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1 Introduction

The purpose of this paper is to discuss the conditions under which a light scalar, identifiable

with the dilaton, can naturally arise in a field theory [1, 2]. This question is non-trivial

because dilatation invariance is a spacetime symmetry, and Goldstone theorem does not

apply straightforwardly. To put the problem into focus, let us then review the basic facts.

In the case of a non-linearly realized ordinary global symmetry, the Goldstone field

transforms by a simple constant shift:

τ(x) → τ(x) + c (1.1)

so that the only scalar potential consistent with the symmetry vanishes identically V (τ) ≡
0. Then, not only the mass but all interactions vanish at zero external momentum. In the

case of dilatation invariance the associate Goldstone scalar transforms instead as:

τ(x) → τ(kx) + ln k (1.2)

with k ∈ R
+. Consistent with dilatation invariance the most general scalar potential is then:

V = V0e
4τ (1.3)
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with V0 a generically non-vanishing constant with dimension [E]4. This state of things

implies that the pattern of symmetry breaking depends on the parameter V0, as we shall

now illustrate.

Aside from the potential, the most general dilatation-invariant Lagrangian for τ will

include higher derivative terms with the schematic form

e4τ (∂)m
(

e−τ
)m

(1.4)

and with the m partial derivatives spread over the e−τ factors in all possible ways. Notice

that, while the potential (1.3) is also invariant under the full conformal group O(4, 2),

only very specific combinations of the higher derivative terms are invariant under special

conformal transformations. To be specific, the most general conformal-invariant action

SCI[τ ] can be constructed as the most general diffeomorphism-invariant action involving

the metric [3–8]:

ĝµν = e2τηµν (1.5)

plus a single “Wess-Zumino” term that cannot be written in this form [9–12]:

SCI[τ ] = S[ĝ] + SWZ[τ ] . (1.6)

For simplicity from now on we assume the case (1.6), with invariance under the full con-

formal group. It would be perhaps interesting to study whether there can be substantial

changes in our discussion in the case of scale-without-conformal invariance.

The presence of an explicit dimensionful parameter, V0, is just due to our use of a

dimensionless field τ and is obviously consistent with a non-linearly realized dilatation in-

variance. To make the symmetry more evident we will also work with a canonical dilaton

field ϕ ≡ fDe
τ , in terms of which the most general effective Lagrangian truncated at two

derivatives is:

L =
1

2
∂µϕ∂

µϕ− κϕ4 (1.7)

with κ = V0/f
4
D a dimensionless coupling. Focussing on this simplest Lagrangian, as al-

ready mentioned, the pattern of symmetry breaking depends on the parameter κ. That

can be studied by considering the maximally symmetric solutions, as first done in ref. [13].

One finds:

κ > 0 → ϕ =
1√
2κ

1

z
SO(3, 2) ≡ AdS4

κ = 0 → ϕ = const ISO(3, 1) ≡ Poincaré 4 (1.8)

κ < 0 → ϕ =
1√
−2κ

1

t
SO(4, 1) ≡ dS4 .

As a matter of fact the result does not qualitatively change when considering the most gen-

eral conformally invariant derivative action [12, 14]. It then follows that the spontaneous

breakdown of O(4, 2) to Poincaré, with a resulting massless dilaton, does not arise for a

generic choice of parameters, but requires the tuning κ = 0. As far as we know the only

case in which the choice κ = 0 is technically natural is in the context of supersymmetry.
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There, in particular in N = 4 Super Yang-Mills, there are plenty of flat directions that

can play the role of the dilaton. Notice also that eq. (1.8) corresponds precisely to the

situation in general relativity: depending on the sign of the cosmological constant Λ there

are either dS or AdS solutions, while only for the special choice Λ = 0 is the solution

Poincaré invariant. This is not surprising given that the action for the conformal mode

of the metric and that of the dilaton share invariance under O(4, 2). In this respect the

tuning associated with a massless dilaton is completely analogous to the tuning associated

with a vanishing cosmological constant in gravity [15]. A solution of the former problem

may hopefully shed light on the latter.

The breaking pattern 1.8 resembles that of the Lorentz group SO(3, 1) when considering

a vector field Aµ with a potential

V ∝ (AµA
µ −m2)2 . (1.9)

Depending on m2, the minimum is in fact at Aµ = Âµ, where Â can be chosen to be:

m2 < 0 → Â = (0, |m|, 0, 0) SO(2, 1)

m2 = 0 → Â = (p, p, 0, 0) ISO(2) (1.10)

m2 > 0 → Â = (m, 0, 0, 0) SO(3) .

Notice also the analogy with the theory of representations of the Lorentz group, where the

residual symmetry group in (1.10) is the little group and m2 is the squared momentum of a

one-particle state. Then in the case of representations with spin 1/2 or 1 the massless case

can be selected respectively by chiral or gauge symmetry, or, more generally, by multiplet

shortening. On the contrary for spin 0 it is unnatural to have m2 = 0, also related to the

absence of multiplet shortening at m = 0. This is the source of the well-known hierarchy

problem.

These simple examples illustrate that the non-compact nature of the group (O(4, 2) or

SO(3, 1)) plays a central role to produce a “phase diagram” where some specific breaking

pattern (to ISO groups) can arise only on a subspace of zero measure, that is by tuning.

Indeed if we considered the same vector Aµ but with compact symmetry group SO(4) the

breaking pattern would more simply be

m2 ≤ 0 → Â = (0, 0, 0, 0) SO(4)

m2 > 0 → Â = (m, 0, 0, 0) SO(3) .

so that the breaking pattern presents only two, generic, options.

In phenomenological applications we are often interested in pseudo-Goldstone bosons,

whose mass results from the explicit breaking of the global symmetry by a small parameter.

In the case of internal compact symmetries, the possible symmetry breaking patterns are

robust and generic, as seen in the SO(4) example mentioned above. It is thus straightfor-

ward to apply an explict symmetry breaking perturbation, the pion in QCD being a perfect

example. On the other hand, our discussion shows that for dilatations the very starting

point is non-generic and seemingly implausible. Further elaboration is thus needed to

identify a naturally light dilaton.
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The discussion so far concerned the case of exact conformal symmetry. The next

obvious step is to ask what happens in the presence of a (small) explicit source of breaking.

Consider now the case of explicit breakdown of conformal invariance, where couplings λi
that take the system away from the fixed point are turned on:

µ
∂λi
∂µ

= βi(λ) 6= 0 . (1.11)

The simplest and perhaps most interesting case is that of just one relevant or marginally

relevant coupling λ associated with:

∆L = λOd (1.12)

where Od has dimension d ≤ 4 in the limit λ = 0. In this situation, by starting at some

UV scale µ0 with λ(µ0) ≡ λ0 ≪ 1, the system is driven further away from the fixed point

by the Renormalization Group (RG) flow towards the IR, until at some scale Λ one has

λ(Λ) ∼ 1 corresponding to a O(1) perturbation1 away from conformality. The resulting

physics is strongly coupled and generically characterized by just one scale Λ, like in QCD,

with masses scaling in units of Λ. Massless, or light degrees of freedom, will be associated

with broken global symmetries (Goldstone bosons) or with unbroken chiral and gauge sym-

metries (respectively fermions and vector bosons). However, since conformal invariance is

no longer an approximate symmetry at the relevant energy scale, witness the fact that the

coupling λ runs ‘fast’, there is no reason to expect a light dilaton-like CP even scalar. More

explicitly, this is because the non-conservation of the scale current Sµ is controlled by the

beta function:

∂µSµ = Tµ
µ ∝ β(λ) . (1.13)

The one we outlined is indeed the situation realized in UV free gauge theories like QCD,

with the NDA normalized gauge coupling g/4π playing the role of λ. Expectedly there is

no candidate light and narrow dilaton in the observed hadron spectrum. Similarly no light

dilaton was to be expected in ordinary technicolor models. Moreover in conformal techni-

color models like the one proposed in [16], where the role of λ is played by a very relevant

coupling such as a fermion mass, we do not expect a light dilaton-like state. Again this is

because, at the relevant IR scale Λ, conformal invariance is not anymore an approximate

symmetry. Notice that this situation does not change at large N .

In the following sections we shall illustrate under what conditions this generic expec-

tation fails and a naturally light dilaton-like scalar emerges. More precisely, in section 2 we

illustrate the requirements from a purely 4-dimensional point of view. In section 3 we dis-

cuss a 5D model representing an explicit holographic realization. This construction allows

to perhaps better evaluate the plausibility of the requirements sketched in the purely 4-

dimensional discussion. In section 4 we briefly draw our conclusions. Various additional as-

pects of the 5D model, such as the stability of the solution, are discussed in the appendices.

