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sα

)
. Although negligible for integrated cross sections,

these corrections can reach 10−20% in the TeV range for transverse jet momenta kT. Our

detailed discussion of numerical results comprises distributions in the dijet invariant mass

and in the transverse momenta of the leading and subleading jets. We find that the weak

loop corrections amount to about −12% and −10% for leading jets with kT ∼ 3TeV at the

14TeV LHC and kT ∼ 800GeV at the Tevatron, respectively. The electroweak tree-level

contributions are of the same generic size and typically positive at the LHC and negative

at the Tevatron at high energy scales. Generally the corrections to the dijet invariant mass

distributions are smaller by at least a factor of two as compared to the corresponding reach

in the kT distributions, because unlike the kT spectra the invariant-mass distributions are

not dominated by the Sudakov regime at high energy scales.
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1 Introduction

The unprecedented energy regime that is accessible at the LHC allows for the investigation

of the laws of physics at the smallest distances. The inclusive production of two jets

(dijets) at the LHC, pp −→ jj +X, allows for a detailed study of QCD at TeV energies.

Furthermore, several extensions of the Standard Model predict new heavy particles which

might be visible via dijet signatures in the detector [1]. Some examples are excited states of

composite quarks q∗, string resonances, new heavy gauge bosons W′,Z′, etc. Inclusive jet

and dijet production has been analyzed by the ATLAS [2] and CMS [3] collaborations at

a centre-of-mass (CM) energy of 7TeV giving sensitivity to dijet invariant masses of up to

5TeV and jet transverse momenta of up to 2TeV at the LHC. The Tevatron experiments

CDF [4] and D0 [5] have investigated jet production up to transverse momenta of several

hundreds of GeV. At the current level of experimental and theoretical accuracy, the SM is

able to describe data quite well. At the LHC design CM energy of 14TeV, the energy reach

will even go deeper into the TeV range, so that theoretical predictions especially have to

carefully include radiative corrections that are sensitive to high scales.

The results for the production of two jets at leading-order (LO) accuracy in QCD had

been available [6] long before higher-order corrections were established. Later, in the 1990s,

the differential cross sections to inclusive single-jet and two-jet production were discussed at
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next-to-leading order (NLO) accuracy in QCD [7–9]. Currently, enormous effort is put into

the calculation of the NNLO QCD corrections to dijet production (see e.g. refs. [10–16] and

references therein). The purely weak corrections of O
(
α2
sα

)
have been calculated for the

single-jet-inclusive cross section in ref. [17], and preliminary results of the weak corrections

to the dijet production were published in ref. [18]. The two results, however, do not seem

compatible with each other. Electroweak corrections also were calculated for the related

process of bottom-jet production [19].

In spite of their suppression by the small value of the coupling constant α, the elec-

troweak (EW) corrections can become large in the high-energy domain [20–27]. This is

due to the appearance of Sudakov-type and other high-energy logarithms that result from

the virtual exchange of soft or collinear massive weak gauge bosons. The leading term is

given by αw ln2
(
Q2/M2

W

)
, where Q denotes a typical energy scale of the hard-scattering

reaction, MW is the W-boson mass, and αw = α/s2w = e2/(4πs2w) is derived from the SU(2)

gauge coupling e/sw with sw denoting the sine of the weak mixing angle θw. In the case

of massless gauge bosons, e.g. in QED or QCD, these logarithms are connected to the

well-known infrared divergences and are cancelled against the corresponding real-emission

corrections. For the massive gauge bosons W and Z, no such singularities occur, since their

masses provide a physical cut-off and the additional radiation of real W or Z bosons can be

experimentally reconstructed to a large extent, so that W/Z bremsstrahlung corresponds to

a different class of processes. Thus, at high scales |Q2| ≫ M2
W, which are accessible at the

LHC and the Tevatron, the above Sudakov-type logarithms can produce large negative cor-

rections, as only some fractions are compensated by unresolved W/Z emission [28]. It turns

out that large compensations can occur between different electroweak logarithms [29, 30],

so that a full fixed-order calculation is desirable.

As it will be discussed in more detail below, a gauge-invariant classification of the EW

corrections into photonic and purely weak corrections is feasible for our process. Guided by

the logarithmic enhancements, we restrict ourselves to the calculation of the purely weak

corrections in this paper. The calculation can be complemented by the photonic corrections

at a later time to produce results for the full EW corrections at the order α2
sα.

The paper is organized as follows: In section 2 we set up our conventions (section 2.1)

and discuss our strategy for the calculation of the NLO corrections (section 2.2). The

numerical results are presented in section 3, which comprises integrated cross sections as

well as differential distributions and the comparison to other work. Section 4 contains

our conclusions.

2 Dijet production in hadronic collisions

2.1 Conventions and calculational setup

We consider the hadronic process

A(pA) +B(pB) → j(k1) + j(k2) +X, (2.1)

where the assignment of the four-momenta to the respective particles is indicated in paren-

theses. We further assume that the momenta k1 and k2 are sorted in a descending order
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with respect to their transverse momenta, i.e. kT,1 ≥ kT,2, referring to the associated jets

as the leading and subleading jet, respectively. The hadronic cross section is given by the

incoherent sum over the different partonic subprocesses that contribute to the final state

under consideration, convoluted with the respective parton distribution functions (PDFs),

σAB(pA, pB) =
∑

a,b

∫ 1

0
dxa

∫ 1

0
dxb fa|A(xa, µ

2
F)fb|B(xb, µ

2
F)σ̂ab(pa, pb). (2.2)

The PDF fa|A(xa, µ
2
F) plays the role of a generalized number density to find a parton a

carrying the momentum fraction xa of the parent hadron A with pa = xapA denoting the

four-momentum of the incoming parton to the hard scattering. We work in the QCD-

improved parton model using the five-flavour scheme with Nf = 5 massless quarks q =

u, d, c, s, b. The partonic subprocesses that contribute to the above scattering reaction at

NLO can be generically written as

a(pa) + b(pb) → c(kc) + d(kd) (+e(ke)) , (2.3)

where a, b, c, d, e ∈ {g, u, d, c, s, b} if only weak corrections are considered. For photonic

corrections also the photon has to be included as a possible external particle state. The

additional emission of parton e appears in the real NLO correction to this process. The mo-

menta k1 and k2 in eq. (2.1) emerge from the recombination procedure of the jet algorithm.

