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Abstract: We study the giant graviton solution as the AdS5 × S5 background is heated

up to finite temperature. The analysis employs the thermal brane probe technique based

on the blackfold approach. We focus mainly on the thermal giant graviton corresponding

to a thermal D3-brane probe wrapped on an S3 moving on the S5 of the background at

finite temperature. We find several interesting new effects, including that the thermal giant

graviton has a minimal possible value for the angular momentum and correspondingly also

a minimal possible radius of the S3. We compute the free energy of the thermal giant

graviton in the low temperature regime, which potentially could be compared to that of

a thermal state on the gauge theory side. Moreover, we analyze the space of solutions

and stability of the thermal giant graviton and find that, in parallel with the extremal

case, there are two available solutions for a given temperature and angular momentum,

one stable and one unstable. In order to write down the equations of motion, action and

conserved charges for the thermal giant graviton we present a slight generalization of the

blackfold formalism for charged black branes. Finally, we also briefly consider the thermal

giant graviton moving in the AdS5 part.
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1 Introduction

Recently, a new method to study thermal brane probes in string/M-theory has been ex-

plored. This method consists in using the blackfold approach [1, 2]1 in the context of

string/M-theory branes [7–9]. In the blackfold approach one can describe the dynamics of

a black brane wrapped on a submanifold of the background space-time in the probe approx-

imation where the black brane is much thinner than the length scale of the submanifold.

This method has been applied to the thermalized version of the BIon system for the D3-

brane [9, 10], the gravity dual of the rectangular Wilson loop as described by an F-string

ending on the boundary of AdS5×S5 [11], the M2-M5 version of the BIon system [12, 13],

and has been used to find a number of new black holes in String/M-theory [7, 8].2

In this paper we apply the method to giant gravitons [17–19]. The archetypical case

of a giant graviton is that of a D3-brane wrapped on a three-sphere and with the center

of mass moving along the equator of the five-sphere in the AdS5 × S5 background. This

corresponds to a blown up version of a point particle graviton and is described using the

Dirac-Born-Infeld (DBI) action for the extremal D3-brane. Our goal is to analyze what

happens to the giant graviton as one heats up the AdS5 × S5 background to non-zero

temperature, requiring the brane probe to thermalize with the background. We dub the

resulting brane probe a thermal giant graviton.

In the dual gauge theory description of AdS5×S5 the giant graviton moving along the

equator of S5 with angular momentum J is dual to a gauge theory multi-trace operator Ogg

with R-charge J and conformal dimension ∆ = J . Heating up the AdS5 × S5 background

and with it the giant graviton brane probe corresponds then on the gauge theory side to

the thermal state that results from the ensemble of operators that are fluctuations around

Ogg. This is true up to the temperature THP of the Hawking-Page transition where an

AdS black hole is formed. Thus, having a description of a thermal giant graviton will

provide important insight into the strong coupling behavior of the gauge theory side at

finite temperature.

We find in this paper the following features for the thermal giant graviton correspond-

ing to a black D3-brane probe wrapped on a three-sphere with center of mass moving along

the equator of S5 in the AdS5 × S5 background. Firstly, we find for a given temperature

that the family of solutions has J ≥ Jmin > 0. Instead for the extremal giant graviton one

can take the limit J → 0 thus connecting to the point particle graviton. The thermal giant

graviton, however, is forced to be blown up to a finite-size three-sphere. This is analogous

to what happens in the thermal BIon case where the throat of the brane — made of a

D3-brane wrapped on an S2 — has a minimal possible radius [9, 10]. Secondly, we find

a maximal temperature Tmax which provides the scale of the temperature of the solution.

However, the probe approximation gives Tmax � THP, hence requiring T ≤ THP means that

1See also ref. [3] which discussed the first application to neutral black rings in asymptotically flat space.

Reviews include [4, 5] and [6] gives a more general derivation of the blackfold effective theory.
2Large classes of new neutral black objects in asymptotically flat and (A)dS backgrounds were found

in [14] and [15, 16] respectively.
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we have small temperature for the thermal giant graviton T/Tmax � 1. This is analogous

to the case of the thermal rectangular Wilson loop of [11]. Thirdly, for the free energy we

find the following expansion for T/Tmax � 1

F (T, J) =
J

L
− π4

4
N2

D3L
3T 4 +O(T 8) . (1.1)

This is a prediction at strong coupling which can potentially be compared to what one

can compute on the gauge theory side. Finally, we note that the phase structure of the

family of solutions at finite temperature is similar to the extremal case in that for a given

temperature and for Jmin < J < Jmax one has two available solutions, one stable and one

unstable. This is different than for the thermal BIon and the thermal rectangular Wilson

loop cases in that there the number of available phases could become higher or lower when

turning on the temperature [9–11].

Since we are employing the blackfold approach for studying the thermal giant graviton

our black D3-brane probe consists of ND3 coincident black D3-branes in the supergravity

approximation with ND3 � 1 and N � λND3, where N is the amount of background

flux and λ is the ’t Hooft coupling. At the same time the probe approximation requires

ND3 � N .

In order to describe the thermal giant graviton using the blackfold approach we need to

generalize the blackfold approach slightly. Firstly, we write down the blackfold equations

of motion (EOMs) for charged branes in backgrounds with fluxes since the giant graviton

corresponds to a black D3-brane in the AdS5×S5 background in particular with a five-form

RR-flux turned on. Secondly, we are describing a brane probe that moves with constant

velocity along a Killing direction. Thus, it is not a stationary solution. However, the

brane probe is not accelerating in that it is moving along a geodesic. Thus, we consider

what we call quasi-stationary blackfolds in the sense that they correspond to boosted

stationary blackfolds. In particular we describe the conserved energy and the momentum

associated with the motion and we also extend the other physical quantities as well as the

variational principle to the quasi-stationary case. We remark that since a quasi-stationary

blackfold is not accelerating it does not emit radiation and one can thus go beyond the

probe approximation and perform a matched asymptotic expansion for the full system of

the background with the brane.

For the extremal giant graviton there are two solutions for each value of J in the

range 0 < J < 9N/8 and the ones with the biggest S3 radius are the stable solutions

that minimize the energy (here we set the radii of AdS5 and S5 to one). Note that this

family of solutions consists of two disconnected branches, one for 0 < J ≤ N and one for

1 < J < 9N/8. A similar feature is found for the thermal giant graviton in that for a given

temperature there are two solutions for each value of J in the range Jmin < J < Jmax and

those with the biggest S3 radius minimize the free energy and are thus thermodynamically

stable. This is true both with respect to local and global stability. Thus we have shown

that there are stable thermal giant gravitons in this range of J . Note also that the family

of stable solutions again consists of two disconnected branches, one for Jmin < J ≤ N and

one for N < J < Jmax.
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In addition to thermalizing the “archetypical” giant graviton, i.e. a D3-brane wrapped

on an S3 moving inside the S5 of AdS5 × S5, one can also thermalize the other possible

giant gravitons. In particular, we consider in this paper also briefly the D3-brane giant

graviton moving on AdS5. The thermal effects observed in this case are similar to that

of the S5 case. There is again a temperature dependent lower bound on the minimum

angular momentum, with no upper bound just as for the extremal case. Moreover, the

small temperature expansion of the stable branch of thermal giant gravitons in this case

gives the same correction to the free energy as in (1.1).

This paper is built up as follows. In section 2 we review the extremal giant graviton

configuration for a D3-brane expanded on the S5 of the AdS5×S5 background and set the

notation for the rest of the paper. In addition to this, we also discuss a stable branch of

solutions that has not received much attention in the literature. In section 3 we discuss

how to extend the blackfold method for branes in backgrounds with fluxes and derive

the form of the conserved quantities and action for this case. We also introduce the

notion of quasi-stationary blackfolds. In section 4 we find the thermal version of the giant

graviton on S5 using the blackfold approach and describe the solution space. We then

subsequently make a detailed analysis of the thermodynamic properties of these thermal

giant gravitons, including their stability, in section 5. In particular, we derive the low

temperature correction to the free energy given in (1.1). Finally, in section 6 we consider

very briefly the corresponding results for thermal giant gravitons on AdS5. We end with a

conclusion and outlook in section 7.

A number of appendices is included providing further details. In appendix A we

present a detailed stability analysis of the extremal giant graviton solutions, including

the non-BPS branch. The thermodynamical blackfold action for blackfolds in background

fields with non-zero fluxes and a corresponding Smarr relation is discussed in appendix B.

Appendix C gives a derivation of the form of the blackfold EOM for thermal giant gravitons.

Finally, in appendix D we analyze the two meeting points of the thermal giant graviton

solution branches.

2 Giant graviton on S5 revisited

In this section we review the extremal giant graviton configuration in type IIB string theory

on AdS5 × S5. For definiteness we focus on the case in which the giant graviton sits on

the S5, and correspondingly also the construction of the thermal version in section 4 will

be confined to this case. The case in which the graviton is expanded on the AdS5 and its

thermal version is considered briefly in section 6.

The review below will serve to set our notation and properly define the configurations

that will be heated up using the blackfold approach. At the same time we highlight that,

beyond the usual 1/2 BPS solution, there is a stable branch of giant gravitons that has not

received much attention in the literature. Some unnoticed properties of this branch will be

discussed as well.
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2.1 Setup and action

We consider ten-dimensional type IIB string theory on AdS5 × S5 with radii L and

five-form flux

F(5) = 4dΩ(5)/L , (2.1)

where dΩ(5) is the unit volume form on the S5. For the S5 we take the parameterization

dΩ2
(5) = L2

[
dζ2 + cos2 ζdφ2

1 + sin ζ2dΩ2
(3)

]
, (2.2)

where dΩ2
(3) denotes the line element on S3 (with coordinates φ2, φ3, θ). The giant graviton

is obtained by considering a (rotating) probe D3-brane in this space, that wraps an S3

inside the S5. Denoting the world volume coordinates of the D3-brane as {σ0 ≡ τ, σi}, its

embedding into the background is taken to be

t = τ, φ1 = Ωτ, φ2 = σ1, φ3 = σ2, θ = σ3 , ζ = const. , (2.3)

while the D3-brane sits at the origin of the AdS5 space. The size of the giant graviton is

thus r = L sin ζ and this configuration rotates with angular velocity Ω on the S5, satisfying

the geometric bound (L2−r2)Ω2 ≤ 1. The resulting induced metric on the D3-brane world

volume is

γabdσ
adσb = −k2dτ2 + r2dΩ2

(3) , (2.4)

where a = τ, 1, 2, 3 runs over the world volume directions and

k ≡ |k| =
√

1− Ω2(L2 − r2) (2.5)

is the norm of the rotational Killing vector satisfying k ≤ 1.

With this setup, the giant graviton is found by solving the EOMs of the D3-brane

DBI action IDBI in this background. Defining the corresponding Lagrangian via IDBI =∫
dτLDBI, we have

LDBI =

∫
S3

L = −TD3

∫
S3

(√
−γ −Aτσ1σ2σ3

)
, (2.6)

where γ is the determinant of the induced metric (2.4) on the D3-brane and Aτσ1σ2σ3 the

pullback of the four-form gauge potential onto the world volume. Using the embedding

above this gives

LDBI = −TD3Ω(3)r
3 (k− rΩ) . (2.7)

The angular momentum and Hamiltonian are then computed as

J =

∫
S3

∂L
∂Ω

= TD3Ω(3)r
3

(
Ω(L2 − r2)

k
+ r

)
, H = JΩ−

∫
S3

L =
TD3Ω(3)r

3

k
. (2.8)

We finally note that the overall factor in all these expressions involves TD3Ω(3) = N/L4

where N is the background flux.
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r̂

Ω̂

r̂

J

Figure 1. Ω̂ ≡ ΩL (left plot) and J ≡ J/N (right plot) versus r̂ ≡ r/L for the two solution

branches of extremal giant gravitons. The lower (−) branch is blue and the upper (+) branch is

red. The maximum in the left plot is at (J, r̂) = (9
8 ,

√
3
2 ).

