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1 Introduction

In these last years much interest has been attracted by the study of the flux tube thick-

ness in the confining regime of Lattice Gauge Theories (LGTs). At low temperatures the

square width of the flux tube is predicted to increase logarithmically with the interquark

distance [1]. This prediction has been confirmed by numerical simulations in various pure

gauge theories, first in abelian models [2–6] and more recently also in non-abelian LGTs [7–

9] (see also [10] for some early attempt).

The situation changes drastically as the deconfinement temperature is approached from

below. In fact it can be shown that in this regime the dependence of the square width on

the interquark distance becomes linear with a proportionality constant which diverges as

the deconfinement transition is approached [11, 12]. Also these predictions were nicely

confirmed by numerical simulations [12, 13].

All the theoretical predictions mentioned above were obtained using as effective string

theory the Nambu-Goto action. However we know that the Nambu Goto action is consistent

at the quantum level only in 26 dimensions and as a consequence for any LGT in three

or four dimensions the correct effective string action, whatever it is, should deviate from

the Nambu-Goto one at some high enough order in the perturbative expansion. The

consequences of these deviations can be seen, for instance, looking at the critical behaviour

of the theory in the vicinity of the deconfinement transition. For those models which

undergo a second order deconfinement transition the Nambu Goto action predicts mean

field critical indices while the Svetitsky-Yaffe analysis [14] (confirmed by a host of numerical

simulations) predicts non trivial universality classes for the different LGTs, depending on

the center of the gauge group.
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These deviations from the Nambu-Goto action may be of two independent types: they

can be due to irrelevant or marginal terms in the effective string action or they can be

due to the coupling of the massless degrees of freedom of the effective string with massive

(non-stringy) ”intrinsic” excitations of the flux tube. Due to our incomplete understanding

of how the effective string description emerges from QCD we have no precise description of

these massive modes, of their dynamical origin and of their action, but we have a few hints

which may help our intuition. The most important one is that these massive modes should

manifest themselves as a sort of ”intrinsic width” of the flux tube. The Nambu Goto action

in fact describes a string of vanishing intrinsic width and the flux tube thickness discussed

in [1] (which we shall call in the following ”effective width” to avoid confusion) is entirely

due to the quantum fluctuations. In this respect the intrinsic width, which we shall denote

in the following as ξI , can be viewed as the residual thickness of the flux tube when the

interquark distance R is pushed down to the scale (typically R ∼ 1/
√
σ0) below which

the effective string description does not hold any more and does not contribute to the flux

tube thickness.

We expect that the intrinsic width should not depend on the interquark distance R

(in opposition to the effective width which instead increases with R) but should instead be

a new fundamental scale of the theory. It is tempting to identify this intrinsic width with

the size of the Nielsen-Olesen vortex line (or equivalently the London penetration length

of the dual Abrikosov vortices1) in the framework of the dual superconductor models of

confinement which however has been proved rigorously only for Abelian Higgs or Georgi-

Glashow like models. We shall further comment on this issue in the following. Let us also

mention among the attempts to characterize the intrinsic width the holographic model

recently discussed in [16].

Thanks to the remarkable universality theorems proved in [17–22] we know that the

first few perturbative orders (in the expansion in powers of 1/σ0R
2 of effective string

action) are universal and that corrections to the Nambu-Goto action may appear only

at very high order in 1/σ0R
2, thus it is well possible that the most important source of

corrections is not due to higher order non-universal terms in the effective string action

but to the coupling to the massive modes. Indeed, corrections to the excited string states

in (3+1) dimensions were recently observed in [23] and associated to a possible coupling

to massive modes.2 Moreover it was recently observed that in the 3d Ising gauge model

corrections to the effective string potential larger than those predicted by the universality

theorems are present both in the torus (interface) [25] and in the cylinder (Polyakov loop

correlators) [26] geometries. All these examples suggest that a more detailed study of these

intrinsic massive corrections would be important non only from a theoretical point of view

but also to improve our comparisons with numerical simulations.