1We apply Naive Dimensional Analysis (NDA) normalizing the couplings so that the perturbation ex-

pansion parameter is λ without extra powers of 4π.
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2 The 4-dimensional picture

First of all we should make clear that, underlying our all discussion is the assumption

that we are dealing with a CFT where some non trivial operators acquire non-vanishing

expectation value thus spontaneously breaking dilatations. Under this assumption, we will

focus from now on on the effective theory of the resulting dilaton, addressing the problem

that was outlined in the Introduction.

The discussion in the Introduction, in spite of being negative, does suggest the features

that are necessary in order to obtain a naturally light dilaton. A we shall now elaborate,

these are:

1. The CFT should somehow be able to sample a direction with κ = 0 in (1.7).

2. It should be endowed with a coupling that stays ‘naturally’ close to marginality

throughout the RG evolution.

The first request can be satisfied by postulating that the theory possesses a line (or more

generally a surface) of fixed points. This corresponds to the existence of a coupling λ (or a

set of them) that remains exactly marginal over a finite range. The corresponding marginal-

ity line (or surface) can be viewed as a continuous family of CFTs that are deformed into

one another by turning on the exactly marginal coupling. Now, the parameter κ will vary

continuously over this family, κ → κ(λ), and generically there will exist a point λ∗, or a

discrete set, such that κ(λ∗) = 0. To satisfy the second request, imagine now to modify

the theory by endowing λ with a small beta function over the whole marginality line:

β(λ) = ǫβ̄(λ) ǫ≪ 1 , β̄(λ) = O(1) . (2.1)

By RG invariance the dilaton potential will simply be:2

V (ϕ) = κ(λ(ϕ))ϕ4 . (2.2)

This basically corresponds to a quartic potential modulated by a slow evolution with ϕ

of its coefficient κ, the slow dependence arising from the near marginality of λ. Now, by

a generic choice of parameters, one that does not require any particular tuning, we can

imagine κ(λ(ϕ)) to be positive at ϕ→ ∞ and to cross zero at ϕ = ϕ∗ such that λ(ϕ∗) = λ∗.

In such situation the minimum of the potential will clearly be at ϕ = O(ϕ∗), close to the

point where the quartic coefficient vanishes. The resulting mass of the dilaton will thus

be suppressed by ǫ, the small parameter in the game. This result is precisely what hap-

pens in dimensional transmutation à la Coleman-Weinberg [17]. To make the discussion

more quantitative, we can study the vacuum dynamics in an expansion in ǫ around ϕ∗

(λ(ϕ∗) = λ∗ and κ(λ∗) = 0). The condition of stationarity

∂V (ϕ)

∂ϕ
=

[

4κ(λ(ϕ)) + β(λ(ϕ))κ′(λ(ϕ))
]

ϕ3 =
[

4κ(λ(ϕ)) + ǫβ̄(λ(ϕ))κ′(λ(ϕ))
]

ϕ3 (2.3)

2We imagine that ǫ smoothly describes a one parameter family of theories and work in series expansion

in ǫ around ǫ = 0. Eq. (2.2) represents the potential at zeroth order in ǫ. The holographic example we

shall present later supports this picture. Higher order effects will modify the function κ, but its relevant

properties, zeroes and slope, will qualitatively remain the same over a finite range of ǫ. So we can neglect

this detail in the discussion.
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implies the minimum is at a ϕmin satisfying:

λ(ϕmin) ≡ λmin = λ∗ −
ǫ

4
β̄(λ∗) +O(ǫ2) (2.4)

implying

ϕmin = ϕ∗e
− 1

4
+O(ǫ) . (2.5)

Assuming, without loss of generality, a canonically normalized kinetic term, we find for the

dilaton mass:

m2
ϕ = 4ǫϕ2

minβ̄(λ∗)κ
′(λ∗) = O(ǫ)ϕ2

min (2.6)

suppressed with respect to the characteristic mass scale of the system ϕmin.

3 Holographic realization

To better appreciate how plausible the scenario of the previous section is, we outline here a

holographic realization [18]–[21], in the context of RSI [22]. Our mechanism is a variant of

the one proposed in [23] by Goldberger and Wise (GW). We do not want to claim particular

originality here: see [23]–[33] for related studies and [34, 35] for recent discussions.3 We

just want to elucidate in the holographic context the necessary conditions for a naturally

light dilaton, that here coincides with the so-called radion. In that respect our remarks

complement the discussion in the appendix A of ref. [27].

We want to translate into an AdS5 model the properties of the CFT we previously

identified. A naturally marginal deformation will correspond to a naturally massless scalar

in 5D, a Goldstone boson π living in the bulk:

π ↔ λ . (3.1)

The marginality surface in the CFT will correspond to the coset manifold in AdS5. An

almost marginal deformation, like the one we want, will then just correspond to a bulk

pseudo-Goldstone. We will parametrize with a small dimensionless quantity ǫ the effects

that explicitly break the Goldstone symmetry. In particular the bulk scalar potential V (π)

will be O(ǫ). The tension τIR of the IR brane contributes additively to the dilaton quartic

κ [27]. Then the request 1) in the previous section amounts to assuming a π-dependent

tension. We choose units where the AdS5 radius is L = 1/k, and the bulk cosmological

constant is Λ5 = −3/L2. For the infrared (IR) brane tension we shall assume (see eq. (3.5)

for the units):

τIR(π) = − 3

L
+
f(π)

L
= τRS +

f(π)

L
(3.2)

where τRS is the tuned value corresponding to an exactly vanishing dilaton potential, that

is f = 0 corresponds to κ = 0. So we basically have:

κ ≡ κ(λ) ↔ f(π) . (3.3)

3During the completion of this work, another paper appeared [36] in which the idea of [1, 2] is elaborated.
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In our study we shall elucidate the relation between κ(λ) and f(π). While the relation will

become conceptually clear, we shall only be able to present simple analytic expressions un-

der some approximations: a first order Taylor expansion in the case of large back-reaction

from the field π in sections 3.2–3.4, to all orders in λ for the case of small back-reaction in

section 3.5.

We now look for a solution with a 5D metric

ds2 = gNMdx
NdxM = e2A(z)ηµνdx

µdxν − dz2 (3.4)

where ηµν = diag(1,−1,−1,−1). Notice that (3.4) is the most general Poincaré invari-

ant solution, after the gauge choice gµ5 = 0 and g55 = −1. To allow for a holographic

interpretation we focus on asymptotically AdS solutions, i.e. we impose A(z) → −z/L at

z → −∞. We introduce an IR brane at z = zIR, whose presence is associated with the

spontaneous breakdown of 4D conformal invariance [27, 37], and for simplicity we do not

introduce any ultraviolet (UV) brane. This corresponds to the limit of zero Newton con-

stant in 4D, which is legitimate since our considerations are intrinsecally decoupled from

4D gravity. Introducing the Planck brane one would slightly complicate the discussion and

find the usual issue of the finetuning related to the 4D Cosmological Constant. Adopting

the conventions of [25], our 5D action is thus given by:

S

(M5)3
=

∫

d4x

∫ 0

−∞
dz

√

|g|
[

−1

4
R+

1

2
(∂π)2 − V (π)

]

− 1

2

∫

z=zIR

d4x
√

|h| [τIR(π) +K]

(3.5)

where h is the 4D metric induced on the brane, and K is the extrinsic curvature4 of the

boundary (brane). Notice that the 5D Planck scale M5 is factored out and thus will not

enter our considerations. We will parameterize our potential by

V (π) = − 3

L2
+

ǫ

L2
P (π) , (3.6)

where ǫ is a small parameter controlling the explicit breaking of the Goldstone symmetry

π → π+ c. Notice that, while the shift symmetry is broken by the small parameter ǫ in the

bulk, it is instead maximally broken by the tension at the IR boundary, see eq. (3.2). This

situation is technically natural because of the locality of the UV divergent corrections to

the π potential: the breakdown of the Goldstone symmetry at the boundary cannot affect

the bulk potential.5 According to the AdS/CFT dictionary (see for instance ref. [38]), the

dual running coupling λ can be identified with π, while the corresponding β function is

β(λ) =
ǫ

4
∂λP (λ) ≡ ǫβ̄(λ) . (3.7)

By a direct inspection of the equations of motion, the condition to have an asymptotic

AdS space at z → −∞, (that is for the π field back reaction on the metric to vanish

asymptotically) is

ǫP ′′(0) < 0 . (3.8)

4Notice that performing a 4+1 split and using ADM variables [39], as done for example in [40], the

“Gibbons-Hawking” term involving K is automatically canceled and only first derivatives in z appear (see

also [41, 42]).
5We expect finite quantum effects to asymptotically vanish away from the IR brane as z → −∞.

– 7 –
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This condition precisely corresponds to the UV stability of the unperturbed λ = 0 fixed

point in the dual CFT description. In what follows we shall assume ǫ > 0, P ′′(0) < 0

without loss of generality. We shall also present some more details on the simple case of

a quadratic tachyonic potential P = −2π2, for which β = −ǫλ, corresponding to a per-

turbation with fixed scaling dimension ǫ. However our discussion applies to a generic flat

potential (ǫ≪ 1).

