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1 Holographic entanglement entropy

In quantum field theories, it is interesting to compute the entanglement entropy among

various subregions. For example, we can consider a region A and compute the entanglement

entropy between region A and the rest of the system, see figure 1. In theories with a gravity

dual there is a very simple prescription for computing this entropy [1, 2]. We first find a

minimal area surface that ends on the boundary of region A, at the boundary of the bulk,

see figure 1. Then the entropy is given by the area of this surface,

Scl(A) =
(Area)min

4GN
(1.1)

In situations where we can apply the replica trick, this formula was proven for AdS3 in [3, 4]

and more generally in [5]. This is the correct result to leading order in the GN expansion. If

the boundary theory is a large N gauge theory, then (1.1) is of order N2. The leading term

(1.1) comes from classical physics in the bulk. Here we consider the quantum corrections

to this formula. Namely, corrections that come from quantum mechanical effects in the

bulk. These are of order G0
N (or N0).

We find that the quantum corrections are essentially given by the bulk entanglement

entropy. More precisely, the minimal surface that appears in (1.1) divides the bulk into two

regions. We denote by Ab the bulk region that is connected to the boundary region A, see

figure 1 . Then the bulk quantum correction is essentially given by the bulk entanglement
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Figure 1. The red segment indicates a spatial region, A, of the boundary theory. The leading

contribution to the entanglement entropy is computed by the area of a minimal surface that ends

at the boundary of region A. This surface divides the bulk into two, region Ab and its complement.

Region Ab lives in the bulk and has one more dimension than region A. The leading correction to

the boundary entanglement entropy is given by the bulk entanglement entropy between region Ab

and the rest of the bulk.

entropy between region Ab and the rest of the bulk. Namely, at this order, we can think of

the bulk as an effective field theory living on a fixed background geometry and compute the

entanglement entropy of region Ab as we would normally do in any quantum field theory.1

This is a computation in the bulk effective field theory, it depends on the details of the

bulk fields. We can then write the quantum correction as

S(A) = Scl(A) + Sq(A) +O(GN ) , (1.2)

Sq(A) = Sbulk−ent(Ab) + · · · (1.3)

The dots in (1.3) denote some extra one loop terms that can be expressed (like the

classical term (1.1)) as an integral of local quantities. We will give a more detailed dis-

cussion of these terms below. They include terms that cancel the UV divergencies of the

bulk entanglement entropy, so that Sq is a finite quantity. In the case of black holes, this

expression for the quantum correction has been discussed in [7–12, 14, 15], with increasing

degrees of precision.

We first present a sketch of an argument for this formula. We then consider various

simple checks.

2 An argument

In static situations one can use the replica trick to compute the entropy. This can be

done to any order in the GN expansion. In particular, it can be used to compute the

quantum corrections. The procedure is the following. First we find the smooth bulk

solutions for each integer n. The full partition functions around these geometries, including

the classical action and all quantum corrections, gives the nth Renyi entropies. One then

computes the analytic continuation in n. At order G0
N this involves computing the one loop

1Caution: do not confuse the bulk entanglement entropy (1.3) with the one computed by the area

formula (1.1). Both are computed in the bulk and are entanglement entropies, so unfortunately we have

a clash of terminology. Hopefully, this will not cause confusion. Note also that [6] discussed a proposal of

entanglement entropy in gravitational theories which does not require the surfaces to be minimal.
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Figure 2. Slighly deformed disk and angular direction around the boundary.

determinants around each of the classical solutions. There are many difficulties with this

method, including constructing the smooth bulk solutions and then continuing the replica

index to non-integer n. Despite these difficulties, in [16] this method was used to compute

the quantum correction in a few cases using the classical bulk solutions constructed in [3].

On the other hand, the formula (1.3) is a shortcut, or an alternative expression, for the

final answer in the same way that (1.1) is a shortcut for the classical version of the replica

method. The final answer (1.3) is physically clearer and easier to compute.

2.1 Review of the classical argument

Let us begin by reviewing the derivation of (1.1) in the classical case [5]. First consider the

boundary field theory. The replica method is based on going to euclidean time and then

considering an angular direction with origin at the boundary of region A. We label this by

τ , with τ = τ + 2π, see figure 2 for an illustration.

We then consider the quantum field theory in a series of spaces given by the same

metric but with τ = τ + 2πn, with integer n. With the naive boundary metric this τ circle

shrinks at the boundary of the region A. However, we can rescale the metric by choosing a

Weyl factor so that the circle does not shrink according to the boundary metric.2 We need

to compute the partition function of the quantum field theory on this sequence of spaces

and then analytically continue in n to compute

S = − ∂n(logZn − n logZ1)|n=1 = −Tr[ρ log ρ] (2.1)

where ρ = ρA is the density matrix of region A in the boundary theory.

In theories with gravity duals, the partition functions can be computed by considering

bulk solutions, gn, which end at the boundary on the geometries we have defined above.

Then one computes the gravitational action and partition functions for these solutions.

This can be done to any order in the GN expansion. The leading order answer comes from

evaluating the classical action. We discuss this first.