However, performing this analysis in the original (d+1) dimensional LGT turns out to

be very demanding from a numerical point of view. Thus in this paper we decided to adopt

an alternative route. Following the approach that we recently developed in [27, 28], we

1See [15] for un updated discussion of this issue.
2Notice however that no deviation was observed in a similar calculation in (2+1) dimensions [24].
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studied the intrinsic width in the vicinity of the deconfinement transition (but still in the

confining phase) looking at suitable correlators in a d dimensional spin model which, in the

framework the well known Svetitsky-Yaffe analysis [14], is known to represent an accurate

effective description of the original LGT in the vicinity of the deconfinement transition.

2 Three proposals for the evaluation of the intrinsic width in the finite

temperature LGTs

Finding a lattice observable to measure the the intrinsic width of the flux tube at finite

temperature is a rather nontrivial task.

At low temperature the simplest and most natural option would be to identify the

intrinsic width with the constant term which appears in the function which describes the

dependence of the flux tube thickness on the interquark distance R. Following [1] we expect

at low temperature the following behaviour for the effective width (in adimensional units)

w2 =
d− 2

2πσ0
log(R/Rc) (2.1)

where we denote with σ0 the zero temperature string tension of the gauge model. This

prediction was confirmed by high precision numerical simulations both in the 3d gauge

Ising model [2] model and in the 3d SU(2) Yang Mills theory [7, 8].

The scale Rc, measured in units of 1/
√
σ0 turned out to be almost the same in the two

models: Rc
√
σ0 = 0.337(18) in Ising and Rc

√
σ0 = 0.364(3) for SU(2).

Eq. (2.1) can be rewritten in adimensional units as

σ0w
2 =

d− 2

2π
log(R

√
σ0) + b (2.2)

The fit of the numerical data to this law gives very good χ2 values down to values of the

R ∼ 1/
√
σ0. Deviations below this threshold may be assumed to be due to the intrinsic

string thickness ξI that we are looking for. In this way we would obtain both for Ising and

for SU(2) ξI
√
σ0 ∼

√
b ∼ 0.4−0.5. The major drawback of this qualitative estimate is that

the value of b rather strongly depends on the assumptions on the shape of the flux tube.

This is not a gaussian (see for instance [29, 30] for a detailed study in the 3d Ising case)

and there is not a common consensus on which should be the functional form. Indeed, as

we shall see below the two issues of a non zero intrinsic width and non-gaussian shape of

the flux tube are deeply interconnected.

The situation becomes even worse if one is interested in a finite temperature estimate

of the intrinsic width since in this regime the square width of the flux tube increases lin-

early instead of logarithmically [11] and the constant term gets contributions also from the

Nambu-Goto effective string action thus making it impossible to disentangle the intrin-

sic width.

It is thus important to find an alternative observable which could allow a direct esti-

mate of ξI .

Three possible candidates are:

a ] The large distance transverse behaviour of the plaquette - Polyakov loop correlator

expectation value.
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b ] The second moment in the transverse direction of the completely connected four point

function of two Polyakov loops and two plaquettes [31, 32].

c ] The large distance transverse behaviour of the completely connected four point func-

tion of two Polyakov loops and two plaquettes.

In order to characterize these proposals let us first review the standard way in which

the effective width of the flux tube is evaluated on the lattice. In a finite temperature

setting the lattice operator which is used to evaluate the flux through a plaquette p of the

lattice is:
〈

φ(p;P, P ′)
〉

=

〈

PP ′† Up

〉

〈PP ′†〉 − 〈Up〉 (2.3)

where P , P ′ are two Polyakov loops separated by R lattice spacings and Up is the operator

associated with the plaquette p. Let us choose p to be equidistant from the two Polyakov

loops (i.e. in the space perpendicular to the plane defined by the two Polyakov loops and

intersecting this plane exactly at R/2). Then the width of the flux tube w is defined as:

w2(R,L) =

∑

~h
~h2
〈

φ(~h;R,Nt)
〉

∑

~h

〈

φ(~h;R,Nt)
〉 (2.4)

where R denotes the distance between the two Polyakov loops Nt the extension of the

lattice in the compactified time direction (i.e. the inverse temperature: T ≡ 1/Nt) and ~h

the displacement of p from the P P ′ plane.