2.2 Solution branches and stability

Varying the Lagrangian (2.7) with respect to r we obtain the EOM

3− 3L2Ω2 + 4rΩ
(
rΩ−

√
1− Ω2(L2 − r2)

)
= 0 . (2.9)

This equation has two branches of solutions3

Ω̄− =
1

L
, Ω̄+ =

3√
9L2 − 8r2

, (0 ≤ r ≤ L) , (2.10)

which we call the lower and upper branch respectively. Note that for the upper branch

we have that 1 ≤ ΩL ≤ 3. These two solution branches are depicted in the left plot of

figure 1. It is interesting to note that a maximal size giant graviton (r = L) exists in both

branches with either Ω̄− = L−1 or Ω̄+ = 3L−1. Moreover it is also worth noticing that

both branches connect to the point-particle case in the limit r → 0.

To elucidate these branches and connect to a more physical parameterization we

use (2.8) to compute the on-shell angular momentum J(r̂) and energy E(r̂) for each of

the two branches, where we introduce the dimensionless ratio r̂ = r/L, yielding the angu-

lar momentum

J− = Nr̂2 , J+ = Nr̂2(3− 2r̂2) , (2.11)

and energy

E− =
N

L
r̂2 , E+ =

N

L
r̂2
√

9− 8r̂2 , (2.12)

on each of the two branches. For clarity, we have depicted these results in the right plot

of figure 1 and the left plot of figure 2 respectively. Here and in the following we have also

rescaled J ≡ J/N and E ≡ (L/N)E.

3The limit r = 0 of these solutions describes the point-particle limit of the giant graviton, where one

should be careful in taking the limit r → 0 such as to obtain sensible conserved charges [18].
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r̂

E

J

E

Figure 2. E ≡ (L/N)E versus r̂ (left plot) and versus J (right plot) for the two solution branches

of extremal giant gravitons.

One observes that for each value in the range 0 ≤ J ≤ 9/8, there are two possible

solutions, with different values of r̂. Comparing the two corresponding values of the energy

for each of these two values of r̂ (given J), one finds that the one with highest r̂ minimizes

the energy. To see this more clearly, we exhibit E versus J in the right plot of figure 2.

Hence we expect that the stable branch of solutions consists of the entire lower branch (for

0 ≤ J ≤ 1 and 0 ≤ r̂ ≤ 1) together with the part of the upper branch that has 1 ≤ J ≤ 9/8

and
√

3/2 ≤ r̂ ≤ 1. Conversely, the part of the upper branch spanned by 0 ≤ J ≤ 9/8 and

0 ≤ r̂ ≤
√

3/2 will be for given J a local maximum of the energy.

More properly, this result on the dynamical stability can be derived by computing the

off-shell Hamiltonian from (2.8)

H =
N

L

√
r̂6 +

(J− r̂4)2

1− r̂2
. (2.13)

Varying this with respect to r̂ for constant J gives, as expected, the extrema Ω = Ω̄± found

before. To see which part of the branches are stable we vary H once more with respect to r̂

at constant J, and demand positivity, so that we are at a minimum. The result is that the

lower branch Ω = Ω̄− is stable for all values of r̂ (0 ≤ r̂ ≤ 1) and the upper branch Ω = Ω̄+

is stable for
√

3/2 ≤ r̂ ≤ 1. This is in accord with the arguments of the previous paragraph

(see also appendix A where the same conclusion is obtained from a more detailed stability

analysis that includes time derivatives of the radial coordinate). Finally, we note that the

point r̂ =
√

3/2 where the upper branch becomes unstable can also be seen as a turning

point in a plot of Ω as a function of J (see figure 3).

The main motivation of our review above and the various plots that are presented is

that they will be instructive to illustrate the new features that appear when constructing

and analyzing the thermal giant gravitons in sections 4 and 5.

Having established which solutions are stable, we now turn to their physical relevance.

First we note that they are distinguished by the angular momentum J. In terms of r̂ they

– 7 –
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J

Ω̂

Figure 3. Ω̂ versus J for the two solution branches of extremal giant gravitons

coexist when
√

3/2 ≤ r̂ ≤ 1, but from (2.12) we easily see that the energy on the lower

branch is lower than that of the upper branch, for given r̂ in that range, except when

r̂ = 1 where they have the same energy. The lower branch is the usual 1/2 BPS branch

extensively considered in the literature, and from (2.11), (2.12) we immediately see the

BPS condition E− = J−/L. The other stable solution which is part of the upper branch

was noted in [18] (see in particular figures 1 and 2 of that reference), but has otherwise

largely been ignored. First of all this branch is not connected to the point particle case as

a stable configuration since local stability requires
√

3/2 ≤ r̂ ≤ 1. Furthermore, while it

is a local minimum of the energy it is not a global one, so it is a metastable configuration

and has E+ ≥ J+/L where the bound is saturated for r̂ = 1. This thus raises the question

whether this configuration indeed preserves 1/2 of the supersymmetries. By repeating the

steps of section 3 of [18], we have verified that this is indeed the case. The main point

here is that the Ω-dependent terms in this computation vanish at r̂ = 1. So we see that

at r̂ = 1 we can have either Ω̄− = 1/L or Ω̄+ = 3/L, both satisfying the same BPS bound

and both being supersymmetric. In particular, we cannot distinguish these configurations

according to their energy.4 In the first case the center of mass is rotating at the speed of

light while in the second the center of mass is rotating at a superluminal velocity. However

this should not be an argument for discarding the latter solution since the center of mass

being a geometrical construction can be moving with superluminal velocities as long as

every point on the brane is subluminal. The existence of these two BPS configurations at

r̂ = 1, arising from two distinct solution branches raises the question of what the dual CFT

interpretation is of the one connected to the non-BPS branch, and we briefly comment on

this in the next subsection.

The primary purpose of this paper though is to use the blackfold approach to find the

thermal versions of the extremal configurations reviewed in this section. Concretely, we

will switch on a temperature and examine what happens with the entire solution branch

4They also satisfy the zero temperature limit of a general Smarr relation that is derived in appendix B.
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depicted in figures 1, 2 and 3 irrespective of their stability properties and subsequently

identify the stable branches. As it will be discussed in more detail below, in the blackfold

approach one obtains solutions in the supergravity (closed string) regime. In this sense

the entire solution branch (stable or not) is a valid approximate analytical solution of the

type IIB supergravity EOMs, at least in the pertubative regime where the approach is

valid. Moreover, just as a subset of the branches in the extremal case is locally stable,

we will likewise see that a corresponding subset is dynamically stable when the system is

considered at non-zero temperature.

2.3 CFT dual and correlation functions

The CFT dual operator of a single point-like graviton is a chiral primary of the form

O = TrZJ , (2.14)

with J the angular momentum on the S5 and Z a complex scalar field. Standard compu-

tations have shown that their two- and three point functions match exactly on both gauge

and string theory sides provided J is small.

If J � N/
√
λ the correct description is in terms of a giant graviton. The dual gauge

theory operator Ogg of the giant graviton is no longer given by (2.14) and arguments based

on symmetry (which only really apply close to r = L) imply that it must be replaced by a

Schur polynomial operator of the form [20] (see also [21])

Ogg ∼ χR(Z) =
1

J !

∑
σ∈SJ

χRJ (σ)Z
iσ(1)
i1

. . . Z
iσ(J)
iJ

, (2.15)

where Z is a complex matrix, Rn denotes an irreducible representation of U(N) described

in terms of a Young tableau with J boxes.

As explained above, there is another (upper) branch of giant gravitons which is 1/2

BPS at r = L in the large J limit with the same quantum numbers as the lower branch.

We speculate that there exists another 1/2 BPS Schur polynomial operator in the CFT at

J = N that is distinct from the Schur polynomial relevant to the usual (lower) BPS branch

and which is dual to the upper branch of giant gravitons at r = L. We present indications

of this below.

Two-point correlation functions. As an explicit check of the statement above, we

now compute the two-point function for the CFT operator dual to the r = L point on the

upper branch, showing that it has the same properties as the r = L solution of the lower

branch. It is easiest to do the computation simultaneously for both branches. Our method

is based on the general prescription, reviewed in [22], for computing two-point correlation

functions for massive (or light) particles moving in a background spacetime.

The giant graviton is a brane, not a particle, however as seen from the AdS5 part it is

a point-particle with a certain mass [23]. This can be seen by introducing motion in the

AdS5 part, i.e. introducing the dependence xµ(τ), µ = 0 . . . 4 on the coordinates of AdS5

– 9 –
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with metric Gµν . Following [23] one can then show that the DBI action can equivalently

be written as

IDBI =
1

2

∫
dτ

(
Gµν ẋ

µẋν

e
+

Ω2(L2 − r2)

e
−m2e+m2rΩ

)
, (2.16)

where we have defined m = Nr3/L4 and e is an einbein which acts as a Lagrangian

multiplier. Using (2.8) we can eliminate Ω in favor of J and arrive at the action

I =
1

2

∫
dτ

(
Gµν ẋ

µẋν

e
+ eM2

)
, (2.17)

where we have defined

M =

√
J2 − L2m2

L2 − r2
. (2.18)

However, to arrive at the interpretation that from the AdS5 perspective the giant graviton

is a massive point particle moving along a timeline geodesic, one should take into account

that J must be conserved along any path. Hence, one should consider the Routhian R
which is obtained by doing a Legendre transformation in the cyclic coordinates. In this

case it coincides with the Hamiltonian, and hence we find

R = H = ΩJ − L = −1

2

(
Gµν ẋ

µẋν

e
− eE2

)
, (2.19)

where E is the on-shell energy (2.12) for each of the branches. So we find that from the

AdS5 perspective the giant graviton is a point particle with mass E. Following [22], wee

can now compute the two-point function using the Routhian

G(0, ε;x, ε) = e−R ∼
(
|x|
ε

)−2E±

, (2.20)

showing for both branches equality of the anomalous dimension and the energy. We thus

conclude that the anomalous dimension of the operator is equal to the energy for both

branches, thus giving strong indication of being in both cases a Schur polynomial at the

r = L point.

It is important to note that the correct result is reproduced here using the Routhian,

and not the action, as was also advocated recently in [24]. Indeed, evaluating the quantity

M in (2.18) for each of the solution branches found in subsection 2.2 one finds5

M− =
N

L
r̂2 = E− , M+ =

N

L
r̂2
√

9− 4r̂2 6= E+ , (2.21)

as compared to the energies given in (2.12).

5In ref. [25] the action was used to compute the two-point function, but since this computation was for

the lower (1/2-BPS) branch, for which the terms conspire to give M− = E−, this still gives the correct

result.
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Three-point correlation functions. To gain further insight into the nature of the new

state at r = L one may consider the three-point correlation function between one point

particle and two giant gravitons. For the lower branch this analysis was performed in [25].

The procedure consists in analyzing the supergravity modes which describe fluctuations in

the Euclidean D-brane action of the metric and 4-form potential, which are dual to chiral

primary operators with R-charges in the N = 4 SYM theory. The resulting three-point

function structure constant for the maximal size 1/2-BPS giant graviton was found to be

zero in agreement with the gauge theory side. Following the same steps for the upper

branch r = L state gives zero as well, since one can check that in that case the result is

independent of Ω. This provides further confirmation that the gauge theory description

of the upper branch r = L state is a Schur polynomial. It would be very interesting to

calculate this three-point function more generally for the entire (non-BPS) upper branch,

but this is beyond the scope of the present paper. A naive application of the ideas mentioned

above does not give sensible results, so perhaps one should use the Routhian rather than

the action and/or introduce an appropriate cutoff to regularize the divergent integrals.