These bulk geometries, gn, are typically such that the circle τ shrinks smoothly in

the interior. These geometries have a Zn symmetry generated by τ → τ + 2π, since the

metric and all other couplings are periodic under this shift. See figure 3. It is convenient

to introduce the geometries ĝn = gn/Zn. These are bulk geometries with exactly the

2If the theory is conformal this rescaling does not change the interesting physics. If it is not conformal

we can still do it, but we will have spatially varying dimensionful couplings in the new space.
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Figure 3. Computation of the entropy using the replica trick. a) Original geometry with no U(1)

symmetry. b) Replicated smooth geometry g4. c) After a Zn quotient of the gn geometry of b) we

get the geometry ĝn = gn/Zn. It has a conical singularity with opening angle 2π/n. This geometry

has the same asymptotic boundary conditions as the original one in a). We can analytically continue

this geometry to non-integer values of n. d) We use the geometries in c) to construct the density

matrix ρ̂n. ρ̂n is defined as a path integral on this geometry with arbitrary boundary conditions at

τ = 0, 2π. It can be computed using the bulk Hamiltonian for τ evolution.

same boundary conditions as the original geometry, g1, with τ = τ + 2π. However, these

geometries typically contain a conical defect, or cosmic “string” (a codimension two surface)

with opening angle 2π/n. These sit at the points where the Zn symmetry had fixed

points, the points where the circle shrinks. Then the classical action obeys the condition

I[gn] = nI[ĝn]. This just follows from the fact that the classical action is the τ integral of a

local lagrangian density. In evaluating I[ĝn] we do not include any contributions from the

singularity, not even a Gibbons-Hawking boundary term near the singularity.3 We simply

integrate the usual bulk lagrangian away from the singularity. We can now analytically

continue the geometries ĝn to non-integer n. They have the same boundary as the n = 1

solution, but in the interior they contain cosmic “string” singularity of opening angle 2π/n.

When n → 1 we have a very light cosmic string. The minimal area condition comes from

the equations of motion of this cosmic string and the area formula (1.1) follows essentially

from its action, see [5] for more details.

2.2 Quantum argument

This is a generalization of the black hole discussion in [14, 15] to situations without the

U(1) symmetry.

At the quantum level, the replica trick instructs us to compute the partition function

of all the bulk quantum fields around the black hole geometry. This involves computing

3We still include the Gibbons-Hawking boundary term at the AdS boundary, as usual.
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the functional determinants for the quadratic fluctuations around the geometries gn.4 In

performing this computation we can view τ as a time evolution, so that the quantum

partition function can be written as

Zq,n = Tr[Pe−
∫ 2πn
0 dτHb,n(τ)] = Tr[ρ̂nn] ,

ρ̂n ≡ Pe−
∫ 2π
0 Hb,n(τ) (2.2)

Here Hb,n(τ) is the bulk time dependent hamiltonian that evolves the system along the τ

direction.5 It depends on n because the equal τ slices of the geometry gn do depend on

n. In the second equality we have used the fact that Hb(τ) = Hb(τ + 2π). We have also

defined a bulk (non-normalized) density matrix ρ̂n. The n subscript reminds us that the

definition depends on n because the bulk geometry depends on n. In fact, we can assign

ρ̂n also to the bulk geometry ĝn = gn/Zn. Up to now the discussion was for integer n.

Now we analytically continue to non-integer n as follows. We consider the bulk ge-

ometry ĝn that we defined for the classical computation. We define again ρ̂n as given by

the same expression as in (2.2). Now Hn,b is a Hamiltonian defined on equal τ slices of

the geometry ĝn, with non-integer n. In summary, we define the partition function for

non-integer n via

Zq,n = Tr[ρ̂nn] , ρ̂n ≡ Pe−
∫ 2π
0 Hb,n(τ) (2.3)

Here we are ignoring UV divergencies. More precisely, we can consider a UV regulator that

is local and general covariant so that the discussion is valid for the regulated theory.

We can now write the expression for the quantum correction as

Sq = −∂n (logZq,n − n logZq,1)n=1 = −∂n(log Tr[ρ̂nn]− n log Tr[ρ̂1])n=1

= Sbulk−ent + S···

Sbulk−ent = −∂n(log Tr[ρn1 ]− n log Tr[ρ1])n=1 , S··· ≡ −
Tr[∂nρ̂n]|n=1

Tr[ρ1]
(2.4)

Here Sbulk−ent involves only ρ1 ≡ ρ̂1, which is the density matrix in the original (n = 1)

geometry. This term computes the bulk entanglement entropy. The second term, S···,

arises due to the n dependence of the bulk solution and gives rise to the dots in (1.3).

Let us find a more explicity expression for this term. For simplicity, we assume that the

solution is such that only the metric is non-zero in the classical background and the rest

of the fields are zero. This can be easily generalized. To evaluate S··· we go again to the

Lagrangian formalism. The Lagragian, L(ĝn, h, ϕ), depends on the background metric and

the small fluctuations of all the fields: the metric fluctuations, h, as well as all the other

fields denoted by ϕ. We can then write

S··· = 〈
∫
dτ∂nL〉 =

∫
dτ〈Eµν(ĝ + h, ϕ)∂nĝ

µν + dΘ(ĝ, h, ϕ; ∂nĝ)〉 −
∫
dτdΘ(ĝ, ∂ng) (2.5)

4Part of the bulk fields could be strongly coupled. For example, we can have a non-trivial CFT in the

bulk. In that case, the bulk computation is more complicated, but the principle is the same (at this order

in the GN expansion): computing the partition function in the geometry gn.
5Hb,n(τ) is a local integral over a constant τ spatial slice. This should not be confused with the so called

“modular hamiltonian”, K, defined through e−K = Pe−
∫ 2π
0 Hb,n(τ) which is a non-local operator.

– 5 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

where the brackets indicate quantum expectation values. In other words, we integrate over

the fields h and ϕ. Here Eµν represent equations of motion for the metric. These do not

vanish because the quantum fluctuations are off shell. And Θ is related to all the partial

integrations involved in going from a variation of the lagrangian to the equations of motion.

We are using a notation similar to [17], where the reader can find explicit expressions. Θ

is linear in ∂nĝ. The Θ term is the same as the one that gives rise to the Wald-like entropy

formula [17]. We say Wald-like because we are considering a situation without a U(1)

symmetry. For the usual two derivative action, it gives rise to the area formula. Here

we are evaluating it for a generic off shell configuration (since we have general variations

h, ϕ) and computing the expectation value. We have also subtracted the classical result.