At LO, however, we simply have k1 = kc, k2 = kd, with kT,1 = kT,2. Owing to the mass

degeneracy (mq = 0) of the external quarks and the unitarity of the CKM matrix, the effect

of the non-diagonal CKM structure vanishes in most contributions after taking the flavour

sums. The only exception is the case of a W-boson exchange in the s-channel, where the

different weights from the PDFs spoils the cancellation. However, this dependence turns

out to be negligible and we set the CKM matrix to unity in our calculation.

The partonic subprocesses can be classified as follows:

g + g → g + g, (2.4a)

g + g → q + q̄, (2.4b)

ui + d̄i → uj + d̄j , (i 6= j), (2.4c)

ui + d̄i → ui + d̄i, (2.4d)

qi + q̄i → q′j + q̄′j , (i 6= j), (2.4e)

q + q̄ → q + q̄, (2.4f)

where i, j denote the generation indices. We note that the processes listed in eq. (2.4)

are merely representatives of a class that also include the reactions that are related by

crossing symmetry. First, we categorize the processes according to the number of gluons

and quarks that appear as external particles into the four-gluon (a), the two-gluon-two-

quark (b), and the four-quark (c-f) processes. The four-quark processes can be subdivided

into processes that involve a W-boson exchange diagram (c,d) and those that only contain

neutral-boson exchange diagrams (e,f). A further distinction is made by distinguishing

processes that involve both s-channel and t-channel diagrams (c,e), and those that only
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Figure 1. Tree-level Feynman graphs (a–f) to the processes (2.4a)–(2.4f), respectively.

include either one (d,f). The LO Feynman graphs to the above process classes are shown

in figure 1. Furthermore, we can exploit the symmetry of the matrix element with re-

spect to the interchange of the generation index of the first two quark generations. This

reduces the number of independent amplitudes that need to be evaluated and speeds up

the numerical evaluation.

The electroweak coupling constant is derived from the Fermi constant in the Gµ scheme

via the following relation

αGµ
=

√
2

π
GµM

2
W

(

1− M2
W

M2
Z

)

. (2.5)

This input-parameter scheme avoids large logarithms of the light fermion masses generated

by the running of the coupling constant α(Q) from the Thomson limit (Q = 0) to the

electroweak scale (Q ∼ MW) and furthermore absorbs universal corrections induced by the

ρ parameter (see e.g. ref. [31]).

In order to describe the resonances of the intermediate vector bosons Z and W, we

employ the complex-mass scheme [32, 33], which fully respects gauge invariance. In this

approach the square of the gauge-boson mass is defined as the position of the pole in

the complex k2 plane of the respective propagator with momentum k. The consistent
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replacement of the (squared) gauge-boson masses by complex values,

M2
V → µ2

V = M2
V − iMV ΓV , V = W,Z, (2.6)

induces the adaption of all real quantities. In particular, this results in a complex weak-

mixing angle θw:

cos2 θw ≡ c2w =
µ2
W

µ2
Z

, sin2 θw ≡ s2w = 1− c2w. (2.7)

In order to ensure the correctness of the presented results two independent calcu-

lations have been performed, resulting in two separate implementations for the numerical

evaluation. Both calculations employ the Feynman-diagrammatic approach in the ’t Hooft-

Feynman gauge for the loops and the Catani-Seymour dipole subtraction approach [34, 35]

to isolate and cancel infrared (IR) divergences. The results of the two calculations are in

mutual agreement.

In the first calculation all tree-level amplitudes are calculated and implemented by

hand using the Weyl-van-der-Waerden spinor formalism as worked out in ref. [36]. The

virtual corrections are calculated using the Mathematica Packages FeynArts 3.6 [37]

and FormCalc 6.2 [38]. The one-loop integrals are evaluated using a modified version of

the LoopTools 2.4 [38] library, which was supplemented by the loop integrals with di-

mensionally regularized IR divergences that were not included in version 2.4. Additionally,

an interface is implemented between LoopTools and the Collier library, which is based

on the results of refs. [39, 40] for tensor and scalar one-loop integrals, respectively. This

allows to utilize the unmodified code generated by FormCalc, while resorting to Collier

for the evaluation of the loop integrals. The results of the two approaches are in perfect

mutual agreement. The numerical integration is performed using the adaptive Monte Carlo

algorithm Vegas [41], where a specific phase-space parametrization is chosen.

The second calculation uses FeynArts 1.0 [42] for generating the tree-level and one-

loop diagrams and in-house Mathematica routines to obtain an analytic result which

then is exported as Fortran source code. The loop integrals are evaluated using the

Collier loop library. The finite Catani-Seymour dipole subtraction terms and real emis-

sion matrix elements are built around amplitudes generated with the O’Mega [43] matrix-

element generator. Adaptive single-channel Monte Carlo integration is implemented using

the Vamp [44] library. Contrary to the first calculation, the second calculation does not

implement subprocesses involving external bottom quarks which only amount to ≈ 3% of

the LO cross section and thus can be safely neglected at order α2
sα. For all other subpro-

cesses, both calculations are in excellent agreement for both the integrated and differential

cross sections.

