tribution in (2.12) by acting with P
(1)µ
ferm, ε on a fermionic correction to 〈W (C)〉 it is clear

that this correction has to be of order θ θ̄ as the supercharge densities q̄ and q start out as

variational derivatives in θ̄ and θ respectively. Would we consider only a chiral superspace

{xµ(s), θAα (s)} then the bi-local operator P
(1)µ
ferm, ε would only give rise to terms of order

θ2 and the result of the bosonic action in (2.12) would not receive any purely bosonic

corrections.

– 8 –
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We then make the ansatz for the super Maldacena-Wilson loop

W(C) =
1

N
TrP exp

(
i I [A,ψ, ψ̄, φ;x, θ, θ̄]

)
(3.2)

with the exponent I possessing an expansion in Graßmann-odd variables

I [A,ψ, ψ̄, φ;x, θ, θ̄] =

∮
C
dτ
(
I0 + I1 + Ī1 + I2m + I2 + Ī2 +O({θ̄iθ3−i})

)
. (3.3)

Here I0 is the exponent of the usual Maldacena-Wilson loop (1.1). Consequently In (Īn)

are extensions of order n in θ (θ̄) and the mixed term I2m is of order θθ̄. Terms which

contain higher orders of Graßmann odd coordinates can be neglected in this context, since

corrections to the bosonic result (2.12) due to the fermionic part of the level-one momentum

generator can only arise from terms of 〈W(C)〉(1) which are of order θθ̄ as argued above.

To be complete at order two in Graßmann odd coordinates we nevertheless will also derive

the I2 and Ī2 terms.

To proceed with the construction we note the relevant supersymmetry transformations

of the fields generated by Qα
A and Q̄Aα̇

Qα
A(Aββ̇) = 2 i εαβ ψ̄β̇A Q̄Aα̇(Aββ̇) = −2 i εα̇β̇ ψAβ (3.4)

Qα
A(φ̄BC) =

√
2 i εABCD ψ

Dα Q̄Aα̇(φ̄BC) = −
√

2 i (ψ̄α̇B δ
A
C − ψ̄α̇C δAB) (3.5)

Qα
A(ψBβ) =

i

2
Fαβ δBA + i εβα [φ̄AC , φ

BC ] Q̄Aα̇(ψBβ) = −
√

2Dβα̇ φAB (3.6)

Qα
A(ψ̄β̇B) = −

√
2Dβ̇α φ̄AB

Q̄Aα̇(ψ̄β̇B) = − i
2
F α̇β̇ δAB + i εα̇β̇ [φAC , φ̄BC ] (3.7)

The construction principle for the supersymmetric Maldacena-Wilson loop is to require that

the linearized supersymmetry field-transformations of the exponent term I may equally well

be written as a supersymmetric transformation of the superpath {xα̇α(s), θAα (s), θ̄A α̇(s)}.
For this we note the representation of the supersymmetry transformations QαA and Q̄A α̇

acting in the path superspace

QαA =

∫
ds qαA(s) =

∫
ds

(
− δ

δθAα (s)
+ i θ̄Aα̇(s)

δ

δxαα̇(s)

)
(3.8)

Q̄
A α̇

=

∫
ds q̄A α̇(s) =

∫
ds

(
δ

δθ̄Aα̇(s)
− i θAα (s)

δ

δxαα̇(s)

)
. (3.9)

The exponent I in (3.3) is now constructed in such a fashion to obey the key relations

Qα
A(I) = QαA(I) Q̄A α̇(I) = Q̄

A α̇
(I) , (3.10)

i.e. the supersymmetry variations of the path equal the supersymmetry variations of the

fields. This guarantees the invariance of the vacuum expectation value of the Maldacena-

Wilson superloop seen by the following simple argument

0 = 〈Qα
AW(C)〉 =

i

N
〈TrP{ei I Qα

A I}〉 =
i

N
〈TrP{ei I QαA I}〉 = QαA 〈W(C)〉 , (3.11)

where the zero on the left hand side follows from the invariance of the vacuum state.
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Up to quadratic order in Graßmann variables we find the explicit expressions for the

first few components of the Maldacena-Wilson loop exponent I in (3.3)

I0 =
1

2
Aββ̇ ẋββ̇ −

1

2
φCD η̄CD |ẋ| (3.12)

I1 = i θBβ ψ̄
β̇
B ẋββ̇ +

√
2 i θCβ ψ

Dβ η̄CD |ẋ| (3.13)

Ī1 = −i θ̄β̇B ψ
Bβ ẋββ̇ −

√
2 i θ̄Cβ̇ ψ̄

β̇
D η

CD |ẋ| (3.14)

I2 = − i√
2
θCγ θ

Bβ
(
∂β̇γ φ̄CB

)
ẋββ̇ +

1

2
√

2
θCβ θ

D
γ F

γβ
lin η̄CD |ẋ|+

√
2 i θCγ θ̇

Bγ φ̄CB (3.15)

Ī2 = − i√
2
θ̄Cγ̇ θ̄

β̇
B

(
∂βγ̇ φCB

)
ẋββ̇ −

1

2
√

2
θ̄Cβ̇ θ̄Dγ̇ F

γ̇β̇
lin η

CD |ẋ|+
√

2 i θ̄Cγ̇
˙̄θγ̇B φ

CB (3.16)

I2m =
1

4
θBγ θ̄

β̇
B F

γβ
lin ẋββ̇ +

1

4
θBβ θ̄Bγ̇ F

γ̇β̇
lin ẋββ̇ + 2 i θBγ θ̄Cβ̇

(
∂β̇γ φ̄BE

)
ηCE |ẋ| (3.17)

− i

2
θBγ θ̄Bγ̇

(
∂γγ̇ φCD

)
η̄CD |ẋ|+

i

2
θ̇Bβ θ̄Bβ̇ φ

CD η̄CD
ẋββ̇

|ẋ|
− i

2
θBβ

˙̄θBβ̇ φ
CD η̄CD

ẋββ̇

|ẋ|
.

The details on the computation can be found in appendix E.2. At leading order in the θ

expansion these terms coincide with the results spelled out in appendix C of [36] using a

ten dimensional and euclidean notation.

It is now straightforward to compute the one-loop contribution to the vacuum expec-

tation value of W(C). Using the conventions and propagators in appendix B we find

〈W(C)〉(1) = − λ

4π2

∫
dτ1dτ2

{(
1

4
− i
(
θ̄2σµθ1

)xµ12

x2
12

)(
ẋ1 · ẋ2 − |ẋ1||ẋ2|

(x1 − x2)2

)
+ (θ̄2σµθ1 − θ̄2σµθ2)

εµνρκẋ1 ν ẋ2 ρx12κ

(x1 − x2)4

+
i

2
(θ̄2σµθ̇1)

ẋµ2
x2

12

− i

2
( ˙̄θ2σµθ1)

ẋµ1
x2

12

− i

2
(θ̄2σµθ̇2 − ˙̄θ2σµθ2)

1

x2
12

|ẋ1|
|ẋ2|

ẋµ2

}
. (3.18)

Taking this result we may indeed check the Maldacena-Wilson loop to be supersymmetric

at one loop

QαA〈W(C)〉(1) = 0 Q̄A α̇〈W(C)〉(1) = 0 . (3.19)

as is shown in appendix E.3.

Full superconformal invariance, especially invariance under Kαα̇ at level-zero is, how-

ever, not yet expected. The reason for this is that our present choice of super-space

{xαα̇, θAα , θ̄A α̇} lacks the inclusion of bosonic coordinates yA
B for the R-symmetry degrees

of freedom. As is discussed in appendix D the closure of the su(2, 2|4) algebra requires this

inclusion in the form of derivatives in yA
B for the representation of generators SαA, S̄

A α̇

and Kαα̇. In this respect we have presently constructed the exponent I(x, θ, θ̄, y) of the

super Maldacena-Wilson loop only for yA
B = 0.
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3.2 Yangian invariance of the super Maldacena-Wilson loop at weak coupling

Let us now turn to the key question of the potential level-one Yangian invariance of our

result for 〈W(C)〉(1) in (3.18). We recall the result of the action of the level-one momentum

operator in the purely bosonic case in (2.12). The detailed evaluation of the corrections

due to the presence of fermionic terms may be found in appendix E.4. The final result we

obtained reads

P
(1)µ
ferm, ε〈W(C)〉(1)

∣∣
θ=0
θ̄=0

= − λ

16π2

{
16

∫
dτ1dτ2

ẋ1 · ẋ2−|ẋ1||ẋ2|
(x1−x2)4

(xµ1−x
µ
2 ) θ
(
τ2−τ1−d(τ2, ε)

)
+

4

3

∫
dτ ẋµ(τ)

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)}
. (3.20)

Remarkably, the terms are of the same type as those we encountered in the bosonic re-

sult (2.12). In the above we have again dropped terms of order δ(ε) and O(ε) for the full

result see (E.61).2 Adding up the two contributions (2.12) and (3.20) yields the complete

result

lim
ε→0

P
(1)µ
nl, ε 〈W(C)〉(1)

∣∣
θ=0
θ̄=0

= − 7λ

96π2

∫
dτ

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
ẋµ, (3.21)

where all bi-local terms have canceled out! What remains after taking the limit ε→ 0 is a

simple reparametrization invariant curve integral. This in fact defines the local contribution

to the level-one momentum generator

P (1)µ := P
(1)µ
nl +

7λ

96π2

∫
dτ

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
ẋµ. (3.22)

We have thus detected a local contribution to the level-one Yangian generators at the one-

loop order, cf. equations (2.7) and (2.8). Then indeed up to this order in perturbation

theory and at leading order in the θ-expansion we have uncovered a hidden symmetry of

the appropriately supersymmetrized Maldacena-Wilson loop

P (1)µ 〈W(C)〉 = 0 . (3.23)

We shall now see that this symmetry may be also found at strong coupling.