Consider now the equations of motion (EOM) that come from the variation of (3.5)

when both A and π are functions of z only, which corresponds to the most general solution

with Poincaré symmetry. In the bulk the EOM read:

π′′ + 4A′π′ − ∂V

∂π
= 0 (3.9)

A′′ +
2

3
(π′)2 = 0 (3.10)

(A′)2 +
1

3
V (π)− 1

6
(π′)2 = 0 , (3.11)

where here and below the primes denote the derivatives with respect to z, supplemented

by the matching conditions on the brane:

A′(z = zIR) =
1

3
τIR(π(zIR)) (3.12)

π′(z = zIR) = −1

2

∂τIR(π(zIR))

∂π
. (3.13)

For ǫ = 0 these equations can be solved exactly and the solution is given by:

A0(z) =
1

4
log sinh

4(z∗ − z)

L
− z∗
L

+
log 2

4
[ǫ = 0] (3.14)

π0(z) = ±
√
6

4
log tanh

2(z∗ − z)

L
+ π∗ [ǫ = 0] . (3.15)

The additive constant in A(z) is fixed by the boundary condition A(z) → −z/L at

z → −∞. The integration constants z∗ and π∗ are instead determined by the matching con-

ditions (3.12)–(3.13) once the tension is specified as a function of π. More precisely one has

z∗ = zIR + c∗L . (3.16)

where, assuming τIR(π) is a generic O(1) function, we expect c∗ to be of order 1. Moreover,

c∗ must be positive, otherwise the solution has a singularity at z < zIR. In general there is

only a discrete set of solutions and thus, up to a discrete ambiguity that is not important

for our discussion, the parameters c∗ and π∗ are fixed by the dynamics, that is by τIR(π).

Notice in particular that c∗ and π∗ do not depend on zIR: by varying zIR, and z∗ according

to eq. (3.16), we obtain a family of solutions, satisfying the same boundary conditions. We

conclude that zIR is a modulus and that the associated 4D scalar field in the Kaluza-Klein

decomposition, the radion, must be massless. The presence of this modulus suggests we

must have made a tuning. Where? Notice indeed that we did not fix a priory the boundary

condition of π at z → −∞, but rather determined it from the very existence of a Poincaré

– 8 –
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invariant solution. From eq. (3.15) one finds limz→−∞ π(z) = π∗, a parameter purely fixed

by the IR boundary condition. For any other choice of the asymptotic value of π there

would not exist a solution with Poincaré invariance. For these other choices we should find

solutions with either dS or AdS residual isometry.

The holographic dual of the above state of affairs is precisely what we described in

section 3.1: only for the specific choice λ = λ∗ of the marginal coupling do we have a

vanishing dilaton potential allowing the breaking of O(4, 2) to the Poincaré group. For

all other choices the breaking is either to dS or to AdS. As already said, this fine-tuning,

corresponding to κ → 0 in (1.7), is an analogue of the Cosmological Constant problem in

the scalar version of gravity [15]. We will see in the following how our construction can be

considered as a dynamical solution to this problem.

As we already remarked, zIR is a modulus. The corresponding family of solutions can

simply be obtained by performing the (global) change of coordinates

z → z̃ = z − z1 xµ → x̃µ = xµe−z1/L . (3.17)

which leaves the UV boundary conditions A(z) → −z/L, π → π∗ at z → −∞ unaffected,

and which in practice just amounts to the shift

zIR → zIR − z1 ≡ z̃IR

z∗ → z∗ − z1 ≡ z̃∗ . (3.18)

By this result the action is stationary under variations of zIR, consistent with it being

a modulus. Notice that eq. (3.17) precisely corresponds to a 4D dilatation in the dual

picture. Under this change of coordinates, the warp factor at the IR boundary changes as

eAIR ≡ eA(zIR) → eÃIR = eAIRez1/L . (3.19)

That is precisely how the dilaton ϕ ∝ eτ transforms. This is consistent with the familiar re-

sult from RS phenomenology, where the warp factor at the IR boundary can be interpreted,

up to an overall normalization, as the interpolating field for the canonical dilaton ϕ.

In section 3.2 we shall discuss the dilaton mode in more detail. Moreover, in order to

assess the validity of the solution we just found, we should also insure that it is stable, i.e

that no Kaluza-Klein mode around it is a ghost or a tachyon. It can easily be checked that

there are no ghosts, while in appendix B we prove that tachyons are avoided by a mild and

generic request on the IR brane tension: ∂2τIR(π(zIR))/∂π
2 > 0.

3.1 The 5D solution at ǫ 6= 0

Let us consider now the case where ǫ 6= 0. In general the equations of motion cannot

be solved exactly. In principle we could imagine to proceed by treating ǫ as a small

perturbation and by expanding the solution in a power series

π = π0 + ǫπ1 + ǫ2π2 + . . . (3.20)

A′ = A′
0 + ǫA′

1 + ǫ2A′
2 + . . . (3.21)

– 9 –
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where π0 and A
′
0 are the zeroth order solutions in eqs. (3.14)–(3.15) However that only works

for finite z. To see more explicitly what happens, let us fix (withouth loss of generality),

z∗ = 0 in the unperturbed solution. We thus have zIR = −c∗L = O(L). We can then solve

the equations of motion, order by order in ǫ starting from the IR brane: eqs. (3.11)–(3.13)

fix the initial conditions for π, π′ and A′ and the solution (π,A′) is unique. The warp

factor A is then obtained by performing a further integration: the overall additive constant

can for instance be fixed by the request limz→−∞A(z) = −z/L. Now, notice that the

unperturbed solution quickly enters its asymptotic behaviour at −z/L > O(1)

π0(z) = π∗ +O(e−4|z|/L) A′
0(z) = − 1

L
+O(e−8|z|/L) . (3.22)

Using this result, by studying the linearized second order differential equation for π1, in

the region −z/L≫ 1 one finds

ǫπ1 = − ǫz

4L
P ′(π∗) +O(e−4|z|/L) . (3.23)

We conclude that for generic P (in particular for quadratic P ) we can treat the potential as

a perturbation only as long as ǫ|z|/L ≪ 1. Moreover, in the region ln 1/ǫ ≪ |z|/L ≪ 1/ǫ,

the exponentially decaying part in π0 and A′
0 is subdominant to the O(ǫ) perturbation. In

that region, to first non-trivial order, the solution is then

π = π∗ −
ǫz

4L
P ′(π∗) +O(ǫ2) A′(z) = − 1

L
+
ǫ

L
P (π∗) +O(ǫ2) (3.24)

The above equations provide the initial matching conditions in the region ln 1/ǫ≪ |z|/L≪
1/ǫ for the solution at large z. Indeed, by inspecting the equations of motion, one readily

concludes that the solution matching eq. (3.24) satisfies, to leading order in ǫ, a first order

differential equation

π′ =
−ǫ
4L
P ′(π) A′(z) = − 1

L
+
ǫ

L
P (π) (3.25)

with (at leading order in ǫ) boundary condition π = π∗ at |z|/L = O(1). Indeed eq. (3.25) is

consistent with eq. (3.24) in the matching region, and when substituted into the equations

of motions solves them up to O(ǫ2) terms. In particular the term π′′ in eq. (3.9) is of order

ǫ2 according to eq. (3.25), and thus subleading. The evolution of π towards the conformal

boundary thus follows a first order differential equation, whose CFT interpretation is the

RG equation for the dual coupling . The solution of eq. (3.25) amounts to a resummation

of all powers of ǫz/L as z → −∞, while the neglected terms correspond to next-to-leading

order powers ǫ(ǫz/L)n. The analogy with the RG resummation of leading logs is obvious.

Notice that we worked under the assumption of asymptotic AdS geometry at z → −∞.

It is therefore essential, for our whole picture to make sense, that the contribution of π to

the energy momentum tensor vanish towards the boundary. A sufficient condition for this

to happen is that6 P (0) = 0, P ′(0) = 0 and P ′′(0) < 0, in which case limz→−∞ π = 0 for

6Notice that P (0) = 0 can always be achieved by redefining the bulk cosmological constant, while a

stationary point P ′ = 0 can always be set at π = 0 by redefining π via a constant shift.
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some finite range of π∗. This situation corresponds to a UV stable fixed point in the dual

theory. An example satisfying this criterion is given by the quadratic potential P = −2π2.