3 Blackfold method for branes in flux backgrounds

In this section we briefly discuss how to extend the blackfold method for branes embedded

in a background with fluxes. Moreover, we present a slight generalization of the previ-

ously obtained results for stationary blackfolds to blackfolds that are “boosted stationary”

blackfolds, with the boost along a Killing direction of the background. These ingredients

are relevant to the application of the blackfold method in sections 4–6 to construct and

analyze localized thermal giant gravitons based on black D3-branes wrapping an S3 in the

AdS5 × S5 background.

Our conventions follow [2, 7] (see also [26]). In particular, space-time coordinates

are denoted by xµ, brane world volume coordinates by σa. Furthermore, the brane

embedding in the background space-time with metric gµν is denoted by Xµ(σ), so that

γab = gµν∂aX
µ∂bX

ν is the induced metric on the brane world volume. We will also need

the orthogonal projector ⊥µν defined by gµν = hµν+ ⊥µν where the tangential projector

is hµν = γab∂aX
µ∂bX

ν .

3.1 Blackfold EOMs

Consider a p-brane embedded in a D-dimensional background. In the (probe) blackfold

approximation we regard this brane as infinitely thin and thus having a localized stress-

tensor

T̂µν(x) =

∫
dp+1σ

√
−γ δ

(D)(x−X(σ))√
−g

Tµν(σ) , (3.1)

where the integral is over the world volumeWp+1 of the brane. In the following we further-

more consider the background to have a (p + 2)-form flux F(p+2) = dA(p+1) under which

the p-brane is electrically charged with charge Qp. The charged p-brane therefore has the

(p+ 1)-form current

Ĵ(p+1)(x) =

∫
dp+1σ

√
−γ δ

(D)(x−X(σ))√
−g

J(p+1)(σ) , (3.2)
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with

J(p+1) = Qpω(p+1) , ω(p+1) =
√
−γ dσ0 ∧ · · · ∧ dσp . (3.3)

The EOMs for the charged brane probe in a background flux are

∇µT̂µν =
1

(p+ 1)!
F νρ1···ρp+1 Ĵρ1···ρp+1 , (3.4)

∇µĴµν1···νp = 0 , (3.5)

where the righthand side of (3.4) includes the generalized Lorentz force. By projecting

these equations on directions parallel and perpendicular to the world volume of the brane,

we get a set of intrinsic and extrinsic equations respectively. The intrinsic equations include

DaJ
aa1...ap = 0, which correspond to charge conservation as well as6

DaT
ab = 0 , (3.6)

under the assumption that the background gauge-potential is constant along the world-

volume of the brane, so that there are no forces induced on the world volume. This will

be the case in our applications. The extrinsic equation for the brane embedding is (see

e.g. [2, 7, 27])

T abKab
µ =

1

(p+ 1)!
⊥µνF νρ1···ρp+1Jρ1···ρp+1 , (3.7)

where

K µ
ab =⊥µλ

{
∂a∂bX

λ + Γλνρ∂aX
ν∂bX

ρ
}

(3.8)

is the second fundamental tensor.

We note here that the EOMs for extremal F-strings, D/M-branes in backgrounds with

appropriate non-zero flux and constant dilation field are of the form (3.7) with appropriate

Tab. In particular, the D-brane EOM coming from the DBI action (including the WZ

term), is of the form (3.7) with Tab = −TDpγab in the case of zero world volume gauge field.

In the blackfold approach this energy momentum tensor is replaced by the effective stress

tensor of the corresponding non-extremal brane solution of supergravity. In the leading

order approximation this is that of a perfect fluid in local thermodynamic equilibrium, with

equation of state determined by the brane solution. Solution of the intrinsic equation (3.6)

requires in that case that the fluid velocity ua = ka/|k| is aligned with a timelike world

volume Killing field and following [2] we assume that this Killing field ka = ∂aX
µ(σ)kµ can

be pushed forward to a corresponding timelike background Killing field kµ. This will be

the context in which we will derive conserved quantities below.

Stationary and quasi-stationary solutions. From the above, it follows that in general

the normal to the spacelike hypersurface Bp of the blackfold world volume Wp+1 need not

be parallel to the generator of asymptotic time translations. i.e. one can have

∂τ = aξ + bχ , (3.9)

6In the case of a submanifold with boundaries (with unit normal vector n̂a) these must be supplemented

by the boundary conditions T abn̂b|∂Wp+1 = 0 and Jan̂a|∂Wp+1 = 0.
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where ξ corresponds to the canonically normalized generator of time translation and χ that

of a spatial U(1) isometry of the background. However, with regard to stationarity there

is an important further distinction to be made, depending on whether:7

i) χ is also a worldvolume Killing vector

ii) χ is perpendicular to the world volume (and hence not a world volume Killing vector)

In case i) the blackfold world volume does not break the isometries ξ, χ of the back-

ground and in particular the conserved quantities associated to these are also conserved

for the entire solution consisting of background with the blackfold in it.8 The resulting

solutions are stationary blackfolds. In case ii), which is the one relevant for the present

paper, the blackfold world volume only preserves a particular combination of the isome-

tries ξ, χ. As a result the conserved quantities associated to these are of a different nature,

namely they refer to quantities for the probe blackfold in the background space time but are

not seperately conserved for the background including the blackfold. Only an appropriate

linear combination is conserved, according to (3.9). In particular, the conserved quantity

generated by ξ should be thought of as the total energy E (so not the rest mass of the

object) and the quantity generated by χ as the transverse momentum J corresponding to

the boost. So we see that in this case the blackfold is transversely boosted along a Killing

isometry of the background, and hence it should be viewed as a “boosted stationary” solu-

tion. We will refer to this below as quasi-stationary, since we still have that, seen from the

world volume, the blackfold is independent of time. This is in fact precisely what happens

for the localized giant graviton, since in that case χ lies in a direction perpendicular to the

world volume. It is important to note that since the quasi-stationary blackfold is not ac-

celerating it does not emit radiation and one can thus go beyond the probe approximation

and perform a matched asymptotic expansion for the full system of the background with

the brane.

3.2 Conserved charges

We now write down the expressions for the conserved charges corresponding to the asymp-

totic generators ξ and χ for these quasi-stationary blackfolds in flux backgrounds. Note

that the results below can also be used for stationary blackfolds in flux backgrounds.

For any Killing vector field (KVF) k of the background we have by definition that the

Lie derivative along k of the (p + 2)-form F = F(p+2) is zero LkF = 0. Since dF = 0 we

find that 0 = dF = ikdF + d(ikF ) = d(ikF ) where ik means the contraction with the KVF

k. Picking a gauge in which LkA = 0 we see indeed that 0 = LkA = ikF + d(ikA) thus

ikF = −d(ikA). Thus, in this gauge the (p + 1)-form ikF has the p-form potential ikA.

Using this with the EOM (3.4) and current conservation (3.5) we see that

p! ∇µ(T̂µνkν) =
1

p+ 1
kνFνρ1···ρp+1 Ĵ

ρ1···ρp+1 = −∇[ρ1(ikA)ρ2···ρp+1]Ĵ
ρ1···ρp+1

= −∇ρ1(ikA)ρ2···ρp+1 Ĵ
ρ1···ρp+1 = −∇µ(Aνρ1···ρp Ĵ

µρ1···ρpkν) . (3.10)

7For simplicity we restrict to these two possibilities, but we note that when χ is not a world volume Killing

vector, it could also have some components along the world volume. E.g. χ could be a linear combination

of a woldvolume Killing vector and a perpendicular component along an isometry of the background.
8This is for example the case for the configurations considered in ref. [28] using the blackfold method.
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Thus we obtain the conserved current

jµk =
(
T̂µνp +

1

p!
Aνρ1···ρp Ĵ

µρ1···ρp
)
kν , (3.11)

and a conserved charge

Qk =

∫
Σ
dxD−1√gspacej

µ
knµ , (3.12)

where gspace only involves the spatial components of the background metric, defined by

the slice Σ of constant x0 = t and nµ is the unit normal of Σ. Inserting the conserved

current (3.11) and using the form of the stress tensor (3.1) and current (3.2) we can do

the δ-function integrals to reduce to integrals over Bp. On the world-volume we choose the

static gauge in which X0 = τ = σ0. Restricting to static backgrounds, which is sufficient

for the applications in this paper, we have
√
−g =

√
−g00

√
gspace and since we assume that

the pullback ξa is hypersurface orthogonal, we split
√
−γ =

√
−γττdVp. Then, integrating

out the delta function we obtain for the conserved charge

Qk =

∫
Bp
dV(p)γ

−1
⊥ [Tµν + Vµν ]nµkν |xµ=Xµ . (3.13)

Here we have defined

Vµν ≡ 1

p!
Aνµ1···µp−1

Jµµ1···µp−1 , (3.14)

and the transverse Lorentz contraction factor γ⊥ is given by

γ⊥ ≡
R0

ρ0
, (3.15)

where R0 ≡
√
−gtt and ρ0 ≡

√
−γττ .

Now, we use the result (3.13) to write down conserved charges corresponding to the

background Killing vectors ξ and χ

E =

∫
Bp
dV(p)γ

−1
⊥ [Tµν + Vµν ]nµξν , J = −

∫
Bp
dV(p)γ

−1
⊥ [Tµν + Vµν ]nµχν , (3.16)

which are the energy E and momentum J of the quasi-stationary blackfold moving with

constant velocity in the background along an isometric direction. The interpretation of

these conserved charges in this case is most easily seen by analogy with a probe particle

moving in a time-independent background along a Killing direction. In that case, it follows

from standard analytical mechanics that the energy E and momentum P of the probe

particle are conserved as long as the object moves with constant velocity. Likewise for the

blackfold, as long as we are working in the leading order probe approximation where the

laws of physics do not involve the internal degrees of freedom, the conservation of E and

J relies entirely on properties of the background and not those of the brane. In particular,

these quantities are conserved for the quasi-stationary blackfold probe just as they are

for the DBI D-brane probe. The expressions (3.16) will thus provide us the conserved

quantities for the thermal giant graviton constructed in section 4, where we will also see

that they reduce to the correct DBI quantities in the extremal limit.
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3.3 Action and thermodynamics

Finally, we discuss here the action that describes the quasi-stationary blackfolds introduced

above. Again, we emphasize that the considerations of this section can also be applied to

the stationary case.

When the intrinsic EOMs are solved as explained in section 3.1 the remaining extrinsic

EOMs (3.7) can be shown to follow from the Lorentzian action

I =

∫
Wp+1

{
ω(p+1)P +QpP[A(p+1)]

}
, (3.17)

where P is the local pressure of the blackfold and P[A(p+1)] the pull-back of the background

gauge potential to the worldvolume. This natural generalization of the blackfold action to

include background fluxes, easily follows form the derivations presented in refs. [2, 7]. For

a given set of global parameters (T,Ω, Qp) the (quasi)-stationary solution to the blackfold

EOMs is exactly the one that extremizes the action δI = 0. Note also that for extremal

D-branes this action reduces to the DBI action plus WZ term.

Following the arguments in refs. [2, 7], we show in appendix B that the Euclidean

action IE obtained by Wick rotating (3.17), is again equivalent to the thermodynamic

action
IE
β

= F = E − ΩJ − TS . (3.18)

Here the total entropy S of the blackfold is obtained in the usual manner by integrating

the temporal part of the entropy current suµ over Bp, so that

S =

∫
Bp
γ−1
⊥ suµnµ , (3.19)

where the integrand is multiplied by the appropriate Lorentz factor γ⊥ defined in (3.15).

Consequently we find that (at fixed Qp), the extrema of the action obey the first law of

thermodynamics dE = ΩdJ + TdS. We finally note that a corresponding Smarr relation

for the thermodynamic quantities is derived in appendix B as well.

4 Construction of finite temperature giant graviton on S5

In this section we find a thermal version of the giant graviton consisting of a D3-brane

wrapped on a 3-sphere moving on the 5-sphere of AdS5 × S5 (reviewed for the extremal

case in section 2). This is done using the blackfold approach in the probe approximation

(as reviewed in section 3.1).

