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1 Introduction

For last few years, there was large progress in supersymmetric field theories in three-

dimension. Many physical quantities in strongly coupled field theories have been computed

by using localization method. For example, partition functions of N = 2 supersymmetric

field theories in S3 [1–3] and S2 × S1 [4, 5] are computed exactly, and they have been

used to study non-perturbative aspects of three-dimensional field theories, such as duali-

ties among three-dimensional field theories [6–9] and relation to M-theory via AdS/CFT

correspondence [4, 10, 11]

In this paper, we investigate the partition function of three-dimensional N = 2 super-

symmetric field theories in the orbifold S3/Zn [12, 13]. Due to the non-trivial homotopy of

the orbifold, π1(S
3/Zn) = Zn, a gauge theory defined in it has degenerate vacua specified

by the holonomy associated with the gauge symmetry. Their contributions are summed

up to obtain the total partition function. In general, the partition function of a Euclidean

theory is complex. We usually focus only on its absolute value and the phase is disregarded.

This is, however, not allowed when we compute the partition functions of different sectors

which are summed up. Even when we are interested only in the absolute value of the total

partition function, we need to care about the relative phase of each contribution. The

purpose of this paper is to determine appropriate phase factors in the holonomy sum in

some gauge theories and look for a general rule for these phases. We consider two gauge
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theories which are known to have dual field theories without vector multiplet. On one

side of the dualities, in the non-gauge theories, we can compute the absolute value of the

partition function up to overall constant factor independent of parameters. By comparing

the partition functions of gauge and non-gauge theories in each dual pair, we infer the

relative phases in the holonomy sum in the gauge theories.

This paper is organized as follows. In section 2, we summarize a general formula of

the orbifold partition function. It is written by using orbifold extension of the double sign

function, which we denote by sb,h(z). In section 3, we consider two dual pairs and determine

the phase factors in the holonomy sum in the gauge theories so that the sum agrees with

the partition function of the dual non-gauge theories. We find that when the order n of the

orbifold group is odd the phase factor is absorbed in the definition of the function sb,h(z).

In section 4 we consider more dual pairs which are derived from one of the dualities studied

in section 3. The last section is devoted to the conclusions and discussions.

2 The S3/Zn partition function

2.1 The S3 partition function

Let us first summarize the partition function on S3 without orbifolding [1–3, 14, 15]. We

consider the squashed S3 with the metric

ds2 = r2
[
(µ1)2 + (µ2)2 +

1

v2
(µ3)2

]
, (2.1)

where µa (a = 1, 2, 3) are the left-invariant differentials on S3 ∼ SU(2). We set r = 1 in

the following. v is the squashing parameter. We also define parameters u and b by

u = ±
√
v2 − 1, b =

1 + iu

v
, (2.2)

for later use. The isometry of the round sphere SU(2)L × SU(2)R is broken by the

squashing to

SU(2)L ×U(1)r. (2.3)

We consider an N = 2 supersymmetric gauge theory on this manifold. The supercharges

belong to the representation 20 of (2.3).

A general formula for the partition function for the squashed sphere is given in [15].

The same partition function is first obtained in [14] for a different deformation of S3. See

also [16–18] for its relation to 4d superconformal index. The formula is

Z =

∫
[dλ]e−S0(λ)Z1−loop, (2.4)

where Z1−loop is the one-loop determinant

Z1−loop =

∏
α∈∆ sb

(
α(λ)− i

v

)
∏
I sb

(
ρI(λ)− i(1−∆I)

v

) . (2.5)
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The index I labels chiral multiplets, and ρI and ∆I are the weight vectors and the Weyl

weights of the chiral multiplets. The integration variable λ is an element of the Cartan

subalgebra of the gauge group G parameterizing the Coulomb branch. If G is U(N) or

product of U(N), the integration measure [dλ] is defined by

[dλ] =
1

|W |
rankG∏

a=1

dλa, (2.6)

where |W | is the order of the Weyl group of G, and λa are the diagonal components in the

fundamental representation of λ. Different normalizations are also used in the literature.

The normalization (2.6) is chosen so that theories in the dual pairs we will consider in

section 3 have the same partition functions.1

S0(λ) is the classical action. If the theory has the Chern-Simons term

SCS =
ik

4π

∫
trfund

(
AdA− 2i

3
A3

)
, (2.7)

and the Fayet-Iliopoulos term

SFI = − ζ

2π

∫ √
gDU(1)d

3x, (2.8)

then the supersymmetric completion of these actions contributes to the classical action by

S0(λ) = πiktrfund(λ
2) + 2πiζλU(1). (2.9)

sb(z) is the double sine function defined by2

sb(z) =
∞∏

p,q=0

b
(
q + 1

2

)
+ b−1

(
p+ 1

2

)
− iz

b
(
p+ 1

2

)
+ b−1

(
q + 1

2

)
+ iz

. (2.10)

The formula (2.5) is derived by using localization, which reduces the path integral to

Gaussian integral for infinite number of non-zero modes and finite dimensional integral for

zero modes. The Gaussian integral is performed by using spherical harmonics expansion.

For a vector multiplet with weight vector α, the Gaussian integral of modes with specific

SU(2)R quantum numbers (j,m) gives

2j − 2imu− ivα(λ)

2j + 2 + 2imu+ ivα(λ)
. (2.11)

Notice thatm dependence appears only when S3 is squashed. For round sphere with u = 0,

there is no m dependence due to the unbroken SU(2)R symmetry. If we set

j =
p+ q

2
, m =

p− q

2
, (2.12)

1The normalization of λ we use in this paper is different from that in [15]. λ here is related to the

constant mode σ0 of scalar field defined in [15] by λ = rσ0/v.
2sb(z) is directly related to the non-compact quantum dilogarithm ϕb(z) [19–21] by sb(z) = exp[−πi( z

2

2
+

b2+b−2

24
)]ϕb(z). See also [22, 23] for more details on sb(z).
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(2.11) becomes the factor in the definition (2.10) of the double sine function sb(z) with

argument z = α(λ) − i/v, and by taking the product over p and q, we obtain the double

sine function appearing in the numerator in (2.5). The denominator in (2.5) also arises

from the Gaussian integral of non-zero modes of chiral multiplets.