With this definition the first proposal mentioned above corresponds to studying the

|h| ≫ R limit of
〈

φ(~h;R,Nt)
〉

. If in this limit the correlator shows an exponentially de-

caying behaviour then we may estimate ξI as
〈

φ(~h;R,Nt)
〉

∼ exp(−|h|/ξI). The rationale

behind this proposal is that in this limit the effective width, (which in the vicinity of the

deconfinement transition is proportional to
√
R) becomes negligible and the scale which

drives the exponential decay must be the intrinsic width. This proposal is clearly inspired

by the definition of the London penetration length (see for instance [15] and references

therein) and requires, to be defined, that the flux tube should not have a gaussian shape

(as instead predicted by the Nambu-Goto action). This is another way to say that we are

looking to effects beyond the Nambu-Goto effective string description.

The second proposal above corresponds to looking at the four point function (see

figure 1)
〈

φI(p, p
′;P, P ′)

〉

=
〈

PP ′† Up U ′
p

〉

c
(2.5)

where 〈 〉c denotes the completely connected expectation value and, as above, the two

Polyakov loops are located at a distance R while the two plaquettes are located at the

opposite sides with respect to the P P ′ plane at a distance y from the plane (We refer

to figure 1 for the geometrical setting. Notice, to avoid confusion that in figure 1 we set

r = R/2). This quantity can be considered, in analogy to the flux φ defined in eq. (2.3), as

a sort of ”intrinsic flux” φI . In fact this quantity becomes a δ function centered in y = 0 if

we try to evaluate it in a stringy framework (and in particular assuming the Nambu-Goto
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Figure 1. Rhombus configuration for the four-point function 〈ǫσǫσ〉✸
c
, eq. (3.9).

action in the physical gauge) in which any expectation value is obtained as a sum over

single valued surfaces which cannot simultaneously pass through P and P ′ unless P = P ′.

Thus the second moment of φI is likely to be an estimator of the intrinsic width (in

exact analogy with the use of the second moment of φ as an estimator for the effective

width w).

Finally, the peculiar properties of the quantity φI suggest another interesting possibility

to estimate ξI . In fact, it is conceivable to expect that the intrinsic width should be related

to the change in the value of the correlation length between two plaquettes due to the

presence of a flux tube (mimicked by the correlator of the two Polyakov loops between

them). The simplest way to measures this quantity is to study the ratio

〈

PP ′† Up U ′
p

〉

c
〈

Up U ′
p

〉

c

(2.6)

Then, according to the above conjecture, for any value of R this ratio is expected to

decay in the large y/R limit as ∼ exp(−|y|/ξI) where ξI is the intrinsic width.

The main problem is that these observables are rather difficult to estimate numerically.

For this reason, following the approach that we developed in our previous papers [27, 28], we

decided to address first the problem in the framework of the Svetitsky-Yaffe conjecture [14]

looking at suitable correlators in 2d spin models.

More precisely we chose to study gauge models in (2+1) dimensions with a second order

deconfinement transitions and with a gauge group whose center is Z2. The two simplest

cases belonging to this class are the (2+1) dimensional gauge Ising model and the (2+1)

SU(2) Yang-Mills theory. These models in the vicinity of the deconfinement transition

belong to the same universality class of the 2d Ising model. Moreover the confining phase

below the transition corresponds in this mapping to the energy perturbation of the 2d

Ising universality class. In the following section we shall construct a dimensionally reduced
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projection of the above correlators. We shall first review the general formalism and recall

how the standard effective width may be obtained in this framework. Then we shall address

the three proposal mentioned above to evaluate ξI . Taking advantage of the integrability of

the energy perturbation of the 2d Ising field theory, we shall be able to evaluate exactly the

large distance behaviour of the correlators involved in these observables, and to eventually

extract the value of the intrinsic width. We shall show that, as expected, the intrinsic

width does not depend on the interquark distance and that the three different ways that

we propose to evaluate it consistently give the same answer.

3 Dimensional reduction and the Svetitsky Yaffe conjecture

According to the Svetitsky-Yaffe conjecture [14], if we choose to study a (d+1) LGT (with

gauge group G) with a second order deconfinement phase transition and if the gauge group

G is such that the d dimensional spin model with (global) symmetry group the center of G

also has a continuous symmetry breaking phase transition then the two critical points must

belong to the same universality class and we can use the spin model as an effective theory

description for the (d+1) dimensional LGT in the neighbourhood of the deconfinement

transition. This is the case if we choose for instance the (2+1) SU(2) LGT or the (2+1)

Ising gauge model. Both have a second order deconfinement phase transition and in both

cases one can use the 2d spin Ising model as an effective theory in the neighbourhood of

the deconfinement point.