4 Strong coupling analysis

At strong coupling the expectation value of the Wilson loop is determined by the regularized

minimal area in AdS5 [25, 26]:

W(C) = e−
√
λA(C)
2π . (4.1)

The area is computed by minimizing the string action:3

A(C) =
1

2

∫
reg
dτ ds

√
hhab

1

Z2
(∂aX

µ∂bXµ + ∂aZ∂bZ)− L(C)

ε
. (4.2)

2However, it is worth mentioning that the structure of the neglected δ(ε)-terms in both parts (i.e.

the “bosonic part” and the “fermionic part”) of the calculation is the same, but their coefficients do not

cancel out.
3We use the standard Poincaré-patch metric of AdS5 and switch to the Euclidean signature both in

target space and on the worldsheet.
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The minimal surface is subject to the boundary conditions Z(0, s) = 0, Xµ(0, s) = xµ(s),

where xµ(s) parametrizes the contour C on the boundary. In this section we commit

ourselves to the ẋ2 = 1 gauge, and also fix the conformal gauge for the worldsheet metric:

hab = δab.

As the area diverges at small Z, it has to be regulated by subtracting a boundary

counter-term. Regularization consists in discarding the slice of the minimal surface with

Z < ε for some small ε, subtracting a divergent counter-term proportional to the perimeter

L(C) of the Wilson loop, and then sending ε to zero.

Integrability of the string sigma-model in AdS5 guarantees that Wilson loops satisfy

Yangian Ward identities, just because the equations of motion for the minimal surface

admit additional conservation laws. Following the idea of [29], we derive the Yangian

identities for the minimal area from a higher analogue of the Hamilton-Jacobi equation.4

4.1 Integrability

The equations of motion of the sigma-model on AdS5 are equivalent to the conservation

law of the isometry current

∂iJ
i = 0 . (4.3)

The current takes values in the so(5, 1) isometry algebra

Ji = ∂iX
mΞ̂m , Ξ̂m = ΞmaT̂

a. (4.4)

Here i = τ, s are the worldsheet Lorentz indices, Xm = (Xµ, Z) are the embedding coordi-

nates of the string, Ξma , a = 1 . . . 15, are the AdS5 Killing vectors, and T̂ a are the generators

of so(5, 1) defined in appendix C. Because any cycle on the worldsheet is contractible, the

charge associated with the isometry current equals to zero

Q ≡
∫
τ= const

ds Jτ = 0 , (4.5)

see figure 1 for a pictorial argument. This equation is not an identity and is only valid

on-shell, when the embedding coordinates satisfy the equations of motion. We will later

derive conformal Ward identities for the minimal area from this equation.

The isometries of AdS5 can be uplifted from the conformal transformations on the

boundary. Indeed, if ξµa are the conformal Killing vectors on R4 satisfying

∂(µξν)a =
1

2
ηµν∂λξ

λ
a , (4.6)

then

Ξµa = ξµa −
z2

8
∂µ∂νξ

ν
a , Ξza =

z

4
∂µξ

µ
a . (4.7)

satisfy the Killing equation in the AdS metric

∇(mΞin)a = 0 . (4.8)

4The results in this section were obtained in collaboration with A. Sever and P. Vieira.
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Figure 1. As any cycle C on the minimal surface worldsheet is contractible and the charges Q and

Q(1) do not change under cycle deformations the initial cycle C0 at the boundary may be shrunk

to zero at the tip of the surface. This forces the charges Q and Q(1) to vanish.

Together with the equations of motion for the embedding coordinates, the Killing equation

guarantees that the current (4.4) is conserved.

The explicit form of the conformal Killing vectors can be read off from

ξ̂µ ≡ ξµa T̂ a = P̂µ − M̂µνxν + D̂xµ + K̂µx2 − 2K̂νxνx
µ. (4.9)

The commutation relations (C.11)–(C.14) then imply5

[
Ξ̂µ, Ξ̂ν

]
= − 1

2z2
∂[µξ̂ν] ,

[
Ξ̂µ, Ξ̂z

]
= − 1

z3
ξ̂µ −

1

8z
∂µ∂ν ξ̂

ν . (4.10)

As a consequence of these equations together with (4.7), the current (4.4) is not only

conserved but is also flat

∂iJj − ∂jJi + 2[Ji, Jj ] = 0 . (4.11)

The flatness condition is actually an identity, independent of whether the embedding co-

ordinates of the string satisfy the equations of motion or not.

The existence of a flat conserved current is a hallmark of integrability. Such a current

implies the existence of an infinite number of conserved charges, local or non-local depend-

ing on which basis one chooses. The Yangian symmetry is associated with the non-local

charges. The first Yangian charge has the following form

Q(1) =
1

2

∫
ds1 ds2 ε(s1 − s2)[Jτ (s1)Jτ (s2)]−

∫
ds Js(s) , (4.12)

where ε(s) = θ(s) − θ(−s) is the anti-symmetric step function, cf. our discussion in sec-

tion 2.2.

5The indices of ξ̂µ are raised and lowered with the flat Euclidean metric, while the indices of Ξ̂m are

transformed with the AdS5 metric.
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Usually, the Yangian charge is conserved only on an infinite line, while on a periodic

interval the conservation condition acquires a boundary term. In our case the spacial co-

ordinate on the worldsheet is periodic, but it turns out that the boundary term vanishes

and the Yangian charge is exactly conserved. This can be understood from the following

heuristic argument. A closed Wilson loop can be mapped to an open Wilson line passing

through infinity by a global conformal transformation. The spacial coordinate will then

have an infinite range and the Yangian charge will be automatically conserved. The con-

formal transformation that maps a finite loop to an infinite line is actually anomalous [31]

(see also [43] for the string derivation), but we need not rely on this indirect argument,

as the direct computation simply shows that the Yangian charge is conserved. Using the

current conservation (4.3), we get

∂τQ
(1) = −

∫
ds
(
∂τJs − ∂sJτ + [Jτ , Js]

)
− [Js(L)− Js(0), Q] = 0 . (4.13)

The bulk term cancels due to the flatness condition (4.11), while the boundary contribution

vanishes because the isometry charge Q is equal to zero. Therefore the Yangian charge is

conserved, and in fact equals to zero

Q(1) = 0 , (4.14)

by the same argument as in eq. (4.5) see again figure 1.

4.2 Conformal Ward identities

As a warm-up exercise we first derive conformal Ward identities for the Wilson loop at

strong coupling from conservation of the isometry charge. The derivation relies on the

Taylor expansion of the minimal surface near the boundary. Because the AdS metric is

singular the first terms in this expansion are completely fixed by the equations of motion,

the boundary conditions and the Virasoro constraints [27, 28]

Xµ(s, τ) = xµ(s) + 0 · τ +
1

2
ẍµ(s)τ2 − 1

3
pµ(s)τ3

−
(

1

8
....
xµ +

1

3
ẍ2ẍµ +

1

3
...
xν ẍν ẋ

µ

)
τ4 + . . . . (4.15)

Z(s, τ) = τ + 0 · τ2 − 1

3
ẍ2(s)τ3 + . . . (4.16)

The first coefficient that is not fixed by the boundary conditions at τ = 0 is pµ(s), but it

can be related to the variational derivative of the minimal area [27, 28]

pµ(s) =
δA

δxµ(s)
. (4.17)

Plugging the near-boundary expansion of the embedding coordinates into the isometry

current (4.4) we get

Jτ =
(
ẋµξ̂µ

)̇ 1

τ
− ξ̂µ δA

δxµ
−
[

1

24
ẍ2∂µξ̂

µ +

(
1

2
...
xµ +

2

3
ẍ2ẋµ

)̇
ξ̂µ

]
τ +O(τ2) (4.18)

Js = ẋµξ̂µ
1

τ2
+

(
...
xµ +

2

3
ẍ2ẋµ

)
ξ̂µ −

(
1

2
ẍµξ̂µ +

1

8
∂µξ̂

µ

)̇
+O(τ) . (4.19)
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All time-depend terms in J iτ are total derivatives and integrate to zero, as they should. This

is just a consequence of charge conservation. As the total charge vanishes the zeroth-order

term should also integrate to zero. This gives the constraint∮
ds ξµa

δA

δxµ
= 0 , (4.20)

being nothing but the conformal Ward identity for the regularized minimal area. We thus

formally proved that the minimal area, and with it the Wilson loop at strong coupling are

invariant under infinitesimal conformal transformations. It is the strong coupling counter-

part of our discussion in section 2.1.