Note that variables p and q appear differently in the numerator and the denominator

in (2.10). In the numerator p and q appear in the coefficients of b−1 and b, respectively,

and in the denominator, the relation is reversed. Because they are dummy variables we can

exchange them in the numerator or in the denominator so that they appear in the same

manner. However, the relation to the SU(2)R quantum numbers (2.12) holds only when

we write the infinite product as in (2.10). This becomes important when we consider the

orbifolding by Zn ⊂ SU(2)R in the next subsection.

From the definition (2.10) we can easily show the following relations for sb(z).

• Self-duality and reflection property

sb(z) = sb−1(z) =
1

sb(−z)
. (2.13)

• Functional equations

sb(z +
ib
2 )

sb(z − ib
2 )

=
1

2 cosh(πbz)
,

sb(z +
ib−1

2 )

sb(z − ib−1

2 )
=

1

2 cosh(πb−1z)
,

sb(z +
i
v )

sb(z − i
v )

=
1

[2 sinh(πbz)][2 sinh(πb−1z)]
. (2.14)

2.2 Zn orbifolding

We consider the left-invariant orbifold S3/Zn with Zn ⊂ U(1)r ⊂ SU(2)R. The partition

function on the orbifold is obtained in [12] for theories without matter fields in a general

Lens space L(p, q) without squashing. It is extended to theories with chiral multiplets

in background with nontrivial squashing parameter in [13]. Our orbifold corresponds to

L(n,−1).

Because supercharges are U(1)r neutral, the orbifolding by Zn ⊂ U(1)r does not break

any supersymmetry, and we can define N = 2 supersymmetric theories on the orbifold. A

gauge theory in this orbifold has degenerate vacua specified by the holonomy

m =
n

2π

∮

C
A, (2.15)

where C is the generator of the fundamental group π1(S
3/Zn) = Zn. The consistency

to nC = 0 requires e2πim = 1. (Note that we define m with the factor n in (2.15).) The

holonomy can be turned on for both global and gauge symmetries. The holonomy for gauge

symmetries should be summed up in the path integral. The partition function is given by

Z(mglobal) =
∑

mlocal

∫
[dλ]e−S0(λ,m)Z1−loop(λ,m), (2.16)
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where S0(λ,m) and Z1−loop(λ,m) are the classical action and the one-loop determinant.

The summation is taken over the holonomy associated with gauge symmetry, which is

denoted by mlocal in (2.16). The holonomy for global symmetry mglobal is not summed,

and the partition function Z depends on mglobal.

The integration measure [dλ] is defined by

[dλ] =
1

|W |
rankG∏

a=1

dλa
n
. (2.17)

We introduce the factor 1/n for each integration variable for later convenience.

One may think that the classical action for S3/Zn is obtained by dividing that for

S3 by n. This naive expectation is not correct. The classical action S0(λ,m) consists

of two parts;

S
S3/Zn

0 (λ,m) =
1

n
SS3

0 (λ)− iΦ(m). (2.18)

One is 1/n of the classical action for S3, and has the same origin as the S3 case. The

other part comes from the Chern-Simons term. Due to the non-trivial topology

of S3/Zn, the Chern-Simons term gives non-vanishing contribution even for a flat gauge

connection [12, 24, 25];

Φ =
πk

n
trfund(m

2). (2.19)

This phase plays an important role in dualities in S3/Zn. The factor eiΦ may be ill-

defined depending on the coefficient. If nk is odd, the holonomies m = diag(· · · , h, · · · )
and m = diag(· · · , h + n, · · · ), which are identified in Zn, give different phases. We will

meet such an ambiguity in the example in section 3.2, and there we will give an additional

rule to fix the ambiguity.

The one-loop partition function for the orbifold can be obtained by projecting out the

factors in (2.10) which originate from Zn-variant modes. Let ϕ be a field with a weight

vector ρ. On S3 it is Fourier expanded as

ϕ(ψ) =
∑

m∈Z/2
ϕme

imψ, (2.20)

where 0 ≤ ψ < 4π is the coordinate along the Hopf fiber of S3, and m is the SU(2)R
magnetic quantum number. After Zn orbifolding, the field must satisfy the boundary

condition

ϕ

(
ψ +

4π

n

)
= e2πi

ρ(h)
n ϕ(ψ), (2.21)

and only modes ϕm with the index m satisfying

2m = p− q = ρ · h mod n (2.22)

survive after the orbifold projection. We define sb,h(z) as the function obtained from (2.10)

by restricting the product over (p, q) by (2.22). This restricted product is realized by

substituting

p = np′ + [k + h]n, q = nq′ + k, (2.23)
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to (2.10), and perform the product with respect to non-negative integers p′ and q′, and
k = 0, 1, . . . , n− 1. [m]n represents the remainder when m is divided by n. It is convenient

to introduce notation 〈· · · 〉n defined by

〈m〉n =
1

n

(
[m]n +

1

2

)
− 1

2
. (2.24)

This satisfies the relations

〈m+ an〉n = 〈m〉n (a ∈ Z), 〈−1−m〉n = −〈m〉n. (2.25)

We rewrite the numerator in (2.10) as

b

(
p+

1

2

)
+ b−1

(
q +

1

2

)
− iz

= n

[
b

(
p′ + 〈k + h〉n +

1

2

)
+ b−1

(
q′ + 〈k〉n +

1

2

)
− i

z

n

]
. (2.26)

The denominator in (2.10) is also rewritten in a similar way, and we obtain

sb,h(z) =
n−1∏

k=0

∞∏

p′,q′=0

b(q′ + 1
2) + b−1(p′ + 1

2) + b〈k〉n + b−1〈k + h〉n − i zn
b(p′ + 1

2) + b−1(q′ + 1
2) + b〈k + h〉n + b−1〈k〉n + i zn

=
n−1∏

k=0

∞∏

p′,q′=0

b(q′ + 1
2) + b−1(p′ + 1

2) + b〈k〉n + b−1〈k + h〉n − i zn
b(p′ + 1

2) + b−1(q′ + 1
2)− b〈k〉n − b−1〈k + h〉n + i zn

. (2.27)

In the second line we replaced k in the denominator by −1 − k − h and used the second

relation in (2.25). In the final expression the product with respect to p′ and q′ has the

same form as that in the definition (2.10) of the double sine function sb(z), and we obtain

sb,h(z) =
n−1∏

k=0

sb

( z
n
+ ib〈k〉n + ib−1〈k + h〉n

)
. (2.28)

By definition, the product of sb,h(z) over all h reproduces the original double sine function;

sb(z) =
n−1∏

h=0

sb,h(z). (2.29)

The function sb,h(z) satisfies the following formulae, which are analogs of (2.13) and (2.14).