The simplest example where this term is nonzero is the following. Consider a theory with

a scalar field with a coupling ζφ2R. If the scalar field is zero in the classical solution,

this does not contribute to the classical black hole entropy. However, if we consider the

small fluctuations of φ, we will get a term proportional to ζ〈φ2〉(Area). Such a term arises

from the Θ term in (2.5). In general, we denote such terms as 〈∆SW−like〉.6 This is the

expectation value of the formal expression for the Wald-like entropy.7 We expect that the

graviton gives rise to possible contributions to this term.

Now let us focus on the first term in (2.5). The equations of motion are non-zero

because we are considering quantum fluctuations. We can formally write this term as∫
dτ〈Eµν〉∂nĝµν = −1

2

∫
dτ〈Tµν〉∂nĝµν (2.6)

Here we have viewed the quantum expectation value of the equations of motion as a quan-

tum generated expectation value for the stress tensor. This expectation value of the equa-

tions of motion will force us to change in the classical background. Indeed, to avoid

“tadpoles” we will need to change the classical background ĝ → ĝ + h̄, where h̄ is small

classical correction of order GN in such a way that

Eµν(ĝ + h̄) = −〈Eµν〉 =
1

2
〈Tµν〉 (2.7)

where we are expanding the left hand side only to first order in h̄. We can then reex-

press (2.6) as ∫
dτE(ĝ + h̄)∂nĝ = ∂nIn(ĝn + h̄)|n=1 −

∫
dτdΘ(ĝ + h̄, ∂nĝ) (2.8)

To first order in h̄, In(ĝn + h̄) = In(ĝn) due to the equations of motion for ĝ. In (2.8) we

are considering n very close to one. Here h̄ is the solution for n = 1, and we have kept it

fixed as we vary n away from one. We have also ignored higher order terms in h̄. The right

6Note that for solutions where R = 0, we do not expect any ζ dependence on Sq or Sbulk−ent. Sbulk−ent
does not depend on ζ and one can easily show that the ζ dependence on the finite part of S... cancels

between δA and 〈∆SW−like〉 terms.
7In situations without a U(1) symmetry, the general Wald-like expression for a general higher derivative

theory is not known. For the purposes of this discussion we simply assume that such an expression exists.

In the case of an action with R2 terms the expression was found in [18–21].
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Figure 4. The contribution to S··· from the change in the area of the minimal surface, δA, due to

the quantum corrections of the background. We can interpret this diagram as solving (2.7) for h̄ in

terms of 1-loop stress tensor. We need to solve for h̄ along the minimal surface and integrate the

stress tensor over all space.

hand side of (2.8) can be then rewritten as the change in the area due to the shift of the

classical solution, δA
4GN

. Since the change in the background is of order GN , this term is of

order one. In a general higher derivative theory this will presumably become δSW−like. A

diagrammatic interpretation of this contribution is given in figure 4.

In addition, we should add terms arising from the counterterms that render the bulk

quantum theory finite. Such counterterms are given by local expressions in terms of the

metric and the curvature, etc. Thus they look like the classical action itself. They contribute

to the entropy via local terms of the same form as the ones we get for a general higher

derivative local action. For example a counterterm of the form 1
εD−2

∫
R gives a contribution

(Area)
εD−2 . There are similar contributions from higher derivative terms. We just apply the

Wald-like formula for the counterterms.8

In conclusion, the full expression for the quantum correction to the entropy is given by

Sq = Sbulk−ent +
δA

4GN
+ 〈∆SW−like〉+ Scounterterms (2.9)

The first term is the bulk entanglement. The second is the change in the area due to the

shift in the classical background due to quantum corrections. The third is the quantum

expectation value of the formal expression of the Wald-like entropy. The final term arises

because we need to introduce counterterms in order to render the computation finite.9

The last three terms in (2.9) fill in the dots in (1.3). Some articles, e.g. [14], compute

the entanglement entropy by smoothing the tip of the cone and, when fields are coupled

to curvature, they obtain an extra contact term, this is precisely our Wald-like term,

Sreg−cone = Sbulk−ent + 〈∆SW−like〉.
Let us finish with some comments. The expression (2.9) for the case of black holes

was discussed in [14, 15].10 Notice that, in the black hole case, we can compute the

entropy using the Gibbons-Hawking method, which is to change the period of τ (called β),

8As we mentioned this formula is unknown for general non-U(1) invariant situations. However see [18–21]

for R2 corrections. Here we simply assume that such a formula exists.
9Some aspects of these counterterms have been discussed recently in [13].

10In the black hole case, where one has a U(1) symmetry, it is easier to define the quantum computation

for non-integer n. Here we had to define it as (2.3).
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considering always the smooth solution. In this case, we get the full quantum result from

the determinants, computed on the n- (or β-)dependent geometry. In other words, at this

order, there is no need to shift the classical background due to quantum corrections, or

to evaluate quantum expectation values of the formal expression for the Wald entropy.11

However, if we evaluate the quantum correction using bulk entanglement (as opposed to

the Gibbons-Hawking method) we need to take them into account to get the right answer.

Similarly, if we compute the quantum correction using the replica trick, we can just compute

the determinants, and analytically continue them without worrying about the changes in

the classical background due to the quantum corrections, as was done for AdS3 in [16].

The last three terms in (2.9) are given by local integrals on the original minimal surface.

Thus, they contribute terms which are qualitatively similar to the classical contribution.

The classical Ryu-Takayanagi formula was shown to obey various nontrivial inequalities also

obeyed by entanglement entropy [23]. One of these is the strong subadditivity condition.