In this effective description the Polyakov loops of the LGT are mapped into the spins

of the Ising model, the confining phase of the LGT into the high temperature phase of

the spin model and the plaquette operator of the LGT is mapped into the energy operator

of the spin Ising model. The reason why such an approach is particularly effective in the

present setting, is the integrability of the Ising field theory in zero magnetic field. This

property allows for the calculation of multipoint correlation functions in the regime of

large distances via the spectral expansion over form factors. The latter can be calculated

exactly, and used as building blocks to write down analytic expressions for the large distance

behavior of various correlators. In the following we will be interested in the asymptotic

behaviour of three- and four-point correlators involving spin and energy operators. We

refer the reader to [27, 28, 33–35] for technical details on the calculations.

It is important to stress that this approach allows only to estimate observables in the

(2+1) LGT which diverge as the deconfinement point is approached. Thus an implicit

assumption behind our study is that also ξI should be a quantity of this type, i.e. it should

diverge in the deconfinement limit. We shall see below that this is indeed the case, a results

which represents a non trivial self-consistency check of our approach.

3.1 The 3-point correlator 〈σǫσ〉: the first proposal to estimate the intrinsic

width

Let us recall the basic operator mapping between spin model and LGT. The Polyakov loop

P , being the order parameter of the transition, is mapped onto the spin operator σ(x).

– 6 –
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The operator of the spin model corresponding to the plaquette operator U was shown to

be the energy density ǫ(x) in [36] (see [28] for a detailed discussion of this mapping).

Following the above discussion the operator which measures the flux density in presence

of the Polyakov loops pair in the LGT is mapped into the three points function 〈σσǫ〉. In
the particular case of the 2d Ising model this correlator can be evaluated in the vicinity

of the critical point using the spectral expansion, and (see next section for further details

and [33] for a review) leading to the following expression for the ”flux” distribution [28]

S(R, y) = 〈σσǫ〉 ∼ (F σ
1 )

22R

4y2 +R2
e−m

√
4y2+R2

. (3.1)

where y denotes the transverse direction, m is the mass of the 2d Ising model and a large

mR limit is assumed.

The effective width of the flux tube is then given by the ratio

w2(R) =

∫∞

−∞
dy y2 S(R, y)

∫∞

−∞
dy S(R, y)

(3.2)

This ratio is easy to evaluate in the in the large mR limit (see [12, 28] (Notice, to

avoid confusion, that in [28] we used the variable r ≡ R/2 and that we evaluated the

unnormalized width, i.e. only the numerator of eq. (3.2))), leading to the following result:

w2(R) ≃ 1

4

R

m
+ . . . . (3.3)

where the dots stay for terms constant or proportional to negative powers of R.

The intrinsic width in which we are interested can be obtained looking at the large y

limit of eq. (3.1). In this limit we obtain

S(R, y) ∼ (F σ
1 )

22R

4y2
e−2my. (3.4)

from which we find ξI = 1/2m. As mentioned in the previous section the reason for which

we could find a non trivial result for ξI is related to the fact that S(R, y) has not a purely

gaussian behaviour in the y variable.

3.2 The 4-point correlator 〈ǫσǫσ〉: the second proposal to estimate the in-

trinsic width

We want to study the 4-point correlation function of the form

〈ǫ(x1)σ(x2)ǫ(x3)σ(x4)〉 (3.5)

in the high temperature phase of the 2d Ising model in zero magnetic field. Since we

are interested in its large distance behaviour, we may use also in this case the Form

Factors approach.

