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Vasiliev theory, albeit with a different power of Newton’s constant.
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1 Introduction

The quantum behavior of de Sitter (dS) space is deeply mysterious [1]. This is in contrast

with the behavior of anti de Sitter (AdS) space, which via the AdS/CFT correspondence

is the best understood example of quantum gravity. Not surprisingly, many authors have

tried to use AdS/CFT ideas in dS space. One such proposal is the dS/CFT correspondence

of Strominger [2].1 Closely related work was done by Witten [6]. In Maldacena’s interpre-

tation of this proposal [7], the partition function of the CFT — regarded as a function of

sources — defines the Wheeler-de Witt (WdW) wave function as a function of bulk fields

at future infinity. This will be the interpretation of interest in this paper.

1A number of other proposals have been made with important new features. These include the causal

patch representation [3], the dS/dS correspondence [4], and the FRW/CFT [5] correspondence. We will not

discuss these here.
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Until recently, nothing was known about the CFT side of this duality, except for the

properties determined from perturbative gravity calculations in the bulk. An important

step forward was taken by Anninos, Hartman, and Strominger, who formulated a precise

proposal for the three-dimensional CFT dual to Vasiliev higher spin gravity in dS4 [8].

It had been previously proposed that even-spin and all-spin Vasiliev gravities in AdS4

correspond to the CFTs of N free scalar fields projected to the O(N) or U(N) singlet

sector, respectively [9]; now, for the corresponding Vasiliev theories in dS4, the CFTs are

proposed to be theories of N free Grassmann fields projected to the Sp(N) or U(N) singlet

sectors, respectively. Similarly, critical (Wilson-Fisher) versions of these CFTs have been

conjectured to be dual to Vasiliev gravities with a different choice of boundary conditions.

In a further development, Anninos, Denef, and Harlow have computed the WdW wave

function in the even-spin Vasiliev theory as a function of the uniform background bulk scalar

field by computing the partition function of the Grassmann field theory as a function of

the mass term [10]. This allows one to make interesting statements/predictions about the

Vasiliev dS theories using the above dS/CFT duality. Ref. [10] found that while zero mass

is a local maximum of probability (i.e. of the square of the wave function), there are other

even higher maxima of probability at finite values of the scalar field background. These

other maxima seem to correspond to nonperturbative instabilities around the perturbative

dS space solution.2 Similar results were found in [12] for the wave function of pure three

dimensional dS gravity, regarded as a function of the conformal structure at future infinity.

In this paper we investigate the properties of Vasiliev gravity in dS4 by looking at the

dS/CFT proposal from a different angle. In section 2, we propose to study the WdW wave

function when the future boundary has more complicated topology. The requirement that

the boundary theory is in the singlet sector plays a crucial role here. This is because the only

known way to project onto a singlet sector using a local, explicit Lagrangian formulation

involves the weak coupling of vector matter to a Chern-Simons (CS) theory. CS is a

topological theory which develops additional states on spatial manifolds with a nontrivial

fundamental group. We find evidence that these states lead to another instability — one

toward complicated boundary topology. In particular, the WdW amplitude of finding a

boundary with the topology of a genus-g Riemann surface times a circle is found to be

proportional to kN
2(g−1). Here k is the (large) level of the associated CS theory and N

scales as 1/GN , the inverse of the bulk Newton’s constant. Thus, the wave function grows

with the genus as exp
[

1
G2
N

(g − 1) ln k
]
, revealing an 1/G2

N instability effect in the bulk. In

section 3 we explore various mechanisms which might eliminate this exponential growth

with genus, but we do not find a satisfying one.

It is natural to ask whether this exponential growth with genus is a generic feature of

the quantum theory of de Sitter space, or a special feature of Vasiliev theory. To address

this, we begin in section 4 with a general discussion of features of Euclidean conformal

field theories holographically dual to dS via a dS/CFT duality. We obtain consistency

conditions which encode the condition that the local physics in the bulk is that of gravity

and matter satisfying the usual (bulk) unitarity conditions. We argue that the partition

2This instability and possible restrictions on it have recently been discussed in [11].
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function of a good dS/CFT dual will deviate from that of a unitary CFT only in a very

particular way, while sharing certain exact properties with unitary partition functions in

other respects. These requirements set even more stringent constraints on possible ways

to remove large-genus divergences, and thereby they provide more justification for taking

the large-genus effect seriously.

We then discuss more general properties of the WdW wave function as a function of

genus. In section 5 we consider the case of Einstein gravity with a positive cosmological con-

stant. In Einstein gravity there are field configurations that naturally interpolate between

different topologies (i.e. cobordisms), and so it is natural to study the probability as a func-

tion of topology.3 We determine the WdW wave function in a semi-classical limit by com-

puting the regularized action of complex solutions to the equations of motion (instantons).

The genus dependence of the wave function depends in detail on precisely which solutions

contribute. In principle, one can determine which solutions contribute by defining an appro-

priate contour through field space. In practice, one does not know how to define this contour

and some sort of ad hoc prescription must be used. We consider two natural prescriptions.

The first is simply to include all saddles. This leads to a probability that increases exponen-

tially with topology, as in Vasiliev gravity, but with a different strength. The probability

of a genus-g Riemann surface times a circle is found to be proportional to exp
[

1
GN

(g − 1)
]
.

The other prescription we consider is to include only those saddles which arise in the

analytic continuation from Euclidean AdS.4 This leads to a probability which vanishes ex-

ponentially with genus, in tension with the Vasiliev result. Moreover, the contour leads

to certain other features which seem to conflict with the ones considered in section 4. We

take this as evidence against the contour defined by analytic continuation from Euclidean

AdS, and as an indication that the genus divergence occurs even in Einstein gravity.

We conclude with a discussion of open issues in section 6.

2 Vasiliev dS4 and future topology

In this section we study future topology in asymptotically dS4 universes in Vasiliev grav-

ity [9]. Vasiliev gravity is a remarkable classical gauge theory that contains fields of arbi-

trarily high spin; in this sense it resembles a tension-free limit of a string theory. However,

its Lagrangian formulation and quantization rules are currently unknown, and hence we

cannot explicitly compute the WdW wave function in this theory. At present, the only

reasonable way to understand quantum (or at least semiclassical) Vasiliev dS is through the

holographic prescriptions of Strominger and Maldacena. This is the tool we will exclusively

use below.

3This was considered, for example, in [13].
4At the level of perturbation theory around global dS, this prescription works perfectly; it precisely

reproduces the usual Hartle-Hawking (Bunch-Davies) wave function [7]. Its validity at the non-perturbative

level is unclear.
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2.1 The divergence at large genus

The issues we wish to highlight can be illustrated already in the context of the AdS/CFT

correspondence, which posits a duality between 4D Vasiliev gravity in AdS and the singlet

sector of the 3D O(N) or U(N) vector model at a critical point [9]. Such a boundary theory

is typically given a local, Lagrangian formulation by weakly coupling the critical matter

(taken to be scalar here) to a Chern-Simons (CS) topological field theory. The resulting

action is

S =
ik

4π

∫
Tr

(
A ∧ dA+

2

3
A3

)
+

∫
d3x
√
−g
(

1

2
Dµφ

nDµφn + V
(
φ2
))

, (2.1)

where k is the CS level, A is the gauge field one-form, Dµ is the gauge-covariant derivative,

φ is a scalar field that transforms as an N -component vector with φ2 = φnφn, and V
(
φ2
)

is chosen so that the theory is conformal. (Different choices of this potential correspond to

choosing the theory to be a marginal φ6 theory or to be at the Wilson-Fisher fixed point

— the critical theory.) On spacetimes of topology S1×S2 the duality between this singlet

theory and the Vasiliev bulk appears to work due to the following desirable features:

1. The CS term introduces no additional gluon states, and yet (in the weak cou-

pling/infinite level limit) it enforces Gauss’ law that projects the matter spectrum

onto just the singlets. Since the “pure glue” sector has only one state on this topol-

ogy, the spectrum consists of only singlet states of matter fields, and these precisely

match up with bulk Vasiliev fields, as described in the original proposal by Klebanov

and Polyakov [14].