4.1 EOM for thermal D3-brane giant graviton

In the leading order blackfold approximation to black branes we use the general extrinsic

equation (3.7) with the stress-tensor Tab being that of a black brane. In particular, in the

present case we want to consider black D3-branes in the AdS5×S5 background. Specifically,

the stress-tensor of black D3-branes corresponds to that of a four-dimensional fluid tensor
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of the form Tab = (ε + P )uaub + Pγab with ua being the four-velocity and energy and

pressure given as

ε = T s− P , P = −G
(
1 + 4 sinh2 α

)
, T s = 4G , G ≡ π2

2
T 2

D3r
4
0 (4.1)

where the local temperature T and entropy density s for the black D3-brane are

T =
1

πr0 coshα
, s = 2π3T 2

D3r
5
0 coshα (4.2)

The parameters of the black D3-brane stress tensor and thermodynamics are thus r0 and

α. The black D3-brane furthermore has the 4-form charge current

J(4) = Qdτdσ1dσ2dσ3 , Q = 4G sinhα coshα = ND3TD3 (4.3)

where Q is the charge density and ND3 is the number of coincident D3-branes and TD3 =

1/((2π)3gsl
4
s) is the D3-brane tension. Note that we have the relation Ω(3)TD3 = N/L4

where N and L are the magnitude of the flux and the radius in AdS5 × S5, respectively.

The giant graviton that we wish to thermalize is that of a D3-brane wrapped on a 3-

sphere moving on the 5-sphere of AdS5×S5. This giant graviton solution, as studied using

the DBI action for the extremal D3-brane, was reviewed above in section 2. In particular,

the metric on the 5-sphere is given by (2.2) and the 5-form flux in (2.1). We now use the

properties (4.1)–(4.3) of black D3-branes to study the case where the D3-brane is put at

finite temperature, hence we are studying what can be called a thermal giant graviton in

the form of a black D3-brane wrapped on a 3-sphere moving on the 5-sphere of AdS5×S5.

We take the same ansatz for the embedding (2.3) as used for the extremal D3-brane. Using

all this information (see appendix C for details of the derivation)9 with eq. (3.7) we arrive

after some algebra at the following EOM

Ω2r2 (1−R1(α)) + 3k2 + 4kΩrR2(α) = 0 , (4.4)

where k ≡ |k| =
√

1− Ω2(L2 − r2) and we introduced the following quantities

R1(α) ≡ T s
P

= − 4

1 + 4 sinh2 α
and R2(α) ≡ Q

P
= −4 sinhα coshα

1 + 4 sinh2 α
. (4.5)

We notice that by taking the limit α→∞ we obtain the EOM (2.9) for the extremal case.

Since the D3-brane is moving on the 5-sphere the local temperature has a redshift as

compared to the global temperature T of the background space-time that we are probing

as T = T/k. Thus, we are imagining finding the thermal giant graviton solution for a

given value of T . In addition, the above EOM (4.4) should be supplemented by the charge

quantization condition (4.3) which from the above becomes

ND3T
4 =

2TD3

π2

sinhα

cosh3 α
k4 . (4.6)

9Note that the worldvolume velocity field is given by uτ = 1/k so on the worldvolume the D3-brane is

static, but the push-forward of this vector to the background gives the vector field uµ∂µ ∼ ∂t+ Ω∂φ, so this

is a quasi-stationary blackfold as explained in section 3.1.
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Our goal is to study the thermal giant graviton for a given value of ND3, T and J , or,

alternatively, ND3, T and r. From the latter choice we see that α = α(ND3, T, r).

Regarding the validity of our black D3-brane probe in AdS5 × S5 we see that we need

ND3 � 1 to have a valid SUGRA solution of the probe but that at the same time we

also need ND3 � N since the back reaction of the ND3 D3-branes of the probe should be

negligible in comparison to the back reaction of the N D3-branes from which the AdS5×S5

background originates.

4.2 Solution space

In this section we examine the structure of the solution to the EOM (4.4) and the charge

quantization constraint (4.6).

The aim in the following is to study the thermal giant graviton solution given a tem-

perature T , the number of D3-branes ND3 for the brane probe as well as the radius r of

the 3-sphere that the D3-brane probe is wrapped on.10 We find the following two branches

of solutions Ω±(r) to the EOMs (4.4)

Ω±(r) =
3√

9L2 − 8
(
1 + ∆±(α)

)
r2
, (4.7)

which we refer to as the lower (−) and upper (+) branch respectively. Here we have

defined11

∆±(α) = −1

8

(
3R1(α)+8R2(α)2 ± 4R2(α)

√
D(α)

)
+

1

2
, D(α) = 3R1(α)+4R2(α)2 − 3 ,

(4.8)

where R1,2(α) are given in (4.5). These solutions are supplemented with the charge quanti-

zation constraint (4.6). In order to determine α± as a function of T , ND3 and r one should

substitute (4.7)–(4.8) into (4.6).

Taking the extremal limit α→∞ we see that R1 → 0 and R2 → −1. Hence the above

solutions (4.7)–(4.8) reduce to the extremal values Ω̄± given in (2.10), found in section 2.2

from the DBI analysis of the extremal giant graviton solution.

Considering eq. (4.6) we have that sinhα/ cosh3 α is bounded from above with maximal

value 2
√

3/9 corresponding to the value ᾱ for which cosh2 ᾱ = 3/2. Thus, since we choose

to be on the branch connected to the extremal D3-brane we always have α ≥ ᾱ. Setting

Ω = 0 and using this bound in eq. (4.6) gives rise to the maximal temperature for ND3

coincident black D3-branes given by Tstatic = (4
√

3
9π2

TD3
ND3

)1/4. However in the case under

investigation — where Ω > 0 and depends on α — one obtains a stronger bound on α

from the requirement that D(α) in (4.8) should be always non negative. Indeed, D(α) = 0

for α = α̃ ≡ cosh−1(3/2) and we see that α̃ > ᾱ. Thus for the finite-temperature giant

graviton we have the bound α ≥ α̃. This means that from (4.6) we have the bound

k ≥ T̂ , (4.9)

10One can alternatively use (5.1) to write r = r(ND3, T, J) and consider ND3, T and J given, which will

be further examined below.
11Note that Ω→ −Ω, α→ −α is also a solution. Here we only consider Ω > 0 (⇒ α > 0).
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where we have introduced the rescaled temperature

T̂ ≡ T

Tmax
, Tmax ≡

(
8
√

5

27π2

TD3

ND3

)1/4

. (4.10)

Moreover we have the geometric upper bound r ≤ L on the size of the giant graviton,

which means that k ≤ 1. It thus follows that for the giant graviton on S5 the value of k

must lie in the range

T̂ ≤ k ≤ 1 (4.11)

and as a corrollary we see that the temperature is bounded, T̂ ≤ 1. In particular, when the

upper bound on the temperature Tmax is reached the solution space collapses to a point.

This upper bound on the temperature is more restrictive than for a static black D3-brane

where the maximal temperature is Tstatic given above.

Parameterization of thermal giant graviton solution. We now describe a very

useful analytic parameterization of the solution, which will be employed in this and the

next section to analyze the solution in more detail. For given T and ND3 the solution can

be parameterized by the value of k, as follows. Introducing

φ ≡ 1

cosh2 α
(4.12)

one finds that eq. (4.6) can be rewritten as the cubic equation

φ3 − φ2 +
4

27
sin2 δ = 0 , (4.13)

where we have defined

sin δ(T̂ ,k) =

(
Tmax

Tstatic

T̂

k

)4

=
2
√

5

3
√

3

(
T̂

k

)4

. (4.14)

Eq. (4.13) is of the same type as encountered for the thermal BIon [9, 10] and the solution

connected to the extremal giant graviton is

φ(T̂ ,k) =
2

3

sin δ√
3 cos δ3 − sin δ

3

. (4.15)

We thus have an explicit functional expression for α(T̂ ,k) = arccoshφ(T̂ ,k)−1/2 and sub-

stituting this in (4.8) we then obtain ∆±(T̂ ,k). With those expression in hand, one can

now obtain r as a function of (T̂ ,k), using k =
√

1− Ω2(L2 − r2) and the solution (4.7).

This yields

r±(T̂ ,k) =
3k√

8k2(1 + ∆±(α)) + 1− 8∆±(α)
L , (4.16)

along with

Ω±(T̂ ,k) =

√
8k2(1 + ∆±(α)) + 1− 8∆±

1− 8∆±(α)

1

L
, (4.17)
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r̂

Ω̂

Figure 4. Ω̂ = ΩL versus r̂ = r/L for the two solution branches of thermal giant gravitons for

various values of T̂ . The lower (−) branch is blue and the upper (+) branch is red. Shown are the

values T̂ = 0.1, 0.2, 0.3 and 0.4 with temperature increasing as the curves move to the right and

become fainter in color.

where we recall the range (4.10) for k.

Figure 4 depicts the resulting solution branches for various values of T̂ in a (r̂ ≡
r/L, Ω̂ ≡ ΩL) diagram, and we recall for comparison that the corresponding extremal

solution is plotted in figure 1. We note the following new and interesting features. The

lower and upper branch meet in the point where k = T̂ (i.e. α = α̃) saturating the lower

bound in (4.9). At this point we find ∆± = −1
2 giving Ω± = Ω̃ = 3/

√
9L2 − 4r̃2. Inserting

this into the expression for k in (2.5) then gives

r̃ =
3L√

4 + 5T̂−2
. (4.18)

At the upper bound k = 1, we have r = L and Ω−(T̂ , 1) = 1/L and Ω+(T̂ , 1) ≤ 3/L.

Furthermore, we observe that the values of r are restricted to 0 ≤ rmin(T̂ ) ≤ r ≤ L,

and rmin(T̂ ) approaches L as the maximum temperature is approached. The minimal size

thermal giant graviton rmin lies on the lower branch, which curves back to meet the upper

branch in the point r̃. Furthermore, for each r value in this range there are two possible

values for Ω, lying in between the two corresponding values of the extremal solution.

That the minimal size of the giant graviton is greater than zero is an important con-

sequence of the finite temperature physics of the giant graviton. For the extremal giant

graviton the two branches meet in the singular solution r = 0 which in turn corresponds

to the graviton particle with same angular momentum. What we see at finite temperature

is that: a) there is a minimal possible size rmin of the giant graviton and b) unlike in the

extremal case, it is possible to move in the solution space from one branch to another since

the meeting point of the two branches at r̃ is not a singular solution. Note that the fact

that the thermal giant graviton attains a minimal possible size has an analogue in the

thermal BIon as well as in the thermal Wilson line cases studied in [9–11].
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In the next section we will use the parameterization above to make a detailed analysis

of the thermodynamic quantities of the two thermal giant graviton branches and examine

their stability. In particular, the explicit parametric solution enables to easily plot any

combination of thermodynamic quantities and study their behavior. However, the expres-

sions are too complicated in general to invert but there are three interesting situations

which will be considered in more detail.

• The low-temperature regime. We can expand around the extremal case by doing an

expansion for small T̂ .

• The maximal size regime. We can expand around k = 1 (i.e. r = L). This also

includes the maximal temperature regime T → Tmax since in that limit the physics

is captured by the large giant graviton limit ε = (L− r)/L� 1.

• The minimal charge parameter limit. We can expand around k = T̂ , i.e. the point

α = α̃ where the two branches meet at the value r̃.

The first regime above, which is physically the most relevant one, will be investigated

further in section 5, while the other two limits are considered in appendix D. Since our

main focus in the text will be the low-temperature or near-extremal regime, we now present

the solution described above in this limit.

Low-temperature solution. The convenient feature of the parameterization above,

using φ(α) defined in (4.12), and δ defined in (4.14), is that the extremal limit is obtained

for φ → 0 and δ → 0. Expanding around this, we can work out the form of the angular

velocity Ω and charge parameter φ as a function of the thermal giant graviton size r in the

low temperature limit.