4.3 Yangian Ward identities

The Yangian Ward identity is derived in the same way, by expanding the condition Q(1) = 0

at small τ . Using (4.18), (4.19) we find at order O(1/τ2) and O(1/τ)∮
dxµ

{
ξ̂µ +

[
ξ̂µ,
(
ẋν ξ̂ν

)̇ ]}
= 0 (4.21)∮

dxµ
[
ξ̂µ, ξ̂

ν
] δA
δxν

= 0 . (4.22)

As expected these equations are identically satisfied by virtue of eqs. (C.11) and (C.12).

A non-trivial equation is obtained at the next order O(τ0) term in Q(1)

1

2

∫
ds1 ds2 ε(s1 − s2)

[
ξ̂µ1 , ξ̂

ν
2

] δA
δxµ1

δA

δxν2
−
∫
ds ξ̂µ(ẍ2ẋµ +

...
xµ) = 0 . (4.23)

In the course of the derivation we used the Killing vector identities from the appendix C,

which greatly simplify the local term.

Finally, given the minimal area law (4.1), we find the that the Wilson loop vacuum

expectation value at strong coupling satisfies a second-order variational equation

Q(1)
a W(C) = 0 (4.24)

with6

Q(1)
a = f bca

∫
ds1 ds2 ε(s1 − s2)ξµ1 bξ

ν
2 c

δ2

δxµ1δx
ν
2

− λ

2π2

∫
ds ξµa (ẍ2ẋµ +

...
xµ) (4.25)

Projected onto the momentum generator, P (1)µ, this expression has exactly the same

structure as the bosonic part of the Yangian generator at weak coupling (3.22), which was

written in an ungauged fashion. Taking ẋ2 = 1 in (3.22) one recovers the above local term

except for the value of the coefficient of the local term that differs by a factor of 7/24.

6An additional second-derivative term that arises upon application of this operator to (4.1) has relative

order O(1/
√
λ) and can be neglected in the λ→ ∞ limit.
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5 Conclusions and outlook

In this work we have presented substantial evidence for the existence of a hidden Yangian

symmetry for smooth supersymmetric Maldacena-Wilson loops in N = 4 SYM theory.

For this the level-one generators of the Yangian algebra were shown to annihilate the

expectation value of the Wilson loop operator at leading order perturbation theory as well

as at leading order in the strong coupling limit upon employing the classical AdS string

description. While the classical AdS string analysis remained purely bosonic, on the weak

coupling gauge theory side it was necessary to consider the supersymmetric completion of

the original Maldacena-Wilson loop operator of [25]. This completion requires the definition

of a loop operator coupling to all the fields of the N = 4 multiplet to a path in an off-

shell superspace coordinatized by {xαα̇, θAα , θ̄A α̇, yAB }. We have explicitly constructed this

Wilson loop operator to quadratic order in anti-commuting coordinates and for yA
B = 0.

After computing the one-loop vacuum expectation value of this operator the invariance

under the action of the Yangian level-one momentum generator was established. Here next

to the canonical non-local piece a local contribution to the Yangian generator appeared.

Compared to the Yangian generators annihilating super-amplitudes (or light-like polygonal

super Wilson loops) the emergence of such a local term is novel, although it does appear in

the spectral parameter deformed amplitudes of [44, 45]. Consistently the same variational

symmetry generators were shown to also annihilate the minimal surface at strong coupling.

The only difference here is a differing numerical coefficient in front of the local-piece of

the level-one generator. It would be interesting to investigate the light-like limit of our

construction and find its relation to the light-like polygonal super Wilson loops [17–19, 21].

We note that naively our local term is singular in the light-like limit.

A further issue is the above-mentioned coefficient in front of the local term. In general

it should be a function of the coupling constant λ. Interestingly we find that in both limits

— at leading order in weak and strong coupling — this function is of order λ. The two

coefficients, however, do not agree. We can offer two possible explanations. For one it

is natural to expect the existence of an interpolating function in front of the local term

receiving corrections to the limits considered. That function happens to limit to a linear

behavior in the weak and strong coupling limits. On the other hand it is intriguing that

opposed to the weak coupling analysis it was not necessary at the strong coupling to include

the fermionic degrees of freedom. From the perspective of the IIB superstring in AdS5×S5

a superpath is actually natural as the superstring ends on the trajectory of a superparticle

on the boundary. Whether the inclusion of fermionic degrees of freedom on the string side

will affect the purely bosonic local term and its coefficient is unclear to us at this point. We

cannot exclude the possibility that switching on the y B
A couplings on the weak-coupling

side can also modify the result. In this context it would be also interesting to explore the

consequences of κ-symmetry on the boundary.

One may wonder how to interpret a Wilson loop in superspace physically. A good way

to think about it is that the θAα (s) and θ̄A α̇(s) parameters capture the polarizations of a

(super)-particle carried along the loop in R1,3. If one is interested only in the standard

Wilson loop one simply projects to the θAα (s) = θ̄A α̇(s) = 0 part. Nevertheless the consid-
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ered extension may be useful in establishing new (exact) results on a general 〈W(C)〉. One

could draw a similarity to going super for the on-shell BCFW recursions for amplitudes in

the theory [46–48], which led to a complete analytic solution [49] at tree-level.

In any case the hidden Yangian symmetry of Wilson loops should constrain the func-

tional form of the vacuum expectation value. It will be important to understand the

structure of invariants and the consequences for possible exact results. Finally, the ques-

tion of how to include a spectral parameter into our considerations is an obvious one. On

the string side equivalence classes of solutions with identical regularized areas ending on

smooth contours have been constructed in [50] parametrized by a spectral parameter. For

the polygonal light-like situation similar structures were identified in [51]. It is tempting

to speculate on a relation to our findings.
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A Conventions

Minkowski space. We follow the conventions of [52]. Our signature is ηµν = diag(+1,

−1,−1,−1). Spinor indices are raised and lowered according to

λα = εαβ λβ , λα = λβεβα , λα̇ = εα̇β̇ λ
β̇, λα̇ = λβ̇ε

β̇α̇

ε12 = ε12 = 1 , ε1̇2̇ = ε1̇2̇ = −1 ⇒ εαβ εγβ = δαγ , εα̇β̇ εγ̇β̇ = δα̇γ̇ (A.1)

We note

σµ α̇β = (1, σ) , σ̄µ
αβ̇

= (1,−σ) (A.2)

with the vector σ of Pauli matrices

σ0 =

(
1 0

0 1

)
σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
.

If not stated otherwise the index position of the matrices σ and σ̄ is given by (A.2). They

can be identified as follows:

σµ α̇β = εβγ σ̄µ
γδ̇
εδ̇α̇ = σ̄µβα̇ σ̄µ

αβ̇
= εβ̇γ̇ σ

µ γ̇δ εδα = σµ
β̇α
.
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Contractions of space-time or spinor indices give the following results:

σ̄µ
αβ̇
σ̄µγδ̇ = −2εαγεβ̇δ̇ , σµα̇βσµγ̇δ = −2εβδεα̇γ̇ , σ̄µαα̇σ̄

ν αα̇ = 2ηµν = σµα̇ασ
ν α̇α (A.3)

To a space-time vector pµ we assign a bi-spinor as follows:

pαα̇ := σ̄µαα̇pµ = σµ α̇αpµ =: pα̇α

The identities (A.3) imply that

pµ =
1

2
σ̄µαα̇pαα̇ =

1

2
σµ α̇αpα̇α and pαα̇k

αα̇ = 2 pµk
µ.