2. CS-matter theories possess families of fixed points (indexed by the ’t Hooft coupling

λ = N/k and distinguished by different matter potentials V (φ)) that map onto the

known families of Vasiliev theories [15].

3. The boundary correlation functions precisely match the AdS/CFT correlators from

Vasiliev gravity when the boundary is IR3 [16]. This is a consequence of the presence

of higher spin symmetries in the theory [17, 18].

Generalizations of the two dualities above to other topologies are still far from fully

understood. For instance, a puzzle is raised by the observation that a CS-matter system

on S1×T 2 contains additional light states stemming from nontrivial holonomies along the

cycles of T 2 [19]. These light states do not have known duals in Vasiliev theory. They are

closely related to the light states found in 2D CFT duals of higher spin gravity in AdS3 [20].

The light states are small deformations of the zero energy states in the pure CS theory.

Roughly speaking, the coupling between the CS sector and the matter sector is 1/k and so

at large k the CS states continue to be light and their entropy remains unaffected. This was

analyzed in [19]. On S1×T 2 at large k the states of the pure CS theory can be understood

from the semiclassical quantization of the classical phase space of the CS theory, which

is the (2N -dimensional) space of flat connections on T 2 [21]. In the Wilson-Fisher fixed

point theory (i.e. the critical theory) the scalar sector is gapped and can be integrated out

– 4 –
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to give an effective potential for the flat connections, giving small gaps for the CS states

which vanish when k → ∞. The decoupling of the matter is manifest. At temperatures

T of order one, all the CS states will be counted in the entropy of the CS-matter theory.

Except when otherwise noted, we will henceforward take T (determined by the size of the

S1) to be in this range. (The case of the free scalar theory is more subtle because of the

scalar zero mode. Nonetheless, as argued in [19], a similar picture holds.) The partition

function is

ZS1×T 2 ∼ kN . (2.2)

The scaling of this result follows from the dimension of the phase space and the role of k

as 1/~ in the semiclassical quantization.

These observations carry over to CS-matter theories on more complicated topology [19].

In this paper we will focus on S1×Σg. Here we need to take the critical theory to avoid the

instability due to the Rφ2 term in the action with R negative.5 The value of the pure CS

partition function is discussed in [22–24]. The scaling can be determined by the dimension

of the phase space. There are 2g holonomies, one fundamental group constraint on the

product of the holonomies, and one overall SU(N) rotation to eliminate. This leaves a

(2g − 2)N2 dimensional classical phase space. (The matter phase space is only order N

dimensional and so is negligible.) Quantizing semiclassically gives

ZS1×Σg ∼ k
(g−1)N2

. (2.3)

The partition function for higher genus surfaces diverges exponentially fast in the genus

with a rate that increases with k and N , both large in the ‘t Hooft limit appropriate for

weakly coupled gravity.6 Note that the N2 in the above exponent is formally of order

1/G2
N , not the more conventional 1/GN [19]. This suggests that the Vasiliev theory should

really be interpreted as the open string sector of an open-closed string theory where the

N2 degrees of freedom are part of the closed string sector [25–27].

On the other hand, if the CFT is put on S3, the partition function decreases as [28]

ZS3 ∼ k−N2/2. (2.4)

This was the first indication of the N2 dependence in the CS-matter theory. On a lens

space S3/Zp the decay is slower [29],7

ZS3/Zp ∼ k
−N2/2p. (2.5)

5This instability is cut off by the φ6 term, but at a value of φ that grows with k.
6To be precise, computing the one-loop determinant in CS theory reveals a subleading term that makes

the partition function scale as e(g−1)N2 ln(1/λ) for ’t Hooft coupling λ = N/k ≤ 1, but for simplicity we will

continue talking about k(g−1)N2

scaling.
7 The decay disappears at p ∼ N , the regime in which the S3 is so thinly “squashed” by the Zp orbifolding

of the Hopf fiber S1 that it becomes similar to S1 × S2 from the point of view of the CS theory. These

decreasing magnitudes cannot be seen through direct canonical quantization, and hence they can not be

associated with any “state counting” or “negative entropy” reasoning. The upshot of these calculations is

that CS and CS-matter theories on three-spheres and lens spaces come with an inherently negative and

large contribution to the free energy stemming from the gauge sector.
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The rapid increases of the partition function for large genus persist in the Vasiliev

context, to which we now turn. As mentioned in the introduction, Vasiliev gravity in dS can

be studied through the non-trivial modification of the O(N) version of this correspondence:

when N is even, the even-spin Vasiliev gravity in dS space appears to be dual to the O(−N)

vector model at a fixed point [2, 8, 10].8 This CS-matter theory is given by the action

S =
ik

4π

∫
Tr

(
A ∧ dA+

2

3
A3

)
+

∫
d3x
√
−g
(

1

2
ΩnmDµχ

nDµχm + V
(
χ2
))

, (2.6)

where Ωnm is the canonical symplectic form, χ is a vector of N anticommuting scalars

(Grassman fields), and χ2 = Ωnmχ
nχm. It is assumed that, for a suitable choice of V (χ2),

this theory can be conformal in the large N limit — just like its O(N) counterpart.

Under the proposed dS/CFT duality, the time direction in Vasiliev dS is holographi-

cally reconstructed, and the above CFT lives on the future infinity of the bulk. Moreover,

the partition function of the boundary CFT is interpreted as a WdW wave function ob-

tained in the semiclassical approximation. Thus the O(−N) model CFT emerges as a

potent tool for calculating probability amplitudes on the space of late-time fields in quan-

tum Vasiliev gravity: one merely has to compute the modulus squared of the CFT partition

function to find a proxy for the probability distribution on the space of manifolds at the

future infinity of Vasiliev dS.9 The large N asymptotics (presented in this paper) give

corresponding WdW amplitudes in the semiclassical approximation of Vasiliev gravity.

The same asymptotics for the partition function discussed above for the CS-commuting

scalar theory are present in the U(−N) anticommuting scalar model CFT: ZS1×Σg ∼
k(g−1)N2

. The dual of this CFT is conjectured to be Vasiliev all-spin gravity in dS space.

These asymptotics follow because the U(−N) model has the same gauge group as the

U(N) one, and, as in the commuting case, the matter does not disturb the count of pure

CS theory states at large k and finite T ∼ 1. The anticommuting nature of the fields

means that a negative eigenvalue of the quadratic form in the action is not dangerous,

and so either the free or critical theories are acceptable. The asymptotic behavior of the

O(−N) CFT has never been worked out in detail, but behavior similar to that above must

8 “O(−N)” is a convenient shorthand for “Sp(N) with all Young tableaux transposed.” This shorthand

is used because some results obtained from the O(−N) singlet vector model are obtained from those in the

O(N) model by letting N 7→ −N . However, not all calculable quantities of the two models are related in

this way. For instance, the Sp(N) group is non-compact while O(N) is compact, so their volumes cannot

be related by just a change of sign of N . Thus it might not be advisable to think of O(−N) as a kind of

analytic continuation from O(N).

The O(−N) statement of dS/CFT has been checked at the level of matching bulk and boundary corre-

lators. It is of note that other gauge groups on the boundary could possibly lead to the same correlator

matches; for instance, something like USp(N) might provide a compact alternative to Sp(N) that leads to

equally acceptable correlators.

There exists a corresponding, as yet unchecked statement about the duality between the U(−N) model

and the all-spin Vasiliev gravity in dS, where “U(−N)” stands for “U(N) with all Young tableaux trans-

posed.” The matter Lagrangian in this case would be Dµχ
nDµχ̄n + V (χnχ̄n). There are no compactness

issues in this case.
9This number is merely a “proxy” because of the current lack of understanding of the measure on the

space of future infinities. We will have little to say on the issue of the measure in this paper, and will

continue to refer to the WdW amplitude as the “probability.”

– 6 –
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appear due to the existence of ∼ k(g−1)N2
states found through semiclassical quantization

on S1 × Σg.

The O(−N) theory, if constructed as an Sp(N) singlet vector model, features an

additional divergence due to the non-compactness of its gauge group. This is a curious

and new issue, particularly because this divergence is associated to the even-spin Vasiliev

theory but not to the all-spin Vasiliev theory, and it can presumably be cured by focusing

on a related compact group, say USp(N). To avoid conceptual difficulties related to the

non-compactness of Sp(N), one may wish to think in terms of the U(−N) vector model

for the rest of this section.