In this case the form of the solution in the asymptotic region is

π(z ≪ −L/ǫ) = π∗e
ǫz/L

(

1 +O(ǫe2ǫz/L)
)

+ π̂∗e
(4−ǫ)z/L

(

1 +O(ǫe2ǫz/L)
)

. (3.26)

where π̂∗ is an “integration constant” determined by the matching conditions including

subleading terms, which we disregarded in the above general discussion. The leading term,

scaling like eǫz/L, precisely corresponds to the solution of eq. (3.25). Integrating A′ from

eq. (3.11) using (3.26), we find the leading correction to the AdS behaviour of the metric

A(z ≪ −L/ǫ) = − z

L
+
π2∗
3

(

1− e2ǫz/L +O(ǫe2ǫz/L)
)

. (3.27)

Notice that the additive constant π2
∗

3 can in principle be removed in order to satisfy the

boundary condition limz→−∞A(z) = −z/L. However, if that is done, then in the region

near the IR brane A−A0 = O(1), while A′ −A′
0 = O(ǫ) everywhere.

Our solution of the ǫ 6= 0 case was obtained by perturbing around a given choice of

the IR brane coordinate zIR = −c∗L, corresponding to z∗ = 0 in the unperturbed solution.

It is pretty obvious that the asymptotic behaviour of π, which is now not constant, will

depend on this choice. This is seen clearly by performing the coordinate shift in eq. (3.17)

which does not affect the asymptotic behaviour of the warp factor A(z) but does change

the asymptotic behaviour of π

zIR → zIR − z1 π(z) → π(z + z1) . (3.28)

According to this equation the position of the IR brane is in one to one correspondence

with the value of the “running” field at any given test scale z. This is seen explicitly in

the case of a quadratic potential, for which the shift in the solution can be translated into

a change of its overall coefficient in eq. (3.26)

π∗ → π∗e
ǫz1/L . (3.29)

Notice the change with respect to the ǫ = 0 case. In that case, π evolves to an undetermined

constant at z → −∞: in order to obtain a Poincaré invariant solution, we must tune the

constant to be equal to π∗. Moreover the leading behaviour at infinity is not affected by a

shift of the IR boundary, so we expect the radion to be exactly massless. In the case ǫ 6= 0,

the Poincaré invariant solution is generic. Now the field π is automatically driven to a fixed

point π = 0 at z → −∞, so that now the boundary condition on π must specify the rate at

which it approaches 0. One convenient prescription is to pick a fixed value πUV near zero

and define the boundary condition in terms of the value zUV of z such that π(zUV ) = πUV .

Keeping πUV fixed and shifting zUV , by eq. (3.28) zIR shifts by the same amount. This

correlation between the location of the IR brane and the choice of boundary condition,

implies the radion is stabilized. Moreover, in the limit where ǫ is small the radion mass

will obviously be small. By translating to the 4D dual picture via the dictionary

π(z) → λ(µ)
e−z/L

L
→ µ

e−zIR/L

L
→ 〈ϕ〉 (3.30)
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one finds agreement with the discussion in section 2. Our 5D model can be thus considered

a dynamical solution to the Cosmological Constant problem of scalar gravity [15].

Our logic implies, for ǫ ≪ 1, a radion with mass mϕ parametrically smaller than the

Kaluza-Klein gap mKK ∼ e−zIR/L, corresponding to an effectively small quartic κ around

the minimum. In the remaining sections of the paper we shall compute the dilaton effective

action working at the first non-trivial order in ǫ. We shall proceed in three steps, as follows.

1. We shall first find the radion/dilaton effective Lagrangian at ǫ = 0 and truncated to

two derivative terms. In practice we shall find a mode that acts as a good interpolat-

ing field for the dilaton. In particular, at zero momentum it is diffeomorphic to the

unperturbed solution, implying that its action involves at least two derivatives. As

shown in appendix A, that property also holds true when KK excitations are turned

on. The two derivative effective action is then simply obtained by substituting the

mode into the 5D action, while the effect of massive KK exchange affects the action

starting at four derivatives. This is because the mixing between the radion and any

massive KK mode starts at O(∂2): integrating out the KK at tree level one obtains

a O(∂4) correction.

2. Still focussing on the ǫ = 0 case, we shall consider the leading correction to the ef-

fective action that arises when the boundary condition limz→−∞ π = π∗ is relaxed.

We shall consider limz→−∞ π = π∗ +∆π∞ and treating ∆π∞ as a small quantity we

shall compute the correction to the dilaton potential at leading linear order in ∆π∞.

Notice that with this modified boundary condition eqs. (3.14)–(3.15) will no longer

be a stationary point, but that does not matter provided that we derive the resulting

effective action keeping all effects. Indicating by Φ0 the ǫ = 0 solution and by ψ0 and

ψ0KK respectively the radion and the most general massive KK fluctuation around

it, we can expand the action

S(Φ0 + ψ0 + ψ0KK , π∗ +∆π∞) (3.31)

in ∆π∞ and in KK modes. As in the previous case, keeping ψ0 as our low energy

field and integrating out the massive KK modes, we find that the effect of the latter

integration only starts at order (∆π∞)2 and at order ∆π∞ × ∂2. The leading O(∂2)

and O(∆π∞) action is then simply

S(Φ0 + ψ0, π∗) + ∆π∞∂π∗
S(Φ0 + ψ0, π∗) (3.32)

The low energy effective theory described by the above Lagrangian, will not possess

Poincaré invariant solutions for ∆π∞ 6= 0. But as long as ∆π∞ is small, the result-

ing solutions with non trivial spacetime dependent dilaton profile will give a valid

effective 4D description of the corresponding 5D exact solutions. In section 3.3, we

shall directly compute the action of eq. (3.32), while in section 3.4 we shall deduce

it indirectly by matching 5D solutions with AdS4 symmetry to the corresponding

solutions in the 4D effective dilaton theory.
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3. According to the dual 4D picture discussed in section 2 the potential at order O(∆π∞)

corresponds to the term (λ−λ∗)κ′(λ∗)ϕ4. According to the discussion in that section,

once κ′(λ∗) is known, RG considerations are sufficient to compute the dilaton mass at

O(ǫ). This is the route we shall follow here, keeping in mind that in the 5D language

RG invariance corresponds to the global dilatation diffeomorphism. We should also

keep in mind that we can view this third step as the addition of the O(ǫ) perturbation

in eq. (3.31). As we did before one may worry about the effects arising from integrat-

ing out the massive KK’s. Again, by taking into account that the massive KK do

not linearly mix with the dilaton in the unperturbed ǫ = ∆π∞ = 0 case, we conclude

that these effects give terms that are at most O(ǫ∆π∞) and O(ǫ∂2). They therefore

affect the radion squared mass only at order ǫ2. On the order hand, according to the

discussion in section 2, the O(∆π∞) correction in eq. (3.32) gives a mϕ = O(ǫ).

3.2 The dilaton mode at ǫ = 0

Let us start from the case ǫ = 0 in which, as already said, we should find a vanishing radion-

dilaton potential. This is the step 1 we outlined above. A convenient parametrization of

the radion mode is given by the metric

ds2 = e2Â(x,z)ηµνdx
µdxν − B̂(x, z)2dz2 (3.33)

Â(x, z) = A0(z + c(z)r(x))− r(x)/L, (3.34)

B̂(x, z) = 1 + c′(z)r(x), (3.35)

and scalar field

π̂(x, z) = π0(z + c(z)r(x)) (3.36)

where A0 and π0 are the solutions in eqs. (3.14)–(3.15) for the choice z∗ = 0, and c(z) is

a function such that c(zIR) = 0 and c(−∞) = −1. Notice that, given the behaviour of

Â0(x, z) and π̂0(x, z) at z → ∞, the above mode has a finite action, i.e. it is normalizable.

Moreover when r is constant over spacetime the mode can be eliminated by the change of

coordinates z̃ = z + c(z)r, x̃µ = e−r/Lxµ, which does not affect the coordinate of the IR

boundary and the asymptotic behaviour of the fields. We conclude that r(x) has vanishing

potential, and as such is a good interpolating field for the massless radion. Notice that there

remains some degree of arbitrariness in the choice of the radion wavefunction. All functions

c(z) satisfying the same boundary conditions should be equally good. Different choices of

c(z) will affect the mixing between massive KK’s and the radion, and will be reflected in the

O(∂4) effective action, which we do not care about.7 On the other hand we expect the lead-

ing O(∂2) action to be unaffected by the freedom in the choice of c, as we shall now verify.8

7There should however exist a specific choice of c(z) shuch that the quadratic mixing with the KK’s

vanishes [43].
8In appendix A we shall discuss in more detail the realization of 4D dilations in the presence of a

spacetime dependent r and of KK excitations as well.
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To compute the radion effective action, we simply plug eqs. (3.33)–(3.36) into the

action (3.5). The resulting expression is

S

M3
5

=

∫

d4x

∫ zIR

−∞
dz

{

e2Â
[

−3

2
ηµν(∂µÂ)(∂µB̂)− 3

2
ηµνB̂(∂µÂ)(∂µÂ) +

1

2
B̂ηµν(∂µπ̂)(∂ν π̂)

]

+e4Â

[

2
Â′B̂′

B̂2
−5

(Â′)
2

B̂
−2

Â′′

B̂
− (π̂′)2

2B̂
−B̂V (π̂)

]}

−
∫

d4xe4Â
[

τIR(π̂)

2
−2Â′

]
∣

∣

∣

∣

z=zIR

. (3.37)

By making use of the explicit expressions (3.34)–(3.36) one finds the kinetic term:

Skinetic = (M5L)
3

∫

d4x
(∂µr)

2

2L4
e−2(zIR+r(x))/L × Z(zIR) (3.38)

Z(zIR) =

(

3

2
+ 3e2zIR/L

∫ zIR

−∞

dz

L
(e−2z/L − e2A0(z))

)

,

which does not depend on the form of c as expected (we recall that z∗ has been set to zero

without loss of generality). On the other hand by looking at the non-derivative interactions

we can derive the radion potential, which can be written as a boundary term:

SIR = −(M5L)
3

2

∫

d4x

L4
e4(A0(zIR)−r/L)

(

τIR(π0(zIR))− 3A′
0(zIR)

)

. (3.39)

This has precisely the expected form of a quartic term, as in (1.7). The coefficient is

however exactly zero thanks to the matching condition (3.12).