Defining

σµν αβ :=
i

2

(
σ̄µαδ̇σν γ̇β − σ̄ν αδ̇σµ γ̇β

)
εγ̇δ̇ , σ̄µν α̇β̇ :=

i

2

(
σµ α̇γ σ̄ν δβ̇ − σν α̇γ σ̄µ δβ̇

)
εδγ ,

we also assign bi-spinors to an antisymmetric 2-tensor Fµν :

Fαβ := Fµνσ
µν αβ, F α̇β̇ := Fµνσ

µν α̇β̇. (A.4)

These two bi-spinors associated to Fµν can be related to Fαα̇ββ̇ := Fµν σ̄
µαα̇σ̄ν ββ̇ by the

following identity:

Fαα̇ββ̇ =
i

2
εα̇β̇Fαβ +

i

2
εαβF α̇β̇ (A.5)

The bi-spinors associated to Fµν are symmetric, Fαβ = F βα, F α̇β̇ = F β̇α̇. For other

bi-spinors we have the general symmetry property:

Λ(αβ) = Λαβ +
1

2
εαβ Λγγ (A.6)

Λ(α̇β̇) = Λα̇β̇ +
1

2
εα̇β̇ Λ γ̇

γ̇ (A.7)

We note the Fierz identity

ξ̄α̇ ξβ =
1

2
σµ α̇β

(
ξ̄γ̇σµ γ̇δ ξ

δ
)
, (A.8)

and some trace identities for the sigma matrices:

1

2
Tr(σ̄µσν) = ηµν , (A.9)

1

2
Tr(σ̄µ σν σ̄ρ σκ) = ηµν ηρκ + ηνρ ηµκ − ηµρ ηνκ − i εµνρκ, (A.10)

1

2
Tr(σµ σ̄ν σρ σ̄κ) = ηµν ηρκ + ηνρ ηµκ − ηµρ ηνκ + i εµνρκ, (A.11)

Graßmann functional derivatives are defined by:

δ

δθAα (s)
θBβ (τ) = δBA δ

α
β δ(τ − s) ,

δ

δθ̄A α̇(s)
θ̄B β̇(τ) = δAB δ

α̇
β̇
δ(τ − s) . (A.12)

Note also that our conventions imply that

∂

∂xαα̇
xββ̇ = 2 δαβ δ

α̇
β̇
. (A.13)
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Six-dimensional space. Consider the vector space R6 with the metric ηIJ = diag(−1,

. . . ,−1). To a vector φI ∈ R6 we assign (4× 4)-matrices by the prescription

φAB :=
1√
2

ΣI ABφI , φ̄AB :=
1√
2

Σ̄I
ABφI . (A.14)

The sigma matrices are given by

(Σ1AB, . . . ,Σ6AB) = (η1AB, η2AB, η3AB, iη̄1AB, iη̄2AB, iη̄3AB) , (A.15)

(Σ̄1
AB, . . . , Σ̄

6
AB) = (η1AB, η2AB, η3AB,−iη̄1AB,−iη̄2AB,−iη̄3AB) , (A.16)

ηi AB := εiAB4 + δiAδ4B − δiBδ4A

η̄i AB := εiAB4 − δiAδ4B + δiBδ4A . (A.17)

The epsilon-tensor has the following contraction:

εDABC ε
DKLM = δKLMABC + δMKL

ABC + δLMK
ABC − δLKMABC − δMLK

ABC − δKML
ABC . (A.18)

We note the following identities:

φ̄AB =
1

2
εABCDφ

CD φAB =
1

2
εABCDφ̄CD XABȲAB = −2XIYI . (A.19)

For a unit vector n ∈ R6, nInI = −1, we have:

n̄ABn
CB =

1

2
δCA , n̄ABn

AB = 2 . (A.20)

B Propagators

We have with

Aµ(x) = Aaµ(x)T a φaAB(x) = φaAB(x)T a ψaAα (x) = ψAα (x)T a

and Tr(T aT a) = 1
2δ
ab the propagators〈

φaAB(x1)φbCD(x2)
〉

= − g2

4π2

εABCDδab

(x1 − x2)2
(B.1)

〈
ψaAα (x1)ψ̄bα̇B(x2)

〉
=
ig2

2π2
δabδAB

(x1 − x2)αα̇
(x1 − x2)4

(B.2)

〈
Aaµ(x1)Abν(x2)

〉
=

g2

4π2

ηµνδ
ab

(x1 − x2)2
(B.3)

C Conformal algebra and Killing vectors

We use the conventions of [10] for the conformal algebra. The generators {Pµ,Mµν , D,Kµ}
are collectively denoted by Ta, and satisfy the commutation relations:

[Mµν ,Mρσ] = ηµσMνρ + ηνρMµσ − ηµρMνσ − ηνσMµρ

[Pµ, Pν ] = 0 [Mµν , Pλ] = ηνλPµ − ηµλPν
[D,Pµ] = −Pµ [D,Kµ] = Kµ

[D,Mµν ] = 0 [Mµν ,Kρ] = ηνρKµ − ηµρKν

[Pµ,Kν ] = 2Mµν − 2ηµν D [Kµ,Kν ] = 0 .

(C.1)
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In the standard MMN basis of so(4, 2), where M,N = µ, 4, 4′ with η4′4′ = 1 = −η44,

D = M44′ Pµ = Mµ4′ +Mµ4 Kµ = Mµ4′ −Mµ4 . (C.2)

The Killing metric on the so(4, 2) algebra is

〈MMN ,MKL〉 = ηLMηNK − ηLNηMK . (C.3)

The dual basis of generators is defined by raising the indices with the inverse of the

Killing metric

T̂ a = GabTa , (C.4)

such that 〈
T̂ a, Tb

〉
= δab . (C.5)

The structure constants that appear in the Yangian generators are those that arise in the

commutation relations in the dual basis:[
T̂ a, T̂ b

]
= fabc T̂

c. (C.6)

Explicitly,

M̂µν = −ηµληνρMλρ P̂µ = −1

2
ηµνKν K̂µ = −1

2
ηµνPν D̂ = D , (C.7)

and [
M̂µν , M̂ρσ

]
= ηµρM̂νσ + ηνσM̂µρ − ηµσM̂νρ − ηνρM̂µσ[

P̂µ, P̂ ν
]

= 0
[
M̂µν , P̂ λ

]
= ηµλP̂ ν − ηνλP̂µ[

D̂, P̂µ
]

= P̂µ
[
D̂, K̂µ

]
= −K̂µ[

D̂, M̂µν
]

= 0
[
M̂µν , K̂ρ

]
= ηµρK̂ν − ηνρK̂µ[

P̂µ, K̂ν
]

=
1

2
ηµνD̂ − 1

2
M̂µν

[
K̂µ, K̂ν

]
= 0 .

(C.8)

The conformal Killing vectors ξλa = {δλµ, xµδλν − xνδ
λ
µ, x

λ, x2δλµ − 2xλxµ} satisfy the

commutation relations of the conformal algebra,

{ξa, ξb} = f cabξc , (C.9)

with respect to the Lie bracket

{u, v}µ = uν∂νv
µ − vν∂νuµ. (C.10)

The following identities for the Lie-algebra-valued Killing vector (4.9):[
ξ̂µ, ξ̂ν

]
= 0 (C.11)[

ξ̂µ, ∂ν ξ̂
λ
]

= ηµλξ̂ν − δµν ξ̂λ − δλν ξ̂µ (C.12)[
ξ̂µ, ∂ν∂λξ̂

ρ
]

= ηνλ∂
ρξ̂µ − δρν∂λξ̂µ − δ

ρ
λ∂ν ξ̂

µ (C.13)[
∂ν ξ̂

ν , ∂µ∂λξ̂
λ
]

= −4∂µ∂ν ξ̂
ν . (C.14)

are used in checking the flatness condition of the worldsheet isometry current.

– 20 –



J
H
E
P
1
1
(
2
0
1
3
)
0
8
1

D Superconformal algebra in non-chiral superspace

In the study of superamplitudes in N = 4 SYM one encounters a representation of

the su(2, 2|4) superalgebra in the form of differential operators on a chiral-superspace

{xαα̇, θαA} [9]. Extending this algebra naively into a non-chiral superspace {xαα̇, θαA, θ̄Aα̇},
where one simply conjugates the θ expressions to θ̄’s does not work since the resulting al-

gebra will not close. From a coset construction [53] of the algebra it is clear that we need

to introduce coordinates carrying R-symmetry indices yA
B. Defining a set of coordinates

and their variation under the algebra

X = {xαα̇, θαA, θ̄Aα̇, yAB} , δX = {δxαα̇, δθαA, δθ̄Aα̇, δyAB} , (D.1)

we can understand the superspace in which our Wilson loop is constructed as a subsurface

given by putting yA
B = 0. But starting at a specific point on the constraint surface

X0 = {(x0)αα̇, (θ0)α
A, (θ̄0)Aα̇, 0} (D.2)

general superconformal variations δX will yield yA
B 6= 0. Therefore not all transformations

are expected to be symmetries of our super Wilson loop.