The rapid growth associated to higher-topology future infinities is intriguing because,

as mentioned above, Newton’s constant in the bulk scales as GN ∼ 1/N ; a growth expo-

nential in N2 signifies a 1/G2
N effect in the bulk. This does not correspond to any known

object in a gravity theory. It is currently unknown how one should approach these diver-

gences or decays of the probability amplitude, and the attempt to understand these effects

from direct computations in bulk Vasiliev gravity is beyond our scope.

In section 3 we will discuss several different paths one could take in the hope of un-

derstanding these issues by studying the boundary theory directly. Before doing so, we

will turn to a few details of the higher spin dS/CFT construction which might effect our

discussion.

2.2 Fixed points after continuation

The authors of [11] have raised several interesting issues about the persistence of the

boundary field theory fixed points after continuing to the dS regime. In particular, the fixed

points found at finite λ in [15, 25] might in principle cease to exist when N 7→ −N . On

general grounds we expect the effect of matter to be a 1/N effect, and so do not expect the

change N 7→ −N to affect the leading large N “classical” fixed point. The 1/N corrections

are more subtle because of the existence of the almost marginal φ6 operator. Nonetheless,

we do not see a reason for the zero of the beta function to disappear.

This issue is more easily analyzed in another realization of vectorlike dS/CFT. If we

continue the free fermion realization of vectorlike AdS/CFT to dS we find the dual is a

theory of commuting O(N) spin-half fields. Here there is no almost marginal operator

and hence it is manifest that the CFT fixed point persists at finite k. The CS coupling is

discretized and so it does not run. We hope to return to this issue in the near future [30].

The authors of [11] have also raised the possibility that the appropriate continuation

to the dS regime may require k 7→ ik to ensure the proper reality conditions for the

parity violating terms in the bulk Vasiliev theory. We have examined a truncation of the

full theory to spin-0 and spin-1 fields and do not find a need for this complexification.

Nevertheless, a more complete analysis is called for.

If (for some reason) imaginary k is required, a whole host of problems would develop.

The CS level would no longer be quantized and so it may run under RG. Monopole oper-

ators have ∆ ∼ k ∼ N/λ and so under naive continuation have large imaginary ∆. This

minimizes the classical instability due to highly irrelevant operators that will be pointed

out in section 4, but may make the 1/N expansion, the standard GN expansion of quantum

– 7 –
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gravity, badly behaved. In particular, consider the theory on S1×S2. There are corrections

to perturbation theory due to monopole “states” going around the S1 of order exp(−∆)

where the radius of the S1 is order one. In AdS/CFT these are of order exp(−N/λ) and

hence nonperturbatively small. But if k (and hence λ) are imaginary, then näıvely these

effects are of order exp(−iN/|λ|) and are of order one magnitude. The 1/N series is no

longer asymptotic. Presumably a Stokes line has been crossed.10

2.3 High temperature phases

So far we have worked on manifolds S1 ×Σg, with the size of S1 taken to be of order one.

CS-matter systems of the type considered in this paper possess high-temperature phases

in which the contribution of matter to the free energy (of order NT 2Vol(Σg)) becomes

comparable to the contribution of the CS sector, which is of order N2(g − 1) [31]. By

choosing to normalize the volume of the spatial manifold to Vol(Σg) = 2(g − 1), we find

that the phase transition happens at temperatures T ∼
√
N . The partition function

scalings that we have presented in the preceding are no longer valid in this case. It may

be possible that the genus-dependent divergences are no longer present.

We will qualitatively analyze this situation and find that the genus enhancement is

present at high temperatures — moreover, no phase transition is found. After integrating

out matter, the partition function of the U(−N) model can be written as a matrix model.

Let αi be the eigenvalues of this matrix. The partition function will be of the schematic

form (omitting constant prefactors and intricacies from multiple holonomies):

ZS1×Σg ∼
∫

exp

−(g − 1)
∑
i<j

ln | sin(αi − αj)| − T 2(g − 1)
∑
i

cosαi

∏
i

dαi. (2.7)

The first term in the potential for the α’s comes from the gauge sector, while the second

term comes from the matter sector.11 The above integral can be analyzed by reducing it

to a saddle point calculation at large N . The gauge sector potential aims to clump the

eigenvalues together, while the matter sector aims to have each eigenvalue attain αi = π.

At T ∼
√
N , these two criteria must be satisfied simultaneously, but this is possible, unlike

in the case of U(N) or U(−N) models on S1 × S2 [10, 31]. Therefore, there is no phase

transition in which the matter takes over the gauge sector’s domination and qualitatively

alters the behavior of eigenvalues. Rather, at the saddle point all eigenvalues clump at

αi = π. In this regime, the partition function scales as

ZS1×Σg ∼ e
NT 2(g−1), (2.8)

and the large-genus divergence is still present.

10We thank Daniel Harlow for this observation.
11The matter contribution receives an additional minus sign relative to ref. [31] because the matter fields

are anticommuting. This minus sign is, in fact, irrelevant; it merely determines the position around which

eigenvalues will clump at the saddle point, but does not affect the existence of the phase transition. This

is in contrast with models with adjoint matter.
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We have here given a very schematic derivation of the high-T behavior of the partition

function on S1 × Σg; it would be interesting to fill in the holes and develop a new matrix

model that would correspond to the U(−N) vector model at g > 1. This is yet another

topic that is relegated to future work.

3 Can the large-genus divergence be removed?

Let us recap the analysis so far. We have seen that, in the higher spin dS/CFT proposal

of [8], the probability that future infinity has topology S1 × Σg diverges with genus as

k(g−1)N2
, where k → ∞. The conservative and least speculative way to address this issue

is to accept the dS/CFT dictionary but restrict the topology at future infinity.12 For exam-

ple, as stated above, dS/CFT does not run into trouble on topologies of the form S1×S2. It

is therefore possible to ask meaningful questions about which boundary geometry is picked

out by the WdW wave function from the set of all topologically S1×S2 manifolds. We may

think of this restriction as a future boundary condition on the space of all possible dS uni-

verses. This avenue of research has led to interesting open questions concerning instabilities

and remains relevant regardless of any topological considerations [10, 11]. Other topologies

are amenable to the same treatment: one may compare the WdW amplitudes for different

geometries that have the same topology. For instance, one might ask whether a Vasiliev

spacetime prefers to break spherical symmetry at future infinity while still retaining the

topology of an S3. Even if the dS/CFT prescription leads to diverging prefactors in path

integrals, these would all cancel in the calculation of relevant relative probabilities.

However, it is easy to construct solutions to the classical equations of motion which

asymptote to topologies of the form S1 ×Σg at future infinity. These are quotients of dS4

by a discrete subgroup of its isometry group. As this solution is locally de Sitter, it clearly

solves the Vasiliev equations of motion. These solutions have singularities of Milne type

in the far past, where presumably quantum corrections are needed to fully understand the

geometry. The existence of these solutions is certainly a necessary, though not sufficient,

condition that the WdW wave function is supported on non-trivial topology. It is likely

that other, more complicated, solutions to the equations of motion exist with the same

asymptotics. In the absence of an argument to the contrary, it seems unphysical — and

acausal — to impose a restriction on the possible state of the universe in the far future. We

will therefore take all dS/CFT results at face value. This means that high-genus surfaces at

future infinity are preferred, and the wave function of Vasiliev de Sitter space is asymptotic

form is an infinite-genus, “future foam”-like structure.13

In the remainder of this section we will discuss whether this large genus divergence

can be removed by some modification of the higher spin dS/CFT conjecture. In quantum

field theory, we are used to the idea of using “renormalization” to remove infinite factors in

the partition function. It is natural to speculate that the large k, large N , and large-genus

12We are indebted to Dio Anninos for numerous discussions on this subject.
13We note that, even though the genus is divergent, the volume of future infinity is divergent as well.

Thus it may be that an appropriately defined topological density — such as the number of handles per

Hubble volume — is finite.
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divergences could be removed by something like a standard renormalization procedure.