• Self-duality and reflection property

sb,h(z) = sb−1,−h(z) =
1

sb,−h(−z)
=

1

sb−1,h(−z)
. (2.30)
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• Functional equations

sb,h+1(z +
ib
2 )

sb,h(z − ib
2 )

=
1

2 cosh
(
πbz
n + πi〈h〉

) ,

sb,h−1(z +
ib−1

2 )

sb,h(z − ib−1

2 )
=

1

2 cosh
(
πb−1z
n + πi〈−h〉

) ,

sb,h(z +
i
v )

sb,h(z − i
v )

=
1

[2 sinh
(
πbz+πih

n

)
][2 sinh

(
πb−1z−πih

n

)
]
. (2.31)

The one-loop determinant for S3/Zn is obtained simply by replacing sb(z) in (2.5) by sb,h(z).

Z1−loop(λ,m) =

∏
α∈∆ sb,α(m)

(
α(λ)− i

v

)

∏
I sb,ρI(m)

(
ρI(λ)− i(1−∆I)

v

) . (2.32)

The 1-loop determinant of vector multiplets can be rewritten in terms of elementary

functions.

Z1−loop
vector (λ,m) =

∏

α∈∆
sb,α(m)

(
α(λ)− i

v

)

=
∏

α∈∆+

[
2 sinh

π

n
(bα(λ) + iα(m))

] [
2 sinh

π

n

(
b−1α(λ)− iα(m)

)]
. (2.33)

When b = 1, this agree with the partition function in the lens space L(n,−1) given in [12].

3 Dualities in S3/Zn

A gauge theory in S3/Zn has degenerate vacua labeled by holonomies associated with the

gauge symmetry. The contributions of these vacua should be summed up to obtain the

total partition function. In this section we consider two dual pairs and confirm that the

partition functions of theories dual to each other agree if appropriate phase factors are

inserted in the holonomy sum.

3.1 N = 2 SQED and XYZ model

We first consider the mirror symmetry between an N = 2 SQED and the XYZ model [33].

On one side of the duality, we consider N = 2 SQED with two chiral multiplets q and q̃

with U(1) charge +1 and −1, respectively. We assume that q and q̃ have the Weyl weight

∆. The mirror theory, the XYZ model, consists of three chiral multiplets Q, Q̃ and S

interacting through the superpotential

W = Q̃SQ. (3.1)

Although three fields S, Q, and Q̃ in this model are symmetric, we treat Q and Q̃ as a

quark and an antiquark, and S as a neutral field, because the mirror pair considered here

– 7 –
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q q̃ m m̃ Q Q̃ S

U(1)V 0 0 1 −1 1 −1 0

U(1)A 1 1 0 0 −1 −1 2

Table 1. The charge assignment of the global symmetry U(1)V ×U(1)A of SQED and XYZ model

which are mirror to each other. m and m̃ are the monopole and anti-monopole operators.

is a special case of a series of mirror pairs, which are studied in 4.2, and in a general mirror

pair Q and Q̃ are replaced by charged multiplets and S by neutral ones. By the operator

relation S = q̃q and the marginality of the superpotential (3.1), we can determine the Weyl

weights of the fields in this theory as

∆S = 2∆, ∆Q = ∆
Q̃
= 1−∆. (3.2)

Although the correct value of ∆ at the infra-red fixed point is ∆ = 1/3, the equality of

partition functions holds regardless of ∆ [9], and we leave ∆ unfixed.

The global symmetry which is the same for these two theories is U(1)V ×U(1)A. The

charge assignments are shown in table 1. We introduce real mass parameters ζ and µ

for U(1)V and U(1)A, respectively. U(1)A symmetry in SQED is the topological U(1)

symmetry acting on monopole operators, and the corresponding mass parameter ζ is the

Fayet-Iliopoulos parameter. The S3 partition functions of these theories are

ZSQED =

∫
e−2πiζλ

sb(λ+ µ− i(1−∆)
v )sb(−λ+ µ− i(1−∆)

v )
dλ,

ZXYZ =
1

sb(ζ − µ− i∆
v )sb(−ζ − µ− i∆

v )sb(2µ− i(1−2∆)
v )

. (3.3)

Because two theories are mirror to each other, the partition functions should agree.

This agreement is confirmed by using the pentagon relation of the double sine function [26]:3

∫
sb(x+ r)

sb(x+ s)
e−2πitxdx = eπit(r+s)

sb(t− r
2 + s

2 + i
v )

sb(t+
r
2 − s

2 − i
v )
sb(r − s− i

v
). (3.4)

By substituting

x = λ, r = −µ+
i(1−∆)

v
, s = µ− i(1−∆)

v
, t = ζ, (3.5)

to the pentagon relation (3.4), we obtain ZXYZ = ZSQED. Note that for the agreement of

the two partition functions, the integration measure should be chosen as in (2.6).

Let us generalize this to the theories on the orbifold S3/Zn. On the SQED side, we

need to sum up the contribution of n saddle points specified by the holonomy h of the

3The pentagon relation usually refers to the operator equation ϕb(P̂ )ϕb(X̂) = ϕb(X̂)ϕb(X̂ + P̂ )ϕb(P̂ ),

where X̂ and P̂ are operators satisfying [P̂ , X̂] = 1/2πi. This relation is proved in [21, 27]. This operator

equation is equivalent to (3.4) [21, 28, 29], which we refer to as the pentagon relation.