2.2 Structure of the NLO calculation

The calculation of the LO cross section is based on the full SM, i.e. all vector bosons,

including the photon γ, are included. The Born diagrams for each process class defined in

the previous section are shown in figure 1.

At NLO we classify the corrections into photonic and purely weak corrections. This

is possible, because each diagram in the full NLO correction, defined by the order α2
sα,
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contains exactly one electroweak gauge boson due to the single power in α. We can therefore

uniquely assign each NLO contribution to either a photonic or a purely weak correction.

The photonic corrections would constitute the O
(
α2
sα

)
corrections in a hypothetical gauge

theory with the group SU(3)C × U(1)QED. Therefore, they form a gauge-invariant subset

and consequently so do the remaining purely weak corrections. In the following, we will

use the notation O
(
α2
sαw

)
to refer to the purely weak contributions.

This gauge-invariant classification of the corrections allows us to tackle each class suc-

cessively. In this work we present the calculation of the O
(
α2
sαw

)
corrections, as motivated

in the introduction. The inclusion of the photonic corrections in order to obtain the full

EW corrections at the order α2
sα is left to the future.

It is known [28, 45] that partial cancellations can occur between the virtual weak

corrections and the real emission of massive gauge bosons. However, to which extent this

compensation takes place strongly depends on the experimental setup to reconstruct W

and Z bosons. Considering that the weak-boson emission is a tree-level process which can

be easily simulated with fully automatic LO tools, they are not further considered here.

2.2.1 Virtual corrections

The virtual corrections consist of the one-loop diagrams and the corresponding countert-

erms. Because we are restricting our NLO calculation to the order O
(
α2
sαw

)
, only the

interference terms shown in figure 2 are relevant. The generic diagram for the virtual

corrections to the process class (2.4b) is shown in figure 2(a). The corrections constitute

the purely weak O (αw) correction to the LO O
(
α2
s

)
cross section; some representative

diagrams are depicted in figure 2(a’). In case of the process classes (2.4d)–(2.4f) with four

external quarks, however, we have LO amplitudes of the order αw and αs. This leads to

the two types of virtual corrections shown in figures 2(b), 2(c). Here, we can identify gen-

uine QCD corrections, such as the contributions shown in figure 2(c’) and the first vertex

correction in figure 2(b’), and weak corrections, such as the second vertex correction in

figure 2(b’). However, there are also contributions such as the box diagram in figure 2(b’)

that cannot be assigned uniquely to QCD nor to weak corrections. This indicates that the

separation of the “QCD corrections” from the “weak corrections” is not properly defined

and instead, one must treat them together as a whole, defined by the order in perturbation

theory. The contributions we referred to by the “QCD corrections” above contain infrared

divergences and, therefore, the real emission of an additional gluon must be considered,

which will be discussed in the next section. A more complete set of one-loop and coun-

terterm diagrams associated with the schematic illustrations in figures 2(a), 2(b), and 2(c)

can be found in figures 3, 4, and 5, respectively.1

Ultraviolet (UV) divergences are regularized dimensionally. For the IR singularities

also dimensional regularization is used, but our second calculation optionally employs in-

finitesimal masses as regulators. It has been shown in the appendix of ref. [46] that rational

terms of IR origin cancel in any unrenormalized scattering amplitude, so that they need not

1In the case with external bottom quarks there exist additional diagrams in figure 3 and figure 4(b)

due to the non-vanishing mass of the weak-isospin partner t, where in place of W± a charged would-be

Goldstone boson φ± is exchanged.
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Z,W

Z,W
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∗

(c’)







. . .







×






Z,W±

. . .







∗

Figure 2. The virtual corrections of O
(
α2
sαw

)
illustrated in terms of interference diagrams of

generic Feynman graphs (a–c) and a set of sample diagrams below (a’–c’). The white circles and the

double-circles in the interference diagrams represent tree-level and one-loop subgraphs, respectively.

be further considered in the calculation of the one-loop amplitudes. The only remaining

source of rational terms of IR origin involve the wave-function renormalization constants,

which were calculated separately and are given below.

The external fields are renormalized in the on-shell scheme and hence, all self-energy

corrections to the external (on-shell) legs vanish and can be omitted already at the level

of diagram generation. The renormalization of the strong coupling constant is done using

the MS scheme for the Nf = 5 light quarks and by subtracting the contribution of the

heavy top-quark loop in the gluon self-energy at zero momentum transfer. Therefore, the

running of the strong coupling constant is driven by the five light quark flavours only.
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Figure 3. One-loop and counterterm diagrams for the process class (2.4b) grouped into the

self-energy (a), vertex (b), and box (c) corrections. All counterterms are restricted to the order

O (αw). V denotes the vector bosons W and Z, and q′ the weak-isospin partner of q for V = W

and q′ = q for V = Z.
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Figure 4. One-loop and counterterm diagrams for the processes (2.4d)–(2.4f) of O (αsαw) grouped

into vertex (a,b) and box (c) corrections. The triangle insertions are further subdivided into QCD

(a) and weak (b) corrections, and consequently the associated counterterms are restricted to the

order O (αs) and O (αw), respectively. V denotes the vector bosons W and Z.
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Figure 5. One-loop and counterterm diagrams for the processes (2.4d)–(2.4f) of O
(
α2
s

)
grouped

into self-energy (a), vertex (b), and box (c) corrections. All counterterms are restricted to the order

O (αs).