In order to do a low temperature expansion we demand that T̂ � 1 and sin δ � 1. As

a consequence, we need that k � T̂ in order for the expansion to be valid, which in turn

implies that r � T̂L. We then have to leading order in T̂ ,

δ ' 2
√

5

3
√

3

(
T̂

k

)4

, φ ' 2

3
√

3
δ , (4.19)

where we used (4.14), (4.15). Performing a small δ expansion of ∆± gives then to leading

order ∆+ ' −φ/4 and ∆− ' −1 (here and below, expressions are up to corrections of

order T̂ 8). This can now be substituted into the expressions (4.16) for r±, yielding

r− ' kL , r+ '
kL√

1 + 8k2

3 +
4
√

5

9

(
T̂

k

)4
k2 − 1

1 + 8k2

 . (4.20)

These expressions can be inverted in order to write k as a function of r. We find

k− '
r

L
, k+ '

rΩ̄+(r)

3
+

4
√

5

rΩ̄+(r)

ρ2

r2
T̂ 4 , (4.21)
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where Ω̄± are the extremal values (2.10) and where we have defined ρ2 ≡ r2−L2, while the

size r now parameterizes the solution and the ± subscript has thus been moved from r to k.

Substituting (4.21) into the expression (4.17) for Ω we then obtain

Ω−(r) ' 1

L
, Ω+(r) ' Ω̄+(r)

[
1− 4

√
5

3r2Ω̄2
+(r)

T̂ 4

]
, (4.22)

along with

φ−(r) ' 4
√

5

27

L4T̂ 4

r4
, φ+(r) ' 12

√
5

T̂ 4

r4Ω̄4
+(r)

. (4.23)

Note that the angular velocity on the upper branch is much more sensitive to low temper-

atures than the lower branch.

4.3 Validity of probe approximation

For the probe approximation to be valid for our SUGRA black D3-brane probe we must

require the transverse length scale rs of the probe to satisfy the following conditions

rs � rint , rs � rext , rs � L , (4.24)

where rint and rext are the length scales associated with the intrinsic and extrinsic curvature

of the embedding of the brane, respectively, and L is the length scale of the AdS5 × S5

background. For the black D3-brane in the branch connected to the extremal solution the

transverse length scale rs is easily seen to be given by rs ∼ (ND3
TD3

)1/4 [9].

We compute the Ricci scalar for the embedding metric in order to obtain the intrinsic

length scale. This simply gives rint = r/
√

6. Instead the extrinsic length scale of the

embedding is obtained as rext = |Kρnρ|−1 where nρ is the unit normal vector to the brane

embedding and Kρ is the extrinsic curvature. We find

rext =
rk2

(1− r2

L2 )

√
k2 + 1− r2/L2

Ω2r2 + 3k2
. (4.25)

Collecting now this information with (4.24) we see that we have two different regimes

to consider for the validity of the probe approximation, namely whether r/L is small or

not (note of course that 0 ≤ r/L ≤ 1). If r/L is not small, then we can roughly regard

r and L to be of the same order, hence (4.24) simply reduces to rs � L which using

L4 = N/(Ω(3)TD3) one can write as

ND3 � N , (4.26)

a condition already mentioned in the beginning of this section. Instead, if r/L is small we

should impose the condition that rs � r which we can write as ND3/N � r4/L4.

In addition to the validity of the probe approximation we should also require the

validity of the SUGRA description of the black D3-brane probe. This requires ND3 � 1

as well as gsND3 � 1. The latter condition can be written as λND3 � N (λ being the

’t Hooft coupling). Therefore, if we assume we are in the regime where r/L is not small

we can summarize both the probe approximation condition as well as the conditions for

validity of the SUGRA D3-brane description as the conditions

1� ND3 � N � λND3 . (4.27)
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Hawking-Page temperature. An important point is to examine how the bounds above

relate to the Hawking-Page temperature, above which the AdS black hole background

will become dominant over the hot AdS spacetime background considered in this pa-

per. Using that the Hawking-Page temperature THP ∼ 1/L, and the expression for Tmax

in (4.10), we find

Tmax

THP
∼
(

N

ND3

)1/4

� 1 , (4.28)

where we used (4.27) in the last step. Thus in the regime where the probe blackfold

approximation is valid the maximum temperature that the solution exhibits is far above the

Hawking-Page temperature. Consequently, this maximum temperature is not physical in

the sense that before reaching it one should change the background to the AdS black hole.

In particular, this means that our solution should be considered for small temperatures

(much less than Tmax) only. This is very similar to the case of thermal string probe in AdS

considered in ref. [11].

5 Thermodynamics and stability properties

In this section, we further investigate the thermal giant graviton solution obtained in

section 4. We will first compute the relevant conserved quantities and thermodynamic

properties using the formulae derived in section 3.2. This will also enable us to show that

the same solution can be derived from an action and verify the first law of thermodynamics.

Then the solution parameterization of the previous section will be used to examine the

detailed behavior of the thermodynamics and determine which part of the solution branches

are stable. Furthermore, we make a detailed analysis of the low temperature regime.

5.1 Thermodynamic quantities and first law

Using the expressions in eqs. (3.16), (3.19) together with the perfect fluid blackfold stress

tensor (see (4.1), (4.2)) and current (4.3), the (off-shell) energy E, angular momentum J

and entropy S are computed to be

E(r) =
Ω(3)ε(r)r

3√
1− Ω2(L2 − r2)

, J(r) = ΩE(r)(L2−r2)+Ω(3)Qr
4 , S(r) = Ω(3)r

3s(r) , (5.1)

with

ε(r) =
T 2

D3

2

(
1− Ω2(L2 − r2)

)2
π2T 4

5 + 4 sinh2
(
α(r)

)
cosh4

(
α(r)

) , s(r) = 2T 2
D3

(
1− Ω2(L2 − r2)

)5/2
π2T 5 cosh4

(
α(r)

) ,

(5.2)

where Ω(3) = 2π2.

We can use these quantities to compute the thermodynamic action (3.18) (see also

appendix B), which is the Gibbs free energy,

βIE = F = E − TS − ΩJ = −Ω(3)
T 2

D3

2
(r3kP + r4ΩQ) , (5.3)
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where P is the pressure defined in (4.1). Varying with respect to r keeping T , Ω and Q

constant, one may check explicitly that one indeed obtains the EOM (4.4), i.e. the equation

dE(r)

dr
− Ω

dJ(r)

dr
− T dS(r)

dr
= 0 , (5.4)

is equivalent to the EOM (4.4). We see that this in turn means that the first law of

thermodynamics is satisfied for solutions of the EOM (4.4).

To obtain the on-shell expressions for the conserved quantities in (5.1), it is useful to

define the rescaled quantities

E ≡ LE

ND3N
, J ≡ J

ND3N
, S ≡ LTmaxS

ND3N
, (5.5)

where we recall that ND3N = Ω(3)QL
4. These satisfy the first law of thermodynamics in the

form dE = T̂ dS + Ω̂dJ, where Ω̂ ≡ ΩL. One can also check that the Smarr relation (B.10)

is satisfied. In the following we will also use again r̂ ≡ r/L to simplify the equations.

Using (5.1) and the definitions above, one finds

E±(T̂ ,k) =
27

16
√

5

k3r̂3
±

T̂ 4
φ(4 + φ) , J±(T̂ ,k) = E±Ω̂±(1− r̂2

±) + r̂4
± , (5.6)

S±(T̂ ,k) =
27

4
√

5

k5r̂3
±

T̂ 5
φ2 , (5.7)

where φ(T̂ ,k) is determined by (4.15) and r̂±(T̂ ,k) for the two solution branches given

in (4.16). It also follows that the on-shell free energy is given by

F±(T̂ ,k) =
27

16
√

5

k5r̂3
±

T̂ 4
φ(4− 3φ)− Ω̂r̂4

± . (5.8)

These explicit results enable one to easily plot and examine any combination of the above

quantities including r̂± for given value of T̂ .

To start, we exhibit in figure 5 the solution branches in a (r̂,J) plot for various val-

ues of T̂ , and we recall that the corresponding figure for the extremal case is given in

figure 1. We note the following new features. The angular momentum lies in the range

Jmin(T̂ ) ≤ J ≤ Jmax(T̂ ), where the boundary values satisfy dJ(r)/dr = 0. We will denote

the corresponding r values by rJmin and rJmax respectively. Contrary to the extremal case

we observe that one has a non-zero lower bound Jmin(T̂ ) which increases with T̂ . On the

other hand, the upper bound decreases with temperature. Just as for the extremal case,

we observe that for each J in this range, there are two solutions depending on the value of

r. We will shortly see that the one with largest r is the one that is stable.

5.2 Stability

To address the stability we turn our attention to the on-shell free energy given in (5.8).

In figure 6 we have depicted (r̂,F) as well as (J,F) plots for various values of T̂ . Note

that the corresponding plots for the energy in the extremal case were given in figure 2.

Comparison of the free energies then shows that the lower branch is expected to be stable
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r̂

J

Figure 5. J versus r̂ for the two solution branches of thermal giant gravitons for the same values

of T̂ as in figure 4.

r̂

F

J

F

Figure 6. F versus r̂ (left plot) and versus J (right plot) for the two solution branches of thermal

giant gravitons at the same values of T̂ as in figure 4.

for rJmin ≤ r ≤ L (with Jmin ≤ J ≤ 1) and the upper branch for rJmax ≤ r ≤ 1 (with

1 ≤ J ≤ Jmax). This is entirely in parallel with the stability properties of the extremal

giant graviton (see section 2.2), the difference being that as a consequence of the finite

temperature, a part of the lower branch has become unstable and there is a minimum

angular momentum. Note that it follows that the minimum size stable thermal giant

graviton is thus rJmin , which is greater than rmin (for which the solution is unstable). We

also see that the point where the branches meet in r̃ is always in the unstable region. On

the other hand, the branches also meet in r = L, but for different values of Ω. These

special points will be considered in more detail in appendix D.

The fact that Jmin and Jmax denote the onset of instability in the lower and upper

branch respectively is further corroborated by looking at the turning points in a (J, Ω̂) plot,
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J

Ω̂

Figure 7. Ω̂ versus J for the two solution branches of thermal giant gravitons for the same values

of T̂ as in figure 4.

which is shown in figure 7. We see that these boundaries of stability occur precisely at the

turning points where dJ/dΩ = 0, in accord with expectations based on the Poincaré turning

point method (see e.g. [29] and references therein). Finally, we note that these results for

the stability of the branches are confirmed by a more detailed off-shell analysis for the three

limits described in section 4.2. The special meeting points of the two branches k = 1 and

k = T̂ , which correspond respectively to the maximum size thermal giant graviton and the

minimal charge parameter solution and their stability are considered in appendix D. The

most interesting limit, which is the low temperature limit, will be considered in the next

subsection.

5.3 Low-temperature limit

We now compute the various thermodynamic quantities for the lower and upper solu-

tion branch for low temperatures. Using the expansions (4.21), (4.23) in (5.6), (5.7), one

finds for the energy, angular momentum and entropy for the lower branch in the low

temperature limit

E−(T̂ , r̂) ' r̂2 +

√
5

9

1

r̂2
T̂ 4 , J−(T̂ , r̂) ' r̂2 +

√
5

9

ρ̂2

r̂2
T̂ 4 , T̂S−(T̂ , r̂) ' 4

√
5

27
T̂ 4 , (5.9)

where here and in the following ρ̂2 = 1− r̂2. The free energy becomes

F−(T̂ , r̂) ' r̂2 +

√
5

9r̂2

(
1− 4r̂2

3

)
T̂ 4 , (5.10)

and we recall that the higher order corrections in the expressions above are of order T̂ 8. It

is trivial to check that the first law dE− = Ω̂dJ− + T̂dS− is satisfied for these quantities.