To evaluate the intrinsic width we are interested in particular in the connected correla-

tion function for a generic rhombus of side L, as described in figure 1. In such a particular

– 7 –
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case, it is enough to consider the first two contributions to the spectral expansion (we

proceed in close analogy with the analysis of [27] and [28]),

〈ǫσǫσ〉✸c =

∫ ∞

−∞

dθ1 . . . dθ3
(2π)3

(F σ
1 )F

ǫ
2(θ12 − iβ + 2iπ)×

×F ǫ
2(θ23 + iβ)e−mL(cosh θ1+cosh θ2)−2my cosh θ3

+

∫ ∞

−∞

dθ1 . . . dθ4
2! (2π)4

(F σ
1 )F

ǫ
2(θ12)F

ǫ
2(θ34−2iβ+iπ) · [F σ

3 (θ31+2iβ, θ32+2iβ, θ12)]

· e−mL(cosh θ1+···+cosh θ4) + . . . (3.6)

where we listed the leading and next-to-leading contributions to the spectral expansion.

Inserting the explicit expressions for the form factors, we have

〈ǫσǫσ〉✸c = −(mF σ
1 )

2

4π

∫ ∞

−∞

dθ1 . . . dθ3 sinh(θ12/2− iβ) sinh(1/2(θ23 + iβ))

· e−mL(cosh θ1+cosh θ3)−2my cosh θ2

−(2πmF σ
1 )

2

2! (2π)4

∫ ∞

−∞

dθ1 . . . dθ4 sinh(θ12/2) cosh(1/2(θ34 − 2iβ)) ·

· tanh(θ12/2) tanh(1/2(θ13 + 2iβ)) tanh(1/2(θ23 + 2iβ))

· e−mL(cosh θ1+···+cosh θ4) + . . . (3.7)

Using the following property in the second term

tanh(θ12/2) tanh(1/2(θ13 + 2iβ)) tanh(1/2(θ23 + 2iβ))

= tanh(θ12/2)− tanh(1/2(θ13 + 2iβ)) + tanh(1/2(θ23 + 2iβ)) (3.8)

and after some long but straightforward calculations we can reduce the correlator to

this form

〈ǫσǫσ〉✸c = (mF σ
1 )

2 e
−2mL

mL

[

K0(2my)− sinβ K1(2my)
]

+
(mF σ

1 )
2e−2mL

2! mL

∫ ∞

−∞

dθ
[

pβ(θ)K0(2mL cosh(θ/2))

+ qβ(θ)K1(2mL cosh(θ/2))
]

+ . . . (3.9)

where

pβ(θ) = cosβ
sinh2 θ/2

cosh θ/2
− sinh2 θ/2− sin2 β

cosh θ/2 cosβ(1 + tanh2 θ/2 tan2 β)

qβ(θ) = −sin2 β

cosβ

1

cosh2+sinh2 θ/2 tan2 β
(3.10)

and

L =
√

r2 + y2; β = arcsin
y

√

r2 + y2
. (3.11)

– 8 –
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Paralleling the usual treatment for the flux tube thickness, we can compute the quantity

w2
I =

∫∞

−∞
dy y2〈ǫσǫσ〉✸c

∫∞

−∞
dy〈ǫσǫσ〉✸c

(3.12)

using the leading, large-r behaviour of 〈ǫσǫσ〉✸c . In the limit r/y → ∞, we have

∫ ∞

−∞

dy y2〈ǫσǫσ〉✸c = (mF σ
1 )

2

(

2r2

m
e−2mr π

16(mr)3
+ . . .

)

(3.13)

∫ ∞

−∞

dy 〈ǫσǫσ〉✸c = (mF σ
1 )

2

(

2

m
e−2mr π

4mr
+ . . .

)

(3.14)

Substituting in the formula for w2
I , we obtain

w2
I =

∫∞

−∞
dy y2〈ǫσǫσ〉✸c

∫∞

−∞
dy〈ǫσǫσ〉✸c

=
1

4m2
+ . . . −→ ξI =

√

w2
I =

1

2m
(3.15)

in full agreement with the result of the previous sections.

3.3 Large-y behaviour: the third proposal to estimate the intrinsic width

Following the third proposal discussed above, we are interested in computing the leading

behaviour of the ratio 〈ǫσǫσ〉✸c /〈ǫ(y)ǫ(0)〉c in the limit of large transverse coordinate y.

Introducing the variable x = r/y, and taking the small x limit we have

〈ǫσǫσ〉✸c
〈ǫ(y)ǫ(0)〉c

= (F σ
1 )

2

[

1

2
√
π(my)1/2

+ · · ·+ 1

mr

(

1

2
+ . . .