The coefficient Z for the kinetic term corresponds to the result in the RS model Z = 3
2

up to a correction that measures the effect of the backreaction of π on the metric. Notice

that Z is always positive. It is natural to identify the dilaton with

ϕ =

√
Z

L
e−(zIR+r)/L (3.40)

and to put into evidence the “large N factor” N2 ≡ (M5L)
3 in the kinetic term

Lkin =
N2

2
∂µϕ∂

µϕ (3.41)

Moreover, under a dilation diffeomorphism z̃ = z + c(z)z1, x̃
µ = e−z1/Lxµ the field ϕ(x)

does indeed transform as expected:

ϕ(x) → ϕ̃(x) = ez1/Lϕ(ez1/Lx) . (3.42)

It is interesting to ask how things change when ǫ 6= 0. Naively it seems that by replacing

A0 and π0 with the ǫ 6= 0 solution (A, π) in eqs. (3.33)–(3.36), we can construct a mode that

reduces to a change of coordinates at zero momentum. The problem with such a mode is

that it is not normalizable. The reason for that is the slow approach to the asymptote, now

π = 0, at the conformal boundary. At ǫ 6= 0 a there isn’t any normalizable mode behaving

like a pure change of coordinates at zero momentum, and thus we conclude that all modes

are expected to have a potential. Pure changes of coordinate, however, still constrain the

– 14 –
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form of the resulting potential. Indicating by A = A0+∆A the warp factor in the ǫ 6= 0 case,

a normalizable mode interpolating for the dilaton could now be written as in eq. (3.33) with

Â(x, z) = A0(z + c(z)r(x)) + ∆A(z + b(z)r(x))− r(x)/L, (3.43)

B̂(x, z) = 1 + c′(z)r(x) (3.44)

π̂(x, z) = π(z + b(z)r(x)) (3.45)

where c satifies the same boundary conditions as before, while b coincides with c at finite z,

in particular b(0) = 0, but goes to zero at z → −∞ fast enough to ensure normalizability.

Since b 6= c the diffeomorphism z̃ = z + c(z)z1, x̃
µ = e−z1/Lxµ now changes the functional

form of the asymptotic behaviour of the terms associated with ∆A and π. At lowest order

in z1 and r we have

π(z + b(z)r) → π(z − (c(z)− b(z))z1 + b(z)(r − z1)) (3.46)

and similarly for ∆A. Notice that in the asymptotic region ∆A can be expanded in a power

series in π. Therefore asymptotically the above equation amounts to changing

π(z) → π(z + z1) (3.47)

We conclude that in the ǫ 6= 0 case, eq. (3.42) must be supplemented with the spurious

transformation 3.47 to leave the action invariant, with the obvious dual RG interpretation.

In particular, in order to respect the spurious scale invariance the potential must have the

form

κ(π(r))e−4r/L (3.48)

where π(r) is invariant under the combined action of 3.47 and 3.42 (that is r → r − z1).

3.3 Dilaton quartic: first approach

We now carry out step 2 outlined in section 3.1. Still working at ǫ = 0 we compute the

dilaton quartic at lowest order in the detuning parameter ∆π∞. In order to do that we

simply have to compute the dilaton action over a shifted π background: in practice this

amounts to taking π̂ = π0(z + cr) + ∆π∞ in eq. (3.45). Notice that such a shift has no

effect in the bulk, as the action there only depends on ∂π. In particular the shifted fields

are still a solution of the bulk equations of motion. The only contribution comes from the

boundary tension, which at linear order in ∆π∞ gives a dilaton potential

V = N2∆π∞
∂τIR
∂π

∣

∣

∣

π=πIR

e4(A(zIR)+zIR/L)

2Z2
ϕ4 (3.49)

In terms of a general dilaton potential of the form V = N2κ(π∞)ϕ4, this corresponds to

∂κ

∂π∞

∣

∣

∣

π∞=π∗

=
∂τIR
∂π

∣

∣

∣

π=πIR

e4(A(zIR)+zIR/L)

2Z2
. (3.50)
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Using the expected general form 3.48 for the potential in the presence of a slowly evolving

π, and carrying through precisely the same reasoning that lead to eq. (2.6) we find the

dilaton squared mass at leading O(ǫ):

m2
ϕ = ǫ P ′(π∗) τ

′
IR(π(zIR))

e4A(zIR)+2zIR/L

2L2 Z(zIR)
(3.51)

where we used also eq. (3.7) and eq. (3.40).

3.4 Dilaton quartic: second approach

From the discussion in sections 3.2 and 3.3, interpreted from a purely 4D point of view, we

deduce the dilaton Lagrangian:

L = N2

(

1

2
∂µϕ∂

µϕ− κϕ4

)

. (3.52)

κ = ∆π∞
∂τ

∂π

∣

∣

∣

π=πIR

e4(A(zIR)+zIR/L)

2Z2
(3.53)

Following [13], this corresponds to a dilaton VEV with dS4 or AdS4 symmetry, of the

type (1.8). It should then be possible to deduce the quartic coupling by solving the EOM

in AdS5 with detuned asymptotic condition π∞ = π∗+∆π∞, and then look at the curvature

of the 4D sections.

We present in this section this alternative approach. We start from the metric:

ds2 = e2A(z)gµν(Λ̄)dx
µdxν − dz2 (3.54)

where:

gµν(Λ̄)dx
µdxν =















1

(
√
Λ̄t)2

ηµνdx
µdxν (dS4) if Λ̄ > 0

1

(
√
−Λ̄x3)2

ηµνdx
µdxν (AdS4) if Λ̄ < 0

, (3.55)

while the bulk field is π = π(z). The EOM now read [25, 46]:

π′′ + 4A′π′ − ∂V

∂π
= 0 (3.56)

A′′ + Λ̄e−2A +
2

3
(π′)2 = 0 (3.57)

(A′)2 − Λ̄e−2A +
1

3
V (π)− 1

6
(π′)2 = 0 , (3.58)

with the same matching conditions on the brane (3.12)–(3.13).

To connect Λ̄ with the quartic coupling κ (1.7) of the dilaton potential, we compare

the curvature of the 4d sections. To be specific, if one starts from the dilaton field ϕ in the

4D theory, with potential given by (1.7), then the metric that is seen by matter is:

ds2 =
L2 ϕ2(x)

Z
e2(A(zIR)+zIR/L) ηµν dx

µ dxν (3.59)
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where ϕ(x) is given by (1.8). Up to a change of coordinates, this is equivalent to (3.55)

with the identification:

Λ̄ = −2κZ e−2zIR

L2
. (3.60)

We now want to derive an expression for Λ̄ by solving the EOM with detuned asymp-

totic value for the bulk scalar π∞ = π∗ + ∆π∞, and then check that we recover (3.53)

through (3.60). This computation is detailed in the appendix C. Since we are interested in

the solution close to the minimum of the radion potential, it is enough to solve the EOM

at linear order in Λ̄. In principle however, to fully compute the potential, what one has to

do is to find Λ̄ by solving the EOM (3.56)–(3.58). In our case we define:

A(z) ≡ A0(z) + Λ̄ Ā1(z) (3.61)

π(z) = ≡ π0(z) + Λ̄ π̄1(z) (3.62)

and analogously for the derivatives. We then impose the matching conditions (3.12)–(3.13),

that uniquely fix the values π∗ and zIR in the case Λ̄ = 0. Changing the asymptotic value

of the field profile from π∗ to π∞ = π∗+∆π will require a non vanishing Λ̄ in order for the

IR matching conditions to be satisfied again, together with a shift ∆z in the position zIR
of the IR brane. At linear order in Λ̄ one finds:

δz π′′0 + Λ̄ π̄′1 = −1

2

∂2τIR
∂π2

∆̃π

δz A′′
0 + Λ̄ Ā′

1 = −2

3
π′0 ∆̃π , (3.63)

where ∆̃π = ∆π + ∆z π′0 + Λ̄π̄1. Solving the system (3.63) for the two unknowns Λ̄ and

∆z we find:

L2 Λ̄

∆π∞
=

−2∂τIR
∂π π

′′
0 − 3∂2τIR

∂π2 A
′′
0

π̄1(2
∂τIR
∂π π

′′
0 + 3∂2τIR

∂π2 A
′′
0) + π̄′1(6A

′′
0 − 2π′0

∂τIR
∂π ) + Ā′

1(−6π′′0 − 3π′0
∂2τIR
∂π2 )

(3.64)

where all the functions are evaluated on the IR brane. Using the zeroth order equations of

motion (3.12)–(3.13), (3.64) simplifies as

Λ̄

∆π∞
= − 1

L2
×

∂τIR
∂π

∂τIR
∂π π̄1 − 3Ā′

1

∣

∣

∣

∣

∣

zIR

. (3.65)

Using the results in appendix C, in particular (C.16), one can straightforwardly show that

this result is consistent with eq. (3.53), through eq. (3.60).