We can also compute the on-shell free energy as a function of the lower branch angular

momentum. To this end we invert J in (5.9)

r̂−(T̂ ,J) '
√

J +
3
√

5

40

J− 1

J3/2
T̂ 4 . (5.11)
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Inserting this into (5.10) we then obtain

F−(T̂ ,J) = J−
√

5

27
T̂ 4 +O(T̂ 8) , (5.12)

where we note that the first correction to the extremal results is independent of the angular

momentum. Reintroducing the dimensions from the definitions (5.5), this gives us the final

result for the low temperature expansion of the free energy of the lower branch thermal

giant graviton

F (T, J) =
J

L
− π4

4
N2

D3L
3T 4 +O(T 8) . (5.13)

This is one of the central results of the paper.

Finally we can compute the ratio J/E for the lower branch. We find

J

E
= L− 3π4L

4J
N2

D3(LT )4 +O(T 8) , (5.14)

where the first term is recognized as the usual Kaluza-Klein contribution while the second

term is due to thermal effects.

Repeating this procedure for the upper branch, we find

E+(T̂ , r̂) ' 3r̂2

ˆ̄Ω+

[
1 +

√
5(r̂ − 3ρ̂2)

r̂4 ˆ̄Ω2
+

T̂ 4

]
, (5.15)

J+(T̂ , r̂) ' r̂2(3ρ̂2 + r̂2)

[
1− 9

√
5ρ̂2

r̂4(3ρ̂2 + r̂2) ˆ̄Ω4
+

T̂ 4

]
, T̂S+(T̂ , r̂) ' 4

√
5

ˆ̄Ω3
+

T̂ 4 . (5.16)

Again it is possible to show that these quantities obey the first law of thermodynamics.

Finally, for the free energy one finds in this case

F+(T̂ , r̂) =
3r̂2

ˆ̄Ω+

(
1− 3

√
5

ˆ̄Ω4
+r̂

4

)
. (5.17)

One may eliminate from this r̂ in favor of J as done above for the lower branch, but the re-

sulting expression involves a complicated function of the angular momentum in multiplying

the thermal correction, so that we omit it here.

We note that the results for J in (5.9), (5.15) explicitly show what is seen in figure 4,

namely that turning on a temperature has the effect that the lower (−) branch is pushed

to the right while the upper (+) branch is pushed to the left.

Stability. We now turn our attention to stability. The method we use is described in

appendix D.3 and is based on an analysis of the Helmholtz free energy FH ≡ E−TS whose

on-shell (rescaled) value is related to the Gibbs free energy (5.8) through the relation

F±H = F± + Ω̂r̂4 . (5.18)

Having described the solution space for low temperatures means that we have essentially

solved the first derivative (FH)(1) of the off-shell free energy for T̂ � 1, r � T̂L. To
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analyze the stability, we thus compute the second derivative (FH)(2) for both branches.

We find to leading order in T̂

(FH)−(2) '
2r̂2

ρ̂2

[
1−
√

5(7− 4r̂2)

9r̂4
T̂ 4

]
, (5.19)

and

(FH)+
(2) '

2ˆ̄Ω+r̂
2

3ρ̂2

[(
4r̂4 − 3

)
−
√

5

ˆ̄Ω2
+r̂

4

(
27− 40r̂2 + 16r̂4

)
T̂ 4

]
. (5.20)

Solving for (FH)(2) = 0 determines where a solution goes from stable to unstable. Since

the low temperature expansion is only valid for r � T̂L, we see that the entire part of

the lower branch captured by the low temperature expansion remains stable. However,

the value of r for which the upper branch becomes unstable is pushed up when we turn

on a temperature. Indeed, solving (FH)+
(2) = 0, we find that the upper branch becomes

unstable at

r∗ =

√
3

2
L+

8L

9

√
5

3
T̂ 4 +O(T̂ 8) . (5.21)

Here the first term is recognized as the zero temperature instability from the DBI analysis

in section 2.2. Note also that as a consistency check, the same value of r∗ is obtained by

finding the maximum of J+ in the low-temperature expansion (5.16), i.e. (∂J+/(∂r)|r=r∗ =

0 +O(T̂ 8).

Maximal and minimal angular momentum. We also derive the low temperature

limit expression for the maximal and minimal value of the angular momentum, found on

the upper and lower branch respectively. The largest value of J is exactly attained on the

upper branch where it goes from stable to unstable. So Jmax = J+(r∗). Using this, we find

Jmax =
9

8
−
√

5

3
T̂ 4 +O(T̂ 8) . (5.22)

This expression fits nicely with the numerical data.

The minimal value of J is attained close to r = 0. This means that an analytical

expression for Jmin is not obtainable from the low temperature expansion (as it is only

valid for r̂ � T̂ ). However, we expect the following behavior for small T̂

Jmin ∼ T̂ β . (5.23)

It is then possible to do a fit of the numerically obtained values for Jmin. Doing this one

finds that β ≈ 1.89. A plot of numerical values of Jmin versus T̂ is given in figure 8.

6 Thermal giant graviton on AdS5

In this section we analyze the case of thermal giant gravitons moving in the AdS5 part of

the AdS5 × S5 background. We briefly review the extremal configuration of refs. [18, 19]

and then present its thermal generalization following the prescriptions used in sections 4

and 5 for the case of thermal giant gravitons moving on the S5 part.
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T̂

Jmin

Figure 8. The minimum angular momentum Jmin of the thermal giant graviton versus the tem-

perature T̂ .

6.1 Extremal giant graviton on AdS5

The AdS5 metric is parameterized as

ds2 = −
(

1 +
ρ2

L2

)
dt2 +

(
1 +

ρ2

L2

)−1

dρ2 + ρ2dΩ2
(3) , (6.1)

with the four-form RR gauge field on AdS5 given by

Atα1...α3 = −r
4

L
dΩ(3) , (6.2)

where the coordinates αi parametrize the Ω(3) sphere in AdS5. We use the embedding

ρ = r, t = τ, φ1 = Ωt, ζ = 0, αi = σi . (6.3)

The intrinsic metric then takes the same form as in eq. (2.4) now with

k ≡ |k| =
√
R2

0 − Ω2L2 , (6.4)

where the redshift factor is given by R0 =
√

1 + r2

L2 . Also in this case we find two branches

of solutions of the EOMs

Ω̄− =
1

L
, Ω̄+ =

√
9L2 + 8r2

3
, (0 ≤ r <∞) . (6.5)

The corresponding energy and angular momentum are

E− = TD3Ω(3)r
2L , J− = TD3Ω(3)r

2L2 ,

E+ = TD3Ω(3)r
2L−1(3L2 + 2r2) , J+ = TD3Ω(3)r

2L
√

9L2 + 8r2 .
(6.6)

In this case the angular momentum is not bounded from above. Moreover, analysis of the

off-shell Hamiltonian shows that the lower branch is 1/2 BPS and stable while the upper

branch is not BPS and unstable.
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6.2 Finite temperature solution

We now examine the heated up version of the giant graviton moving on AdS5 following

the prescription employed in sections 4 and 5. Using the embedding (6.3) and the AdS5

background (6.1)–(6.2) we find the EOM

r2

L2
(1−R1(α)) + 3k2 + 4k

r

L
R2(α) = 0 , (6.7)

which has the following solutions

Ω± =

√
9L2 + 8(1 + ∆±(α))r2

3L2
, (6.8)

with ∆±(α) given in (4.8). The charge quantization takes the form (4.6) with k given

by (6.4). Note that in this case the lower bound on α is given by ᾱ with cosh2 ᾱ = 3/2,

which implies that the upper bound on the temperature is T ≤ Tstatic. This results from

the fact that in this case there is no geometric upper bound on k. Analogously to the S5

case we find

r̂±(T̂ ,k) =
3k√

1− 8∆±(α)
, (6.9)

with Ω± given by eq. (4.17) and r̂ = r/L.

Thermodynamic properties. In parallel with (5.1) the energy E, angular momentum

J and entropy S for this case are computed to be

E(r) = Ω(3)r
3

(
R2

0

ε(r)

k
− Qr

L

)
, J(r) = Ω(3)r

3L2 Ωε(r)

k
, S(r) = Ω(3)r

3s(r) , (6.10)

with ε(r), s(r) given in (5.2). The resulting on-shell Gibbs free energy is F = −Ω(3)(r
3kP+

Qr4/L), and by varying this for constant T , Ω and Q one can obtain the corresponding

EOMs (6.7). Using the definitions of eq. (5.5), we compute the following thermodynamic

quantities

E±(T̂ ,k) =
J±(1 + r̂2

±)

Ω̂±
− r̂4
± , J±(T̂ ,k) =

27

16
√

5

k3r̂3
±Ω̂±

T̂ 4

5 + 4 sinh2 α

cosh4 α
, (6.11)

S±(T̂ ,k) =
27

4
√

5

k5r̂3
±

T̂ 5 cosh4 α
, F±(T̂ ,k) =

27

16
√

5

k5r̂3
±

T̂ 4

1 + 4 sinh2 α

cosh4 α
− r̂4
± , (6.12)

where Ω̂ = ΩL.

We have plotted the angular momentum J as function of the S3 radius r̂ in figure 9

as well as the free energy F as function of J in figure 10. It is clear from figure 9 that for

T > 0 the angular momentum is bounded from below as J ≥ Jmin > 0 as in the case of the

thermal giant graviton moving on S5. Correspondingly, the S3 radius r̂ is also bounded

from below. Instead, there is no upper bound on J as in the extremal case.

For J > Jmin there are two available solutions. From figure 10 we see that the stable

solutions belong to the lower branch but the part of the lower branch between r̂Jmin and

r̂min is unstable. All solutions in the upper branch are unstable, as in the extremal case.12

12An off-shell analysis in the same spirit of section 5 using the method described in appendix D can be

carried out giving further evidence for this.
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r̂

J

Figure 9. J versus r̂ for the two solution branches of thermal giant gravitons on AdS5 for T̂ =

0, 0.1, 0.2 and 0.3.

J

F

Figure 10. F versus J for the two solution branches of thermal giant gravitons on AdS5 for

T̂ = 0, 0.1, 0.2 and 0.3. Note that the curves are very close to each other for different T̂ .

The analysis of the validity of the probe approximation works in the same way as

for the S5 thermal giant graviton. For small giant gravitons with r/L small we find the

condition rs � r, or equivalently, ND3/N � r4/L4. Instead when r/L is not small the

condition is rs � L which corresponds to ND3 � N . Note that the requirement T ≤ THP

implies that T � Tstatic.
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Low temperature expansion. Focussing on the stable branch of the solution we find

that for low temperatures

Ω−(T̂ , r) =
1

L
+O(T̂ 8) ,

J−(T̂ , r̂) = r̂2 +

√
5

9r̂2
T̂ 4 +O(T̂ 8) ,

F−(T̂ , r̂) = r̂2 +

√
5

27

3− r̂2

r̂2
T̂ 4 +O(T̂ 8) .

(6.13)

Inverting the second equation and plugging into the third equation of (6.13) we find exactly

the same result for F−(T̂ ,J) as given in (5.12). It is interesting that this leading thermal

correction to the free energy in the low temperature limit is thus universal for both the

lower branches of the thermal giant gravitons on S5 and AdS5.

7 Discussion and outlook

In this paper we constructed and studied thermal giant gravitons. Thermal giant gravitons

result from heating up the giant gravitons and the background space-time they move in.

We focussed on giant gravitons that in the extremal case are 1/2 BPS with 0 < J ≤ N

(along with a companion non-BPS branch of solutions with N < J ≤ 9N/8) obtained from

D3-branes wrapped on an S3 and moving in the AdS5 × S5 background. The thermal

giant gravitons are described using black D3-brane probes as described by the blackfold

approach [1–3].

Using the AdS/CFT correspondence our thermal giant graviton solution is expected

to correspond to a thermal state in the dual gauge theory. It would be highly interesting

to find a description of this thermal state in the gauge theory and compare its properties

to those of the thermal giant graviton. In particular, it would be important to compute

the free energy correction on the gauge theory side that corresponds to our result eq. (1.1)

for the thermal giant graviton.