– 8 –
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U(1) gauge symmetry. We can also introduce holonomies hV and hA for U(1)V and U(1)A
global symmetries as non-dynamical background gauge potentials. Because U(1)V current

in SQED is the field strength of the dynamical gauge field A, the U(1)V holonomy is

realized by the Chern-Simons term

S =
i

2π

∫
V dA, (3.6)

where V is the non-dynamical U(1)V background gauge field. In the orbifold S3/Zn, this

term gives rise to the non-trivial phase factor

Φ = 2π
hV h

n
. (3.7)

Taking account of this phase factor, the partition function for each holonomy is

ZSQED(h, hV , hA) =

∫ ∞

−∞

e−2πiζλ/ne2πihV h/n

sb,hA+h(µ+ λ− i(1−∆)
v )sb,hA−h(µ− λ− i(1−∆)

v )

dλ

n
. (3.8)

On the other hand, the partition function of the XYZ model is

ZXYZ(hV , hA) =
1

sb,−hA+hV (−µ+ ζ − i∆
v )sb,−hA−hV (−µ− ζ − i∆

v )sb,2hA(2µ− i(1−2∆)
v )

.

(3.9)

Naive expectation is that these are related by

ZXYZ(hV , hA) =
n−1∑

h=0

ZSQED(h, hV , hA). (3.10)

This is actually the case when hA = 0. We confirmed this relation numerically up to

n = 10. Again, the choice of the integration measure (2.17) is essential for the equality

in (3.10).

The relation (3.10), however, does not hold if we turn on the holonomy hA for U(1)A
symmetry. Instead, we found that the relation

ZXYZ(hV , hA) =
∑

h

σ(h, hV , hA)Z
SQED(h, hV , hA) (3.11)

hold if we choose an appropriate sign function σ(h, hV , hA) = ±1. The analysis for hA = 0

implies

σ(h, hV , 0) = 1. (3.12)

We can determine σ(h, hV , hA) for general hA by the numerical analysis. For n = 2, 3, 4,

we obtained

σ
(2)
1 =

(
−1 1

1 −1

)
, σ

(3)
1 = σ

(3)
2 =




−1 1 1

1 −1 −1

1 −1 −1


 ,

σ
(4)
1 = σ

(4)
3 =




−1 1 1 1

1 −1 −1 −1

1 −1 −1 −1

1 −1 −1 −1


 , σ

(4)
2 =




1 −1 1 −1

−1 1 −1 1

1 −1 1 −1

−1 1 −1 1


 , (3.13)

– 9 –
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where we express the function in the matrix form

(σ
(n)
hA

)h,hV = σ(h, hV , hA). (3.14)

We determined the signs up to n = 10, and found the general form

σ(h, hV , hA) = (−1)f(hA)+g(hA,h)+g(hA,hV ), (3.15)

where

f(h) = min(|h+ nZ|), g(h, h′) = min(f(h), f(h′)). (3.16)

3.2 SU(2) gauge theory and a chiral multiplet

As the second example, we consider the duality proposed by Jafferis and Yin in [30]. The

theory on one side is SU(2) Chern-Simons theory with level k = 1 coupling to one adjoint

chiral multiplet Φ. It is dual to the theory consisting of a single chiral multiplet X. These

theories have global symmetry U(1)A rotating Φ and X with charges 1 and 2, respectively.

Let us first compute the S3 partition function of the SU(2) theory. We parameterize

the SU(2) Cartan algebra by

λ = xT3, T3 =

(
1
2 0

0 −1
2

)
, (3.17)

and we adopt the integration measure

[dλ] =
dx

2
√
2
, (3.18)

where the factor 1/2 comes from the order of the Weyl group of SU(2), and 1/
√
2 from

the normalization of the SU(2) generators trTaTb = (1/2)δab. The classical value of the

Chern-Simons term with level k = 1 is

S0 = πitr(λ2) =
πi

2
x2. (3.19)

The partition function of the SU(2) theory is

ZSU(2) =

∫
e−

π
2
ix2sb(x− i

v )sb(−x− i
v )

sb(x− i(1−∆)
v )sb(− i(1−∆)

v )sb(−x− i(1−∆)
v )

dx

2
√
2
, (3.20)

where we denote the Weyl weight of the adjoint chiral multiplet by ∆. If we turn on the

real mass parameter µ for U(1)A the weight ∆ is replaced by ∆− ivµ.

The dual theory contains a single chiral multiplet X. This corresponds to the gauge

invariant operator trΦ2 in the SU(2) gauge theory, and has Weyl weight 2∆. The S3

partition function is

ZX =
1

sb(− i(1−2∆)
v )

. (3.21)
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We can easily check numerically that these two partition functions coincide up to a phase

factor.

ZSU(2) = eiφZX , φ = −π
(
1

4
+

2∆ +∆2

2v2

)
. (3.22)

This relation is confirmed numerically in [30] and analytically in [31] for the round sphere.

The coincidence of the absolute value is due to our choice of the integration measure. In [30]

different measure is used and extra numerical factor arises. We do not argue about this

point, and focus only on the phases. For the round sphere, the phase factor

eiφ = exp

[
πi

(
1

4
− (1 + ∆)2

2

)]
=

∫
eπit

2−
√
2πi(1+∆)tdt, (3.23)

is interpreted in [30] as the contribution of a decoupled topological sector. For squashed

S3, there seems no such a simple explanation for this factor.

We would like to extend this relation to the orbifolds. In the introduction of holonomy,

we should note that the gauge group is, precisely speaking, not SU(2) but SU(2)/Z2 =

SO(3). The allowed holonomies are

exp

(
2πi

h

n
T3

)
, h = 0, . . . , n− 1. (3.24)

(If the gauge group were SU(2), 2π in the exponent in (3.24) should be replaced by 4π.)

For the flat connection specified by the holonomy h, the classical Chern-Simons action

gives the phase factor

eiΦ = e
πi
2n
h2 . (3.25)

This is not well defined as a map from Zn to C. This gives different phases for h and h+n,

which are identical in Zn. We will fix this ambiguity later by an additional rule.

The orbifold partition function of the SU(2) theory is obtained from the S3 partition

function (3.20) by

• replacing each sb(z) by sb,h(z) with an appropriate holonomy,

• replacing the measure dx by dx/n,

• replacing the classical action S0 in (3.19) by S0/n,

• and introducing the phase factor eπih
2/2n.