3.5 The limit of negligible backreaction

As a final check of our results, we consider the limit of negligible backreaction where the

computation is much simpler. Working with z∗ = 0, this limit is obtained when τIR is such

that the brane stabilizes at a position where:
∣

∣

∣

zIR
L

∣

∣

∣
≫ 1 (3.66)
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so that the local geometry is well approximated by AdS5 everywhere, that is A(z) ≃ −z/L.
More precisely, starting from a zeroth order solution with π = πIR and A(z) = −z/L,

corresponding to f = 0, f ′ = 0 and ǫ = 0, we we can solve the EOM in an order by order

expansion in the latter three quantities, treted as small parameters. Indeed by considering

the correction ∆T to the energy momentum tensor that come from π and from the IR

brane tension, and demanding that it be subdominant to the bulk cosmological constant,

one indeed obtains

f(πIR) ≪ 1 (f ′(πIR))
2 ≪ 1 ǫ≪ 1 (3.67)

where the second condition comes from the (π′)2 contribution to ∆T after having taken the

IR brane matching condition into account. Notice that, strictly speaking, provided a point

where both f and f ′ vanish exists, eqs. (3.9)–(3.13) are endowed with the unperturbed

slice of AdS solution. In this respect we do not need to impose that higher derivatives of

f be small. In particular f ′′ could be O(1). Obviously the existence of a value of π such

that f = f ′ = 0 requires tuning: a tuning that only lends us some computational hedge,

but which is conceptually not needed.

Let us focus for definiteness on the case of a quadratic bulk potential P (π) = −2π2.

Once ǫ 6= 0 the leading order π solution is given over all space (see eq. (3.26))

π = π∗e
ǫz/L + π̂∗e

(4−ǫ)z/L . (3.68)

In order to make contact with eq. (3.40) we parametrize the radion by considering a dis-

placed brane at the position zIR + r. The matching condition (3.13), then reads

π(zIR + r) = − 1

2(4− ǫ)

∂f

∂π
(π(zIR + r)) +

4− 2ǫ

4− ǫ
π∗ e

ǫ(zIR+r)/L ≡ g(π∗e
ǫ(zIR+r)/L) . (3.69)

Notice that in the limit ǫ = 0, f(πIR) = 0 this condition implies π(z) = πIR = const.

Indicating the canonical dilaton as in eq. (3.40), with now Z ≃ 3
2 , and substituting the

solution of the EOM into the action one obtains:

S = N2

∫

d4x

(

1

2
(∂ϕ)2 − ϕ4κ(π(ϕ))

)

(3.70)

where, keeping only the terms that are not suppressed by powers of ǫ:

κ(π(ϕ)) =
1

2Z2

(

f(g(π(ϕ)))− 1

2
(g(π(ϕ))− π(ϕ))

∂f

∂π
(g(π(ϕ)))

)

, (3.71)

and we defined the running coupling:

π(ϕ) = π∗

(

L

Z
1

2

ϕ

)−ǫ

. (3.72)

Notice that the term π(ϕ) subtracted from g(π(ϕ)) in the second term arises from the inte-

gration in the region z → −∞. The reason for this contribution is that in the computation

a la GW we did not parametrize the radion with localized mode: the profile of π towards

the conformal boundary depends on r. Now, since:

g(π(ϕ))− π(ϕ) = − ǫ
4
π(ϕ)− 1

2(4− ǫ)

∂f

∂π
(g(π(ϕ))) = −1

8

∂f

∂π
(g(π(ϕ))) +O(ǫ) (3.73)
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we conclude that, at leading order in ǫ the above result coincides with:

κ(π(ϕ)) =
1

2Z2

(

f(g(π(ϕ))) +
1

16
( f ′(g(π(ϕ))) )2

)

(3.74)

We can quickly compare this result with eq. (3.50) by considering the limit ǫ = 0 and

taking the first derivative with respect to π∗. In agreement with eq. (3.50) we find:

∂κ

∂π∗
=

1

2Z2

(

f ′(g(π∗)) +
1

8
f ′′(g(π∗))f

′(g(π∗))

)

∂g

∂π∗
=

1

2Z2
f ′(g(π∗)) ≡

2

9
f ′(πIR) (3.75)

where we used eq. (3.69) to derive:

∂g

∂π∗
=

1

1 + 1
8f

′′(g(π∗))
. (3.76)

The consistency with our previous results for the mass of the dilaton at leading order in ǫ

follows straightforwardly. We should notice that by considering eqs. (3.11)–(3.13), in the

limit ǫ = 0 one obtains the following condition on πIR:

f(πIR) +
1

16
(f ′(πIR))

2 − 1

6
(f(πIR))

2 = 0 (3.77)

that would coincide with eq. (3.75) if it wasn’t for the f2 term. This is consistent with

our leading approximation, where f and (f ′)2 are independent corrections to the energy

momentum tensor, and should be considered as equally important. However (f)2 is sub-

dominant to f . In order to consistently take those higher orders into account we would

have to consider the backreaction of the metric.

4 Conclusions

The issue of spontaneus breaking of the conformal group O(N, 2) in N-dimensional quantum

field theory resembles very closely the cosmological constant problem in general relativity.

In the former case the symmetry of the system does not forbid the associated Goldstone

boson (dilaton) to have a quartic potential. The resulting pattern of symmetry breaking to

either deSitter or anti-deSitter or Poincaré subgroups of O(N, 2) then follows respectively

from the choice κ < 0, κ > 0 and κ = 0 for the quartic potential. In particular the Poincaré

subgroup is selected only in a subset of measure zero of the parameter space. It thus ap-

pears rather non generic. In the case of gravity, the similar pattern emerges because the

relevant symmetry, diffeormophism invariance, does not prevent the presence of a potential

term, the cosmological constant Λ, for the associated gauge field. The (maximally sym-

metric) solutions are then either deSitter, anti-deSitter or Poincaré, depending on Λ > 0,

Λ < 0 or Λ = 0. The cosmological constant problem lies in the apparent non genericity

of the choice Λ = 0. As nicely elucidated by Sundrum [15], the analogy between the two

problems should not come out as surprising. Indeed the non linear realization of O(N, 2)

through a dilaton, represents a possible relativistic extension of Newtonian gravity, the

so-called theory of scalar gravity.

In this paper we presented a scenario, based on effective field theory, that produces a

pseudo-dilaton with a naturally small potential. The two key features to achieve that are
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• The existence of a “landscape” of values for the quartic coupling κ of the effective

dilaton potential, containing the point κ = 0.

• The explicit breakdown of conformal invariance by a naturally small parameter, as-

sociated with a nearly marginal coupling

The combination of the above two key features gives rise to a specific vacuum dynamics

according to which the minimum robustly sits near the point κ = 0. We discussed in detail

a 5D holographic realization that explicitly illustrates our solution is natural according to

the standard naturalness criterion [49]. The smallness of the dilaton potential around its

minimum directly follows from the presence in the 5D bulk of the pseudo-Goldstone boson

of an internal symmetry. Our model represents a variant of the Goldberger-Wise (GW)

mechanism [23] of radion stabilization in the Randall-Sundrum model [22]. The novelty,

with respect to previous implementations of the GW mechanism, is that our construction

makes clear that in order to obtain a light radion there is no need to tune, even approx-

imately, the tension of the IR brane. As long as the bulk potential for the GW scalar is

flat, the minimum of the radion potential arises at a point where the overall potential is

small, as if the IR brane tension were practically tuned. Aside this result we checked that

our model is sensible in that there are no ghosts or tachyons.