In fact, this inequality follows from the fact that we are minimizing a quantity in the

bulk [23]. Thus if we add the last three terms in (2.9) to the Ryu-Takayanagi formula,

we still get a result that can be viewed as the minimization of a local expression. To

order G0
N , the corrections in (2.9) do not change the shape of the surface because they are

small corrections. Moreover, the bulk entanglement contribution, the first term in (2.9),

obeys the entropy strong subadditivity condition on its own, since it can be viewed as a

field theory computation in the bulk. Thus, we have argued that the classical plus first

quantum contribution should also obey the strong subadditivity condition.

3 Applications

Here we discuss some applications of the above formula. We will concentrate on cases

where the quantum correction gives a qualitatively new effect.

3.1 Almost gapped large N theory

Consider the Klebanov-Strassler theory in the large N limit, where it is described by the

gravity dual found in [24]. The shape of the corresponding geometry is such that most of

the bulk fields give rise to massive excitations from the four dimensional point of view. The

only massless excitations are associated to the spontaneous breaking of the U(1) baryon

symmetry [25, 26]. Since it is a supersymmetric theory, the usual Goldstone boson is part

of a massless chiral superfield.

Now consider a region A of a size which is larger than the inverse mass of the lightest

massive modes. The classical contribution for such a region was computed in [27]. This

arises from a minimal area surface which comes down from the boundary into the bottom

of the throat with a topology as indicated in figure 5 . The result is that it goes as

Scl ∝ c0R
2 + constant + · · · (3.1)

11For example, this has been carried out explicitly to find the logarithmic corrections to black hole entropy,

see [22] and references within.

– 8 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

Figure 5. Shape of the minimal area surface in the Klebanov-Strassler theory. The yellow region

is the interior. The quantum correction is given by the entanglement between the interior and

the exterior.

for large R, where R is the size of the region. Here c0 has both UV divergent and finite

contributions. c0 is proportional to N2.12

The quantum correction is given by the entanglement in the bulk between the interior

and the exterior of region bounded by the Ryu-Takayanagi minimal area surface in the bulk,

see figure 5. For a large region, we can approximately compute the bulk contributions by

doing a Kaluza-Klein decomposition of all the bulk fields, and then doing the entanglement

computation in four dimensions. To the order we are working, all the bulk fields are free.

All the massive bulk modes contribute only with terms that give rise to contributions

similar to (3.1). However, the massless modes (two bosons and two fermions) give rise to

a qualitatively new logarithmic term of the form

Sq−log = −α logRΛ (3.2)

where Λ is the scale setting the mass of the massive modes. Here α is a numerical constant

that depends on the shape of the region [29]. For a spherical region α = 4a where a is the

conformal anomaly coefficient for a chiral superfield, a = − 1
48 .

A similar correction to the Ryu-Takayanagi formula was argued for in [28]. In section 3

of [28] they consider an AdS soliton geometry which is dual to a 3d confining gauge theory.

A Chern-Simons term was added to the boundary theory resulting in a topological theory

in the IR. The expected topological term in the entanglement entropy is reproduced by the

entanglement of bulk fields. This provides a further check of (1.3).

3.2 Thermal systems in the bulk

We can consider a confining theory whose geometry can be modelled by an AdS space with

an infrared end of the world brane. In this case, let us consider a theory with no massless

modes. Then the entanglement entropy of a large region of size R will behave as in (3.1).

This will be the case as long as we consider the theory in the vacuum. However, if we

consider the theory in a thermal bulk state, with a gas of particles in the bulk, we get

a contribution to the entropy from this gas. We are considering the phase with no black

brane. Then we get a contribution proportional to the volume, S(A) ∝ VA, in addition

12 Here by N we mean the value of N in the last step of the cascade [24]. The UV divergent contribution

has a larger effective value of N .

– 9 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

Figure 6. Confining theory and thermal gas in the bulk. Here VA is the volume of region A in

the boundary.

to (3.1). This contribution is of order G0
N (or N0). We obtain this contribution from the

bulk entanglement entropy of region Ab, eee figure 6.

Another case which is qualitatively similar arises when we consider a fermi surface

in the bulk.13 Since we end up computing the bulk entanglement entropy, we reproduce

the logarithmic terms that are expected in that context [43, 44]. This is important for

applications of AdS/CFT to non-Fermi liquids. See for example [45–47], where such loga-

rithmic violations are expected due to the appearance of bulk fermi surfaces. This should

be contrasted with [48] where the logarithmic violations to the entanglement entropy where

found from the leading geometric term.

3.3 Non-contractible circle

If the τ circle that appeared in our discussion in section 2 is not contractible in the bulk,

then the classical contribution to the entropy vanishes. In this case, the whole contribution

to the generalized gravitational entropy comes from the quantum correction. It involves

the propagation of the quantum particles around the bulk circle. It is a finite contribution.

In the case that the system has a U(1) symmetry, this is just the thermal entropy of a gas

of particles in the bulk. In general, this setup leads to a bulk mixed state under analytical

continuation to Lorentzian signature and we just get the entropy of this bulk mixed state.