We obtain

ZSU(2)(h, hA) =

∫
eπi

h2

2n e−
π
2n
ix2sb,h(x− i

v )sb,−h(−x− i
v )

sb,hA+h(x− i(1−∆)
v )sb,hA(−

i(1−∆)
v )sb,hA−h(−x− i(1−∆)

v )

dx

2
√
2n
. (3.26)

The partition function of the chiral multiplet X is

ZX(hA) =
1

sb,2hA(−
i(1−2∆)

v )
. (3.27)
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We consider two cases with even n and odd n separately. Let us first consider the case

with odd n. In this case, (3.25) defines double-valued map from Zn to C. For h and h+n,

which are identified in Zn, the phase factor takes different values whose phases always differ

by π/2. We denote these two phase factors by (e
πi
2n
h2)±. The subscript ± is chosen so that

the two phases satisfy (e
πi
2n
h2)+ = i(e

πi
2n
h2)−. Corresponding to these two choices of the

phase factor, we define two partition functions Z
SU(2)
± (h, hA).

We take the ansatz

n−1∑

h=0

σ(h, hA)e
∓πi

4 Z
SU(2)
± (h, hA) = eiφZX(hA), (3.28)

between the partition functions of the dual theories. σ(h, hA) is an unknown phase function

depending on the SU(2) holonomy h and U(1)A holonomy hA, and eiφ is a phase factor

independent of holonomies. The double signs on the left hand side are in the same order.

The factor e∓
πi
4 is inserted to cancel the difference of Z

SU(2)
+ and Z

SU(2)
− . Although we can

choose one of signs as a convention and absorb this factor by σ(h, hA) or e
iφ, we separate

this factor for later convenience. We carried out the numerical analysis up to n = 29, and

we found

σ(h, hA) = (−1)g(hA,h) exp

[
iπ
f(hA)(f(hA) + n)

2n

]
,

φ(hA) = −π∆
2 + 2∆

2nv2
, (3.29)

make the equation (3.28) hold, where f and g are the functions defined in (3.16).

Let us turn to the case with even n. In this case we divide n possible holonomies to

the n/2 satisfying

h− n

2
∈ 2Zn, (3.30)

and the others. The phase factor (3.25) is well-defined for holonomies satisfying (3.30),

while (3.25) has the sign ambiguity for the other holonomies. With the numerical anal-

ysis up to n = 30, we found that ZX(hA) can be given as a linear combination of only

ZSU(2)(h, hA) with h satisfying (3.30),

∑

h−n/2∈2Zn

σ(h, hA)
√
2ZSU(2)(h, hA) = eiφZX(hA), (3.31)

where σ(h, hA) and φ(hA) are functions defined in (3.29). Comparing this to (3.28), we

notice that the phase factor e±
πi
4 is replaced by

√
2 = e

πi
4 + e−

πi
4 . Although this factor de-

pends on the choice of the integration measure and this may not have physical significance,

it may be interesting to discuss what this factor implies under the assumption that our

choice of the integration measure is an appropriate one. One possible interpretation is as

follows. In the theory of the chiral multiplet X, the U(1)A holonomy appear only through

2hA. When n is even, there are two holonomies which gives the same 2hA. Let hA be one

of them, and h′A = hA + n/2 the other. It is natural to sum up the contribution of these
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two holonomies on the SU(2) theory side. If we introduce different phase factors e+
πi
4 and

e−
πi
4 for hA and h′A in this summation, we obtain the following relation similar to (3.28).

eiφZX(hA) = eiφZX(h′A) =
∑

h−n/2∈2Zn

σ(h, hA)e
πi
4 ZSU(2)(h, hA)

+
∑

h−n/2∈2Zn

σ(h, h′A)e
−πi

4 ZSU(2)(h, h′A). (3.32)

3.3 S3/Z2k+1

In the previous subsections, we found that we need non-trivial phase factors to match the

partitions functions of dual theories in two examples. For odd n, in fact, we can express

these phase factors in a unified way. Let us define σh by

σh = (−1)[h]n([h]n−(−1)(n−1)/2)/2. (3.33)

When n is odd, this takes values ±1 depending on h ∈ Zn. We can represent (−1)f(h) and

(−1)g(h,h
′) with this function by

(−)f(h) = σ2h, (−)g(h,h
′) = σh+h′σh−h′ . (3.34)

Therefore, the sign function (3.15) in the first example can be given as the product

of five σh;

σ(h, hV , hA) = σh−hAσh+hAσhV +hAσhV −hAσ2hA . (3.35)

The indices of five σh coincide up to sign with the holonomy indices of the functions sb,h(z)

appearing in the mirror relation (3.11). Because σh = σ−h and the sign of the index of

σh does not matter, the phases can be absorbed into the definition of the function sb,h(z).

Namely, if we define ẐSQED and ẐXYZ from ZSQED and ZXYZ, respectively, by replacing

sb,h(z) in these partition functions by ŝb,h(z) defined by

ŝb,h(z) = σhsb,h(z), (3.36)

the relation

ẐXYZ(hV , hA) =
n−1∑

h=0

ẐSQED(h, hV , hA) (3.37)

holds without the extra sign factors. This is actually the case in the second example.

Because the phase function can be written as

σ(h, hA) = σhA+hσhA−h exp
[
iπ
f(hA)(f(hA) + n)

2n

]
, (3.38)

ẐSU(2) and ẐX defined with ŝb,h(z) satisfy the relation

n−1∑

h=0

e∓
πi
4 Ẑ

SU(2)
± (h, hA) = ω(hA)e

iφẐX(hA), (3.39)

where ω(hA) is a certain factor depending only on hA.

In the two examples, we found that if we replace sb,h(z) by ŝb,h(z) the duality relations

hold without introducing non-trivial relative phase factors in the holonomy sums. This is

simple enough for us to expect that this rule is universal. It would be interesting to check

whether this rule really holds for other examples of dual pairs.
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q q̃ S̃ m m̃ Q Q̃

U(1)V 0 0 0 1 −1 1 −1

U(1)A 1 1 −2 0 0 −1 −1

Table 2. Global symmetries for N = 4 SQED and the hypermultiplets. m and m̃ are again

(anti-)monopole operators.

4 Derived dualities

In this section we discuss three more dualities which can be derived from the mirror sym-

metry studied in section 3.1.

4.1 N = 4 SQED and hypermultiplet

It is known that the N = 4 SQED with one flavor is mirror to a hypermultiplet [32].