It is now clearly interesting to ask what our example could teach us on the true

cosmological constant problem, the one concerning (quantum) gravity. Even before trying

to think of an explicit 4D analogue, one interesting step would be to understand how our

mechanism can be embedded in a thermal history of a scalar gravity toy universe. Some

basic questions would be: under what initial conditions is the dilaton driven at late times

to the region where its potential is small? What would such a cosmology look like? Would

there be the analogue epochs of radiation domination, matter domination and structure

formation then followed by a period of accelerated expansion? In order for our example to

be interesting, one would like to exclude the need for extreme tuning of initial conditions

in order to achieve such a cosmology. We understand that Sundrum, in a forthcoming

paper, has gone a long way towards addressing these issues [50, 51]. Encouraged by that

result, one may speculate about a real gravity translation of our scenario. Even allowing

for some loss in translation, what could our two key features look like? A landscape of

values for the cosmological constant could for instance be provided by the a 3-form field A

and its 4-form field strength F = dA (see for instance [52]). Indeed F has a continuum of

constant vacuum solutions. The effective cosmological constant is just a function Λ(F ) and

we generically expect F∗ esists such that Λ(F∗) = 0. Notice, in passing, that F 6= 0 provides

the smallest “higgsing” of gravity, where the group of diffeomorphisms is spontaneously

broken to the subgroup of volume preserving diffeomorphisms. The freedom in the choice

of F , which can be associated with the choice of boundary conditions, directly corresponds

to the freedom in the choice of Λ in unimodular gravity. In view of these analogies, the

field strength F encouragingly looks like the real gravity analogue of the marginal coupling

λ of our toy gravity construction. How could we then mimick the second key ingredient?

Like in the toy example, we need to somehow lift the degeneracy over the landscape. One

possibility to achieve that was indeed pointed out some time ago by Brown and Teitelboim
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(BT) in a visionary paper [53]. BT have shown that when there exist 2-branes that couple

to A, brane nucleation by quantum tunnelling can relax by discrete jumps the value of

F . If the brane tension is small enough the succesive jumps could then relax the effective

cosmological constant down to its observed value. However, in the range of parameters

where this can happen, the rate of bubble nucleation is so small that it seems difficult

to implement the mechanism in a realistic cosmology (see however ref. [54] for a broader

perspective). Perhaps, leaving quantum tunnelling aside, another perspective to eliminate

the degeneracy of the F = const solutions and realize a surrogate of our second key feature,

would be to “higgs” the gauge symmetry associated with the 3-form and give it a mass.

That is done by adding a 2-form B that shifts under the gauge transformation B → B+α

whereas A transforms like A→ A+ dα. The presence of a mass term would give rise to a

slow evolution of the field strength F that could, in principle, relax towards the value F∗

where the cosmological constant vanishes. In a sense the addition of a Goldstone 2-form

B classically screens the field strength F , where BT brane nucleation did so by quantum

tunnelling. The analogy with the quantum screening mechanism suggests that a massive

3-form could be a promising direction. On the other hand, from another perspective, a

massive 3-form is dualized as a massive scalar, so that in the limit of small mass the system

should just corresponds to a version of quintessence (see for instance [55]). From the latter

perspective it would seem tuning is still needed to achieve a cosmology with small effective

cosmological constant at late times, but perhaps an explicit investigation is warranted.

To conclude: a 4-form field strength could indeed play the role of our marginal cou-

pling, however we have yet to identify a successful analogue of our second key feature. In

scalar gravity that role was played by an explicit small breaking of the relevant global sym-

metry, conformal invariance. In the case of real gravity the relevant symmetry is a gauged

one, for which there is no analogue of explicit breaking: breaking diffeomorphism invari-

ance invariably brings in new degrees of freedom, thus entering the mine field of modified

gravity. Is there a way out?
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A KK modes and scale invariance

In this appendix we discuss in more detail the vanishing of the dilaton potential and

dilatations in the presence of KK excitations. The most general metric compatible with

the gauge choice gµ5 = 0 can be conveniently written as

ds2 = e−2r(x)/L
[

e2A(z+c(z)r(x))ηµν + hµν(x, z)
]

dxµdxν −
[

1 + c′(z)r(x)
]2
e2φ(x,z)dz2 (A.1)
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while the scalar field is:

π̂(x, z) = π0(z + c(z)r(x)) + χ(x, z) (A.2)

Notice that the condition gµ5 = 0 does not completely fix the gauge, one more condition

being needed, for instance χ = 0. Now, for ΨKK ≡ (hµν , φ, χ) = 0 this field configuration

reduces to the dilaton of eqs. (3.33)–(3.35). Moeover for r(x) = const the dependence on r

can clearly be completely transferred to the KK modes via a diffeormorphism z+c(z)r = z̄,

e−rx = x̄. This fact, together with the stationarity of the action around the solution, im-

plies that any rnΨKK mixing term vanishes at zero momentum. Indeed because of Lorentz

invariance the mixings must be O(∂2). We are thus reassured that by integrating out the

KK modes at tree level we only affect the dilaton action at O(∂4): the potential at ǫ = 0

vanishes. Notice however that terms of quadratic and higher order in ΨKK , in particular

KK masses, will instead depend on the constant mode of r. This means that, in general,

quantum corrections will affect the dilaton potential. That is not unexpected, but also

not worrysome. For instance the bulk and brane tensions will be modified at the quantum

level. Therefore, unless we modify the asymptotic behaviour of π accordingly, we shall

not have a Poincaré invariant solution, corresponding to a non vanishing dilaton quartic.

Reasoning with the 4D dual picture it is pretty evident that a suitable shift of π∗ that does

the job must exist.

It is interesting to study in detail the transformation of the fields under dilatations, as

partially done in eq. (3.42). One is easily convinced that by defining

z̃ = z + c(z)z1 x̃µ = e−z1/Lxµ (A.3)

the metric and scalar field in the new coordinates read

ds2=e−2r̃(x̃)/L
[

e2A(z̃+c̃(z̃)r̃(x̃))ηµν+hµν(x, z)
]

dx̃µdx̃ν−
[

1+c̃′(z̃)r̃(x̃)
]2
e2φ(x,z)dz̃2 (A.4)

π̂(x, z)=π0(z̃ + c̃(z̃)r̃(x̃)) + χ(x, z) (A.5)

where r̃(x̃) ≡ r(x) − z1 and c̃(z̃) ≡ c(z). Notice that we knowingly left the dependence

of hµν , φ, χ on (x̃, z̃) to be implicit, that is via the dependence of (x, z) on (x̃, z̃). Notice

also that c̃(z̃) 6= c(z̃), so that the parametrization of the radion mode is different in the

new coordinates. However, from the definition c̃(z̃) = c(z) and the first of eq. (A.3), one

concludes c̃ satisfies the same boundary conditions c̃(0) = 0, c̃(−∞) = −1. It represents

thus another, and equally good, parametrization of the dilaton. The change in the radion

wavefunction can however be traded for a shift of the KK modes. By defining

h̃µν(x̃, z̃) ≡ hµν(x, z) +
(

e2A(z̃+c̃(z̃)r̃(x̃))−2A(z̃+c(z̃)r̃(x̃)) − 1
)

ηµν (A.6)

φ̃(x̃, z̃) ≡ φ(x, z) + ln
1 + c̃′(z̃)r̃(x̃)

1 + c′(z̃)r̃(x̃)
(A.7)

χ̃(x̃, z̃) ≡ χ(x, z) + π0(z̃ + c̃(z̃)r̃(x̃))− π0(z̃ + c(z̃)r̃(x̃)) (A.8)

the metric and scalar field are written in terms of r̃(x̃), h̃µν(x̃, z̃), φ̃(x̃, z̃), χ̃(x̃, z̃) in the

same form as eqs. (A.1), (A.2). At this stage to complete the discussion we should find a
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gauge fixing condition for the remaining one 5D degree of freedom that is stable under the

above transformation law. This can easily be done. For rinstance, at the linearized level,

a suitable gauge is given by
d

dz

(

hµµ
8A′

)

= φ . (A.9)

B Kaluza-Klein decomposition and sanity-check of the spectrum

In this appendix we briefly discuss under which conditions there are no tachyons in the

spectrum for ǫ = 0, and we show that there is only one massless mode. This is enough to

prove that there are no tachyons also for a small scalar bulk field mass ǫ, because all the

correction to the masses are analytic in ǫ, and the dilaton mass at O(ǫ) can generically be

positive. The absence of ghosts can be shown through an explicit diagonalization of the

Lagrangian, as done for example in [29] or [47].

It is convenient to work in conformally-flat coordinates. The background metric and

field can be written as:

ds2 = a2(y)
[

dxµdxµ + dy2
]

ϕ(x, y) = ϕ0(y) .
(B.1)

The most general set of linear perturbations is the following:

ds2 = a2(y)
[

dxµdxν(ηµν + hµν) +Aµdxµdx
5 + (1 + 2φ)dy2

]

ϕ(x, y) = ϕ0(y) + χ(x, y)
(B.2)

with the following properties under gauge transformation δxµ = ξµ, δy = ξ5:

δhµν = −∂µξν − ∂νξµ − 2ηµν
a′

a
ξ5

δAµ = −ξ′µ − ∂µξ
5 (B.3)

δφ = −ξ5′ − a′

a
ξ5

δχ = −ϕ′
0ξ

5 .