Similar to the loop diagrams, the renormalization constants need to be evaluated at

different orders, where the ones of O (αs) are

δZgs |O(αs) = −αs

4π

[(
11

2
− Nf

3

)(

∆UV + ln

(
µ2

µ2
R

))

− 1

3
B0(0,mt,mt)

]

, (2.8)

δZG|O(αs) =
αs

2π

[(
5

2
− Nf

3

)

B0(0, 0, 0)−
1

3
B0(0,mt,mt)

]

, (2.9)

δZq|O(αs) = −αs

3π
B0(0, 0, 0), (2.10)

and the ones of O (αw) are

δZL
q |O(αw) =

α

4π

[

(g−q )
2 (1 + 2B1(0, 0, µZ)) +

1

2s2w
(1 + 2B1(0, 0, µW))

]

, (2.11)

δZR
q |O(αw) =

α

4π
(g+q )

2 (1 + 2B1(0, 0, µZ)) , (2.12)

where our notation for the 2-point functions B0,1 follows ref. [39], µ is the arbitrary reference

mass of dimensional regularization, µR the renormalization scale, and

∆UV =
2

4−D
− γE + ln(4π) (2.13)

denotes the standard one-loop UV divergence in D dimensions. Here δZ
R/L
q and δZG

are the field-renormalization constants of the right/left-handed quark fields and of the

gluon field, respectively, and δZgs connects the bare (gs,0) and the renormalized (gs) strong

– 9 –
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αs αw αs αw

(a) gluon emission (b) gluon induced

Figure 6. The real corrections at O
(
α2
sαw

)
illustrated in terms of interference diagrams of generic

Feynman graphs. The circles represent tree-level subgraphs.

coupling constant, gs,0 = (1+δZgs)gs. The couplings g
±
q are defined via the 3rd component

of weak-isospin, I3w,q, and the electric charge Qq of the quark q,

g−q =
I3w,q − s2wQq

swcw
, g+q = −sw

cw
Qq, (I3w,q, Qq) =

{

(+1/2,+2/3), q = ui,

(−1/2,−1/3), q = di.
(2.14)

At this point some comments on the use of complex masses and couplings, as dictated

by the complex-mass scheme [32, 33], are appropriate. This scheme, which was primarily

introduced to achieve a consistent, gauge-invariant description of gauge-boson resonances

at LO and NLO, does not only comprise the consistent use of complex parameters in am-

plitudes, but also complex generalizations of the renormalization constants for the complex

masses and couplings as compared to on-shell renormalization schemes for real masses (see

e.g. ref. [47]). Note, however, that the order O
(
α2
sα

)
of the corrections considered in this

calculation does not involve weak corrections to gauge-boson propagators and weak cou-

plings, so that the complex generalization of the relevant renormalization constants given

in eqs. (2.8)–(2.12) just concerns the insertion of complex masses and weak couplings.

2.2.2 Real corrections

The real corrections receive contributions from the partonic processes that are illustrated

in terms of interference diagrams in figure 6. The contribution shown in figure 6(a) cor-

responds to the additional emission of a gluon from the processes (2.4d)–(2.4f), properly

taking into account only the interference terms that contribute at the order O
(
α2
sαw

)
. The

gluon-induced corrections in figure 6(b) are obtained from the preceding by crossing the

gluon into the initial state.

The real-emission cross section contains infrared divergences in the phase-space in-

tegration which have their origin in the regions where a final-state parton becomes soft

or collinear to another parton. The soft and the final-state collinear singularities cancel

against the corresponding singularities in the virtual corrections for sufficiently inclusive

observables by virtue of the Kinoshita-Lee-Nauenberg theorem [48, 49]. The remaining

initial-state collinear singularities are process independent and absorbed into the NLO

PDFs by QCD factorization, which is technically accomplished by subtracting a so-called
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αs αw ⊗
(
dVdipole, I(ǫ), K(x), P (x, µ2

F)
︸ ︷︷ ︸

O(αs)

)

Figure 7. The building blocks for the subtraction terms at O
(
α2
sαw

)
illustrated in terms of

interference diagrams of generic Feynman graphs. The circles represent tree-level subgraphs. The

symbol ⊗ denotes possible colour and helicity correlations between the dipole operators and the

LO amplitudes.

collinear counterterm (dσC) from the NLO cross section. The subtraction formalism reshuf-

fles the IR singularities by constructing a subtraction term (dσA) to the real correction

(dσR) which mimics its singular behaviour to render their difference integrable in four di-

mensions. The subtraction term can be integrated analytically in D = 4 − 2ǫ dimensions

over the singular one-particle subspace, generating 1/ǫ and 1/ǫ2 poles that cancel against

the corresponding poles in the virtual corrections (dσV) and the collinear counterterm.

To this end, we employ the Catani-Seymour dipole subtraction formalism [34], which

constructs the subtraction term in terms of so-called dipoles, which are built from the LO

amplitudes (σB) and dipole operators (dVdipole) which in general contain colour and helicity

correlations. The NLO contribution to the hard-scattering cross section from eq. (2.2) can

be schematically written as,

σNLO =

∫

3
dσR +

∫

2
dσV +

∫

2
dσC

=

∫

3

[
(
dσR

)

ǫ=0
−
(
dσA

)

ǫ=0

]

+

∫

2

[

dσV + dσC +

∫

1
dσA

]

ǫ=0

.

