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ABSTRACT: We present consistent supersymmetric theories invariant under the generaliza-
tion of the Galilean shift symmetry to N’ = 1 superspace. These theories are constructed
via the decoupling limit of certain non-minimally derivative coupled supergravities, thus
they correspond to the supersymmetrization of the so-called covariant Galileon. Specif-
ically, these theories are constructed in the linearized A/ = 1 new-minimal supergravity
set-up where the chiral supermultiplet is minimally coupled to gravity via the standard
R-current contact term, and, at the same time, non-minimally derivatively coupled to the
Einstein superfield.
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1 Introduction

It has been recently discovered [1, 2] that there is a set of, non-renormalizable, scalar
field self-interactions having the interesting property that their suppression scale do not
run at any energies. In addition, these same theories enjoy, in flat space, the following
Galilean shift

T =T +c+buat, (1.1)

where ¢, b, are respectively a constant and a constant four-vector, x# are Cartesian coordi-
nates in a Minkowski spacetime and 7 is the so-called Galilean field [3, 4]. The additional
requirement to have only up to second order differential equations, in order to avoid possi-
ble Ostrogradski instabilities, restrict the Galilean Lagrangians to contain only a product
of up to five scalars [3].

The transformation (1.1) may be extended to superspace. In particular, for a chiral
superfield (®), we propose that the only consistent supersymmetric extension of (1.1) is

D —P+c+ byt 1.2
n

where
Yt =2t +ifohf . (1.3)

Note that the super-Galilean shift (1.2), when projected to the real space, only shifts the
lowest component of ® as the complex extension of (1.1) while it maintains its super-
space chirality.

It has been shown in [5], by brute-force calculation, that the supersymmetrization of a
cubic Galileon out of a chiral field [6], is not possible without the appearance of ghosts. The
same Authors however, could not exclude the quartic supersymmetric Galilean theories,
although their constructions only led to ghost-propagating field theories. Those theories,
although invariant under (1.1), were not invariant under the superspace Galilean shift (1.2)
introduced here. We believe, that this was the main issue that led the Authors of [5] to
conclude that no supersymmetric Galileons can be found without propagating ghosts states.



In this paper we indeed show that a ghost-free quartic Galilean theory does exist and
is invariant under (1.2). In other words, we will construct the supersymmetric version of
the so-called “quadratic” and “quartic” Galileons

1
EQ = —5 Mﬁ@“ﬂ,

4 o _
Ly = =35m0 7)(ONO ) (00 7) (1.4)

where 7 is the complex conjugated of m and A is a suppression scale.
The easiest way to find our quartic Galilean theory passes through a decoupling limit of
certain supergravities. To appreciate this, let us go back to the non-supersymmetric case.
In Minkowski space, the shift b,z = b, [ §udxt, where & = 07 is a set of Killing
vectors (the four related to translations and labelled by a) such that V, £} = 0 (i.e. inte-
grable), and b, = d4'b,. One may then ask the question of whether generalized “Galilean”
theories, i.e. with the property that they are invariant under the shift

7r—>7r+c+ba/§zdx“, (1.5)

exist in non-trivial spacetimes with integrable Killing vectors.
This question has been answered in [7]. In particular, up to quadratic order in 7
one has

1, _ 1 v _
Ay = —i‘g“ 8N7T8V7F + mGM 8u7781/77 . (1'6)

where M is a mass scale and G* is the Einstein tensor. The sign of the terms in Ay are
chosen in such a way that, whenever energy conditions are satisfied, the effective propagator
of 7 is never ghost-like [8].

Again the theories of [7] enjoy a non-renormalization theorem (up to the Planck
scale) of their coupling/suppression constants [7]. Finally the theory Ay has been dubbed
Slotheonic theory in [7] (and so 7 the “Slotheon”) for its property of a “slow” scalar evo-
lution with respect to the minimal case M — oo. This property, turned out to be the
key issue to produce successful inflationary scenarios even in the case of steep scalar field
potentials [8-11].