The superconformal transformations (D.1) are generated by the following operators:

Mαβ = 2i xγ̇(α∂
γ̇

β) + 4i θA(α∂β)A M α̇β̇ = 2i xγ(α̇∂β̇)γ − 4i θ̄A (α̇∂
A
β̇)

(D.3)

D =
1

2
xαα̇∂

αα̇ +
1

2
θBβ ∂

β
B +

1

2
θ̄B β̇∂

B β̇ Pαα̇ = ∂αα̇ (D.4)

Kαα̇ = −xαγ̇xα̇γ∂γγ̇ − 2xα̇γθ
C
α ∂

γ
C − 2xαγ̇ θ̄C α̇∂

C γ̇ + 4iθAα θ̄B α̇∂
B

A (D.5)

QαA = −∂αA + y B
A ∂αB + iθ̄A α̇∂

αα̇ Q
A α̇

= ∂A α̇ + y A
B ∂B α̇ − iθAα∂αα̇ (D.6)

SAα = (δAB + y A
B )(xαγ̇∂

B γ̇ + 2iθCα ∂
B

C )− ixαγ̇θAβ ∂βγ̇ − 2iθAβ θ
C
α ∂

β
C (D.7)

SA α̇ = (−δBA + y B
A )(xα̇γ∂

γ
B − 2i θ̄D α̇∂

D
B ) + ixα̇γ θ̄A β̇∂

γβ̇ + 2iθ̄A β̇ θ̄C α̇∂
C β̇ (D.8)

R′AB = 2i(−δDB + y D
B )(δAC + y A

C )∂ C
D + 2i(−δCB + y C

B )θAγ δ
γ
C

+ 2i(δAC + y A
C )θ̄B α̇∂

C α̇ + 2θ̄B α̇θ
A
α∂

αα̇

RAB = R′AB −
1

4
δAB R

′C
C (D.9)

C =
1

4
(θDα ∂

α
D − θ̄C α̇∂C α̇ + iθAα θ̄A α̇∂

αα̇ − ∂ A
A

+ y B
A θAα∂

α
B + y B

A θ̄B α̇∂
A α̇ + y C

A y B
C ∂ A

B ) (D.10)

where we used the shorthand notation

∂α̇α =
∂

∂xαα̇
, ∂αA =

∂

∂θAα
, ∂α̇A =

∂

∂θ̄Aα̇
, ∂A

B =
∂

∂yBA
. (D.11)
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Note also that our conventions imply (A.13). The commutation relations of the above

generators agree with (C.1) if the generators of the conformal algebra are translated as

defined in appendix A.

The nontrivial part of the algebra, which is realized by these generators is given by

{
QαA, Q̄

Bα̇}
= 2iδBAP

α̇α
{
SAα , S̄Bα̇

}
= −2iδABKαα̇[

Kγγ̇ , Q
α
A

]
= 2δαγ S̄Aγ̇

[
Kγγ̇ , Q̄

Bα̇]
= 2δα̇γ̇S

B
γ[

Pαα̇,Kββ̇

]
= iεαβM α̇β̇ + iεα̇β̇Mαβ + 4 εαβ εα̇β̇ D (D.12){

QαA , S
B
β

}
= δBA M

α
β + δαβ R

B
A + 2i δBA δ

α
β (D + C)

[
P α̇α, SAβ

]
= 2δαβ Q̄

Aα̇{
Q̄
Aα̇
, S̄Bβ̇

}
= −δABM

α̇
β̇ − δα̇β̇ R

A
B + 2i δAB δ

α̇
β̇

(D − C)
[
P α̇α, S̄β̇

]
= 2δα̇

β̇
QαA .

Making contact with our smaller superspace where yA
B = 0, we see that P , M , M ,

Q and Q̄ are well defined generators in the sense that they preserve the constraint surface

yA
B = 0. The remaining generators K,S, S̄, R contain derivatives w.r.t. yA

B and are

therefore not expected to be symmetries of a constrained yA
B = 0 Wilson loop. Note

that the level-one momentum generator (2.10) is also well defined since it only depends on

combinations of P , M , M , Q and Q̄.

E Details of the weak coupling computation

E.1 Non-local variation of 〈W (C)〉

In this appendix we calculate

P
(1)µ
bos, ε〈W (C)〉(1) = − λ

16π2
P

(1)µ
bos, ε

∫
dτ1dτ2 I12 .

For computational purposes it is helpful to rewrite the generator in the following form:

P
(1)µ
bos, ε =

∫
ds1ds2

(
d(s1) ηµν−mµν(s1)

)
pν(s2)

(
θ
(
s2−s1−d(s2, ε)+θ

(
s2−s1+d(s1, ε)

)
=

∫
ds1ds2N

µνρσxν(s1)
δ

δxρ(s1)

δ

δxσ(s2)

(
θ
(
s2−s1−d(s2, ε)+θ

(
s2−s1+d(s1, ε)

)
,

Nµνρσ : = ηµσηνρ + ηµρηνσ − ηµνηρσ
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Using this form, we start by calculating the double functional derivative of I12 multiplied

with xν(s1). Using (2.4) we find:

xν(s1)
δ

δxρ(s1)

δ

δxσ(s2)

ẋ(τ1)ẋ(τ2)− |ẋ(τ1)||ẋ(τ2)|
(x(τ1)− x(τ2))2

=

xν(s1)

(x1 − x2)2

[(
ηρσ −

ẋσ(τ2)ẋρ(τ1)

|ẋ(τ2)||ẋ(τ1)|

)
∂τ1δ(τ1 − s1)∂τ2δ(τ2 − s2)

+

(
ηρσ −

ẋσ(τ1)ẋρ(τ2)

|ẋ(τ1)||ẋ(τ2)|

)
∂τ2δ(τ2 − s1)∂τ1δ(τ1 − s2)

+

(
ẋσ(τ1)ẋρ(τ1)|ẋ(τ2)|

|ẋ(τ1)|3
− ηρσ

|ẋ(τ2)|
|ẋ(τ1)|

)
∂τ1δ(τ1 − s1)∂τ1δ(τ1 − s2)

+

(
ẋσ(τ2)ẋρ(τ2)|ẋ(τ1)|

|ẋ(τ2)|3
− ηρσ

|ẋ(τ1)|
|ẋ(τ2)|

)
∂τ2δ(τ2 − s1)∂τ2δ(τ2 − s2)

]
− 2xν(s1)

(x1 − x2)4

{(
xρ(τ1)− xρ(τ2)

)(
δ(τ1 − s1)− δ(τ2 − s1)

)[
ẋσ(τ1)∂τ2δ(τ2 − s2)

+ ẋσ(τ2)∂τ1δ(τ1 − s2)− |ẋ(τ1)|
|ẋ(τ2)|

ẋσ(τ2)∂τ2δ(τ2 − s2)− |ẋ(τ2)|
|ẋ(τ1)|

ẋσ(τ1)∂τ1δ(τ1 − s2)

]
+
(
xσ(τ1)− xσ(τ2)

)(
δ(τ1 − s2)− δ(τ2 − s2)

)[
ẋρ(τ1)∂τ2δ(τ2 − s1)

+ ẋρ(τ2)∂τ1δ(τ1 − s1)− |ẋ(τ1)|
|ẋ(τ2)|

ẋρ(τ2)∂τ2δ(τ2 − s1)− |ẋ(τ2)|
|ẋ(τ1)|

ẋρ(τ1)∂τ1δ(τ1 − s1)

]
+
(
ẋ1ẋ2 − |ẋ1||ẋ2|

)
ηρσ
(
δ(τ1 − s2)− δ(τ2 − s2)

)(
δ(τ1 − s1)− δ(τ2 − s1)

)}
+

8xν(s1)

(x1 − x2)6

(
ẋ1ẋ2 − |ẋ1||ẋ2|

)(
xσ(τ1)− xσ(τ2)

)(
xρ(τ1)− xρ(τ2)

)
·

·
(
δ(τ1 − s2)− δ(τ2 − s2)

)(
δ(τ1 − s1)− δ(τ2 − s1)

)
.

We order the above result by the structure of the delta functions and derivatives that

appear in it. To abbreviate, we use that the Wilson loop integral is symmetric under

(τ1 ↔ τ2). Also, we fix the parametrization to be of unit-speed, demanding that |ẋ| = i.

Then we get the following expression (where by =̂ we mean that the expression on the

right-hand side gives the same result when integrated over τ1 and τ2 in parametrization by

arc-length):

xν(s1)
δ

δxρ(s1)

δ

δxσ(s2)

ẋ(τ1)ẋ(τ2)− |ẋ(τ1)||ẋ(τ2)|
(x(τ1)− x(τ2))2

=̂

xν(s1)
{
F (1)
ρσ (τ1, τ2)∂τ1δ(τ1 − s1)∂τ1δ(τ1 − s2) + F (2)

ρσ (τ1, τ2)∂τ1δ(τ1 − s1)∂τ2δ(τ2 − s2)

+ F (3)
ρσ (τ1, τ2)

(
δ(τ1 − s1)− δ(τ2 − s1)

)
∂τ1δ(τ1 − s2)

+ F (3)
σρ (τ1, τ2)

(
δ(τ1 − s2)− δ(τ2 − s2)

)
∂τ1δ(τ1 − s1)

+ F (4)
ρσ (τ1, τ2)

(
δ(τ1 − s2)− δ(τ2 − s2)

)(
δ(τ1 − s1)− δ(τ2 − s1)

)}
(E.1)
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Here, we defined:

F (1)
ρσ (τ1, τ2) := − 2

x2
12

(ẋ1ρẋ1σ+ηρσ) , F (2)
ρσ (τ1, τ2) :=

2

x2
12

(ẋ1ρẋ2σ + ηρσ) , (E.2)

F (3)
ρσ (τ1, τ2) :=

4

x4
12

x12ρ ẋ12σ , F (4)
ρσ (τ1, τ2) := 2

ẋ1ẋ2+1

x4
12

(
4
x12ρx12σ

x2
12

−ηρσ
)
. (E.3)