This mirror pair is obtained from the N = 2 mirror pair in section 3.1 by adding a chiral

multiplet S̃ on the both sides of the duality. On the SQED side, the new chiral multiplet

S̃ couples to the system through the superpotential W = q̃S̃q. This corresponds to the

mass term W = S̃S on the other side of the duality, and we can integrate out S and S̃

to obtain the system with a hypermultiplet (Q, Q̃). The global symmetry of the resulting

mirror pair is U(1)V ×U(1)A with the charge assignment summarized in table 2. We again

introduce the mass parameters ζ and µ for U(1)V and U(1)A, respectively. We denote the

Weyl weights of q and q̃ by ∆. Then the Weyl weight of S̃ is 1− 2∆. The introduction of

S̃ changes the partition functions by the factor

1

sb,−2hA(−2µ+ i(1−2∆)
v )

= sb,2hA(2µ− i(1−2∆)
v ). (4.1)

The partition function of two theories are given by

ZN=4(ζ, µ;h, hV , hA) =

∫ ∞

−∞

e−2πiζλ/ne2πihV h/n

sb,hA+h(µ+ λ− i(1−∆)
v )

×sb,hA−h(µ− λ− i(1−∆)
v )

×sb,−2hA(−2µ− i(2∆−1)
v )

dλ

n
, (4.2)

Zhyper(ζ, µ;hV , hA) =
1

sb,−hA+hV (−µ+ ζ − i∆
v )sb,−hA−hV (−µ− ζ − i∆

v )
. (4.3)

Because the factor (4.1) does not depend on h, it is rather trivial that the partition functions

match if we use the same sign function (3.15) as in the N = 2 case. Namely, the following

relation holds.

Zhyper(ζ, µ;hV , hA) =

n−1∑

h=0

σ(h, hV , hA)Z
N=4(ζ, µ;h, hV , hA). (4.4)
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4.2 N = 2 SQED with Nf ≥ 2 and quiver gauge theory

The mirror symmetry between N = 2 SQED with Nf ≥ 2 and a quiver gauge theory [33]

can be derived from the N = 4 mirror symmetry in the previous subsection. This fact is

used in [34] to prove the partition functions of the mirror theories coincide to each other

in the case of round S3. In this subsection, we generalize this to S3/Zn.

We start with Nf copies of the mirror pairs constructed in the previous subsection, and

gauge the diagonal subgroup U(1)diag of Nf U(1)V symmetries. Let Vi (i = 1, . . . , Nf − 1)

be the background gauge fields corresponding to the U(1)V symmetries. The gauging of

U(1)diag is realized by the replacement

Vi → V ′
i + Vdiag, (4.5)

where Vdiag is the dynamical gauge field of U(1)diag. On one side of the duality, we have

Nf pairs of the chiral multiplets (Qi, Q̃i) and the U(1)gauge vector multiplet. These form

N = 2 SQED with Nf flavors.

On the other side, we have Nf copies of SQED containing fields (Ai, qi, q̃i, S̃i) (i =

1, . . . , Nf ) and the U(1)gauge vector multiplet Vgauge. These fields form a U(1)Nf+1 gauge

theory. Because each copy of SQED has the Chern-Simons term (3.6), the gauging of

U(1)gauge by the replacement (4.5) induces the Chern-Simons term

S =
i

2π

∫
VdiagdAD, (4.6)

where AD =
∑Nf

i=1Ai is the gauge field of the diagonal subgroup U(1)D of the Nf U(1)

gauge symmetries. The equation of motion of Vdiag gives the constraint

AD = 0 (4.7)

on the gauge fields Ai. We can solve this by

Ai = Ãi − Ãi−1, (4.8)

where Ãi (i = 1, . . . , Nf − 1) are independent dynamical gauge fields and Ã0 = ÃNf
= 0.

As the result we have U(1)Nf−1 quiver gauge theory represented by the quiver diagram in

figure 1.

Let us confirm that the partition functions of the SQED and the U(1)Nf−1 quiver

gauge theory agree. What is non-trivial is how we should choose the relative phases in the

holonomy sum for the newly introduced U(1)diag gauge symmetry. In the following, we

will find that we need a non-trivial sign factor depending on the U(1)gauge holonomy for

the reduction of the gauge group from U(1)Nf+1 to U(1)Nf−1 works in the context of the

S3/Zn partition function.

Let us write down the orbifold partition functions. Corresponding to (4.5) we replace

the U(1)V holonomies hiV and U(1)V mass parameters ζi by

ζi = ζ ′i + x, hiV = h′iV + h′, (4.9)
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Figure 1. Quiver diagram of the mirror of N = 2 SQED with Nf flavors. Circles and squares

represent the U(1) gauge groups and the U(1) flavor symmetry, respectively. qi and q̃i represented

by arrows are bifundamental fields, and S̃i are neutral fields.

where x and h′ are the U(1)diag modulus and the U(1)diag holonomy. On the side of Nf

pairs of chiral multiplets (Qi, Q̃i) we obtain

ZNf (ζ ′i, µi;~h
′
V ,
~hA) =

n−1∑

h′=0

τ(h′,~h′V ,~hA)
∫
dx

n

Nf∏

i=1

Zhyper(x+ ζ ′i, µi;h
′ + h′iV , h

i
A)

=

n−1∑

h′=0

τ(h′,~h′V ,~hA)
∫
dx

n

Nf∏

i=1

1

s · · · s, (4.10)

where s · · · s represents the product of sb,h(z) coming from Zhyper. We use arrows to

represent sets of Nf parameters; ~h′V = (h′1V , . . . , h
′Nf

V ) etc. We introduced unknown sign

function τ(h′,~h′V ,~hA) depending on the holonomies.

Application of the same prescription on the side of Nf copies of N = 4 SQED gives

the partition function

Zquiver(ζ ′i, µi;~h
′
V ,
~hA) =

n−1∑

h′=0

τ(h′,~h′V ,~hA)
∫
dx

n

Nf∏

i=1

ZN=4(x+ ζ ′i, µi;h
′ + h′iV , h

i
A)

=
n−1∑

h′=0

τ(h′,~h′V ,~hA)
∫
dx

n

Nf∏

i=1



n−1∑

hi=0

σ(hi, h
′+h′iV , h

i
A)

∫ ∞

−∞

dλi
n

e−2πi(x+ζ′i)λi/ne2πi(h
′+h′iV )hi/n

s · · · s


.