3.4 Mutual information, generalities

For two disjoint regions, A and B, we define the mutual information

I(A,B) = S(A) + S(B)− S(A ∪B) (3.3)

A feature of the Ryu-Takayanagi formula is that, for well separated disjoint regions, the

mutual information is zero [30]. See figure 7. In other words, the classical bulk answer is

zero. This is due to the fact that the surface for S(A ∪ B) is the union of the surfaces

that we use to compute S(A) and S(B). We will see that the quantum correction gives

us something different from zero. Note that all the local contributions (coming from the

second, third and fourth terms in (2.9)) also cancel for the same reason as in the classical

13We thank S. Hartnol for pointing out this application.
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Figure 7. We consider two regions A and B on the boundary which are separted by a long distance,

r � rA, rB , where rA,B are their sizes. The minimal area surfaces have the shape indicated. In

the bulk, they define regions Ab and Bb, which are shown in yellow. The surface for S(A ∪ B) is

simply the sum of the two surfaces.

case. Thus mutual information comes purely from the bulk entanglement term (the first

term in (2.9)). Thus the quantum contribution to the mutual information is simply equal

to the bulk mutual information for the two bulk regions:

I(A,B) = Ibulk,ent(Ab, Bb) (3.4)

Here A and B are two regions in the boundary CFT. Ab and Bb are the two corresponding

regions in the bulk, see figure 7. As explained in [31, 32], a non zero answer is necessary

for having non-vanishing correlators. The argument is based on the general bound for

correlators [33]

I(A,B) ≥ (〈OAOB〉 − 〈OA〉〈OB〉)2

2|OA|2|OB|2
(3.5)

where |OA| is the absolute value of the maximum eigenvalue.14 Thus, the non-zero one

loop correction will enable us to obey this bound. We will discuss this in more detail below.

3.4.1 Long distance expansion for the mutual information in quantum field

theory

Here we consider two disjoint regions, A and B that are separated by a large distance in

the boundary theory. In this situation, one can do a kind of operator product expansion

for the mutual information. As discussed in [30, 34–36], the expected leading contribution

comes from the exchange of a pair of operators each with dimension ∆.15 In other words,

we have [30, 34–36]

I(A,B) ∼
∑

C∆
1

r4∆
+ · · · (3.6)

where C∆ comes from squares of OPE coefficients. These OPE coefficients CAO arise by

replacing region A of the replica space by a sum
∑
CAOO over local operators in the n

copies of the original CFT. Such operators take the form of products of operators of the

original CFT living on the different replicas. Once we have have these OPE coefficients we

can find:

C∆ = ∂n

[∑
CAOC

B
O

]
n=1

(3.7)

14Of course, we should choose OA to be a suitably smeared function of a local operator so that the

maximum eigenvalue is finite. For example, OA ∼ ei
∫
O(x)g(x), where g(x) is a localized smooth function.

15An idea for an OPE expansion of mutual information was discussed in [37]. However, we think that it

is not correct because it includes the exchange of single particle states, as opposed to two particle states.
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Figure 8. OPE-like expansion for mutual information.

where the sum is over all operators contributing at the same order as (3.6). This

involves sums over operators in different replicas and the analytic continuation in n

appears non-trivial.

For a single operator living on a single replica the OPE coefficient CAO , in principle,

could be calculated. However, it vanishes as (n − 1) since the one point functions of the

un-replicated space vanishes. Therefore, the square of the OPE coefficient in (3.7) vanishes

at n = 1. The two operator case in (3.6) gives the first non-zero answer. We expect that

the leading contribution comes from pairs of operators with lowest anomalous dimension.

At integer n we are doing a standard OPE expansion in terms of operators of the

replicated theory. However, the final result at n = 1 cannot be interpreted as an ordinary

OPE expansion in the original theory. For example, the leading behavior in (3.6) might

not be reproduced by operators of the original theory. For example, the theory, at n = 1,

might not have an operator with dimension ∆′ = 2∆ to reproduce (3.6).16 In general,

the individual OPE coefficients cannot be continued to n = 1. However the sums of

squares of all the OPE coefficients contributing at the same order in (3.6) can be continued

to n = 1 [35]. Here we will not compute the OPE coefficients, we simply focus on the

r dependence.

Notice that this behavior of the mutual information, (3.6), is consistent with the

bound (3.5). In addition, this implies that the C∆ coefficient for the lightest operator

cannot vanish.

In largeN theories, the standard largeN counting rules imply that the OPE coefficients

CAO for the leading contribution are of order one, since they come from a connected two

point function in the replicated geometry. This is in the normalization where the two point

function of single trace operators is normalized to one. Thus, the leading contribution to

C∆ vanishes at order N2 and is non-vanishing at order one. Similar large N counting for

more general operators leads us to expect that the mutual information vanishes exactly at

order N2 in large N theories, for well separated regions, as is the case in large N theories

with gravity duals. For this argument, the crucial feature is that the contribution from the

exchange of a single operator vanishes.17

We can similarly consider mutual information in non-conformal theories. For example

we can consider a massive theory. In this case the long distance expansion can be done in

16For example, in the Ising model, the leading term comes from the spin operator of dimension ∆ = 1/4.

However there is no (spin zero) operator in the theory with dimension 1/2 that can reproduce (3.6).
17This is no longer true for the mutual Renyi entropies [30].
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terms of the excitations of the massive theory, in terms of the lightest massive excitation.

As before, these excitations will propagate along the n separate copies of the replicated

theory. And the leading contribution comes from pairs of the lightest particle.18 Again

the bound (3.5) implies that the corresponding coefficient cannot vanish. So far we have

discussed theories in flat space. We can similarly consider theories in curved spaces. Again,

for well separated regions, we have a long distance expansion of the mutual information

that involves the propagation of the lightest excitations, but now in curved spacetimes.

Thus the mutual information behaves as

I(A,B) ∼ CG(xA, xB)2 + · · · (3.8)

where G is the propagator for the lightest excitation of the theory in the curved manifold.

More precisely, the one whose G(xA, xB) propagator is the largest.

3.4.2 Long distance expansion for mutual information using gravity duals

Now we consider a theory with a gravity dual. For well separated regions, as argued

around (3.4), the leading order term comes from the bulk entanglement between regions

Ab and Bb, see figure 7. In this approximation, we have a quantum field theory in a fixed

background geometry. Then the long distance expansion of the mutual information reduces

to the expression in (3.8), where we should consider the lightest bulk particle. If the theory

reduces to pure gravity in the bulk, then this is the graviton. Again, the coefficient is

non-zero due to the bulk version of (3.5).