Thanks to the equivalence principle, locally, any spacetime is approximately flat. An-
other way to see this is to notice that, in Riemanian coordinates, for any theory where
graviton self-interaction is suppressed by the Planck scale,

Vals = 0(@) , (1.7)

where 0,§, = 0 and M,, is the Planck scale. Therefore, there must exist “decoupling limits”
involving M,, — oo, such that (1.6), endowed with the Einstein-Hilbert Lagrangian

1
Loray = §M§R, (1.8)

reproduces (1.4).



These limits have been found in [12] showing an intimate relation between the theo-
ries (1.4) and (1.6), i.e. between Galileons and Slotheons. In particular, in [12], it has been
shown that the Lagrangian

1

2
£:§ MpR—

n

e G"oumo,m| (1.9)

in the limit M, — oo but A = MQMp — finite, reproduces the quartic Galileon £4. In
the non-decoupling limit instead, with the help of the gravity equations, the equation of
motion for 7 are nothing else than the covariant Galileon of [13, 14].

2 Non-minimally kinetically coupled supergravity

Following [15], we will work in the A/ = 1 new-minimal supergravity framework [16-22].
Apart from [15], higher derivative extensions of new-minimal supergravity have been also
studied in [23, 24|, whereas consistent higher derivative theories have been discussed in [25—
27].

As we will only be interested in the decoupling limit of gravity, we will only consider
Lagrangians at linearized level in the graviton [28]. The non-minimal derivative coupling
of a chiral superfield ® to the linearized new-minimal supergravity, is found by considering
the supersymmetric lagrangian [15]

Lo= / d%%@E“&ﬂ) (2.1)

where E* is the Einstein superfield. We recall that the Einstein superfield is defined in
terms of the real superfield ¢, as

1 .
EV = —2 e Dy Doy (2.2)

where the covariant derivatives with respect to the Grassman co-ordinates of the superspace
are defined as usual

0 . w7 = 0 .
Da = % + ’I/O'gdeaau, Dd = —&W - Z@aagdau. (23)
The real superfield ¢, is invariant under the following gauge symmetry (needed in order
to contain the 12 + 12 degrees of freedom of new-minimal supergravity)

6y =0,V + S+ Sy, (2.4)

with V' a real superfield and S, a chiral superfield.

Obviously, the superfield £, is also invariant under this gauge transformation. In fact,
E,, is nothing else than the “field strength® of ¢,,.

In the appropriate Wess-Zumino (WZ) gauge, ¢, contains the graviton A, the grav-
itino v, a two-form auxiliary B,, and a vector auxiliary A,. The latter, gauges the
continuous R-symmetry in supergravity.



The f-expansion of ¢, is explicitly written as

_ __ _ 1 .-
Oulws = =00 0wy + Bup) +i0°00, — i6200,, + S0°6°A,, (2:5)

and it is useful to define the components of ¢, in terms of projections as!

—%[Da, Deléul = hacp + Badn (2.6)
—2D2pa¢uy = Yua
iDQqus#! = Ppa

—éDQDQDa%l = A, (2.7)

Using (2.5) in (2.2), we find that E,, can be expanded as

E, = —2H,, — 2i0r, + 2i0r, — 05"0(G,,, + 0 Hy,, — *Fy)

+ 02057 0,1, — 0%00" 0,7, — %9252821{# (2.8)
where
HH = %ewm Hypo
Hypo = (0yBpo + 0pBoy + 05 Byyp)
PR — %WW(@,,AU — 9,A,)
and

Ryp = —0u0pht, + 0" 0phuy + 0" Ophuy — by
1

Guy = RNV - §TIMVR (29)

are the linearized Ricci and Einstein tensors respectively.
The components of E# can be found using the definitions (2.7) and the supersymme-
try algebra

1 1
_§Eu‘ — H* — gewpavav
. ; B
%DaEu| = ’F‘g = —EE“VPUUuaa8p¢g ’
1 _
—i[Da, Da)E,| = 0% (Byy + 0 Hyyp — *Fop). (2.10)

Note that 74 is the field strength of the Rarita-Schwinger field, moreover, E* is a real linear
superfield as it satisfies the conditions

Er=E*, D?EF=0 (2.11)

! As standard we use the notation to mean 6 = 6 = 0. For our superspace conventions see [29].