However, not all divergences are created equal, and in this section we argue that the diver-

gences of dS/CFT cannot be renormalized by any reasonable renormalization procedure.

3.1 Local counterterms

According to the usual quantum field-theoretic idea of renormalization, we are allowed to

modify the action of a field theory by arbitrary local counterterms. One might attempt

to remove the k(g−1)N2
divergence of the partition function by adding a k-dependent local

term to the action. However, it is simple to check that there is no local term consistent with

scale invariance that would accomplish this. The pure CS action has no local operators of

its own, which leaves only c-number terms built from the background metric. However, the

only scale-invariant term which can be built from the background metric and its curvatures

in three dimensions is the gravitational Chern-Simons term, which vanishes for geometries

of S1 × Σg topology. Terms involving the matter fields are already fixed by conformal

invariance; there are no available counterterms in the matter sector. Therefore, there is no

way to cancel the large k divergence with operators constructed from the gauge connection

and background metric.

3.2 Cancellation of divergences with local spectator fields

We now explore more extreme modifications of the theory in order to remove the k(g−1)N2

divergence. We first might imagine adding additional spectator degrees of freedom that

are decoupled from the CS-matter system. We take these degrees of freedom to be local to

retain some degree of predictivity and control. This decoupled system could conceivably

be chosen to have the effect of cancelling the large k behavior. The new degrees of freedom

must form a topological field theory in order to preserve the spectrum of the boundary

theory on simple topologies. Hence, the only viable possibility is another CS theory.14

Let us study the U(−N) version of dS/CFT. It would be simplest if the large genus

behavior could be removed by inserting a decoupled U(N) CS sector into the boundary

theory. However, this would clearly just exacerbate the divergences. To cancel the divergent

prefactors of the form k(g−1)N2
, we would need to replace k by 1/k or to replace N by iN

in the counter-theory. Neither option, on its own, leads to a well-defined CS gauge theory:

the CS level must be an integer to preserve invariance under large gauge transformations,

and N must be a real integer in order for the U(N) algebra to close. Nevertheless, one may

define the desired theories through analytic continuation of well-defined CS theories [32–

34]. We conclude that one way to define a divergence-free boundary theory is to start with

two CS gauge fields with the same level and gauge group, with only one of them coupled

to matter, and then analytically continue the decoupled gauge sector to either 1/k or iN .

While this technically works, it cannot be implemented by a local Lagrangian because the

state degeneracies, the coefficients of exponentials in along a thermal or timelike circle,

cannot be integers.

14There exists one more topological field theory that can be put on a 3D manifold — the BF theory.

However, introducing the BF theory brings about other problems, as we will discuss below.
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Even the weaker condition, that they have a Hamiltonian implementing translations

along the circle direction, cannot hold. In the absence of a local definition this procedure

is ad hoc and unpredictive.

3.3 Explicit overall factor multiplying ZCFT

One can take a different route and simply multiply the partition function by an overall

coefficient. For a positive integer coefficient, there is a manifestly local way to do this:

simply add a massive scalar field with multiple vacua at zero energy, and take the mass

to infinity. However, if we are interested in decreasing the value of the partition function

rather than increasing it, then we cannot do so with any sort of local or causal dynamics.

A prescription to multiply the partition function by an overall numerical coefficient is

actually a special case of a set of spectator fields with arbitrarily nonlocal interactions. To

see this, consider a decoupled real scalar spectator field α(x), and write the action

S[α] ≡ π
∫
d3xα(x)F (−∇2)α(x) , (3.1)

where F (λ) is an arbitrary function of its argument. A path integral quantization of α

with the usual measure gives the result

Z(α fields) =
∏
λ

[F (λ)]∓
1
2 , (3.2)

where λ are the eigenvalues of the Laplacian and the sign ± depends on the statistics of

α. By choosing

F (λ) = Z∓2
0 δλ,0 , (3.3)

we can chooose to engineer the partition function to be equal to any positive value Z0,

regardless of the geometry or topology of the manifold, so long as it is connected. More

generally, the partition function for α with this nonlocal action, will be Z
#(components)
0 for

a manifold with several connected components. Again, this procedure seems ad hoc and

unpredictive. In particular, the action (3.1), (3.3) is completely nonanalytic in derivatives

and cannot be given a Hamiltonian representation or causal interpretation with respect to

any time direction.

3.4 Cancellation of divergences with spectator boundaries

Another ad hoc and unfounded way to renormalize to eliminate the k(g−1)N2
prefactors

would require us to restrict our attention to certain bulk geometries with disconnected

boundaries. To see why this might be of interest, notice that the S3 CFT partition function

decays as k−N
2/2 while the higher genus partition function diverges as k(g−1)N2

. This means

that a CS-matter theory on (S1×Σg)∪S3∪ . . .∪S3 (with 2g−2 three-spheres and with no

matter living on any of them) would have no divergent prefactors in its path integral. The

renormalization in this case consists of adding additional spheres to the boundary manifold

instead of adding extra terms to the original boundary field theory. This constraint is not

satisfactory for a number of reasons. We currently do not understand multi-component
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boundaries, and in particular we know of no superselection rules that would force a genus

g surface to be associated to any particular number of additional S3 manifolds when they

are boundaries of the same asymptotically dS universe. In particular, there is no action of

the type (3.1), that can implement such a superselection rule.

3.5 Yang-Mills and BF theories as projectors onto singlets

We may also try to remove the k(g−1)N2
divergences by coupling the matter to a different

gauge theory that would project into the singlet sector. We here explore both known

alternatives. The obvious choice, a 3D Yang-Mills (YM) term g−2
YM Tr (F ∧ ∗F ), would

spoil the conformal invariance and add additional states in the adjoint representation,

even when we take the coupling gYM to be small [35]. Moreover, calculating in the YM

regime and letting gYM → 0 is a non-analytic limit. A simple way to see that something

goes wrong is to rewrite the YM action by using a Lagrange multiplier:∫
[dA] e−2g−2

YM

∫
Tr(F∧∗F ) =

∫
[dAdB] ei

∫
Tr(B∧F )− (g2YM/2)

∫
Tr(B∧∗B). (3.4)

Note that B is locally a Lie algebra-valued one-form that transforms in the adjoint rep-

resentation under the usual gauge transformations. The zero coupling limit leaves only

LBF = Tr(B ∧ F ) in the Lagrangian. The gauge symmetry gets enhanced at g = 0, where

we may shift B 7→ B + dAΘ for any zero-form Θ (with dAΘ ≡ dΘ − iA ∧ Θ); the action

will remain invariant due to the Bianchi identity. This huge local symmetry will make

the partition function blow up unless we gauge it away; but gauging this symmetry is a

non-analytic procedure, and we should not expect that the resulting gauge-fixed action will

have anything to do with YM theory at small but non-zero coupling. This non-analyticity

has been explicitly explored long ago in the context of 2D YM theories [36–38], but the

result extends to three and more dimensions.

The only other option is to start directly from the zero-coupling version LBF of YM

theory. This is the so-called BF theory [38–41]. Näıvely, this is a good idea: the B field

acts as a Lagrange multiplier that sets F = 0, any coupling can be eliminated by rescaling

B so there is no “infinite level” limit that might give rise to divergences, and the BF theory

is topological and hence contains no extra local degrees of freedom. Moreover, unlike CS,

BF theory can be formulated in any dimension, and so it seems like a natural candidate

for a singlet-sector projector in any spacetime.

Canonical quantization shows that the BF theory does not project into singlets, how-

ever. The Hilbert space of the theory is obtained from the space of solutions to the

equations of motion modulo gauge transformations. The equations of motion for the BF

theory, coupled to a matter current J through a Tr(A ∧ J) term, are

F = dAA = 0, dAB = J. (3.5)

In CS theory, taking the level to infinity enforced J = 0 by making all charged states

infinitely heavy. On the other hand, the BF theory gives us no reason to set J = 0, and

we do not achieve the desired projection. If we quantize these equations of motion, we will

find charged states in the spectrum.
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This is not all; the canonical quantization supplies us with more worries. In the CS the-

ory, the path integral was normalized such that the partition function on S1×S2 was equal

to unity, i.e. to the number of states in canonically quantized CS theory. In the BF theory,

canonical quantization reveals an unpleasant but old feature [39, 41]: the phase space is

non-compact (the gauge-invariant solutions to the equation of motion, dAB = 0, are classi-

fied by the non-compact cohomology group of dA). This means that the partition function

on S1×S2 must be infinite. At present, it is not understood how (or if) this infinity is to be

regulated; consequently, the canonical normalization of the BF path integral is unknown.15

Thus, BF theory is presently not a useful tool for analyzing singlet vector models.