=

∫

3

[
(
dσR

)

ǫ=0
−
(

∑

dipoles

dσB ⊗ dVdipole

)

ǫ=0

]

+

∫

2

[

dσV + dσB ⊗ I(ǫ)

]

ǫ=0

+

∫ 1

0
dx

∫

2
dσB ⊗

(
K(x) + P (x, µ2

F)
)
, (2.15)

where
∫

m denotes the integration over the m-particle phase space, ⊗ encodes the possible

colour and helicity correlations between dσB and the dipole operators, and the integration

over x corresponds to a convolution over the momentum fraction of the incoming partons.

The insertion operators I(ǫ), K(x), and P (x, µ2
F) emerge from the collinear counterterm

and the integration of the subtraction term over the singular one-particle subspace. More

details and the explicit expressions for I(ǫ), K(x), and P (x, µ2
F) can be found in ref. [34].

The dipole operators introduced above are all of O (αs), which in turn forces us to

restrict the calculation of the colour-correlated LO amplitudes to the interference terms of

O (αsαw). This is schematically illustrated in figure 7.

For the second calculation which used both dimensional and mass regularization for

the IR divergences, the generalization of the above formalism for massive partons [35] is

used for the latter scheme.
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3 Numerical results

3.1 Input parameters and setup

For the numerical evaluation we use the input parameters of ref. [50],

Gµ = 1.16637× 10−5GeV−2, αs(MZ) = 0.129783,

MOS
W = 80.398GeV, MOS

Z = 91.1876GeV,

ΓOS
W = 2.141GeV, ΓOS

Z = 2.4952GeV,

mt = 172.5GeV. (3.1)

Note that there is no Higgs-boson mass dependence in the predictions for dijet production

at the considered order. The complex-mass scheme for the W and Z bosons corresponds

to a fixed-width description of the resonance and requires a conversion of the on-shell

gauge-boson masses to the pole masses MOS
V as follows [51],

MV =
MOS

V

cV
, ΓV =

ΓOS
V

cV
, cV =

√

1 +

(
ΓOS
V

MOS
V

)2

, (3.2)

giving

MW = 80.3695 . . .GeV, MZ = 91.1535 . . .GeV,

ΓW = 2.1402 . . .GeV, ΓZ = 2.4943 . . .GeV. (3.3)

For the PDFs we use the CTEQ6L1 [52] set, which dictates the value of αs(MZ)

in eq. (3.1). A consistent QCD calculation, of course, requires the use of LO, NLO, or

NNLO PDFs for the calculation of the respective cross-section prediction. Our aim here

is, however, to provide a relative correction factor for weak effects that is to be applied to

state-of-the-art QCD predictions. This factorization procedure is better motivated than

just adding QCD and electroweak corrections because of the factorization of IR-sensitive

corrections. The weak correction factor has to be derived from a single PDF set, but is

rather insensitive to PDFs.2 The renormalization scale is set equal to the factorization

scale, chosen as the transverse momentum of the leading jet

µR = µF ≡ µ = kT,1. (3.4)

3.2 Phase-space cuts and event selection

The definition of an IR-safe jet observable requires the recombination of soft and/or

collinear partons in the final state, as well as constraining the phase space by imposing

2The consistent use of LO PDFs is fully justified for the electroweak tree-level contributions and the

weak loop corrections (containing the large weak Sudakov logarithms) to the QCD channels. The remaining

part of the calculated correction actually has the character of a QCD correction, viz. the interference of

QCD loops with weak LO diagrams and the corresponding real corrections, strictly requiring NLO PDFs.

Recall, however, that the two different loop contributions cannot be separated, as explained in section 2.2.

Since the calculated corrections are generally rather moderate, our procedure is certainly acceptable within

the remaining uncertainty of the aimed combination of QCD and weak corrections.
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cuts. The jets emerge from the final-state partons via the anti-kT algorithm [53], where we

have set the angular separation parameter to R = 0.6. Recombination is performed using

four-momentum summation.

We require the jets to have transverse momenta kT,i larger than kcutT,jet and demand

them to be central by restricting their rapidities yi to the range |yi| < ycutjet with the values

ycutjet = 2.5, kcutT,jet = 25GeV. (3.5)

3.3 Results

In the following, we present the numerical results for dijet production at the LHC, i.e. for

a pp initial state, at the centre-of-mass (CM) energies of
√
s = 7TeV, 8TeV, and 14TeV,

and at the Tevatron, i.e. for pp̄ collisions at the CM energy of
√
s = 1.96TeV.

We denote the full LO cross section through O
(
α2
s , αsα, α

2
)
by σ0 and define the NLO

corrections relative to the LO cross section via

σNLO = σ0 × (1 + δ1-loopweak ). (3.6)

Furthermore, we denote the LO QCD cross section of O
(
α2
s

)
by σ0

QCD and introduce a

correction factor for the left-over LO contributions of order αsα and α2,

σ0 = σ0
QCD × (1 + δtreeEW). (3.7)

For the NLO cross section this leads to

σNLO = σ0
QCD × (1 + δtreeEW)× (1 + δ1-loopweak )

≃ σ0
QCD × (1 + δtreeEW + δ1-loopweak ). (3.8)

With respect to the LO QCD cross section, the total correction is given by the sum δ1-loopweak +

δtreeEW. Owing to the rather moderate size of the corrections, the difference in defining the

NLO corrections δ1-loopweak relative to σ0 or σ0
QCD constitutes a higher-order effect which

is negligible.

3.3.1 The dijet invariant mass at the LHC

The dijet invariant mass is defined as M12 =
√

(E1 + E2)2 − (p1 + p2)2, where E1,2 and

p1,2 denote the energies and the momenta of the leading and subleading jets, respectively.