LL‘”



as well as the superspace Bianchi identity
ouE" = 0. (2.12)

The components of the chiral superfield are defined as usual

O =7
L paf =
\/i a Xa
1
—ZD2<I>| = F. (2.13)

Taking into account the standard coupling of the Einstein superfield E* with the
graviton multiplet ¢,, we can write the leading terms of a chiral superfield ® coupled to
the new-minimal linearized supergravity as

- 2i = 1
L= / d*0 ( M2E"¢, + 30 + ¢"R, — —OEF0,d ) + O [ — ) . (2.14)
M? Mp
In addition, R, is the supersymmetric R-current (see for example [30, 31]) which is de-
fined as
R, = —55"Do®Ds® (2.15)
and satisfies (on-shell)
D%Rus = Xa (2.16)
with
Xa = D*Do(99). (2.17)

Note that, in the spirit of the already mentioned decoupling limit, we have silently assumed
that M is not proportional to Mp (in which case we could have omitted the term (2.1)
from (2.14)) but rather, as we will see later, proportional to 1/M}1;./2.

Concerning dimensions, we have assigned mass dimension zero to the graviton but the
graviton multiplet has [¢,] = —1. For the chiral superfield [®] = 1 and for the superspace

derivatives ([Dy][Ds]) ~ [0,] = 1.

2.1 Decoupling limit

We now proceed to the decoupling of gravity as in the previous discussions and [12].
The (gravity) equations of motion for ¢, are

1 i
B 2M3, B 2M2 M2 D30,96," Do0p®e™?” = 0 (2.18)
and for ® we have
o . _ 1 _
D*(® — 6* Do (¢ D @) — 2i5 5 B"0,®) = 0. (2.19)



Solving for E* in (2.18) and plugging into (2.19) we find

p? (@ 590D (D) — — R, ®
iz @ @ MQMF% H
1 _ . _
- W(Dd(?#@’&,(j‘o‘Da@p(I))e’WpaaU(I)) = 0. (220)
P
Now, in the limit
Mp — oo, such that MZ2Mp = A3 is finite (2.21)
gravity decouples
E,=0 — ¢, = pure gauge (2.22)
and .
p? (é _ AG(DdﬁuéagaDaapCI))e“"paaa(i)> —0 (2.23)

where in (2.23), using the fact that ¢, is a pure gauge, we have set it to zero.
The component form of (2.23) (ignoring all fermions and auxiliary fields) are

4

2
87r—A6

(00" T) (9020 1) (9 0°7) = 0, (2.24)

which is just the complex Galilean equation of motion coming from the variation of the
action (1.4), as anticipated.

2.2 Supersymmetric galileon

Now that we learned the structure of the quartic supersymmetric Galileon as a decoupling
limit of the new non-minimally coupled N = 1 supergravity of [15], we can infer the
superspace Lagrangian that gives rise to the superspace equations of motion (2.23).

After a straightforward calculation one then finds that the Lagrangian describing the
super-galileon is given by

_ 1 _ . _
L= / d*0(od — 16 2(Da0, 7, Da0,®)e 7 05 ®). (2.25)

The Lagrangian (2.25), on top of the standard supersymmetries, enjoys the galilean
symmetry extended to superspace, i.e.