We will denote the contribution to P
(1)µ
bos, ε〈W (C)〉(1) of the above terms by Cµi , i.e.:

Cµi :=

L∫
0

dτ1dτ2ds1ds2

{(
θ(s2 − s1 − ε)cµi (τ1, τ2, s1, s2)

)
+ (ε→ −ε)

}
(E.4)

and we define:

cµ1 (τ1, τ2, s1, s2) := Nµνρσxν(s1)F (1)
ρσ (τ1, τ2)∂τ1δ(τ1 − s1)∂τ1δ(τ1 − s2) (E.5)

cµ2 (τ1, τ2, s1, s2) := Nµνρσxν(s1)F (2)
ρσ (τ1, τ2)∂τ1δ(τ1 − s1)∂τ2δ(τ2 − s2) (E.6)

cµ3 (τ1, τ2, s1, s2) := Nµνρσxν(s1)F (3)
ρσ (τ1, τ2)

(
δ(τ1 − s1)− δ(τ2 − s1)

)
∂τ1δ(τ1 − s2) (E.7)

cµ4 (τ1, τ2, s1, s2) := Nµνρσxν(s1)F (3)
σρ (τ1, τ2)

(
δ(τ1 − s2)− δ(τ2 − s2)

)
∂τ1δ(τ1 − s1) (E.8)

cµ5 (τ1, τ2, s1, s2) := Nµνρσxν(s1)F (5)
ρσ (τ1, τ2)

(
δ(τ1 − s2)− δ(τ2 − s2)

)
·

·
(
δ(τ1 − s1)− δ(τ2 − s1)

)
(E.9)

With these definitions, we have:

P
(1)µ
bos, ε〈W (C)〉(1) = − λ

16π2

5∑
i=1

Cµi ,

We first discuss these terms separately, integrating out the delta-functions. For explicitness,

we spell out the calculation for Cµ1 . Consider the integral∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)

∫ L

0
ds1ds2θ(s2 − s1 − ε)xν(s1)∂τ1δ(τ1 − s1)∂τ1δ(τ1 − s2)

= −
∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)

∫ L

0
ds1xν(s1)∂s1δ(τ1 − s1)δ(τ1 − s1 − ε)

=

∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)

∫ L

0
ds1δ(τ1 − s1)∂s1

(
xν(s1)δ(τ1 − s1 − ε)

)
=

∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)ẋν(τ1)δ(−ε)

+

∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)

∫ L

0
ds1xν(s1)δ(τ1 − s1)∂εδ(τ1 − s1 − ε)

=

∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)ẋν(τ1)δ(ε) + ∂ε

∫ L

0
dτ1dτ2F

(1)
ρσ (τ1, τ2)xν(τ1)δ(ε)

Using that δ(ε) = δ(−ε) and ∂εδ(ε) = −∂−εδ(−ε) we get:

Cµ1 = 2

∫ L

0
dτ1dτ2N

µνρσF (1)
ρσ (τ1, τ2)ẋν(τ1)δ(ε) (E.10)
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Using the periodicity of the curves we consider, one may convince oneself that all boundary

terms in the above calculation vanish. In a similar fashion we get the following results:

Cµ2 =

∫ L

0
dτ1dτ2N

µνρσF (2)
ρσ (τ1, τ2)ẋν(τ1)

(
δ(τ2 − τ1 − ε) + δ(τ2 − τ1 + ε)

)
+ ∂ε

∫ L

0
dτ1dτ2N

µνρσF (2)
ρσ (τ1, τ2)xν(τ1)

(
δ(τ2 − τ1 − ε)− δ(τ2 − τ1 + ε)

)
(E.11)

Cµ3 = 2

∫ L

0
dτ1dτ2N

µνρσF (3)
ρσ (τ1, τ2)xν(τ1)δ(ε)

−
∫ L

0
dτ1dτ2N

µνρσF (3)
ρσ (τ1, τ2)xν(τ1)

(
δ(τ1 − τ2 − ε) + δ(τ1 − τ2 + ε)

)
(E.12)

Cµ4 =

∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)ẋν(τ1)− 2

∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)xν(τ1)δ(ε)

+

∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)xν(τ1)

(
δ(τ2 − τ1 − ε) + δ(τ2 − τ1 + ε)

)
−
∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)ẋν(τ1)

(
θ(τ2 − τ1 − ε) + θ(τ2 − τ1 + ε)

)
(E.13)

Cµ5 = −2

∫ L

0
dτ1dτ2N

µνρσF (4)
ρσ (τ1, τ2)

(
xν(τ1)− xν(τ2)

)
θ(τ2 − τ1 − ε) (E.14)

Taking into account that NµνρσA[ρσ]ν = 0, we can simplify Cµ3 + Cµ4 to get:

Cµ3 + Cµ4 =

∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)ẋν(τ1)

−
∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)ẋν(τ1)

(
θ(τ2 − τ1 − ε) + θ(τ2 − τ1 + ε)

)
= −

∫ L

0
dτ1dτ2N

µνρσF (3)
σρ (τ1, τ2)

(
ẋν(τ1)− ẋν(τ2)

)(
θ(τ2 − τ1 − ε)

)
(E.15)

Inserting the contractions

NµνρσF (1)
ρσ (τ1, τ2)ẋ1ν = 6

ẋµ1
x2

12

, NµνρσF (2)
ρσ (τ1, τ2)ẋ1ν = −2

2ẋµ1 + ẋµ2
x2

12

, (E.16)

NµνρσF (2)
ρσ (τ1, τ2)x1ν = − 2

x2
12

(
2xµ1 + xµ1 (ẋ1ẋ2)− ẋµ1 (x1ẋ2)− ẋµ2 (x1ẋ1)

)
(E.17)

NµνρσF (3)
σρ (τ1, τ2)ẋ12ν = −8

ẋ1ẋ2 + 1

x4
12

xµ12 ,

NµνρσF (4)
ρσ (τ1, τ2)x12ν = 12

ẋ1ẋ2 + 1

x4
12

xµ12 (E.18)
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into (E.10)–(E.15) and using the (τ1 ↔ τ2)-symmetry of the integral we arrive at:

P
(1)µ
bos, ε〈W (C)〉(1) = − λ

16π2

5∑
i=1

Cµi =
λ

16π2

{
− 6

∫ L

0
dτ1dτ2

ẋµ1 + ẋµ2
(x1 − x2)2

δ(ε)

+ 6

∫ L

0
dτ1dτ2

ẋµ1
(x1 − x2)2

(
δ(τ2 − τ1 − ε) + δ(τ2 − τ1 + ε)

)
+ 2 ∂ε

∫ L

0
dτ1dτ2

2xµ1 +xµ1 (ẋ1ẋ2)−ẋµ1 (x1ẋ2)−ẋµ2 (x1ẋ1)

(x1−x2)2

(
δ(τ2−τ1−ε)−δ(τ2−τ1+ε)

)
+ 16

∫ L

0
dτ1dτ2

ẋ1ẋ2 + 1

(x1 − x2)4
(x1 − x2)µθ(τ2 − τ1 − ε)

}
(E.19)

We now expand the two middle terms. Making use of

ẋ2 ≡ −1⇒ ẋẍ ≡ 0⇒ ẍ2 + ẋ
...
x ≡ 0

we find:

6

∫ L

0
dτ1dτ2

ẋµ1
(x1 − x2)2

(
δ(τ2 − τ1 − ε) + δ(τ2 − τ1 + ε)

)
=

− 12

ε2

∫
dτ ẋµ(τ) +

∫ L

0
dτ ẋµ(τ)ẍ(τ)2 +O(ε) (E.20)

and

2∂ε

∫ L

0
dτ1dτ2

2xµ1 + xµ1 (ẋ1ẋ2)− ẋµ1 (x1ẋ2)− ẋµ2 (x1ẋ1)

(x1 − x2)2

(
δ(τ2 − τ1 − ε)− δ(τ2 − τ1 + ε)

)
=

− 2

ε2

∫
dτ ẋµ(τ) +

4

3

∫ L

0
dτ
...
xµ(τ)− 5

6

∫ L

0
dτ ẋµ(τ)ẍ2(τ) +O(ε) (E.21)

Inserting (E.20) and (E.21) into (E.19) and using that∫
dτ ẋµ(τ) = 0 =

∫ L

0
dτ
...
xµ(τ) ,

which certainly holds for smooth periodic curves, we get:

P
(1)µ
bos, ε〈W (C)〉(1) =

λ

16π2

{
1

6

∫ L

0
dτ ẋµ(τ)ẍ2(τ)− 6

∫ L

0
dτ1dτ2

ẋµ1 + ẋµ2
(x1 − x2)2

δ(ε)

+ 16

∫ L

0
dτ1dτ2

ẋ1ẋ2 + 1

(x1 − x2)4
(x1 − x2)µθ(τ2 − τ1 − ε) +O(ε)

}
(E.22)