In table 1 we present the integrated LO cross sections σ0, σ0
QCD, the NLO cross section

σNLO, and the relative correction factors δ1-loopweak , δtreeEW,
∑

δ = δtreeEW+δ1-loopweak for different

cuts on the dijet invariant mass M12 at the LHC. We note that the lowest cut value of

M12 > 50GeV is already covered by the standard setup via the cut on the transverse

momenta of the jets, kcutT,jet = 25GeV, and does not constitute a further restriction on the

cross section.

The cross section is dominated by the region close to the cut, which is reflected by the

rapid decrease of the integrated cross section with increasing values for the cut on M12.

Therefore, also the corrections are dominated by the region given by the lowest accepted

M12 values.
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pp −→ jj +X at
√
s = 7TeV

M12/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞ 3000−∞

σ0/nb 78600(2) 25496(1) 3879.2(3) 80.807(2) 2.49314(5) 33.0487(9) · 10−3 890.83(1) · 10−6

σ0
QCD/nb 78561(2) 25490(1) 3878.07(10) 80.650(3) 2.4756(2) 32.4826(8) · 10−3 870.69(2) · 10−6

δ1-loopweak /% −0.02 −0.03 −0.09 −0.39 −1.09 −2.48 −3.60

δtreeEW/% 0.05 0.01 0.04 0.20 0.70 1.75 2.31
∑

δ/% 0.02 −0.02 −0.05 −0.19 −0.38 −0.73 −1.29

σNLO/nb 78581(2) 25487(1) 3875.7(3) 80.493(2) 2.46627(6) 32.244(1) · 10−3 859.48(4) · 10−6

pp −→ jj +X at
√
s = 8TeV

M12/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞ 3000−∞

σ0/nb 94683(2) 31201(1) 4868.2(3) 108.331(7) 3.65684(7) 61.498(1) · 10−3 2.45475(6) · 10−3

σ0
QCD/nb 94638(2) 31197(2) 4867.1(1) 108.152(3) 3.6344(1) 60.5237(9) · 10−3 2.40056(5) · 10−3

δ1-loopweak /% −0.02 −0.03 −0.08 −0.37 −1.05 −2.44 −3.62

δtreeEW/% 0.04 0.01 0.03 0.17 0.61 1.61 2.25
∑

δ/% 0.02 −0.02 −0.05 −0.20 −0.44 −0.83 −1.37

σNLO/nb 94661(2) 31191(1) 4864.1(3) 107.926(8) 3.61864(10) 60.019(2) · 10−3 2.3678(1) · 10−3

pp −→ jj +X at
√
s = 14TeV

M12/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞ 5000−∞

σ0/nb 198483(4) 69335(3) 11858.2(8) 334.17(1) 14.9435(4) 456.64(1) · 10−3 954.71(2) · 10−6

σ0
QCD/nb 198410(5) 69329(2) 11856.0(10) 333.849(8) 14.8938(3) 452.12(2) · 10−3 930.90(3) · 10−6

δ1-loopweak /% −0.02 −0.03 −0.07 −0.31 −0.88 −2.20 −5.53

δtreeEW/% 0.03 0.01 0.02 0.10 0.34 1.00 2.56
∑

δ/% 0.01 −0.02 −0.05 −0.22 −0.55 −1.20 −2.98

σNLO/nb 198444(4) 69315(3) 11849.5(8) 333.12(1) 14.8117(4) 446.69(2) · 10−3 903.19(7) · 10−6

Table 1. Integrated dijet cross sections and respective corrections for various ranges of the dijet

invariant mass M12 at the LHC with CM energies 7TeV, 8TeV, and 14TeV.

Comparing the two cross sections σ0 and σ0
QCD, we find that the LO cross section with

minimal cuts is predominantly given by the QCD cross section and that the electroweak

effects (δtreeEW) typically stay below the per-cent level. However, we observe a steady increase

in δtreeEW with higher M12, which can be explained by the parton luminosities at the LHC:

As can be seen from figure 8, the LO cross section is dominated at lower M12 by the

gg- and gq-initiated processes, for which δtreeEW vanishes. At higher M12, the qq-initiated

processes with δtreeEW 6= 0 become dominant, leading to the behaviour described above. The

running of the strong coupling also acts in favour of increasing δtreeEW with higher cuts on

M12. Comparing the distributions in figure 8 for
√
s = 7TeV and 14TeV we observe a shift

of the transition region from gg- to qq-domination from ∼ 1.5TeV to ∼ 3TeV, respectively.

This trend is due to the fact that lower values of
√
s require larger partonic momentum

fractions x for a fixed value of M12, and the (valence) quark PDFs are enhanced over the

gluon PDF for larger x. This also explains the
√
s dependence of the EW contribution

δtreeEW, which decreases with higher CM energies for the same cut on M12.
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Figure 8. The LO contributions to the dijet invariant mass M12 distribution from the different

initial-state parton combinations at the LHC with CM energies 7TeV, 8TeV, and 14TeV. Left:

absolute predictions; right: relative contributions δtree.

The purely weak corrections are negative throughout and increase in magnitude from

−0.02% to −3.6% in case of the
√
s = 7TeV setup for a M12 cut of 50GeV and 3TeV,

respectively. This behaviour partly originates from the corrections containing weak loga-
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rithms ln
(
M2

W

Q2

)

, which become larger by effectively restricting the cross section to higher

energy scales Q via increasing cuts on the invariant mass.

Compared to δtreeEW, the relative weak corrections δ1-loopweak show a far weaker dependence

on the CM energy. The corrections δtreeEW and δ1-loopweak are similar in magnitude, but of opposite

sign, leading to large cancellations in the sum.