)]

e−2my + . . . (3.16)

where

〈ǫ(y)ǫ(0)〉c = m2
[

K2
1 (my)−K2

0 (my)
]

=
πm2

2 (my)2
e−2my + . . . (3.17)

from which we can read off that the exponential decay is ruled by ξI = (2m)−1, which can

be interpreted as the intrinsic width.

4 Discussion

4.1 Temperature dependence of the intrinsic width

We have seen in the previous section that the three approaches consistently give the same

result ξI = 1/(2m). It is interesting to convert this result in the language of the original

(2+1) dimensional LGT.

Looking at the behaviour of the correlator of two Polyakov loops and comparing it

with its spin model projection we immediately identify (see for instance [12])

m = σ(T )/T (4.1)

and hence

ξI =
T

2σ(T )
(4.2)

– 9 –
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where T = 1/Nt is the temperature and σ(T ) is the temperature dependent string

tension which vanishes at T = Tc and has a critical behaviour given by

σ(T ) = σ0

(

1− T

Tc

)ν

. (4.3)

where ν is (following the Svetitsky-Yaffe conjecture) the critical index of the 2d spin model

(i.e. ν = 1) and σ0 is the usual string tension (which in this framework is the T → 0 limit

of σ(T )). Thus our analysis shows that in the vicinity of the deconfinement transition the

intrinsic width depends on the temperature and (as the effective width) diverges at the

deconfinement transition. As mentioned above this is an important self-consistency check

of our whole approach.

Eq. (4.2) is the main result of our paper and in the vicinity of the deconfinement point,

it may be rewritten as:

ξI(T ) =
T

2σ0

(

1− T

Tc

)−1

(4.4)

It is interesting to observe that, using the well known relationship between Tc and σ0
proposed by Olesen in the framework of the Nambu-Goto effective string model [37], which

in (2+1) dimensions reads T 2
c = 3σ0/π we obtain in the vicinity of the deconfinement point

ξI(T )
√
σ0 ∼ 3

2
√
π

(

1− T

Tc

)−1

(4.5)

which looks like a finite T extension of the result ξI(T = 0)
√
σ0 ∼ 0.4 − 0.5 quoted

above for the zero temperature limit of the intrinsic width

4.2 Range of validity of the effective string description

It is intersting to study the implications of our results for the range of validity of the effective

string decription. As we mentioned in the introduction the effective string description is

expected to hold down to scales of the order of R ∼ 1/
√

σ(T ). However we certainly do not

expect it to hold below ξI and we see from eq. (4.2) that as the deconfinement temperature

is approached ξI becomes indeed the limiting scale since it diverges as 1/σ(T ). This should

be carefully taken into account when comparing numerical simulations with effective string

predictions in the vicinity of the deconfinement point and suggests that this regime could

be the optimal one to observe signatures of this intrinsic scale.

4.3 Non-analytic terms in the spin-spin correlator

We mentioned in the introduction that the massive intrinsic excitations of the flux tube

should manifest themselves not only in the intrinsic width but also as massive corrections

to the interquark potential. It is not obvious that we can trust our approach also to the

level of subleading corrections, however it is intriguing to observe that if we perform a large

distance expansion of the spin-spin correlator (which is the 2d analogue of the Polyakov

loops correlator) we find:

〈σ(r)σ(0)〉 = (F σ
1 )

2

√
2π

e−mr

(mr)1/2

[

1 +
1

64π

e−2mr

(mr)4
. . .

]

(4.6)
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from which, assuming the validity of the dimensional reduction approach also at the level

of subleading corrections, we can extract the non-analytic contribution to the interquark

potential (T is the temperature in the gauge theory)

V (r, T )

T
= − log〈σ(r)σ(0)〉 = mr +

1

2
logmr − 1

64π

e−2mr

(mr)4
+ . . . . (4.7)

Looking at the exponential term in the correlator we may easily extract the mass

of this intrinsic excitation which turns out to nicely agree with the previous estimates,

ξI = (2m)−1. It is interesting to notice that a similar result was recently discussed in [16]

in the framework of a holographic model for the intrinsic width.
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