But at long distances G(xAb , xBb) ∼ 1
|xA−xB |2∆ due to the standard AdS/CFT dic-

tionary [38, 39]. Here xAb is some point in the bulk region Ab and xA is some point in

the boundary region A. Inserting this into (3.8) we reproduced the expected field theory

result (3.6).

3.5 Corrections to the entanglement plateaux

Another situation where we expect quantum corrections to be the dominant answer comes

from considering entanglement entropy for subsystems in thermal states. They satisfy the

Araki-Lieb inequality [40]:

∆S = S(ρ)− |SAc − SA| ≥ 0 (3.9)

where ρ is the density matrix describing the state of the full system. Here Ac is the

complement of region A in the boundary theory (A ∪ Ac gives the full system). For a

thermal state S(ρ) is just the thermal entropy of the full system.

In holographic theories this inequality can be saturated when A is small enough (or

equivalently Ac is small.) This was discussed extensively in [41] where this saturation was

named the Entanglement Plateaux (see also [1, 23, 42].) That is, for region A small enough

the minimal surface for region Ac is the disconnected sum of the minimal surface for region

18In general, the contribution from the exchange of a single particle should vanish when n → 1. In free

theories, the single particle contribution vanishes for all n due to a Z2 symmetry that multiplies the field

by a minus sign.
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Figure 9. We consider a small region A and its complement Ac in a finite temperature state.

The bulk contains a black hole. The region Ab is the region outside the black hole horizon. The

minimal surface that gives the leading anwer to S(A) is the the one indicated by a purple dashed

line surrounding region Ab. The surface associated to S(Ac) is the one associated to S(A) plus the

black hole horizon. The thermal entropy is computed by the surface at the black hole horizon. The

region H is the interior of the black hole.

A and the horizon of a black hole in the bulk, see figure 9. The thermal entropy is computed

by the black hole horizon. Thus the classical answer gives a vanishing contribution to (3.9).

In the bulk, the first non-zero contribution to (3.9) comes from the bulk entanglement

contribution to the quantum correction (2.9). This reduces to

∆S = SH − SAcb + SAb = SH + SAb − SH∪Ab = I(H,Ab) > 0 (3.10)

where region H is the region behind the horizon. We are imagining we have the eternal

black hole and region H is the second bulk space joined to the first by the Einstein-Rosen

bridge. We see that ∆S is the same as the bulk mutual information of regions H and

Ab. This is positive by the subadditivity condition applied to the bulk field theory. The

inequality in (3.10) is strict because of (3.5) applied to the bulk theory.

3.6 EPR pair in the bulk

Imagine two well separated regions A and B in such a way that their mutual information

vanishes according to the classical RT formula. In the vacuum, the mutual information

decays at long distances. Here we add two spins that are EPR correlated as indicated in

figure 10 . We can imagine these as arising form the spin of two (fermionic) glueballs in

the boundary theory which corresponds to two particles in the bulk.

In this case the bulk entanglement entropy contains a non-zero piece which is inde-

pendent of the separation, for large separations. This is just simply the usual mutual

information of two spins, I = 2 log 2. Of course we can consider a more complex system

with the same type of result. This contribution is given by the bulk entanglement term

in (2.9).

– 14 –



J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

Figure 10. We consider two regions and their mutual information. In each bulk region we have a

quantum spin. The two spins are in an EPR configuration.

Acknowledgments

We would like to thank T. Hartman, C. Herzog, I. Klebanov, R. Myers and T. Takayanagi

for discussions. JM was supported in part by U.S. Department of Energy grant DE-

SC0009988 . AL acknowledges support from “Fundacion La Caixa”. TF was supported by

NSF grant PHY 0969448.

References

[1] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[2] T. Nishioka, S. Ryu and T. Takayanagi, Holographic entanglement entropy: an overview, J.

Phys. A 42 (2009) 504008 [arXiv:0905.0932] [INSPIRE].

[3] T. Faulkner, The entanglement Renyi entropies of disjoint intervals in AdS/CFT,

arXiv:1303.7221 [INSPIRE].

[4] T. Hartman, Entanglement entropy at large central charge, arXiv:1303.6955 [INSPIRE].

[5] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[6] E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, arXiv:1212.5183

[INSPIRE].

[7] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[8] L. Bombelli, R.K. Koul, J. Lee and R.D. Sorkin, A quantum source of entropy for black

holes, Phys. Rev. D 34 (1986) 373 [INSPIRE].

[9] C.G. Callan Jr. and F. Wilczek, On geometric entropy, Phys. Lett. B 333 (1994) 55

[hep-th/9401072] [INSPIRE].

[10] L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring

theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

[11] S.N. Solodukhin, The conical singularity and quantum corrections to entropy of black hole,

Phys. Rev. D 51 (1995) 609 [hep-th/9407001] [INSPIRE].

[12] D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys.

Lett. B 365 (1996) 51 [hep-th/9412020] [INSPIRE].