In order to find the equations of motions it is convenient to choose the gauge:

∂µA
µ = 0 (B.4)

hµν = hTT
µν + 2ηµνψ

where hTT
µν is transverse-traceless and ψ = 1

8h
µ
µ. The bulk Lagrangian for this perturbations

is:

L =
1

2
a3

[

L
(2)
ein −

1

4
h′ρσh′ρσ + 16ψ′2 − 1

4
FµνFµν + ∂µχ∂

µχ− χ′2 + 6∂µφ∂
µψ

+2ϕ′
0φ

′χ+ 8ϕ′
0ψ

′χ+ 4ϕ′
0φχ

′ + 3
a′

a

(

−2φφ′ − 8φψ′
)

] (B.5)
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where L
(2)
ein is the usual kinetic term for the graviton and Fµν ≡ ∂µAν − ∂νAµ.

The EOM for the tensor and vector modes are:

hTT ′′

µν + 3
a′

a
hTT ′

µν +�hTT
µν = 0 (B.6)

�AT
µ = 0 (B.7)

(

a3AT
µ

)′
= 0 (B.8)

where AT
µ is the transverse component of Aµ. These equations imply that we have mas-

sive (non-tachyionic) gravitons and a massless graviton. The massless vector field AT
µ is

eliminated by the Dirichlet boundary condition on the brane.

In the scalar sector the perturbations ψ, χ and φ are not independent, due to the

non-dynamical Einstein equations:

3ψ′ + ϕ′
0χ− 3

a′

a
φ = 0 (B.9)

φ = −2ψ (B.10)

The dynamical EOM for the perturbation ψ can be written in the following form (see

e.g. [48]):

Π′ =

(

−7
a′

a

)

Π+

(

−m2 +
2

3
ϕ′2
0

)

ψ (B.11)

ψ′ = Π− 2
a′

a
ψ (B.12)

The boundary condition on the infrared brane at y = yIR is:

0 = g+Π(yIR) +m2ψ(yIR) (B.13)

g+ ≡ 4
a′

a
(yIR)−

1

2
a(yIR) τ

′′
IR(ϕ0(yIR)) . (B.14)

where τIR is the tension on the infrared brane. For the following discussion it is important

to note that a′

a < 0 in the whole space and that the kinetic part of the Lagrangian for the

scalar perturbations, after eliminating φ through the constraint equations, reads:

Lkin =
1

2

∫

d4x dy a3 [6∂µψ∂
µψ + ∂µχ∂

µχ] . (B.15)

In order to have a physical scalar mode, the kinetic terms must be normalizable in the fifth

dimension:

∫ yIR

0
dy a3ψ2 < ∞ (B.16)

∫ yIR

0
dy a3χ2 < ∞

– 24 –



J
H
E
P
1
1
(
2
0
1
3
)
0
5
7

B.1 Massive spectrum

We now slightly modify the argument given in [48] to find a sufficient condition for the

positivity of the spectrum. In the asymptotic region y ∼ 0, we have a ∼ 1
y , and thus (B.11)

and (B.12) reduce to:

ψ′′ − 9

y
ψ′ +

16

y2
ψ +m2ψ = 0 (B.17)

Let us suppose that m2 < 0, and we want to find a contradiction. There are two indepen-

dent solutions for this differential equations, with the following leading behaviors in the UV:

ψ1 ∼ y2 + o(m2y4), χ1 ∼ 1 (B.18)

ψ2 ∼ y8, χ2 ∼ y4

where χ1, χ2 are derived from (B.9). The first solution has a non-normalizable kinetic

term for χ1, and thus it must be ψ ∼ ψ2. This function is such that ψ and Π (calculated

from (B.12)) have the same sign in the UV. We can then assume ψ > 0, Π > 0 in the UV

without loss of generality. Furthermore (B.11) and (B.12) imply that Π′ > 0 and ψ′ > 0,

upon plugging in the EOMs for ǫ = 0, and so Π and ψ keep the same sign in the whole

space. Thus (B.13) cannot hold on the IR brane if g+ < 0. This implies that a sufficient

condition for the positivity of the spectrum is:

1

2
a(yIR) τ

′′
IR(ϕ0(yIR)) > 4

a′

a
(yIR) (B.19)

which is always true for τ ′′IR > 0.

B.2 Counting of massless modes

We can now check that for ǫ = 0 there is one massless mode, which we identify as the

dilaton. In fact for m2 = 0 eqs. (B.11) and (B.12) can be solved exactly:

ψ = C1
a′

a4
+ C2

(

1− 2
a′

a4

∫

a3dy

)

≡ C1ψ1 + C2ψ2 (B.20)

where C1 and C2 are two integration constants. The leading behaviors of these modes in

the UV are:

ψ1 ∼ y2 + o(y10), χ1 ∼ y6 (B.21)

ψ2 ∼ y8, χ2 ∼ y4

both of which give normalizable kinetic terms. The IR boundary condition can thus be

satisfied by a combination of the two solutions, and there is one massless mode in the

spectrum. This completes the proof.

C Solutions of the EOM at first order in Λ

We have to solve the EOM (3.56)–(3.58) with ǫ = 0 and matching conditions (3.12)–(3.13).

Eq. (3.56) is equivalent to:

π′(z) = Ce−4A(z) (C.1)
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which substituted into (3.58) gives, at first order in Λ̄:

− 4 dz =
dy

√

1 + āy3/2 + y2
≈ dy

√

1 + y2
− ā

2

(

y

1 + y2

)3/2

dy (C.2)

with y ≡ (
√
6/|C|)e4A and ā ≡ L2 Λ̄(

√
6/|C|)1/2. Notice that the expansion in (C.2) works

in the region ā . 1. Here, the term āy3/2 is always subdominant, since in the region

y < ā−2/3 it is 1 > āy3/2, while in the region y > ā2 it is y2 > āy3/2, and the two regions

overlap. Integrating both sides from 0 to y one gets:

− 4(z − z∗)/L ≡ f(y) + ā g(y), (C.3)

where z∗ is the same as in (3.14), and we choose our coordinates such that z∗ = 0, while:

f(y) = arcsinh y (C.4)

g(y) =
1 + 2y2

2y3/2
√

1 + y2
−

√

1 + y2

2y3/2
2F1

(

− y2;−1

4
, 1,

1

4

)

. (C.5)

In order to invert these relations and get y as a function of z we write, always at linear

order in ā:

y(z) = F (z) + āG(z) (C.6)

−4z/L = f(F (z)) + āf ′(F (z))G(z) + āg(F (z)). (C.7)

From the O(ā0) we have f(F (z)) = −4z/L, while at O(ā) we find:

G(z) = − g(F (z))

f ′(F (z))
. (C.8)

In conclusion:

F (z) = sinh(−4z/L), f ′(F (z)) =
1

cosh(−4z/L)
(C.9)

and:

y(z) = sinh(−4z/L)− āg(sinh(−4z/L)) cosh(−4z/L). (C.10)

This implies that the solutions we are looking for are given by:

A(z) =
1

4

(

log
|C|√
6
+ log sinh(−4z/L)− āg(sinh(−4z/L)) coth(−4z/L)

)

(C.11)

and:

π′(z) = sgnC
√
6

[

1

sinh(−4z/L)
+ āg(sinh(−4z/L))

cosh(−4z/L)

sinh2(−4z/L)

]

(C.12)

where with the prime we still mean the derivative with respect to z. Using:

∫ ∞

ζ

dx

sinhx
= − log tanh

ζ

2
(C.13)
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and:
∫ ∞

ζ
g(sinhx)

coshx

sinh2 x
dx =

∫ ∞

sinh ζ

g(w)

w2
dw ≡ H(sinh ζ) (C.14)

one also finds:

π(z) = π∞ +
sgn C

2

√

3

2

[

− log tanh
(−4z/L)

2
+ āH(sinh(−4z/L))

]

(C.15)

Notice that H(sinh ζ) → 0 as ζ → ∞.

Finally, in order to connect ā with Λ̄ we need to specify the value of the constant C

in (C.11). For our purposes, since we work at linear order in ā, it is enough to impose that

at zeroth order in ā we have A(z) ∼ −z/L for |z| ≫ L. This fixes |C| = 2
√
6 so that, at

the end of the day, for our purposes we can take ā = L2 Λ̄/
√
2.

As a final comment, the fact that (3.65) agrees with (3.53) can be checked by using:

∫ zIR

−∞
dz(e−2z/L − e2A0(z)) = −1

2
e−2zIR/L +

√
2

2

t
3

2

√
1 + t2

−
√
2H(t) +

√
2

t
g(t), (C.16)

where

t = sinh(−4zIR/L) (C.17)

and the function A0(z) is defined by (3.14) with z∗ = 0.
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