(4.11)

Again, we represent the product of sb,h(z) coming from ZN=4 by s · · · s. By definition this

is the same as (4.10). What is non-trivial is if this partition function can be regarded as

that for quiver gauge theory with the reduced gauge group U(1)Nf−1. For this to be the

case, the summation over the holonomies h′ and ~h and integral over the parameters x and
~λ should reduce to those over Nf − 1 parameters corresponding to the Nf − 1 dynamical

gauge fields.

Let us first look at the x-integral in (4.11). The relevant part is

∫
dx

n

Nf∏

i=1

e−2πi(x+ζ′i)λi/n = δ




Nf∑

i=1

λi


 exp


−2πi

n

Nf∑

i=1

ζ ′iλi


 (4.12)
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The delta function reduces the dimension of the λi integral by one, and imposes the

constraint
Nf∑

i=1

λi = 0. (4.13)

We can solve this by

λi = λ̃i − λ̃i−1, λ̃0 = λ̃Nf
= 0. (4.14)

The Nf−1 parameters λ̃i correspond to the Nf−1 dynamical vector multiplets introduced

in (4.8).

Concerning the summation with respect to h′, the relevant part in (4.11) is

n−1∑

h′=0

τ(h′,~h′V ,~hA)
Nf∏

i=1

(
σ(hi, h

′ + h′iV , h
i
A)e

2πi(h′+h′iV )hi/n
)

=
n−1∑

h′=0


τ(h′,~h′V ,~hA)

Nf∏

i=1

σ(hi, h
′ + h′iV , h

i
A)


 e

(
2πi
n
h′

∑Nf
i=1 hi

)

e

(
2πi
n

∑Nf
i=1 h

′i
V hi

)

(4.15)

For (4.11) to be regarded as the partition function of the U(1)Nf−1 quiver gauge theory,

the condition
Nf∑

i=1

hi = 0, (4.16)

corresponding to (4.7) and (4.13) should arise. Namely, the summation over h′ in (4.15)

should give the Kronecker’s delta imposing the condition (4.16). For this to happen the

sign factor in front of the exponentials in the summand must be h′ independent. Because
τ(h′,~h′V ,~hA) is hi-independent, this is possible only when hi dependence and h

′ dependence
of σ(hi, h

′ + h′iV , h
i
A) are factorized. This is indeed the case as (3.15) shows, and we can

make the coefficients in (4.15) h′ independent by choosing the function τ(h′,~h′V ,~hA) as

τ(h′,~h′V ,~hA) =
Nf∏

i=1

(−1)f(h
i
A)+g(hiA,h

′+h′iV ). (4.17)

With this choice the summation over h′ gives

n−1∑

h′=0

τ(h′,~h′V ,~hA)
Nf∏

i=1

(
σ(hi, h

′ + h′iV , h
i
A)e

2πi(h′+h′iV )hi/n
)

= nυ(~h,~hA)δ




Nf∑

i=1

hi


 exp


2πi

n

Nf∑

i=1

h′iV hi


 (4.18)

where δ(∗) in this equation is the Kronecker’s delta, and we defined the sign function

υ(~h,~hA) =

Nf∏

i=1

(−1)g(h
i
A,hi). (4.19)
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Figure 2. Quiver diagram of the mirror ABJM

The constraint imposed on hi by the Kronecker’s delta in (4.18) can be solved by

h′iV = h̃i − h̃i−1, h̃i = h̃Nf
= 0. (4.20)

h̃i are the holonomies of the U(1)Nf−1 gauge symmetry. We can rewrite (4.11) as

Zquiver(~h′V ,~hA) =
Nf−1∏

i=1


∑

h̃i

∫
dλ̃i
n


 υ(~h,~hA)

e−2πi~ζ′·~λ/ne2πi~h
′

V ·~h/n

s · · · s . (4.21)

This is precisely the partition function of the U(1)Nf−1 quiver gauge theory.

4.3 ABJM model and its mirror

The ABJM model [35] is an U(N)×U(N) Chern-Simons theory with four bi-fundamental

chiral multiplets Ai and Bi (i = 1, 2). Ai and Bi belong to (N ,N) and (N ,N), respec-

tively. The theory has the superpotential

W = ǫikǫjltr(AiBjAkBl), (4.22)

and all chiral multiplets have Weyl weight 1/2. When the Chern-Simons levels are 1 and

−1, the ABJM model is known to be mirror to the N = 4 U(N) gauge theory with a

fundamental hypermultiplet (q, q̃) and an adjoint hypermultiplet (Φ1,Φ2) [6, 35, 36]. In

terms of N = 2 language this theory has the superpotential

W = trΦ3 (qq̃ + [Φ1,Φ2]) , (4.23)

where Φ3 is the chiral multiplet which form the N = 4 vector multiplet together with the

N = 2 vector multiplet. The quiver diagram of this theory is shown in figure 2. The Weyl

weights of the chiral multiplets are

∆q = ∆q̃ = ∆Φ1 = ∆Φ2 =
1

2
, ∆Φ3 = 1. (4.24)

These theories are expected to have SO(8) global symmetry, which are not manifest in the

Lagrangians. We only focus on the Cartan subalgebra

U(1)A ×U(1)B ×U(1)T ×U(1)R ⊂ SO(8), (4.25)

where U(1)R is the R-symmetry acting on theN = 2 supercharges. The charge assignments

in the two theories are listed in table 3 and 4. U(1)B in the mirror theory is a topological

U(1) symmetry coupling to monopole operators, and the corresponding mass parameter is

the Fayet-Iliopoulos parameter.
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A1 A2 B1 B2

U(1)A +1 −1 0 0

U(1)B 0 0 +1 −1

U(1)T +1 +1 −1 −1

Table 3. Global symmetries of ABJM model

Φ1 Φ2 Φ3 m m̃ q q̃

U(1)A +1 −1 0 0 0 0 0

U(1)B 0 0 0 +1 −1 0 0

U(1)T +1 +1 −2 0 0 +1 +1

Table 4. Charge assignments in the mirror theory of the ABJM model. m and m̃ are monopole

and anti-monopole fields.