An important question that arises from our work is what happens to the system of

the thermal giant graviton in AdS5 × S5 when the temperature is heated up beyond the

Hawking-Page temperature THP. For T < THP the background is in the phase where

thermal AdS5 times S5 is dominant. Instead for T > THP the dominant phase is an AdS

black hole times S5. This means the giant graviton moves in the latter background for

T > THP. Thus, it would be interesting to repeat the analysis of this paper for the AdS

black hole times S5 background.

One can also study what happens if one considers many giant gravitons moving in

AdS5 × S5. If sufficiently many giant gravitons move along the equator of S5 one can

describe them as smeared along this circle. However, while for extremal giant gravitons

the descriptions of the smeared and single giant gravitons are equivalent, for thermal giant

gravitons the horizon topology would change as one increases the number of giant gravitons

to the point where the horizons of each of them overlap. Thus, the non-BPS nature of

thermal giant gravitons makes it particularly interesting to study the difference between

the smeared and non-smeared phases. Moreover, the smeared phase is connected to the
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superstar [30] and 1/2 BPS bubbling AdS solutions of LLM [31]. Indeed, we expect that

the smeared thermal giant graviton solution should be a finite temperature version13 of the

1/2 BPS bubbling AdS solution.

Another direction to pursue would be to compute higher-order corrections14 in the

matched asymptotic expansion to our thermal giant gravitons. In this paper we have

worked in the probe approximation ND3 � N to the leading order in the expansion pa-

rameter ND3/N . Computing the higher-order corrections would reveal information on

what happens for larger values of ND3/N . This could possibly also be interesting to

examine numerically.

Finally, we have focussed in this paper solely on heating up 1/2 BPS giant gravitons.

An interesting future direction to pursue would be to heat up giant gravitons with less

supersymmetry [36]. Note that even in the extremal case not much work has been done to

find the explicit brane configurations for 1/4 and 1/8 BPS giant gravitons.
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A Detailed stability analysis of extremal giant gravitons

In this appendix we carefully analyze the stability of the two solution branches of extremal

giant gravitons by introducing a time dependent perturbation in the radial dynamics and

solving the linearized EOMs. More precisely, given a giant graviton configuration char-

acterized by a size r and angular velocity Ω and with its dynamics governed by the DBI

Lagrangian (2.6), we consider the following perturbation around an on-shell configuration

r = r̂0

(
1 + ε Cr eiωτ

)
, Ω = Ω0

(
1 + ε CΩ e

iωτ
)
. (A.1)

Here r̂0 and Ω0 denote the on-shell values of the configuration we perturb around and the

perturbation parameter ε satisfies ε� 1. The factors Cr and CΩ measure the amplitude of

the oscillations. Our aim is to search for solutions with ω2 > 0, signifying the stability of

the configuration.

In order to introduce the perturbations (A.1) in eq. (2.6) we need to evaluate the

quantities involved to lowest order in ε. We begin by obtaining the induced metric γab for

this time-dependent embedding in the form

γabdσ
adσb = −k2dτ2 + r2dΩ2

(3) +O(ε2) , (A.2)

13See ref. [32] for an exploration of bubbling AdS black holes. Note also that a coarse-graining of LLM

geometries has been considered in [33–35] but these do not correspond to supergravity backgrounds with

horizons.
14See e.g. refs. [3, 6, 14–16, 26, 28] for higher-order corrections in the blackfold approach.
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where, despite of their resemblance to the unperturbed case, k and r are now time-

dependent quantities. Doing the same exercise for the WZ term of the action we obtain

the time dependent Lagrangian

LDBI = −TD3Ω(3)r
3

[
k− L2ṙ2

2ρ2k
− rΩ

]
, (A.3)

where we have defined ρ2 ≡ L2 − r2. The two Euler equations for the Lagrangian above

take the form

k2 + r2Ω2− 4rΩk +
L2

ρ3k2

(
rρ3ΩṙΩ̇ + rρk2r̈ − r2

2

(
(2− L2Ω2)r2 − 3L2k2

)
ṙ2

)
= 0 , (A.4)

which describes the radial dynamics, while angular momentum conservation is encom-

passed by
d

dτ

(
r4 +

ṙ2r3L2Ω

2k3
+
ρ2r3Ω

k

)
= 0 . (A.5)

In the EOMs (A.4), (A.5), we introduce the perturbations (A.1) and we take the on-shell

value Ω0 to be that of the lower or upper branch solution in (2.10).

Starting with the lower branch, eqs. (A.4) and (A.5) reduce to(
ρ2LCΩr̂0 + 2r̂0Cr

)
ε+O(ε2) = 0 ,

(
2CΩ +

CrLr̂0ω

ρ

)
ε+O(ε2) = 0 , (A.6)

and are solved by ω2 = 4/L2. Therefore, since ω2 > 0 for all values of r, we conclude

that the lower branch is always stable. Due to the 1/2-BPS property of the branch, this is

expected. For the upper branch we instead find the set of equations(
−2CΩr̂0 +

3Crρ2

Ω0

)
ε+O(ε2) = 0 , (A.7)(

18CΩ − Crr̂0Ω0(3L2ω2 + 16ρΩ2
0)
)
ε+O(ε2) = 0 , (A.8)

which are solved for

ω2 =
4

9L2ρΩ̂2
+

(4r2 − 3L2) . (A.9)

Hence we conclude, as stated in section 2.2, that the non-BPS upper branch is stable for

r >
√

3L/2 and unstable for r <
√

3L/2.

B Thermodynamic blackfold action and Smarr relation

In this appendix we show that the (mechanical) action (3.17) is equivalent to the thermo-

dynamic action (3.18). To this end we first rewrite (3.17) as

I = ∆t

∫
Bp
dV(p)

[
L(bf) + L(em)

]
, (B.1)

where from now on the subscripts “bf” and “em” refer to the blackfold and external field

respectively. In (B.1) we have factored out the integration over the (Killing) time t. This
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produces a redshift factor which must be included in the Lagrangian densities, e.g. L(bf) =

γ−1
⊥ R0P where γ⊥ is defined in (3.15). From the conserved quantities derived in (3.16) we

also introduce the Hamiltonian and angular momentum densities

H=H(bf)+H(em) =γ−1
⊥

(
Tµν(bf)+Vµν(em)

)
nµξν , J =J(bf)+J(em) =γ−1

⊥

(
Tµν(bf)+Vµν(em)

)
nµχν ,

(B.2)

where Tµν(bf) is the blackfold stress tensor which encapsulates the gravitational and electro-

magnetic self-energy/momentum and Vµν(em) (see (3.14)) is associated with the coupling of

the charge current to the external electromagnetic field. Notice that the electromagnetic

contributions only depend on the embedding degrees of freedom of the blackfold and not

on the effective blackfold fluid degrees of freedom.

Now, for the blackfold degrees of freedom we have the relation

H(bf) + γ−1
⊥ uµnµTs = ΩJ(bf) − L(bf) , (B.3)

which follows from eq. (2.19) of [7] by multiplying with γ−1
⊥ . This is the blackfold general-

ization of the usual relation H = θ̇J − L in Hamiltonian mechanics between Hamiltonian

and Lagrangian, but now with an extra term contributing to the energy due to the fact

that the blackfold has internal thermal degrees of freedom living on it. However, since the

external electromagnetic field does not couple to the thermal degrees of freedom living on

the blackfold, one has for the electromagnetic part that

H(em) = ΩJ(em) − L(em) . (B.4)

We now use (B.3), (B.4) in (B.1) along with the expression (3.19) for the total entropy S

of the blackfold. If we also rotate to Euclidean time so that ∆t→ ∆τ = β = 1/T , we then

find that the Euclidean action is given by

IE = E − ΩJ − TS . (B.5)

Here we recall that, as in [7] this is the Euclidean action at fixed charge Qp. As explained

in that reference, it is also possible to go to an ensemble where the charge can vary by

introducing a potential Φp dual to the charge and performing a Legendre transformation.

Smarr relation. Finally, we derive the Smarr formula for blackfolds in external fields.

We use the perfect fluid stress tensor Tµν = (ε+ P )uµuν + Phµν and the local thermody-

namic relations for charged p-branes in D = n+ p+ 3 dimensions

ε+ P = T s , ε = −(n+ 1)P − nΦpQp . (B.6)

First, we note that the Smarr relation found previously for blackfolds based on charged p-

branes (with zero external field) is easily generalized to the case where ξµ is not orthogonal

to the worldvolume Bp. One finds

(D − 3)E(bf) − (D − 2)
(
ΩJ(bf) + TS

)
− nΦHQp = T tot

(bf) , (B.7)
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where

ΦH =

∫
Bp
dV(p)γ

−1
⊥ R0Φp , (B.8)

T tot
(bf) = −

∫
Bp
dV(p)

(
γ−1
⊥ R0trT + γ−1

⊥ Tµν(bf)ξµnν

)
, trT ≡ γabT ab . (B.9)

We then add to both sides of (B.7) the term (D − 3)E(em) − (D − 2)ΩJ(em), yielding the

generalized Smarr relation

(D − 3)E − (D − 2) (ΩJ + TS)− nΦHQp = Ttot , (B.10)

where

Ttot = −
∫
Bp
dV(p)

(
γ−1
⊥ R0trT + γ−1

⊥ (Tµν(bf) + Vµν(em))ξµnν + (D − 2)L(em)

)
. (B.11)

Note that, as expected, the total tension gets modified by the presence of the external field.

C Derivation of the thermal giant graviton EOM

In this appendix we provide some details on the derivation of the thermal giant graviton

blackfold EOM (4.4). First we note that for a perfect fluid stress tensor, the extrinsic

blackfold EOM (3.7) can be rewritten as [2, 7]

PKµ + sT u̇µ = Fµ , (C.1)

where P is the pressure, s the entropy density, T the local temperature, Kµ the extrinsic

curvature vector, u̇µ the fluid acceleration and Fµ the external force.

We proceed by computing the various terms. Using (3.8) along with the the back-

ground (2.2) and embedding (2.3) we compute

K ζ
ττ =

Ω2rµ1

L2
, K ζ

11 = −µ1µ
2
2

rL2
, K ζ

22 = −µ1µ
2
3

rL2
, K ζ

33 = −rµ1

L2
, (C.2)

where

µ1 =
√
L2 − r2 , µ2 = r sin θ , µ3 = r cos θ , (C.3)

and we recall that ζ is the direction parameterizing the fibration of the S5 into S3 on which

the giant graviton of size r = L sin ζ is defined. This gives for the extrinsic curvature vector

Kζ = −µ1

r

Ω2r2 + 3k2

L2k2
, (C.4)

with the other components of Kµ equal to zero. Notice that Kζ is manifestly negative. To

compute the extrinsic blackfold force term, we first compute the pull back of the RR field

strength (2.1) on the blackfold according to Fτ123
ζ = 4ΩdΩ(5)/L. Using this together with

the blackfold four-current (4.3) in the right side of (3.7), we find that the only non-vanishing

component of the force term is

Fζ =
4ΩQµ1

L2k
. (C.5)
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We see that F ζ/(ΩQ) is manifestly positive. Finally we compute the fluid acceleration

u̇µ = uν∇νuµ. To this end notice that although the (local boost) vector field ua is only

defined on the world volume of the giant graviton, it can be pushed forward to the vector

field uµ on the entire R × S5. This means that the acceleration can be computed using

u̇µ = ∂µ log k so that

u̇ζ =
Ω2µ1r

L2k2
, (C.6)

with the rest of the components of u̇µ equal to zero. Note that the acceleration u̇ζ is

manifestly positive.