Before leaving the subject of BF theory, let us address a tangential issue which may be

of interest in any subsequent treatment of gauge theory path integrals of the kind appearing

in this paper. This discussion also points out some common pitfalls one may face if trying

to understand the above canonical treatment of BF theory using the path integral language.

It is commonly said that the B path integral sets F = 0. However, in general this is not

precisely correct. We must fix both gauge invariances of the BF theory before we can

understand the integral over B. Explicitly, the infinitesimal gauge transformations that

are being fixed are

A 7→ A+ dAΛ, B 7→ B − iB ∧ Λ (3.6)

and

A 7→ A, B 7→ B + dAΘ. (3.7)

The presence of the second group of gauge transformations means that some of the B field

configurations must be equivalent, and hence we cannot path-integrate over B without

exercising utmost care.

To see where we stand, let us focus on spacetimes of topology S1×S2. Gauge fixing can

force A0 (the gauge field component along the S1 direction) to be x0-independent and to lie

within the Cartan subalgebra [37, 38, 45]. The elements T i of this subalgebra generate the

maximal torus of the gauge group, and hence this choice may be called the “torus gauge.”

This (with an x0-independent Coulomb gauge, irrelevant for this discussion) fixes the first

group of infinitesimal gauge transformations.

We are still left with the second group of transformations, the ones parametrized by

the zero-form Θ. These change B but not A. Let us focus on shifts of B0, the component

of Bµ that points along the S1 direction. These are given by

iδB0(ω,x) = ωΘ(ω,x) + [A0(x),Θ(ω,x)]. (3.8)

Note that we assume that A is already gauge-fixed into the torus gauge. One advantage of

this gauge is that the above transformations simplify greatly; the Cartan and non-Cartan

components of B0 transform as

iδBi
0(ω,x) = ωΘi(ω,x), iδBα

0 (ω,x) =
(
ω + αiA

i
0(x)

)
Θα(ω,x). (3.9)

15The Abelian BF theory can be given a canonical interpretation when seen as a compact, U(1) × U(1)

theory [42–44]. This is no longer possible in a non-Abelian situation, unless we compactify certain modes

of the gauge fields by introducing large gauge transformations by hand.
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The root vectors are defined by [T i, Tα] = αiT
α (no summation), and α indexes the non-

Cartan generators Tα. These transformations show that we may gauge-fix almost all modes

of the B0 field to zero. The only exceptions are Bi
0(0,x) and those modes Bα

0 (ω,x) for

which ω = −αiAi0(x). Moreover, we expect the latter set to be of measure zero when

integrating over all Ai0(x), so we may really state that all modes of B0 except for Bi
0(0,x)

can be gauge-fixed to zero. In this temporal gauge the path integral over the B field does

not set the ω 6= 0 components of F i12(ω,x) to zero, contrary to the usual statement that

the integral over B produces a δ-function in F . All the other modes of F are still set to

zero, however.

We arrive at the following phenomenon: even though the canonical quantization shows

that there are no F 6= 0 states, the torus gauge in the path integral forces us to perform

a sum over some F 6= 0 sectors. These configurations are gauge artifacts, discovered in a

very different form already in YM and CS theories [37, 38, 45, 46]. The point we would

like to stress is that these seem to be a generic feature in gauge theories, and they need to

be taken into account properly when path-integrating. The current lack of understanding

of the BF path integral normalization forces us to relegate the study of these artifacts (and

of the BF-matter path integral) to future work.

The failures of the YM/BF theories as means to remove the states of the Chern-Simons

sector are, at any rate, a foregone conclusion in the unitary case. If this could be done,

then for a T 3 geometry the YM/BF + CS + matter system would amount to a projection

of the matter theory onto its singlet sector without the addition of new states. Such a

projection is disallowed by a general no-go theorem in [19], based on modular invariance.

In the nonunitary case relevant to dS/CFT, we do not yet have sufficient understanding

of the basic rules of the CFT to formulate a no-go result. We will turn to the question of

what rule might replace unitarity for dS/CFT, in section 4.

4 Consistency conditions constraining the CFT of dS/CFT

We have so far considered various ad hoc attempts to remove the large-genus divergence.

At this point the most we can say about them is that they seem rather contrived. We will

now try to understand more systematically what consistency conditions are expected for a

CFT holographically dual to gravity with a positive cosmological constant. This way we

may arrive at a set of principles to rule out — or rule in — various possible prescriptions.

As a first example we note that this CFT must have an unusual property. Going to

late time in dS corresponds to flowing to the UV in the boundary RG. This means that

if the CFT contains any (single trace) irrelevant operators, it has a classical instability at

late times. Thus a stable theory must have the highly unusual property of having no single

trace irrelevant operators.16

In the case of AdS/CFT, the key principle from which various universal principles and

no-go theorems can be derived, is unitarity (see for instance [47]). It is not clear what

plays the rule of unitarity in the dS/CFT context. It is well known that a theory dual

16The monopole operators in the CS-matter theories at large k discussed in section 2.2 have ∆ ∼ k and

so are highly irrelevant, at least for positive k, which seems to indicate a strong classical instability.
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to bulk gravity via the dS/CFT correspondence cannot satisfy the condition of unitarity

(or reflection positivity) in the usual sense. In the limit where the gravitational theory is

described by Einstein gravity coupled to local effective field theory, the spectrum of single-

trace operators in the CFT should correspond to the spectrum of single particle states [2]:

ECFT =
1

rboundary S2

[
3

2
±
√

9

4
− `2dSm2

]
(4.1)

for scalar primaries, and more generally

ECFT =
1

rboundary S2

∆(m2`2dS , J) (4.2)

for primary states with spin J and mass m, with formulæ ∆(m2`2dS , J) given by analytically

continuing the corresponding formulæ for AdS by `2dSm
2 → −`2AdSm

2 (see e.g. [48] for a

discussion of this analytic continuation):

∆(m2`2, J) ≡ ∆[AdS](−m2`2AdS, J) . (4.3)

The formulæ ∆[AdS](−m2`2AdS, J) are given for some low spin J , e.g., in [49]. In general,

the dS formulæ go as

∆(m2`2dS , J) ' ±im`dS +O
(
(m`dS)0

)
, (4.4)

at large m and any fixed J .

From this dictionary one can see that the spectrum of the dilatation operator is not

generally real, except in special cases such as that of Vasiliev gravity [8]. In this section

we would like to distinguish several distinct ways in which a CFT (or a quantum theory

more generally) can fail to be unitary, and to point out that these types of nonunitarity

have differing logical status in the context of the dS/CFT correspondence.

4.1 Types of nonunitarity

The Euclidean path integral of a unitary quantum theory on a circle of length β represents

the thermal partition function

Z(β) =
∑
n

exp (−βEn) , E0 ≤ En ∈ IR . (4.5)

One can read off the spectrum by going to a limit in which the length β is much larger

than the typical energy gap in the spectrum {En}, which in a CFT is the inverse length

scale of the spatial slice.

There are several ways in which the partition function of a quantum theory can differ

from the form (4.5):

• The system can display complex-enegy nonunitarity: The system may have exactly

the form (4.5), but with En not all real. The sum is still well-defined if the real parts

of En are bounded below:

Z(β) =
∑
n

exp (−βEn) , Re(E0) ≤ Re(En) . (4.6)
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• The system can display spectral-density nonunitarity: The system may have the form

Z(β) =
∑
n

an exp (−βEn) , (4.7)

with some or all of the an not being positive integers.

• The system can display unbounded-energy nonunitarity, where the real parts of the

En are unbounded below. The partition function does not converge in this case.

• The system can display continuum nonunitarity, in which the set of En is not discrete.

The partition function generally diverges in this case as well.