& — d+c+ by (2.26)
where c is a complex constant, b, is a complex constant vector and

y" = 2 +i0a"0. (2.27)
The latter satisfies the relations

Ddyz/ =0, Doy, = QiO'Vao’zeaa D2yu =0, auyu = Nuv- (2'28)

The super-galilean symmetry (2.26) is defined in a way such that:



e it preserves the chirality of the superfield ® (Dg® = 0)

e it induces the following galileon transformations for the scalar (), its fermionic super-
partner (x,) and the auxiliary field (F)

T = T+ c+bat,

Xoao =7 Xa>
F — F .

Note that one could certainty start from requiring the symmetries (2.26) to obtain (via
a series of trial and errors) the action (2.25), without ever invoking the decoupling limit.
Nevertheless, we find the decoupling way somehow more fundamental. Indeed, in this way,
one has automatically at hand the supergravity extension of the quartic Galileon.

The component form of (2.25) is

L = 1d*7 +i0,x5"x + FF (2.29)
5 (0,07 (020 1) (0g9T) — BFO,F0, X0, 0px e
—4i0,,x0" 07 X0s X0, 0pxe"P? — 2i0,X5,0" 05 X" 0, xOpXx
410, X0 5,0, X P 0, F DT + 410, F 0,6, 0" Dy P D
+48u7r827’re””p“80326,,8px + 28M>26Vo>‘6“8,\xe“”p”8p7r(9,€8g7’r
+40,;x0" 0" 5" 0,x """’ 0,0 05T + 2)(0"“6,,0)‘80)26“””‘78,48u7_r8)\8p7r

—1—23#)26,,0”6)‘)(6“””0 O0\O5 70,0, — 28)\XU“6VUA80>26“”p08M3N7?8p77) .

In order to find the final Lagrangian, one should integrate out the auxiliary field F' in (2.29).
The way to do that closely resemble the case studied in [32].
Variation of (2.29) with respect to F' gives schematically an equation of type
at I3
where o and 8 are functions of the scalar field © but most importantly of the fermionic
field y. Finally, the scale A has been explicitly extracted. To solve (2.30) one can use an
iterative procedure. The first step is to invert this equation as

ot 153
The second step would be to substitute again the inversion, i.e.,
ot oV I} 15}

and so on. Thanks to the Grassmanian properties of the fermions x this recursion even-
tually ends as soon as more than two equal fermions are multiplied (this is typical in
supersymmetric theories, see for example [32]). The final Lagrangian is very involved and
not very enlightening, for this reason we leave the interested reader to do the full inversion.



Nevertheless, as the cut-off of the theory is A, which also corresponds to the suppression
scale of the pure Galilean term, it is interesting to consider the supersymmetric action (2.29)
up to O(A~1?). Equation (2.30) is solved for

F=0(A). (2.33)
Therefore the supersymmetric Galilean action to leading order in the cut-off scale A reads
£ = Ly + % |Cor + £0)] (2.34)
where
Lwy, = 0> + 10, 5" Y (2.35)
is the Wess-Zumino action,
Lr = —Am(0,,0"7)(020’) (00" 7) (2.36)

is the scalar Galilean self-interaction, and finally the mix fermion-scalar interaction La-
grangian is

L) = — 4i0,x07 0, X0 X Opx " P — 210, X5, 0" g X" DX OpX
+ 40, 1O T P Dy G, OpX + 20,X0,07 5 O\ X" P 0,10, 00T (2.37)
+40;x07 0" 6" 0pxe"P? 0, w0 05T + 2)«7“51,0’\80)26“”’)08,48H7_T8>\8p7r
+ 28,»25,,0”6)‘Xe“”pgc%ﬁgfr@,ﬁpw - 26,\)(0”6,,0)‘ag)’(e“”pgﬁuaﬁﬁﬁpﬂ .

Note that, from (2.30), the full Ly, i.e. at all orders in A, would only involve extra m, x
interaction terms suppressed by higher powers of the cut-off scale A. In other words, the
full Galilean action would only modify eq. (2.37) by additional O(A~%) terms. Explicitly
Lga = Lwz + % [Lrr + Lry]
where .
Loy =L8)+0 <A6> .