The extrinsic equation (C.1) is thus only non-trivial for µ in the ζ-direction and from

the results above we see that since the blackfold pressure P (see (4.1)) is negative, the left

hand side is manifestly positive. The structure is therefore clear: In order for the D3 brane

not to collapse under gravity, the electromagnetic repulsion term (the right hand side)

must exactly balance the gravitational pull (the left hand side). We therefore conclude

that ΩQ > 0, which means that the solution must always be rotating and charged, as

expected. Moreover, we see that the solution space is symmetric under charge conjugation

and time inversion.

The thermal giant graviton blackfold EOM (4.4) of the text is then obtained from (C.1),

by substituting (C.4), (C.5), (C.6) and using the pressure P in (4.1) along with T
and s in (4.2).

D Analysis of the two meeting points

In this appendix we perform a careful analysis of the two meetings points in configuration

space mentioned in section 5 corresponding to the maximal and minimal charge parameter

giant gravitons. These bifurcation points (see e.g. ref. [29]) deserve special attention as

they provide key information about the overall stability properties of the thermal giant

graviton. Being bifurcation points where two sets of equilibria configurations meet, the

stability properties of the physical system can in generally change and therefore special

attention is needed.

According to the stability analysis that was presented in section 5 for the low tempera-

ture regime, all configurations near the maximal size are stable in both branches. However,

one can imagine increasing slightly the temperature and moving away from such regime

while still being below the Hawking-Page temperature. The analysis of the stability prop-

erties of the maximal giant graviton carried out below allow us to conclude that, even after

the temperature is further increased, the thermal gravitons are stable. Moreover, part of

the lower branch, which contains Jmin, is not covered by the low temperature expansion.

Since we do not reach Jmin analytically in that expansion, we instead analyze here the end

point of the lower branch described by the minimal charge parameter giant graviton and

show explicitly that a change of stability has occurred. We begin by describing these two

different limiting cases and then proceed to study their stability in section D.3.
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D.1 The maximal giant graviton limit

In this section we probe the regime in solution space dominated by the dynamics of the

maximal giant graviton, which is achieved by performing an expansion of eqs. (4.16)–(4.17)

around k = 1. The extremal maximal giant graviton is the object for which there is good

evidence that its dual operator is a Schur polynomial, hence this configuration is expected

to be an ideal candidate for a preliminary study on the dual state of giant gravitons at

finite temperature. In view of this, we begin by describing the properties of the thermal

maximal giant graviton. At the exact point k = 1 (or r = L) the angular velocity of the

configuration is given by

Ω±(φ0) =
3

L
√

1− 8∆±(φ0)
, (D.1)

where φ0 is given in terms of δ0 is obtained by setting k = 1 in eq. (4.14), (4.15). The

conserved charges can be obtained from eqs. (5.1). The total energy and angular momentum

then take the form

E±(φ0) =
27

16
√

5

φ0

T̂ 4
(4 + φ0) , J±(φ0) = 1 , (D.2)

where we see clearly that, as in the extremal case, the angular momentum is independent

of the angular velocity and temperature of the configuration. Moreover the total entropy

and Helmholtz free energy read

S±(φ0) =
27

16
√

5

φ2
0

T̂ 5
, F±H(φ0) =

27

16
√

5

(4− 3φ0)φ0

T̂ 4
. (D.3)

The large giant graviton expansion. We now perform the expansion around k = 1.

From eq. (4.16) we find a relation between the values of r̂ and the values of k of the form

r̂± = 1 +
k− 1

Ω̂±(φ0)
. (D.4)

Parametrizing the expansion in terms of r̂ we invert the above relation in order to find:

(k± − 1) = Ω̂2
±(φ0)(r̂ − 1) . (D.5)

Since the expansion is only valid for values of k ∼ 1 we must require L2Ω2
±(φ0)(r̂−1)� 1.

Defining dr̂ ≡ r̂ − 1 and using eq. (4.17) to perform the same expansion yields

Ω± = Ω±(φ0)

(
1 +

Ω̂4
±(φ0)

9
g(φ0)dr̂

)
, (D.6)

where we have defined the function g(φ0) through the expression:

g(φ0) = −8(1 + ∆±(φ0))(−1 + ∆±(φ0)) + 36∂k∆±(φ0) . (D.7)

Similarly, the charge parameter φ given in eq. (4.15) is expanded to

φ = φ0

(
1− Ω̂±(φ0)φ0f(φ0)dr̂

)
, (D.8)
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where we have defined the function f(φ0) as

f(φ0) = 2

(
2
√

3cos(
2

3
δ0) +

√
3cos(

4

3
δ0) + 8cos(

δ0

3
)sin3(

δ0

3
)

)
sec(δ0)csc(δ0) . (D.9)

The physical properties can be easily obtained from expressions (5.1) and read

E± = E±(φ0)

(
1 +

[
3
(

1 + Ω̂2
±(φ0)

)
− Ω̂2

±(φ0)f(φ0)
φ0 − 3

4 + φ0

]
dr̂

)
, (D.10)

J± = J±(φ0) +
(

4− 2Ω̂±(φ0)φ0(4 + φ0)
)
dr̂ , (D.11)

S± = S±(φ0)
(

1 +
[
3
(

1 + Ω̂2
±(φ0)

)
+ 2Ω̂2

±(φ0)(1− f(φ0))
]
dr̂
)
, (D.12)

and finally the Helmholtz free energy

F±H = F±H(φ0)

(
1 +

[
−12 + 9φ0 + Ω̂2

±(φ0)(−12 + 17φ0 − 54(2− 3φ0)f(φ0))

4− 3φ0

]
dr̂

)
.(D.13)

D.2 The minimal charge parameter limit

The minimal charge parameter limit is the point in configuration space where the two

branches connect smoothly and can be seen as the point particle analog at finite temper-

ature. Furthermore, it is a limit which describes thermal giant graviton configurations at

any temperature T , including very low temperatures, but it is not captured by the low

temperature limit of section 5 because r̂ ∼ T̂ . At the exact meeting point the thermal

giant graviton is characterized by a specific value of the charge parameter α̃ which implies

a characteristic size ˆ̃r given by (4.18) and corresponding angular velocity

ˆ̃Ω =

√
1 +

4

5
T̂ 2 . (D.14)

The physical properties are then easily obtained from eqs. (5.1) and read:

Ẽ =
18

5

T̂ 2

ˆ̃Ω3
, J̃ = 2ˆ̃r2 − ˆ̃r4 , S̃ =

4

9
ˆ̃r4 ˆ̃Ω , F̃H =

18

25

5− 2T̂ 2

ˆ̃Ω2
T̂ 2 . (D.15)

The minimum charge parameter expansion. We now obtain an effective description

of the physics near this limit by expanding the physical properties of these configurations

near k = T̂ . We begin by expanding the charge parameter parametrized by φ using

eq. (4.15), which to leading order yields

φ =
4

9
− C2

(
k

T̂
− 1

)
, (D.16)

where C is a numerical constant (∼
√

3) which can be calculated exactly. Using this form

of the charge parameter we expand the size r using eq. (4.16), which leads to

r± = r̃

(
1 +

3
√

5C√
2

1− T̂ 2

5 + 4T̂ 2

√
k

T̂
− 1

)
. (D.17)
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Thus we invert the equation above to find the relation(
k±

T̂
− 1

) 1
2

= ±
√

10

3C
dˆ̃r , (D.18)

where we have defined the expansion parameter

dˆ̃r =
1

1− ˆ̃r

(
1− r

r̃

)
. (D.19)

Therefore for this approximation to be valid we need to require dˆ̃r ≤ 1. Using the above

definition we can rewrite the correction to the angular velocity to leading order in the form

Ω± = Ω̃

(
1± 9T̂ 2

5ˆ̃Ω2
dˆ̃r

)
. (D.20)

It is then straightforward to write down all the physical properties using eqs. (5.1)

E = Ẽ

(
1± 3(T̂ 2 − 1)

ˆ̃Ω2
dˆ̃r

)
, J = J̃

(
1± 6(5 + 2T̂ 4 − 7T̂ 2)

ˆ̃Ω2(10− T̂ 2)
dˆ̃r

)
, (D.21)

S = S̃

(
1± 6(1− T̂ 2)

ˆ̃Ω2
dˆ̃r

)
, FH = F̃H

(
1± 3(5 + 2T̂ 4 − 7T̂ 2)

ˆ̃Ω2(5− 2T̂ 2)
dˆ̃r

)
. (D.22)

D.3 Stability properties in the various limits

In this section we examine the stability properties of the various limits of the thermal giant

graviton taken in the previous sections. To this aim we consider the localized giant graviton

to be in thermodynamical equilibrium with the surroundings at temperature T . Moreover,

since the total angular momentum J is conserved, the relevant variables for describing

the thermodynamic ensemble are the size of the giant graviton r, the temperature T , the

angular momentum J and the (conserved) total charge Q = TD3ND3. The stable solutions

to the blackfold EOMs are then characterized by the paths in configuration space for which

the Helmholtz free energy FH = E − TS is minimized for T , J and Q held fixed. In other

words, the stable solutions are determined by the requirements

(FH)(1) ≡
∂FH

∂r

∣∣∣
T,J,Q

= 0 and (FH)(2) ≡
∂2FH

∂r2

∣∣∣
T,J,Q

> 0 . (D.23)

The first of these equations is equivalent to the EOM (4.4) and was examined in section 4.

The formulae (5.1) for the conserved quantities allows us to obtain the free energy of a

(in general off-shell) given thermodynamical configuration. However, notice that the free

energy will be parameterized in terms of the angular velocity Ω and charge parameter

φ. Determining the derivatives (D.23) is straight forward. For a given r, T and Q, let

Ω = Ω(r;T,Q) and φ = φ(r;T,Q) denote the corresponding on-shell values. Now consider

a small variation of the configuration r → r + dr, Ω → Ω(r;T,Q) + Ω(1)dr + Ω(2)dr
2,

φ→ φ(r;T,Q) +φ(1)dr+φ(2)dr
2 so that J , T and Q are kept constant up to O(dr2). This

gives us four equations (using equations (5.1) and (4.6) for each order) which allows us
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to determine the four parameters Ω(1),Ω(2), φ(1), φ(2). Since we are perturbing around an

on-shell configuration (FH)(1) = 0, so that the overall change in FH is

FH → FH + (FH)(2)dr
2 . (D.24)

Inspecting the sign of (FH)(2) allows us to determine the stability of the given solution to

the blackfold EOM. This method was used in section 5.3 to probe the stability properties

in the low temperature regime. We now make further use of this method by applying it to

the two cases presented in the previous sections and state the results for the second order

change in the free energy in the various limits.

Maximal giant graviton limit. Close to maximality we make use of the expansion

given in section D.1. We find for the second order change in the free energy

(FH)±(2) =
4

ρ̂2

4− 4φ0 − Ω̂±(φ0)
√

1− φ0(4 + φ0) + Ω̂2
±(φ0)(1 + φ0

4 )2

√
1− φ0(4 + φ0)

+H(φ0, r̂)dr̂ , (D.25)

where H(φ0, r̂) is some intricate function of φ0 and r̂. An explicit computational check can

be performed in order to conclude that (FH)±(2) > 0 for all values of r except at T̂ = 1 (see

below). Hence, near maximality, all giant graviton configurations are stable and so remain

for all temperatures.

Minimal charge parameter limit. At the bifurcation point in configuration space

where the two branches meet smoothly, the expansion given in section D.2 is the required

tool to study the stability properties of these configurations. Using the same method as

for the previous case we find the second order change in the free energy:

(FH)±(2) = (F̃H)(2)

(
1± 5

√
5ˆ̃Ω

6(5− 2T̂ 2)
T̂ 2dˆ̃r

)
, (F̃H)(2) = − 12ˆ̃Ω2

5− 2T̂ 2
F̃H . (D.26)

Careful inspection of the sign of (FH)±(2) leads us to conclude that all giant graviton con-

figurations near the bifurcation point are unstable, i.e., (FH)±(2) < 0. This provides further

evidence for the change of stability properties occurring at Jmin and Jmax as explained in

section 5.
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