A generic nonunitary theory can of course display several of these types of nonunitarity

at once.

Continuum-type nonunitarity can be considered the mildest form of nonunitarity be-

cause it can occur as a limiting case of unitary CFT, when a set of energy levels becomes

increasingly dense and collapses to a continuum in the limit, as exemplified by the ε → 0

limit of the spectrum

En ' E0 +
ε

n2
, (4.8)

in some family of CFTs parametrized by ε. This type of nonunitarity occurs in very simple

families of CFTs, e.g. in the moduli space of c = 1 conformal field theories, with the radius

R of the target-space circle given by R =
√
α′/ε. This type of nonunitarity also arises in

moduli spaces of strongly coupled unitary CFT as well, including theories holographically

dual via AdS/CFT [55] to known superstring backgrounds.

None of the three remaining types of nonunitarity can arise as limits of unitary CFT

with discrete spectrum.

4.2 Unitarity properties of dS/CFT in the Einstein-gravity limit

Having distinguished these possibilities, one is led to ask which of these types of nonunitar-

ity can occur in holographic realizations of bulk quantum gravity. In the case of AdS/CFT,

the global timeline Killing vector longtudinal to the boundary in Lorentzian signature al-

lows us to conclude straightforwardly that energies are real and the spectral density is pos-

itive, insofar as the bulk description can be trusted. In the dS/CFT context, one can also

deduce certain unitarity properties of the CFT directly from the existence of a bulk dual.

By virtue of formulæ (4.1), (4.2), a CFT with an interpretation in terms of bulk

particles in dS must necessarily display complex-energy nonunitarity. Here we make a

complementary observation: The same requirement of a consistent bulk particle interpre-

tation appears to forbid the unbounded-energy and spectral-density types of nonunitarity

in the thermal partition function on S2 spatial slices of the boundary CFT.

First, the boundedness-below of the energy spectrum follows directly from the form of

the expressions (4.1), (4.2), which forces the real parts of the energies to lie above zero.

The boundedness-below of the energy is simplest to see for boundaries IR × S2, but the

same principle applies to boundaries IR × X2, where the spatial slices X2 have topology

other than S2, or possibly S2 topology with a non-round metric. For boundary geometries
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S1×X2, the eigenvalues of time translation along the S1 are no longer determined directly

by representation theory as they are for the round S2, but we can nonetheless rule out the

possibility of unbounded-energy nonunitarity by considering the behavior of solutions to

the wave equation. For particle states in the bulk with wavelengths 1/k much smaller than

`, the global geometry and topology of X2 are irrelevant, and the wavefunction of a particle

sees only a local dS geometry at leading order in the short-wavelength/WKB/geometric

optics approximation. In this limit, the solution to the wave equation gives

E ' 1

rspatial slice

[
i k`+ c0 +O

(
1

k`

)]
, (4.9)

where c0 depends only on the geometry of X2 and the spin J of the primary (replacing
3
2 in the case of the round S2 and J = 0). In particular, for any ε > 0 there will be at

most a finite number of states with Re(E) < c0−ε. The CFT does not display unbounded-

energy nonunitarity for any geometry of its spatial slices, insofar as the Einstein-gravity

approximation is reliable.

The spectral-density type of nonunitarity also appears to be forbidden by a bulk par-

ticle interpretation of any kind, if the low-energy local physics in the bulk is described by

a unitary Lagrangian such as Einstein gravity. To see this, let us consider the thermal

partition function given by the path integral of de Sitter gravity on a bulk space-time with

boundary S1×S2. At low temperature, the dominant bulk solution is a quotient of global

dS by a finite scale transformation. In the regime where the dS radius is large compared to

the Planck scale, the partition function is described to leading approximation by a path in-

tegral over the worldlines of free gravitons, scalar fields, and other particles propagating in

this spacetime.17 The spectral density is automatically positive-integer and inherited from

a description of the system in terms of real particles, as opposed to ghost-like particles.

For spatial slices of any geometry, we conclude the partition function is of the form (4.6),

insofar as the bulk description of the CFT is reliable.

4.3 General unitarity rules for dS/CFT?

We would of course like to learn about the unitarity properties of dS/CFT beyond the limit

where bulk physics of Einstein gravity coupled to local fields is the controlling approxima-

tion. We observe here that dS/CFT displays only a very limited type of nonunitarity —

complex-energy nonunitarity but not unbounded-energy or spectral-density nonunitarities

— not only in the Einstein-gravity limit but in the Vasiliev theory as well, which is in a

drastically different range of anomalous dimensions for the CFT. The Vasiliev theory (as-

suming the correctness of the higher spin dS/CFT duality) appears to have the properties

of positive spectral density and energy bounded below even at finite N , indicating that

these are features of the full quantum theory.

17 The locally de Sitter geometry which asymptotes to S1 × S2 — or indeed S1 × Σ for any Riemann

surface Σ — has a spacelike singularity of Milne type. This is a big bang singularity, at which one must

fix some boundary conditions in order to compute the partition function. We do not expect this choice of

vacuum state to effect the positivity of the spectral density.
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Furthermore, in the event that one considers families of dS/CFT theories that inter-

polate continuously between large and small coupling in the CFT (as defined, say, by the

sizes of anomalous dimensions), an infinitesimal variation of the parameter must be realized

as an operator insertion in the CFT. Such an insertion can only alter the Hamiltonian of

the CFT, but cannot continuously change the norm of a state from +1 to −1. Therefore

a dS/CFT theory connected to the Einstein gravity limit by membership in a continu-

ous family must have positive integer spectral density, despite the absence of a directly

controlled particle interpretation in the bulk.

The form (4.6) can thus be inferred for many CFTs realizing gravity through a holo-

graphic correspondence. We would like to propose that it may be a universal rule for

dS/CFT theories, a possible foundational principle to play part of the role of unitarity of

the CFT in the AdS/CFT correspondence. If true, the form (4.6) would exclude the exotic

genus-divergence-cancelling proposals discussed in section 3.

4.4 High-temperature behavior

We would also like to comment on the relationship between the form (4.6), and the high-

temperature behavior of the CFT. If we can assume the spectrum of the CFT does indeed

have a partition function of the form (4.6), even in the high-temperature phase, then

possible exotic high-temperature behaviors of the CFT partition function become easier

to constrain.

Reading off the single particle spectrum for the space-time with future boundary ge-

ometry IR×S2 gives the usual spectrum [2] (4.1), (4.2) for primary states. For descendants

of order n the energy is that of a primary plus n/rboundaryS2 , and for ordinary massive

particle states (i.e. for particle states above the unitarity bound) the descendants are all

linearly independent. Now, the conformal characters for massive particles are

χmassive(β̂) ≡
∑
~nµ

exp

(
−β̂

∑
µ

nµ

)
, (4.10)

where the sum is over energy-raising combinations of conformal generators
∏3
µ=1 P

nµ
µ and

the dimensionless quantity β̂ is

β̂ ≡ β

rboundary S2

. (4.11)

Hence, for boundary geometry S1 × S2, the partition function for massive single particle

states is

Zmassive single−
particles

=
∑
J

Zmassive single−
particle, spin J

, (4.12)

with

Zmassive single−
particle, spin 0

= 2χmassive(β̂) · exp

[
−3β̂

2

]∑
m2

cos β̂

√
m2`2dS −

9

4
, (4.13)

Z massive single−
particle, spin J≥1

= 2 (2J + 1)χmassive(β̂) · exp
[
−β̂∆(m2`2dS , J)

]
(4.14)
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At high temperatures, the partition function for any finite collection of bulk particle

species is dominated by the sum over their bulk momenta, as encoded in the CFT by

the conformal characters χ(β̂). The sum over numbers nµ of energy-raising conformal

generators Pµ can be approximated by an integral, and the behavior of the character is

χmassive(β̂) ' β̂−3. For any bulk particle species, or any finite collection thereof, the single-

particle partition function increases monotonically at high temperatures, as

Z massive
single−particle

'
∑
m,J

(2J + 1) β̂−3 . (4.15)

When the hierarchy between the dS scale and the scale of new physics is large, `dS �
1/Λ, then in the low temperature limit β̂ � 1 the partition function is well-approximated

by a sum over the low-lying spectrum (4.1) only.18 The expression (4.15) increases with

increasing temperature. For O(1) values of β̂ we anticipate the possibility of a transition to

a saddle point that is not globally a quotient of de Sitter space, analogous to the Hawking-

Page transition in AdS/CFT. We shall see candidate geometries for the bulk saddle points

controlling such a transition in section 5. If this transition can be interpreted as domination

of the ensemble by particle states of large dimension (of order `Λ) with large statistical

degeneracy, then the unitarity properties of the partition function proposed in this section

can be expected to continue to hold, even above the transition.