The supergravity action (2.14), does not contain higher derivatives of either bosons
or fermions. It just describes a complex scalar, a fermion, a graviton and a gravitino. It
is clear then that no new fields may emerge in the decoupling limit. In fact is quite the
contrary. By definition, in the decoupling limit some degrees of freedom (the whole gravity
multiplet) are “lost”. Of course, they reappear at the scale A. Thus, at the perturbative
level, for energies below A, our theory is well described by a complex scalar field and a
fermion (the scalar multiplet). This is the power of using the decoupling limit.

We can see this even from another perspective: It is clear that the bosonic sector con-
tains only a complex scalar and no extra ghost states, in accordance with the Ostrogradsky
theorem. Exact supersymmetry does not allow for extra states behind a single fermionic
one, the superpartner of the scalar galileon. An extra (ghost) fermionic state cannot be
present in the spectrum as it cannot be paired with a corresponding (ghost) bosonic state to
form a scalar ghost supermultiplet, simply because such bosonic state does not exist. Sum-
marizing, as there is no bosonic ghost state to pair with, there is no ghost supermultiplet
either and therefore no any fundamental ghost states at all.



3 Conclusions

Galilean invariant theories have attracted a huge attention lately. One of the most striking
properties is that their suppression scales do not (quantum mechanically) run with energy.

Using the superspace formalism, one would already guess that, if the projected theory
onto the real space should be Galilean invariant, in superspace, this symmetry must be
incorporated into a larger symmetry.

Indeed, we showed that a Galilean theory must be embedded into a super-space
Lagrangian (i.e. before projection to real space) enjoying the super-space Galilean
shift symmetry

O — O +c+ byt (3.1)

where
y" = 2" +ifa"0 (3.2)

and where ® is the Galilean chiral superfield. Note that the super-Galilean shift (3.1), in
components, only shifts the scalar 7.

The way we found our supersymmetric Galilean Lagrangian was however somehow
indirect.

Inspired by the result of [12] showing that the complex Galilean Lagrangians may be
found as a decoupling limit (M, — oo but A = M?M,, finite) of

1 G
ﬁslotheon = 5 M2R

fs ——2M28M7r8y7? , (3.3)

we used the supergravity extension of the theory (3.3) found in [15] to obtain our super-
symmetric Galilean Lagrangian (2.29). Thus, the theory [15] is the supergravity extension
of Galilean theories, i.e. the covariant super-Galilean theory.

We would like to conclude by noticing that the theory [15] could only be found in
the new-minimal supergravity formalism which requires a conservation of R-charge. In
particular it turned out that the chiral superfield could only have vanishing R-charge. In the
decoupling limit this is perfectly consistent with the Galilean shift (3.1). In fact, the super
Galilean shift has vanishing R-charge and therefore it can only be applied to superfields
with vanishing R-charge as well. Thus, in order to have a consistent R-invariant theory, the
super-Galileon must have vanishing R-charge, as required by the supergravity extension.

This observation may also be related to the statement of [5] that cubic super-Galilean
theories cannot be constructed out of chiral superfields. In [12], it has been shown that the
cubic Galilean theory can be obtained as a decoupling limit of a theory containing both
the “Slotheonic door” G*¥0,md,m and the conformal coupling 7R. However, it turns out
that the two terms cannot coexist in the new-minimal supergravity formalism, as, the first
would require a vanishing R-charge contrary to the second. Thus, the cubic super-Galileon
cannot be obtained as a decoupling limit of the new-minimal supergravity theory coupled
to chiral superfields, as has been done here for the quartic galileon. The quintic Galileon
is instead more mysterious. In [12] no consistent decoupling limit has been found such to
lead to the quintic Galileon. Therefore, its supersymmetrization cannot procceed along the
lines followed here for the quartic galileon.
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