– 15 –

http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://dx.doi.org/10.1088/1751-8113/42/50/504008
http://arxiv.org/abs/0905.0932
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.0932
http://arxiv.org/abs/1303.7221
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.7221
http://arxiv.org/abs/1303.6955
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6955
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://arxiv.org/abs/1212.5183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5183
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://arxiv.org/abs/hep-th/9303048
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
http://dx.doi.org/10.1103/PhysRevD.34.373
http://inspirehep.net/search?p=find+J+Phys.Rev.,D34,373
http://dx.doi.org/10.1016/0370-2693(94)91007-3
http://arxiv.org/abs/hep-th/9401072
http://inspirehep.net/search?p=find+EPRINT+hep-th/9401072
http://dx.doi.org/10.1103/PhysRevD.50.2700
http://arxiv.org/abs/hep-th/9401070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9401070
http://dx.doi.org/10.1103/PhysRevD.51.609
http://arxiv.org/abs/hep-th/9407001
http://inspirehep.net/search?p=find+EPRINT+hep-th/9407001
http://dx.doi.org/10.1016/0370-2693(95)01290-7
http://dx.doi.org/10.1016/0370-2693(95)01290-7
http://arxiv.org/abs/hep-th/9412020
http://inspirehep.net/search?p=find+EPRINT+hep-th/9412020


J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

[13] J.H. Cooperman and M.A. Luty, Renormalization of entanglement entropy and the

gravitational effective action, arXiv:1302.1878 [INSPIRE].

[14] S.N. Solodukhin, Entanglement entropy of black holes, Living Rev. Rel. 14 (2011) 8

[arXiv:1104.3712] [INSPIRE].

[15] V.P. Frolov, D. Fursaev and A. Zelnikov, Black hole entropy: Off-shell versus on-shell, Phys.

Rev. D 54 (1996) 2711 [hep-th/9512184] [INSPIRE].

[16] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond

classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[17] V. Iyer and R.M. Wald, Some properties of Noether charge and a proposal for dynamical

black hole entropy, Phys. Rev. D 50 (1994) 846 [gr-qc/9403028] [INSPIRE].

[18] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher

curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[19] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock

gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[20] A. Bhattacharyya, A. Kaviraj and A. Sinha, Entanglement entropy in higher derivative

holography, JHEP 08 (2013) 012 [arXiv:1305.6694] [INSPIRE].

[21] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones,

arXiv:1306.4000 [INSPIRE].

[22] A. Sen, Logarithmic corrections to Schwarzschild and other non-extremal black hole entropy

in different dimensions, arXiv:1205.0971 [INSPIRE].

[23] M. Headrick and T. Takayanagi, A holographic proof of the strong subadditivity of

entanglement entropy, Phys. Rev. D 76 (2007) 106013 [arXiv:0704.3719] [INSPIRE].

[24] I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades

and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

[25] O. Aharony, A note on the holographic interpretation of string theory backgrounds with

varying flux, JHEP 03 (2001) 012 [hep-th/0101013] [INSPIRE].

[26] S.S. Gubser, C.P. Herzog and I.R. Klebanov, Symmetry breaking and axionic strings in the

warped deformed conifold, JHEP 09 (2004) 036 [hep-th/0405282] [INSPIRE].

[27] I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl.

Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].

[28] M. Fujita, W. Li, S. Ryu and T. Takayanagi, Fractional quantum Hall effect via holography:

Chern-Simons, edge states and hierarchy, JHEP 06 (2009) 066 [arXiv:0901.0924] [INSPIRE].

[29] S.N. Solodukhin, Entanglement entropy, conformal invariance and extrinsic geometry, Phys.

Lett. B 665 (2008) 305 [arXiv:0802.3117] [INSPIRE].

[30] M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010)

126010 [arXiv:1006.0047] [INSPIRE].

[31] M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939

[INSPIRE].

[32] M. Van Raamsdonk, Building up spacetime with quantum entanglement, Gen. Rel. Grav. 42

(2010) 2323 [Int. J. Mod. Phys. D 19 (2010) 2429] [arXiv:1005.3035] [INSPIRE].

– 16 –

http://arxiv.org/abs/1302.1878
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.1878
http://arxiv.org/abs/1104.3712
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.3712
http://dx.doi.org/10.1103/PhysRevD.54.2711
http://dx.doi.org/10.1103/PhysRevD.54.2711
http://arxiv.org/abs/hep-th/9512184
http://inspirehep.net/search?p=find+EPRINT+hep-th/9512184
http://dx.doi.org/10.1007/JHEP09(2013)109
http://arxiv.org/abs/1306.4682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4682
http://dx.doi.org/10.1103/PhysRevD.50.846
http://arxiv.org/abs/gr-qc/9403028
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9403028
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5813
http://dx.doi.org/10.1007/JHEP07(2011)109
http://arxiv.org/abs/1101.5781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5781
http://dx.doi.org/10.1007/JHEP08(2013)012
http://arxiv.org/abs/1305.6694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.6694
http://arxiv.org/abs/1306.4000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4000
http://arxiv.org/abs/1205.0971
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.0971
http://dx.doi.org/10.1103/PhysRevD.76.106013
http://arxiv.org/abs/0704.3719
http://inspirehep.net/search?p=find+EPRINT+arXiv:0704.3719
http://dx.doi.org/10.1088/1126-6708/2000/08/052
http://arxiv.org/abs/hep-th/0007191
http://inspirehep.net/search?p=find+EPRINT+hep-th/0007191
http://dx.doi.org/10.1088/1126-6708/2001/03/012
http://arxiv.org/abs/hep-th/0101013
http://inspirehep.net/search?p=find+EPRINT+hep-th/0101013
http://dx.doi.org/10.1088/1126-6708/2004/09/036
http://arxiv.org/abs/hep-th/0405282
http://inspirehep.net/search?p=find+EPRINT+hep-th/0405282
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://dx.doi.org/10.1016/j.nuclphysb.2007.12.017
http://arxiv.org/abs/0709.2140
http://inspirehep.net/search?p=find+EPRINT+arXiv:0709.2140
http://dx.doi.org/10.1088/1126-6708/2009/06/066
http://arxiv.org/abs/0901.0924
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.0924
http://dx.doi.org/10.1016/j.physletb.2008.05.071
http://dx.doi.org/10.1016/j.physletb.2008.05.071
http://arxiv.org/abs/0802.3117
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.3117
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://dx.doi.org/10.1103/PhysRevD.82.126010
http://arxiv.org/abs/1006.0047
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.0047
http://arxiv.org/abs/0907.2939
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2939
http://dx.doi.org/10.1007/s10714-010-1034-0
http://dx.doi.org/10.1007/s10714-010-1034-0
http://arxiv.org/abs/1005.3035
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.3035


J
H
E
P
1
1
(
2
0
1
3
)
0
7
4

[33] M.M. Wolf et al., Area laws in quantum systems: mutual information and correlations, Phys.