Note that the weak loop corrections δ1-loopweak in the TeV range are small in comparison

to the typical size of the EW Sudakov factor αw

π ln2
(
M2

W

Q2

)

, which amounts to tens of per

cent. This is due to the fact that also for large invariant mass M12 the cross section is not

dominated by the Sudakov regime which requires that the absolute values of both partonic

Mandelstam variables ŝ = (pa+pb)
2 and t̂ = (pa−kc)

2 are much larger than M2
W. Instead,

the cross section here is dominated by the Regge (forward) region where ŝ is large, but |t̂|
remains small.

This feature is also evident in the dijet invariant-mass distributions shown in figure 9.

The relative corrections given in table 1 are almost identical to the corrections in figure 9

at the respective cut value of M12, since the corrections are dominated by the region close

to the cut.

Figures 10 and 11 show the results for the M12 distributions corresponding to different

rapidity ranges. Specifically, the phase space is divided into different regions of y∗, which
is defined as half the rapidity difference of the two leading jets,

y∗ =
|y1 − y2|

2
. (3.9)

For the binning in y∗ we have chosen five bins of equal width covering the range 0 < y∗ <
2.5. In all y∗ bins we observe the above described behaviour of the relative corrections that

increase in magnitude with higher invariant mass, where the tree-level EW contributions

and the radiative weak corrections give positive and negative contributions, respectively.

Furthermore, a strong dependence on y∗ is observed, such that both, δtreeEW and δ1-loopweak ,

are larger for smaller values of y∗. For
√
s = 8TeV and the invariant mass of 3TeV the

corrections δtreeEW and δ1-loopweak in the first bin (y∗ < 0.5) amount to approximately 15% and

−10%, respectively, whereas in the highest y∗-bin (2 < y∗ < 2.5) we observe about 1.5%

and −2.5% for the respective corrections. As it is evident from the numbers quoted above,

δtreeEW decreases more rapidly than δ1-loopweak for higher y∗. The sum of both contributions,

thus, has a positive net-contribution for y∗ < 0.5, gradually decreasing with higher y∗

values. In the range of highest y∗ (2 < y∗ < 2.5), even a negative net-contribution results.

Qualitatively we observe the same behaviour also at the CM energy of
√
s = 14TeV. Here

we examine dijet invariant masses up to 6TeV, where we observe approximately 20% and

−15% in the first bin (y∗ < 0.5), and 2% and −5% in the highest y∗-bin (2 < y∗ < 2.5) for

δtreeEW and δ1-loopweak , respectively.

As already indicated in the discussion of integrated cross sections above, the behaviour

of the corrections can be better understood by identifying the Sudakov regime in phase

space. For the contributions with 2 → 2 kinematics, i.e. the LO cross sections and the
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Figure 9. Differential distributions with respect to the dijet invariant mass M12 at the LHC with

CM energies 7TeV, 8TeV, and 14TeV. Left: absolute predictions; right: relative contributions δ.
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Figure 10. Double-differential distribution with respect to the dijet invariant mass M12 and y∗ at

the LHC with a CM energy of 8TeV. In the absolute prediction (uppermost plot) the cross section

is divided by the bin width in y∗.
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Figure 11. Same as in figure 10, but for a CM energy of 14TeV.
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virtual corrections, the following relations hold:

|ŷ1| = |−ŷ2| = y∗, ŝ = M2
12, t̂ = − M2

12

1 + e±2y∗
, û = − M2

12

1 + e∓2y∗
, (3.10)

where ŷi and ŝ, t̂, û denote the rapidity and the partonic Mandelstam variables. The

two different signs refer to ŷ1 ≷ 0. For large M12 ≫ MW and small y∗ we reside in the

Sudakov regime, where all scales are simultaneously large compared to the vector-boson

masses. Here, all logarithms of the form αw ln2
(
Q2/M2

V

)
, with Q2 = ŝ,−t̂,−û become

large, leading to the observed enhancements of the weak radiative corrections. As can be

seen in the absolute distributions in figures 10 and 11, however, this regime delivers only

a small fraction to the cross section if the high-energy region is defined via cuts on the

invariant mass M12.

Although the corrections δtreeEW show a similar behaviour, their origin is of a completely

different nature: As discussed above, the bulk of the contributions to δtreeEW originate from the

qq-initiated processes, in particular from the partonic subprocesses uu → uu and ud → ud.

Owing to their colour structure, the interference terms of O (αsα) considered here receive

contributions from products of t-, u-, and s-channel diagrams only, but not from squares of

those topologies. Therefore, these interferences appear to be more central than the larger

LO QCD contributions which are dominated by squared topologies.

In summary, for high M12, where the corrections are largest, the cross section is domi-

nated by the contribution coming from the highest possible y∗ values. However, this region
receives the smallest corrections, leading to the small corrections that we observe in ta-

ble 1 even for very high M12 cuts. As we will see in the next section, this behaviour is

reversed in case of the transverse-momentum distributions. Despite the different origin of

the relative corrections δ1-loopweak and δtreeEW, they conspire together to large cancellations in the

sum δtreeEW+δ1-loopweak . The degree of this compensation, however, depends on the chosen cuts

defining the observable.

3.3.2 The transverse momenta of the leading and subleading jet at the LHC

In table 2 we list the various integrated cross sections at LO, the NLO cross section, and

the correction factors defined above for different cuts on the transverse momentum of the

leading jet, kT,1. The cut kT,1 > 25GeV in the first column is already imposed by the

default set of cuts and does not represent a further restriction to the cross section. Again,

the integrated cross section decreases rapidly with more restrictive cuts on the transverse

momentum, indicating that the cross section, and with it the corrections, are dominated

by the region with the lowest accepted kT,1.