If so, then the free energy for each type of particle then increases monotonically as

in (4.15), and the free energy for the CFT as a whole increases monotonically as well,

modulo issues of uniformity of convergence of the sum over particle species. We note that

such a behavior would agree with the high-temperature behavior of the contour prescription

we shall describe in section 5.1 rather than that of section 5.2.

5 Einstein dS4 and future topology

In this section we consider the WdW wave function for Einstein gravity as a function of

the topology at future infinity. We will compute the actions of complex instantons which

solve Einstein’s equations with a positive cosmological constant and find a qualitatively

similar behaviour to that described above for Vasiliev theory.

We will compute the WdW wave function in the semi-classical limit. The dominant

contributions come from solutions to the equation of motion, which give stationary phase

contributions to the wave function. One can then compute the (appropriately regularized)

action of these solutions as a function of boundary data at future infinity. In principle one

should also define some initial conditions in this path integral, which determine the choice

of state. In practice, these initial conditions are defined by a choice of contour for the

path integral. In general the geometries which appear may be complex. For example, the

standard Hartle-Hawking contour involves geometries which are real in Euclidean signature,

but might be complex in Lorentzian signature.

18In the AdS case, this is the limit where the partition function is dominated by a thermal gas of light

particles in AdS rather than the AdS/Schwarzschild solution.
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An additional complication appears because, in principle, only those solutions which

lie on the appropriate stationary phase contour will appear as saddle point contributions

to the wave function. As we do not know how to precisely define the path integral of

quantum gravity, the simplest strategy is to assume that all solutions to the equations of

motion contribute. This will be the approach of section 5.1, where a family of solutions is

presented. The result will be an explosion at high genus similar to that found in Vasiliev

theory. In section 5.2 we will consider an alternate prescription, where the wave function

is computed by an appropriate analytic continuation from Euclidean AdS. This amounts

to a choice of contour which excludes half of the solutions considered in section 5.1. This

contour does not match the result from Vasiliev theory, and appears to have certain features

which are in tension with the criteria discussed in the previous section. We will argue that

this choice of contour is unlikely to correctly compute WdW wave function.

5.1 Complex solutions of dS4 gravity

We wish to find solutions of Einstein gravity with a positive cosmological constant which

asymptote to S1 times a Riemann surface. Our argument essentially follows that of [10],

who considered the case of S2 × S1. See also similar recent computations of [12, 50].

We consider the following metrics

ds2 = − dτ2

f(τ)
+ f(τ)dλ2 + τ2dΩ2

κ, (5.1)

with

f(τ) = τ2 − κ+
α

τ
. (5.2)

Here dΩ2
κ is the metric on S2, T 2, Σg for κ = 1, 0,−1 respectively, and λ is an S1 coordinate

and is taken to be periodic with period λ0. It is easy to check that these solve the equations

of motion. We have set the de Sitter radius `dS to 1. As we are interested in complex

solutions, we will not assume at this point that the parameters in this solution are real.

The geometries are analytic continuations of AdS black holes, where the horizon is an

Einstein manifold of positive, zero or negative curvature (see for instance [51, 52]). These

solutions possess an asymptotic region which approaches the future timelike infinity of dS4

with topology S2 × S1, T 2 × S1 or Σg × S1 respectively.

If we analytically continue the radius `dS → i`AdS and the bulk coordinate τ → ir

then the metric is simply that of an asymptotically AdS black hole in Euclidean signature.

The horizon of the AdS black hole is the location in the bulk where the S1 cycle shrinks

to zero size smoothly. For the dS solutions, we will take the location in the bulk where

the S1 shrinks to zero size to be at τ = τ0. Regularity of the geometry at this point fixes

α = κτ0 − τ3
0 and sets the period λ0 as a function of τ0,

λ0 = ± 4πiτ0

3τ2
0 − κ

. (5.3)

We now compute the Einstein gravity action, including an appropriate boundary term

SL =
1

16πGN

[∫
M

d4x
√
−g
(
R− 6

L2

)
+ 2

∫
∂M

d3x
√
γK

]
. (5.4)
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We are interested in the renormalized action, so we introduce a cutoff surface at τc on

which we enforce the boundary metric

γijdx
idxj = τ2

c

(
β2dθ2 + dΩ2

κ

)
. (5.5)

Here, θ is a coordinate of S1 with period 2π. The parameter β is the radius of the circle at

future infinity, which can be regarded as an inverse temperature of the Euclidean boundary

theory. For our solutions, we must match the periodicities of λ and θ at τc, so

λ0 =
τcβ√
f(τc)

=
β√

1− κ
τ2c

(
1− α

2τ3
c

+ · · ·
)
, (5.6)

where we have neglected terms that fall off as we take our cutoff surface to future infinity.

For our solutions in this limit we have

τ0 = ±2πi

3β

(
−1±

√
1− 3κβ2

4π2

)
+ · · · . (5.7)

We now compute the action of our solutions. We just need to evaluate the trace of the

extrinsic curvature at the boundary

K = −
√
f

(
f ′

2f
+

2

τ

) ∣∣∣∣∣
τ=τc

. (5.8)

The action of our solution is

iSL = i
Vol(Ωκ)λ0

8πGN

[
−2τc(τ

2
c − 1) +

τ0

2
(τ2

0 − 3κ)
]
. (5.9)

We can rewrite this in terms of β as

iSL = i
Vol(Ωκ)

8πGN

β√
1− κ

τ2c

[
−2τc(τ

2
c − 1)− τ0

2
(τ2

0 + κ) + · · ·
]
. (5.10)

The cutoff-dependent terms diverge as we take τc →∞; these terms will be removed by a

boundary counterterm.

Each of the solutions described above will lead to a contribution of the form Ψ = eiSL

to the WdW wave function. Note that the cutoff-dependent terms are oscillatory and do

not contribute to |Ψ|2. We are interested in the renormalized action, which includes only

the τ0-dependent terms in (5.10). For real β, τ0 is complex, indicating that our solutions

are complex. Thus SL is complex and |Ψ|2 6= 1.

To understand the behaviour of the wave function as a function of genus, let us consider

various limits of the periodicity β. For β � 2π,

τ0 = ±
√
κ

3
± 2πi

3β
, (5.11)

and

iSL = ±i

(
κ3/2β

12
√

3πGN
−

√
κπ

6
√

3GNβ

)
Vol(Ωκ)±

(
κ

12GN
− 2π2

27GNβ2

)
Vol(Ωκ) +O(β−3).

(5.12)
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For β � 2π we have two types of solutions

τ0 = ±
(

4πi

3β
− iκβ

4π

)
, τ0 = ± iκβ

4π
(5.13)

and

iSL = ±
(

4π2

27GNβ2
− κ

6GN
+

κ2β2

64π2GN

)
Vol(Ωκ)+O(β3), iSL = ±κ

2Vol(Ωκ)β2

64GNπ2
+O(β3).

(5.14)

It is important to note that the different choices of signs in (5.13) and (5.14) correspond

to different complex solutions to the equations of motion.

For the remainder of this subsection we will assume that all solutions to the equations

of motion contribute, so that both possible ± signs are included. With this prescription,

our action leads to a wave function |Ψ|2 which diverges in the high temperature (β → 0)

limit. This was observed for S2 × S1 in [10]; we see here that it is a general feature for all

topologies. At low temperature (β →∞) we see that the norm of Ψ diverges as well, unlike

in the S1 × S2 case. It is tempting to speculate that this is an Einstein gravity version of

the infinity of ground states in Sp(N) Vasiliev theory observed in equation (2.3).