For any finite value of ε we have δ(ε) = 0 and we therefore drop the δ(ε) term. Moreover

in the above result, the parametrization of the curve is still fixed to arc-length. Lifting this

constraint we have the reparametrization invariant result

P
(1)µ
bos, ε〈W (C)〉(1) =

λ

16π2

{
1

6

∫
dτ ẋµ(τ)

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
+O(ε) (E.23)

+16

∫
dτ1dτ2

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)4

(x1−x2)µθ
(
τ2−τ1−d(τ2, ε)

)}
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E.2 Supersymmetric completion of the Maldacena-Wilson loop

As we argued in section 3 it will be enough for our purpose to require that the equations

Qα
A(I) = QαA(I) Q̄A α̇(I) = Q̄

A α̇
(I) (E.24)

with the supersymmetrically completed exponent

I [A,ψ, ψ̄, φ;x, θ, θ̄] =

∮
C

dτ
(
I0 + I1 + Ī1 + I2m + I2 + Ī2 +O(θ̄

i
θ3−i)

)
(E.25)

hold true up to order θ and θ̄, respectively. Furthermore, we will only focus on the terms

which are linear in the fields since only those will contribute to the 1-loop expectation value

〈W(C)〉(1). Therefore, the equations (E.24) can be split into the following set of equations:

Qα
A(I0) = QαA(I1)

∣∣
θ̄=0

(E.26)

Qα
A(I1) = QαA(I2)

∣∣
θ̄=0

(E.27)

Qα
A(Ī1) = QαA(I0 + I2m)

∣∣
θ=θ̇=0

(E.28)

Q̄A α̇(I0) = Q̄
A α̇

(Ī1)
∣∣
θ=0

(E.29)

Q̄A α̇(Ī1) = Q̄
A α̇

(Ī2)
∣∣
θ=0

(E.30)

Q̄A α̇(I1) = Q̄
A α̇

(I0 + I2m)
∣∣
θ̄= ˙̄θ=0

(E.31)

where we introduced the notation

Ix =

∮
C

dτ Ix . (E.32)

Let us start by calculating how I0 transforms under supersymmetry transformations gen-

erated by Qα
A and Q̄A α̇, respectively. In order to have a more compact notation we will

mostly consider the equations (E.26)–(E.31) on the level of the integrand and only write

the integral if we use integration by parts. With the basic field transformations given

by (3.4)–(3.7) one finds

Qα
A(I0) = iεαβ ψ̄

β̇
A ẋββ̇ −

√
2 i ψDα η̄AD |ẋ| (E.33)

Q̄A α̇(I0) = −i εα̇β̇ ψAβ ẋββ̇ −
√

2 i ψ̄
α̇
D η

AD |ẋ| . (E.34)

It can easily be seen that the equations (E.26) and (E.29) are satisfied if we choose I1 and

Ī1 as follows:

I1 = i θBβ ψ̄
β̇
B ẋββ̇ +

√
2 i θCβ ψ

Dβ η̄CD |ẋ| (E.35)

Ī1 = −i θ̄β̇B ψ
Bβ ẋββ̇ −

√
2 i θ̄Cβ̇ ψ̄

β̇
D η

CD |ẋ| (E.36)
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Since we know how Qα
A and Q̄A α̇ act on fields we can directly write down how I1 and Ī1

transform under supersymmetry transformations.

Qα
A(I1) =

√
2 i θBβ

(
∂β̇α φ̄AB

)
ẋββ̇ +

1√
2
θCβ F

αβ
lin η̄CA |ẋ| (E.37)

Qα
A(Ī1) = −1

2
θ̄β̇AF

αβ
lin ẋββ̇ − 2 i θ̄Cβ̇

(
∂β̇α φ̄AB

)
ηCB |ẋ| (E.38)

Q̄A α̇(I1) = −1

2
θAβF α̇β̇lin ẋββ̇ + 2 i θCβ

(
∂βα̇ φAB

)
η̄CB |ẋ| (E.39)

Q̄A α̇(Ī1) = −
√

2 i θ̄β̇B
(
∂βα̇ φAB

)
ẋββ̇ +

1√
2
θ̄Cβ̇ F

α̇β̇
lin ηCA |ẋ| (E.40)

In these equations Fαβlin and F α̇β̇lin denote the parts of (A.4) which are linear in the gauge

fields. The parts I2 and Ī2 can be constructed by imposing that the equations (E.27)

and (E.30) hold true. The result reads:

I2 = − i√
2
θCγ θ

Bβ
(
∂β̇γ φ̄CB

)
ẋββ̇ +

1

2
√

2
θCβ θ

D
γ F

γβ
lin η̄CD |ẋ|+

√
2 i θCγ θ̇

Bγ φ̄CB (E.41)

Ī2 = − i√
2
θ̄Cγ̇ θ̄

β̇
B

(
∂βγ̇ φCB

)
ẋββ̇ −

1

2
√

2
θ̄Cβ̇ θ̄Dγ̇ F

γ̇β̇
lin η

CD |ẋ|+
√

2 i θ̄Cγ̇
˙̄θγ̇B φ

CB (E.42)

Since the calculations which show that the equations (E.27) and (E.30) are indeed satisfied

are a little bit more involved we will give some details on at least one of them. Applying

the θ-derivative of QαA to I2 yields:

QαA(I2)
∣∣
θ̄=0

=

∫
dτ

(
−
√

2 i θBβ
(
∂β̇(α φ̄AB

)
ẋ
β)

β̇
+

1√
2
θCβ F

αβ
lin η̄CA|ẋ| −

√
2 i θ̇Bα φ̄AB

)
=

∫
dτ

(√
2 i θBβ

(
∂β̇α φ̄AB

)
ẋββ̇ −

i√
2
θBα

(
∂β̇β φ̄AB

)
ẋββ̇

+
1√
2
θCβ F

αβ
lin η̄CA|ẋ| −

√
2 i θ̇Bα φ̄AB

)
=

∫
dτ

(√
2 i θBβ

(
∂β̇α φ̄AB

)
ẋββ̇ +

1√
2
θCβ F

αβ
lin η̄CA |ẋ|

)
(E.43)

In order to get the second line we used the identity (A.6). We note that the last term in the

second line can be rewritten as a derivative with respect to the curve parameter τ acting

on φ̄AB. Using integration by parts we see that the rewritten term cancels the θ̇-term. In

a similar manner it can be shown that Ī2 satisfies equation (E.30). Let us now turn to

the construction of I2m. While I2 and Ī2 are not necessarily needed for our purpose since

their contractions do not contribute to the bosonic order after having applied the level-one

momentum generator, this does not apply to I2m. In contrast to the construction of I1,

Ī1, I2 and Ī2 we do now have two equations for one expression and it is not clear that they

are compatible with each other.
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We will start by calculating how QαA acts on I0.

QαA(I0) =

∫
ds dτ i θ̄Aα̇(s)

δ

δxαα̇(s)

(
1

2
Aββ̇ ẋββ̇ −

1

2
φCD η̄CD |ẋ|

)
=

∫
dτ

(
i

2
θ̄Aα̇

(
∂αα̇Aββ̇

)
ẋββ̇+i ˙̄θAα̇A

αα̇− i
2
θ̄Aα̇

(
∂αα̇ φCD

)
η̄CD |ẋ|−

i

2
˙̄θAα̇ φ

CD η̄CD
ẋαα̇

|ẋ|

)
=

∫
dτ

(
i

2
θ̄Aα̇

(
∂αα̇Aββ̇ − ∂ββ̇ Aαα̇

)
ẋββ̇−

i

2
θ̄Aα̇

(
∂αα̇ φCD

)
η̄CD |ẋ|−

i

2
˙̄θAα̇ φ

CD η̄CD
ẋαα̇

|ẋ|

)
=

∫
dτ

(
− 1

4
θ̄β̇A F

αβ
lin ẋββ̇−

1

4
θ̄Aα̇ F

α̇β̇
lin ẋα

β̇
− i

2
θ̄Aα̇

(
∂αα̇ φCD

)
η̄CD |ẋ|−

i

2
˙̄θAα̇ φ

CD η̄CD
ẋαα̇

|ẋ|

)
First we applied the functional derivative to I0 and integrated out the δ-functions by

evaluating the generator integral. In order to get to the third line we used integration by

parts in the second term. The last line follows by using the identity (A.5). The calculation

including Q̄Aα̇(I0) works completely analogously.