Rev. Lett. 100 (2008), no. 7 070502 [arXiv:0704.3906].

[34] H. Casini and M. Huerta, Remarks on the entanglement entropy for disconnected regions,

JHEP 03 (2009) 048 [arXiv:0812.1773] [INSPIRE].

[35] P. Calabrese, J. Cardy and E. Tonni, Entanglement entropy of two disjoint intervals in

conformal field theory II, J. Stat. Mech. 1101 (2011) P01021 [arXiv:1011.5482] [INSPIRE].

[36] J. Cardy, Some results on the mutual information of disjoint regions in higher dimensions, J.

Phys. A 46 (2013) 285402 [arXiv:1304.7985] [INSPIRE].

[37] J. Molina-Vilaplana, On the mutual information between disconnected regions in AdS/CFT,

arXiv:1305.1064 [INSPIRE].

[38] S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical

string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[39] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253

[hep-th/9802150] [INSPIRE].

[40] H. Araki and E. Lieb, Entropy inequalities, Commun. Math. Phys. 18 (1970) 160 [INSPIRE].

[41] V.E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, Holographic entanglement plateaux,

JHEP 08 (2013) 092 [arXiv:1306.4004] [INSPIRE].

[42] D.D. Blanco, H. Casini, L.-Y. Hung and R.C. Myers, Relative entropy and holography, JHEP

08 (2013) 060 [arXiv:1305.3182] [INSPIRE].

[43] M.M. Wolf, Violation of the entropic area law for Fermions, Phys. Rev. Lett. 96 (2006)

010404 [quant-ph/0503219] [INSPIRE].

[44] D. Gioev and I. Klich, Entanglement entropy of Fermions in any dimension and the widom

conjecture, Phys. Rev. Lett. 96 (2006) 100503 [quant-ph/0504151].

[45] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi

surfaces and AdS2, Phys. Rev. D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].

[46] S.A. Hartnoll and A. Tavanfar, Electron stars for holographic metallic criticality, Phys. Rev.

D 83 (2011) 046003 [arXiv:1008.2828] [INSPIRE].

[47] S. Sachdev, A model of a Fermi liquid using gauge-gravity duality, Phys. Rev. D 84 (2011)

066009 [arXiv:1107.5321] [INSPIRE].

[48] N. Ogawa, T. Takayanagi and T. Ugajin, Holographic Fermi surfaces and entanglement

entropy, JHEP 01 (2012) 125 [arXiv:1111.1023] [INSPIRE].

– 17 –

http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://dx.doi.org/10.1103/PhysRevLett.100.070502
http://arxiv.org/abs/0704.3906
http://dx.doi.org/10.1088/1126-6708/2009/03/048
http://arxiv.org/abs/0812.1773
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.1773
http://dx.doi.org/10.1088/1742-5468/2011/01/P01021
http://arxiv.org/abs/1011.5482
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.5482
http://dx.doi.org/10.1088/1751-8113/46/28/285402
http://dx.doi.org/10.1088/1751-8113/46/28/285402
http://arxiv.org/abs/1304.7985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7985
http://arxiv.org/abs/1305.1064
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.1064
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://arxiv.org/abs/hep-th/9802109
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802109
http://arxiv.org/abs/hep-th/9802150
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802150
http://dx.doi.org/10.1007/BF01646092
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,18,160
http://dx.doi.org/10.1007/JHEP08(2013)092
http://arxiv.org/abs/1306.4004
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4004
http://dx.doi.org/10.1007/JHEP08(2013)060
http://dx.doi.org/10.1007/JHEP08(2013)060
http://arxiv.org/abs/1305.3182
http://inspirehep.net/search?p=find+EPRINT+arXiv:1305.3182
http://dx.doi.org/10.1103/PhysRevLett.96.010404
http://dx.doi.org/10.1103/PhysRevLett.96.010404
http://arxiv.org/abs/quant-ph/0503219
http://inspirehep.net/search?p=find+EPRINT+quant-ph/0503219
http://dx.doi.org/10.1103/PhysRevLett.96.100503
http://arxiv.org/abs/quant-ph/0504151
http://dx.doi.org/10.1103/PhysRevD.83.125002
http://arxiv.org/abs/0907.2694
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.2694
http://dx.doi.org/10.1103/PhysRevD.83.046003
http://dx.doi.org/10.1103/PhysRevD.83.046003
http://arxiv.org/abs/1008.2828
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.2828
http://dx.doi.org/10.1103/PhysRevD.84.066009
http://dx.doi.org/10.1103/PhysRevD.84.066009
http://arxiv.org/abs/1107.5321
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5321
http://dx.doi.org/10.1007/JHEP01(2012)125
http://arxiv.org/abs/1111.1023
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.1023

	Holographic entanglement entropy 
	An argument 
	Review of the classical argument
	Quantum argument

	Applications
	Almost gapped large N theory
	Thermal systems in the bulk
	Non-contractible circle
	Mutual information, generalities 
	Long distance expansion for the mutual information in quantum field theory 
	Long distance expansion for mutual information using gravity duals

	Corrections to the entanglement plateaux
	EPR pair in the bulk 