We now address the question of the relative weighting for different topologies. When

comparing different topologies, we must decide at which point in the moduli space of geome-

tries at fixed topologies to evaluate the wave function. Our choice should be local and con-

formally invariant; the most natural such choice is to take the curvature of the two dimen-

sional surface to be fixed, so that Vol(Ωk) is proportional to 2(g−1). With this choice, the

wave function increases exponentially with genus. This is exactly as in the Vasiliev gravity

case; the only difference is that, as our computation is based on semi-classical bulk gravity,

there is a factor of 1/GN in the exponent rather than 1/G2
N . However, at high tempera-

tures, the Vasiliev result described in section 2.3 scales like 1/GN ; thus at high temperature

the Einstein gravity result matches that of Vasiliev gravity up to an order one constant.

5.2 A Euclidean AdS contour

In the previous section, all solutions to the equations of motion were included in the wave

function. An alternate prescription — one which is motivated by the similarities between

AdS/CFT and dS/CFT — is to include only those contributions which arise upon analytic

continuation from Euclidean AdS space. This was first discussed in [7].

The central observation is that any Euclidean solution of Einstein gravity with a neg-

ative cosmological constant will, upon setting `AdS = i`dS , give a (possibly complex) so-

lution to the equations of motion with a positive cosmological constant. This is because

the Euclidean AdS action SE and the Lorentzian dS action SL are related by the analytic

continuation SE(`AdS) = iSL(`dS). If the original solution has a Euclidean AdS boundary

at z → 0, then the analytically continued solution will have a Lorentzian dS boundary

at η = iz → 0. In Euclidean AdS there is a natural choice of saddles to include in the

path integral: those which describe real, smooth metrics in asymptotically AdS space. The

remarkable observation of [7] is that, at the level of perturbation theory around global AdS
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(dS) space, these solutions analytically continue to those which define the Hartle-Hawking

(i.e. Bunch-Davies) state in de Sitter space.

Although the observation of [7] was only made at the level of perturbation theory, it is

natural to conjecture that it defines an appropriate contour even at the non-perturbative

level. Then the wave function can be computed as follows. Each smooth, real asymptoti-

cally AdS geometry gives a contribution to the Euclidean AdS gravity partition function

of the form ZAdS = e−SE(`AdS). The WdW wave function in dS gravity is then computed

by taking `AdS = i`dS , so that ΨdS = e−SE(i`dS) where SE is the action of Euclidean AdS

gravity. The result is summed over all smooth, real solutions of AdS gravity. It is impor-

tant to note that, although each such solutions can be interpreted as complex solutions

of dS gravity, not all complex solutions of Lorentzian dS gravity will appear in the sum;

some of the Lorentzian solutions give geometries which are singular in Euclidean AdS. This

prescription selects a set of preferred saddles in Lorentzian dS.

In the present case, it is easy to understand which of the saddles constructed in section

5.1 will contribute to the wave function. They are those which correspond to smooth,

Euclidean AdS black holes. The time coordinate of the dS solutions continues to the AdS

radial coordinate via τ = ir. The smooth Euclidean black hole is given by the geometry

where the radial coordinate pinches off at the value19

r+ =
2π +

√
4π2 − 3κβ2

3β
. (5.15)

This should be compared to the Lorentzian solutions of equation (5.7), where various

additional signs are allowed. We see that only one particular Lorentzian solution continues

to the Euclidean AdS black hole; the others continue to singular geometries where the

Euclidean horizon does not pinch off smoothly.

The regularized Euclidean action can now be computed, giving (writing `AdS = i`dS)

− SE =
βVol(Ωκ)`2dS

16πGN

(
−r3

+ + κr+

)
. (5.16)

The wave function is Ψ = e−SE . We will focus on the limit β � 2π, where

− SE = −
(

4π2

27GNβ2
− κ

6GN
+

κ2β2

64π2GN

)
Vol(Ωκ)`2dS +O(β3). (5.17)

This result has two important qualitative features. First, the wave function vanishes in

the large genus limit for fixed β. Second, for fixed g the wave function vanishes as β → 0.

Both of these results are the exact opposite of the behaviour found in Vasiliev theory.

One possible interpretation of this result is that Vasiliev gravity is profoundly different

from Einstein gravity. A second interpretation is that, despite its elegance, the Euclidean

AdS contour prescription considered in this section is incorrect. In particular, a wave

function which vanishes as β → 0 seems difficult to realize in a theory which exhibits

19We focus here on the case κ 6= 1. When κ = 1 there is in addition a ”small black hole” saddle where it

caps off at r− =
2π−
√

4π2−3κβ2

3β
.
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only complex-energy nonunitarity. This is easiest to see in the boundary CFT, where the

wave function with S1 × Σ asymptotics equals the finite temperature partition function

Tr e−βH , where H is the generator of Euclidean translations along the circle. Even though

the boundary theory is nonunitary, this partition function still diverges at β → 0 in the

usual way. Given this, it seems likely that the WdW wave function cannot be computed

simply by analytic continuation of classical instanton actions from Euclidean AdS.20

6 Discussion

We have found evidence for an instability toward more complicated topology in Vasiliev

dS/CFT and have not found a satisfying way of eliminating it. Einstein calculations

indicate a similar trend, albeit with a different strength.

The current understanding of the AdS/CFT duality in the Vasiliev context strongly

indicates that the higher spin gravitational fields form an open sector with coupling 1/N

interacting with a topological closed string sector with coupling 1/N2 [25–27]. The Chern-

Simons sector in the CFT corresponds to this closed string sector. A full understanding of

the behavior of the dS theory on higher topologies will require an understanding of the dS

version of the closed string sector.

In analyzing the meaning of the divergence and possible ways to evade it, we have found

it helpful to distinguish various respects in which the partition function of a conformal

field theory could in principle deviate from the restricted form satisfied by a unitary CFT.

It is notable that the CS-matter theory and the CFT dual of the Einstein-gravity limit

display an extremely constrained and non-generic type of nonunitarity in their partition

functions, despite the fact that the two CFT live in very different regimes of their coupling

constants and anomalous dimensions. On this basis it is tempting to speculate that the

positive integrality of the spectral density and the boundedness-below of the real parts of

the energies may be exact properties satisfied by all conformal field theories that realize

any kind of quantum-gravitational theory of de Sitter space holographically, whether it is

closely approximated by Einstein gravity or not.

We emphasize that the Einstein gravity computation relies on a crucial assumption,

which is that the complex metrics described above lie on an appropriate contour of inte-

gration through the space of metrics. Without a better understanding of the path integral

of quantum gravity it is difficult to say whether this is the case.

One possible implication is that quantum gravity in de Sitter space is intrinsically

unstable; this is consistent with other observations about de Sitter gravity [53, 54]. Another

possibility is that de Sitter gravity only makes sense only if we impose a future boundary

20One possibility is that the Euclidean AdS contour prescription is correct, but that one needs to include

more than just classical instanton actions. It might be that once quantum effects are included the wave

function would no longer vanish at β → 0. This would signal a breakdown of the semi-classical expansion at

high temperature. This is essentially what was found in [12], where the wave function diverged at β → 0 in

three dimensional gravity. This was due to a one-loop effect which dominated the naive classical result. We

see no indication that a similar effect happens in the present case, but it would be interesting to investigate

this further.
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condition on the WdW wave function, including one which restricts the topology of the

spatial slice.

Yet another possibility is that the divergence need not be interpreted at all, because

it describes only probabilities for quantities inaccessible to any given observer. The spa-

tial topology of the Universe at future infinity cannot be deduced from inside the causal

horizon of any single timelike worldline21, and therefore defines not an “observable” but

a “meta-observable.” Such meta-observables are the basic quantities calculated by the

dS/CFT framework, or for that matter any theory of the WdW wave function. However it

is well known that quantum mechanics generally does not predict sensible probabilities for

physical quantities that are inaccessible to any observer due to the presence of a horizon. It

may be that only suitably coarse-grained probabilities, averaged over all quantities outside

a single observer’s causal region, will produce an internally consistent set of relative prob-

abilities. This would require one to incorporate a new rule into the dS/CFT framework

that implements observer complementarity as a selection principle for finite quantities. It

is not clear at present how to do so.
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