Q̄Aα̇(I0) =

∫
dτ

(
− 1

4
θAα F

αβ
lin ẋ α̇

β −
1

4
θAβ F α̇β̇lin ẋββ̇ +

i

2
θAα
(
∂αα̇ φCD

)
η̄CD |ẋ|+

i

2
θ̇Aα φ

CD η̄CD
ẋαα̇

|ẋ|

)
By requiring that equation (E.28) holds true, I2m can be determined (up to the term

including θ̇) to be

I2m =
1

4
θBγ θ̄

β̇
B F

γβ
lin ẋββ̇ +

1

4
θBβ θ̄Bγ̇ F

γ̇β̇
lin ẋββ̇ + 2 i θBγ θ̄Cβ̇

(
∂β̇γ φ̄BE

)
ηCE |ẋ| (E.44)

− i

2
θBγ θ̄Bγ̇

(
∂γγ̇ φCD

)
η̄CD |ẋ|+

i

2
θ̇Bβ θ̄Bβ̇ φ

CD η̄CD
ẋββ̇

|ẋ|
− i

2
θBβ

˙̄θBβ̇ φ
CD η̄CD

ẋββ̇

|ẋ|
.

The application of QαA to I2m yields

QαA(I2m)
∣∣
θ=θ̇=0

= −1

4
θ̄β̇A F

αβ
lin ẋββ̇ +

1

4
θ̄Aα̇ F

α̇β̇
lin ẋα

β̇
− 2 i θ̄Cα̇

(
∂αα̇ φ̄AB

)
ηCB |ẋ|

+
i

2
θ̄Aα̇

(
∂αα̇ φCD

)
η̄CD |ẋ|+

i

2
˙̄θAα̇ φ

CD η̄CD
ẋαα̇

|ẋ|
, (E.45)

from which we immediately see that equation (E.28) is indeed satisfied. We will now show

that (E.44) also solves equation (E.31). Therefore we calculate:

Q̄Aα̇(I2m)
∣∣
θ̄= ˙̄θ=0

= +
1

4
θAα F

αβ
lin ẋ α̇

β −
1

4
θAα F α̇β̇lin ẋ

αβ̇
− 2 i θBα

(
∂αα̇ φ̄BC

)
ηAC |ẋ|

+
i

2
θAα
(
∂αα̇ φCD

)
η̄CD |ẋ| −

i

2
θ̇Aα φ

CD η̄CD
ẋαα̇

|ẋ|
(E.46)

The third term can be rewritten as follows

2 i θBα
(
∂αα̇ φ̄BC

)
ηAC |ẋ| = i

2
θBα
(
∂αα̇ φKL

)
η̄MN |ẋ|εBCKLεACMN

= i θAα
(
∂αα̇ φCD

)
η̄CD |ẋ| − 2 i θCα

(
∂αα̇ φAB

)
η̄CB |ẋ| , (E.47)

where we employed the identity (A.18). Inserting (E.47) in (E.46) yields:

Q̄Aα̇(I2m)
∣∣
θ̄= ˙̄θ=0

= +
1

4
θAα F

αβ
lin ẋ α̇

β −
1

4
θAβ F α̇β̇lin ẋ

ββ̇
− i

2
θAα
(
∂αα̇ φCD

)
η̄CD |ẋ|

+ 2 i θCα
(
∂αα̇ φAB

)
η̄CB |ẋ| −

i

2
θ̇Aα φ

CD η̄CD
ẋαα̇

|ẋ|
(E.48)

If we combine this equation with the result for Q̄Aα̇(I0) we note that (E.31) also holds true.
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E.3 Check of supersymmetry at one-loop order

The result (3.18) should be supersymmetric by construction. Nevertheless it is a straight-

forward check to see if QαA (Q̄A α̇) annihilate 〈W(C)〉(1). We note that having computed the

vacuum expectation value to order θθ̄ only allows us to check the invariance of 〈W(C)〉(1)

at order θ̄ (θ) for Q (Q̄). Focusing on Q for the moment, we verify that

−
∫

ds
δ

δθAα (s
〈W(C)〉(1) + i

∫
ds θ̄A α̇

δ

δxαα̇(s)

(
〈W(C)〉(1)

)
θ=0
θ̄=0

= 0 . (E.49)

Combining the results of the individual terms

−
∫

ds
δ

δθAα (s)
〈W(C)〉(1) =

iλ

4π2

∫
dτ1dτ2

{
θ̄Aα̇(τ2)

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)4

xαα̇12

+
˙̄θAα̇(τ2)

2

ẋαα̇1

x2
12

−
˙̄θAα̇(τ2)

2x2
12

|ẋ1|
|ẋ2|

ẋαα̇2

}
,

i

∫
ds θ̄A α̇

δ

δxαα̇(s)

(
〈W(C)〉(1)

)
θ=0
θ̄=0

= − iλ

4π2

∫
dτ1dτ2

{
θ̄Aα̇(τ2)

ẋ1ẋ2 − |ẋ1||ẋ2|
(x1 − x2)4

xαα̇12

+
˙̄θAα̇(τ2)

2

ẋαα̇1

x2
12

−
˙̄θAα̇(τ2)

2x2
12

|ẋ1|
|ẋ2|

ẋαα̇2

}
(E.50)

we find the expected result

QαA〈W(C)〉(1)

∣∣
θ̄

= 0 . (E.51)

The calculation for Q̄A α̇〈W(C)〉(1)|θ = 0 can be repeated equally.

E.4 Non-local variation of the fermionic contributions to 〈W(C)〉

According to (2.13), the fermionic part of the generator P
(1)µ
ε is given by

P
(1)µ
ferm, ε = − i

4

L∫
0

ds1 ds2 q̄
Aα̇(s2)σ̄µαα̇q

α
A(s1)

(
θ(s1 − s2 − ε)− θ(s2 − s1 − ε)

)
, (E.52)

with

qαA(s) = − δ

δθAα (s)
+ i θ̄Aα̇(s)

δ

δxαα̇(s)
(E.53)

q̄A α̇(s) =
δ

δθ̄Aα̇(s)
− i θAα (s)

δ

δxαα̇(s)
. (E.54)

We will only be interested in the fermionic correction to the bosonic result (E.23). Therefore

we are looking for contributions where the final result does not depend on the Graßmann

variables θ and θ̄. This means that the only correction can come from the action of

P̂
(1)µ
ferm, ε =

i

4

L∫
0

ds1 ds2
δ

δθ̄Aα̇(s2)
σ̄µαα̇

δ

δθAα (s1)

(
θ(s1 − s2 − ε)− θ(s2 − s1 − ε)

)
(E.55)

on objects that have a θθ̄ component.
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To simplify the calculation it is useful to take a look at the θθ̄ structure of the one loop

result (3.18) and write down the action of the interesting part of the fermionic generator

P̂
(1)µ
ferm, ε θ̄B(τ2)σ̄νθ

B(τ1) = −i 2δµν
[
θ(τ1 − τ2 − ε)− θ(τ2 − τ1 − ε)

]
(E.56)

P̂
(1)µ
ferm, ε θ̄B(τ2)σ̄ν θ̇

B(τ1) = −i 2δµν
[
δ(τ1 − τ2 − ε) + δ(τ2 − τ1 − ε)

]
(E.57)

and the corollaries

P̂
(1)µ
ferm, ε θ̄B(τ1)σ̄νθ

B(τ1) = 0 (E.58)

P̂
(1)µ
ferm, ε θ̄B(τ2)σ̄ν θ̇

B(τ1) = −P̂ (1)µ
ferm, ε

˙̄θB(τ2)σ̄νθ
B(τ1) (E.59)

P̂
(1)µ
ferm, ε

( ˙̄θB(τ1)σ̄νθ
B(τ1)− θ̄B(τ1)σ̄ν θ̇

B(τ1)
)

= i 8 δ(−ε) δµν . (E.60)

Using these relations we get

P̂
(1)µ
ferm, ε〈W(C)〉(1)

= − λ

4π2

∫ L

0
dτ1dτ2

{(
2
ẋ1ẋ2+1

x4
12

xµ12+2i
εµνρκẋ1 ν ẋ2 ρx12κ

x4
12

)[
θ(τ1−τ2−ε)−θ(τ2−τ1−ε)

]
− ẋµ1 + ẋµ2

x2
12

[
δ(τ1 − τ2 − ε) + δ(τ2 − τ1 − ε)

]
− 4

ẋµ2
x2

12

δ(ε)

}
= − λ

4π2

{∫ L

0
dτ1dτ2

(
4
ẋ1ẋ2 + 1

(x1 − x2)4
xµ12 θ(τ2 − τ1 − ε)− 2

ẋµ1 + ẋµ2
x2

12

δ(ε)

)
+

1

3

∫ L

0
dτ ẋµ(τ)ẍ2(τ) +O(ε)

}
(E.61)

where in the last step we replaced (τ1 ↔ τ2) where appropriate and took the results

of (E.20) into account. Writing this again in a reparametrization invariant form and noting

that δ(ε) = 0, we arrive at:

P
(1)µ
ferm, ε〈W(C)〉(1)

∣∣
θ=0
θ̄=0

= − λ

16π2

{
16

∫
dτ1dτ2

ẋ1ẋ2−|ẋ1||ẋ2|
(x1−x2)4

(x1−x2)µθ
(
τ2 − τ1 − d(τ2, ε)

)
+

4

3

∫
dτ ẋµ(τ)

(
ẍ2

ẋ4
− (ẋ · ẍ)2

ẋ6

)
+O(ε)

}
. (E.62)
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