Although this mirror symmetry holds for an arbitrary rank N of the gauge groups,

we only consider Abelian (N = 1) case for simplicity. Let us first consider the orbifold

partition function in the mirror theory. When the gauge group is U(1), the system consists

of two sectors decoupled from each other: the neutral hypermultiplet and the N = 4

SQED with one flavor. In the SQED we need to carry out the holonomy sum to obtain

the partition function, and it is non-trivial how we should choose the relative phases. We

here take the sign function (3.15) used in section 4.1. We will see shortly that the partition

function obtained with this phase factor is indeed reproduced in the ABJM model, too,

with an appropriate choice of the phases in the holonomy sum in the ABJM model. The

partition function of the mirror theory is

Zmirror(hA, hB, hT ) =
∑

h

σ(h, hB, hT )Zmirror(h, hA, hB, hT ) (4.26)

with the contribution of each holonomy sector

Zmirror(h, hA, hB, hT )

=
1

sb,hA+hT

(
mA +mT − i

2v

)
sb,−hA+hT

(
−mA +mT − i

2v

)
sb,−2hT (−2mT )

×
∫
dx

n

e2πi
hhB
n e−2πi

mBx

n

sb,h+hT (x+mT − i
2v )sb,−h+hT (−x+mT − i

2v )

= Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
ZN=4(mB,mT ;h, hB, hT )|∆= 1

2
, (4.27)

where we introduce mass parameters (mA,mB,mT ) and holonomies (hA, hB, hT ) corre-

sponding to the flavor symmetry U(1)A×U(1)B ×U(1)T . h is the holonomy for the gauge

symmetry. With the relation (4.4), we can rewrite the partition function (4.26) as the

product of two Zhyper;

Zmirror(hA, hB, hT ) = Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
Zhyper(mB,mT ;hB, hT )|∆= 1

2
.

(4.28)

– 19 –



J
H
E
P
1
1
(
2
0
1
2
)
1
2
2

On the ABJM side, we need to sum up n2 contributions parameterized by a pair of

holonomies (h1, h2) for the gauge group U(1)1×U(1)2. The partition function of the sector

specified by (h1, h2) is

ZABJM(h1, h2, hA, hB, hT )

= eiΦ(h1,h2)

∫
dλ

n

dλ̃

n

exp
[
−πi

n (λ
2 − λ̃2)

]

sb,hA+hT+h1−h2(mA +mT + λ− λ̃− i
2v )

×sb,−hA+hT+h1−h2(−mA +mT + λ− λ̃− i
2v )

×sb,hB−hT−h1+h2(mB −mT + λ̃− λ− i
2v )

×sb,−hB−hT−h1+h2(−mB −mT + λ̃− λ− i
2v )

. (4.29)

A question is if it is possible to choose an appropriate phases in the holonomy sum. The

answer is rather simple. We do not need any non-trivial phases in this sum. Let us confirm

this by summing up (4.29) over holonomies h1 and h2. If we define h12 ≡ h1 − h2 and

replace h1 by h12 + h2, h2 appears only in the phase factor

Φ =
π

n
(h21 − h22) =

π

n
(h212 + 2h2h12). (4.30)

The summation with respect to h2 gives non-vanishing result only when h12 = 0, and we

obtain

ZABJM(hA, hB, hT ) =
n−1∑

h1,h2=0

ZABJM(h1, h2, hA, hB, hT )

=
n−1∑

h=0

ZABJM(h, h, hA, hB, hT ) = nZABJM(0, 0, hA, hB, hT )

= n

∫
dλ

n

dλ̃

n

exp
[
−πi

n (λ
2 − λ̃2)

]

sb,hA+hT (mA +mT + λ− λ̃− i
2v )

×sb,−hA+hT (−mA +mT + λ− λ̃− i
2v )

×sb,hB−hT (mB −mT + λ̃− λ− i
2v )

×sb,−hB−hT (−mB −mT + λ̃− λ− i
2v )

. (4.31)

We can easily perform the integral and have

ZABJM(hA, hB, hT ) =
1

sb,hA+hT (mA +mT − i
2v )sb,−hA+hT (−mA +mT − i

2v )

×sb,hB−hT (mB −mT − i
2v )sb,−hB−hT (−mB −mT − i

2v )

= Zhyper(mA,−mT ;hA,−hT )|∆= 1
2
Zhyper(mB,mT ;hB, hT )|∆= 1

2
.

(4.32)

This result precisely agrees with the partition function of the mirror theory (4.28).
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5 Conclusions and discussions

We investigated relative phases in the holonomy sum, which is necessary to obtain the

partition functions of gauge theories in S3/Zn. We used dualities between gauge theories

and non-gauge theories to determine the phases.

We first consider mirror symmetry between N = 2 SQED with one flavor and the XYZ

model containing three chiral multiplets. We showed that with the appropriate choice

of the phases in the holonomy sum the partition functions of these theories coincides.

Furthermore, we found that when n is odd, the phase factor is absorbed by the redefinition

of the single function sb,h(z), the orbifold extension of the double sine function. We also

consider the duality between SU(2) gauge theory and a chiral multiplet proposed by Jafferis

and Yin. We could again find phase factors which makes the duality relation hold. When

n is odd the phases are absorbed by redefining the function sb,h(z) in the same way as in

the first example.

We also confirmed that it is possible to find phase factors in three more examples of

dual pairs, which are derived from the mirror symmetry we studied first.

When n is odd, in all these examples, the phase factors can be absorbed by the def-

inition of the function sb,h(z). This fact strongly suggests that the modified function ŝb,h
in (3.36) always gives a “correct” partition function in some sense. It would be interesting

to check whether the modified function gives the same partition functions for theories in

dual pairs we did not studied in this paper.

For the purpose of obtaining non-trivial evidences for dualities, it is desirable that we

first fix the relative phases in the holonomy sum in each theory without relying on dualities.

This should be possible at least for saddle points belonging to the same component of the

configuration space. In this case we should obtain the relative phases by analyzing carefully

the behavior of the integration measure in the path integral under adiabatic deformations

connecting saddle points. It is also interesting to search for guiding principles to fix the

ambiguity for the relative phases for the contribution of topologically disconnected sectors.

The large N limit of the partition function of the ABJM model on the oribfold is

considered in [37], and the coincidence of the free energy calculated from the ABJM model

and that from the gravity dual is confirmed. Though many sectors with different holonomies

contribute to the partition function the authors found that in the large N limit it is

dominated by the specific contribution with a certain holonomy configuration and the

relative phases are not important. However, when one consider the next leading order of

1/N the other contributions become significant, therefore, the phase plays an important

role there.
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