The weak radiative corrections display the expected Sudakov-type behaviour with in-

creasing negative corrections for higher kT,1-cuts and only a modest dependence on the CM

energy of the collider. For cut values of 25GeV up to 1.5TeV they increase from −0.02%

to −6% for
√
s = 7TeV. For

√
s = 14TeV and a cut of kT,1 > 2.5TeV the radiative correc-

tions even amount to −11%. The LO EW contributions show a much stronger dependence

on the collider energy than the loop corrections, in particular for more restrictive cuts.
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pp −→ jj +X at
√
s = 7TeV

kT,1/GeV 25−∞ 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 1500−∞

σ0/nb 78600(2) 5417.1(1) 291.205(9) 11.1765(2) 63.697(2)·10−3 396.843(8)·10−6 5.9746(10)·10−6

σ0
QCD/nb 78561(2) 5413.8(2) 290.517(9) 11.0873(3) 61.251(2)·10−3 353.47(1)·10−6 4.9611(9)·10−6

δ1-loopweak /% −0.02 −0.10 −0.34 −0.99 −2.96 −5.12 −6.13

δtreeEW/% 0.05 0.06 0.24 0.80 3.99 12.28 20.44
∑

δ/% 0.02 −0.04 −0.10 −0.19 1.04 7.16 14.31

σNLO/nb 78581(2) 5411.9(1) 290.216(9) 11.0664(3) 61.887(4)·10−3 378.76(4)·10−6 5.6705(8)·10−6

pp −→ jj +X at
√
s = 8TeV

kT,1/GeV 25−∞ 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 1500−∞

σ0/nb 94683(2) 6762.3(2) 380.68(1) 15.7387(5) 105.965(3)·10−3 877.88(2)·10−6 20.4538(3)·10−6

σ0
QCD/nb 94638(2) 6759.0(3) 379.90(1) 15.6330(6) 102.626(2)·10−3 795.70(3)·10−6 17.3482(2)·10−6

δ1-loopweak /% −0.02 −0.09 −0.33 −0.97 −2.96 −5.35 −6.70

δtreeEW/% 0.04 0.05 0.21 0.68 3.26 10.33 17.90
∑

δ/% 0.02 −0.04 −0.12 −0.29 0.30 4.98 11.20

σNLO/nb 94661(2) 6756.1(2) 379.44(1) 15.5871(6) 102.932(5)·10−3 835.29(9)·10−6 19.292(3)·10−6

pp −→ jj +X at
√
s = 14TeV

kT,1/GeV 25−∞ 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2500−∞

σ0/nb 198483(4) 16194.3(5) 1074.11(3) 56.405(2) 671.10(2)·10−3 12.0383(4)·10−3 8.8504(2)·10−6

σ0
QCD/nb 198410(5) 16189.7(5) 1072.85(4) 56.204(1) 661.52(2)·10−3 11.5060(2)·10−3 7.4826(2)·10−6

δ1-loopweak /% −0.02 −0.08 −0.28 −0.84 −2.72 −5.48 −10.49

δtreeEW/% 0.03 0.03 0.12 0.36 1.44 4.62 18.28
∑

δ/% 0.01 −0.05 −0.15 −0.48 −1.28 −0.86 7.79

σNLO/nb 198443(4) 16181.6(5) 1071.15(3) 55.935(2) 653.10(3)·10−3 11.4076(10)·10−3 8.066(1)·10−6

Table 2. Integrated dijet cross sections and respective corrections for various ranges of the trans-

verse momentum of the leading jet kT,1 at the LHC with CM energies 7TeV, 8TeV, and 14TeV.

This
√
s dependence is also stronger than the one observed for the dijet invariant-mass

spectra discussed in the previous section.

Considering that kT,1 ≤ M12/2 at LO and that the cross section as well as the correc-

tions are dominated by the region of lowest accepted M12, one might naively expect that

the results for a fixed cut on kT,1 should be comparable to the respective corrections for

a M12 cut of twice that value. However, the region close to M12 ≈ 2kT,1 at LO requires

central jet production in the partonic CM frame, i.e. y∗ ≈ 0, so that the cross section

defined via the kT,1 cut is dominated by the Sudakov regime. This explains the smaller

cross section and the larger corrections as compared to the cross section defined via the

corresponding M12 cut discussed in the previous section.

The differential distributions in kT,1 shown in figure 12 cover the range up to kT,1 =

1.5TeV for
√
s = 7TeV, 8TeV, and up to kT,1 = 3TeV for

√
s = 14TeV and further un-

derline the observations made above. The weak corrections display the expected behaviour
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Figure 12. Differential distributions with respect to the transverse momentum of the leading jet

kT,1 at the LHC with CM energies 7TeV, 8TeV, and 14TeV. Left: absolute predictions; right:

relative contributions δ.
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from the Sudakov logarithms with corrections reaching up to −6% at kT,1 = 1.5TeV for√
s = 7TeV, 8TeV, and −12% at kT,1 = 3TeV for

√
s = 14TeV. On the other hand,

the tree-level corrections δtreeEW increase with higher kT,1 and reach approximately 16% at

kT,1 = 1.5TeV for
√
s = 7TeV, 8TeV, and 20% at kT,1 = 3TeV for

√
s = 14TeV,

resulting in significant cancellations in the sum δtreeEW+δ1-loopweak .

By introducing a further binning in y∗ we obtain the double differential distributions

shown in figures 13 and 14. At higher values of the transverse momentum, the production

of the jets is required to be more and more central in the partonic CM frame, leading

to the observed rapid decrease in the cross section for the bins with higher values of y∗.
In contrast to the M12 distribution, the bin with the smallest value for y∗ is the most

dominant in the high-kT,1 tail. Moreover, both the tree-level EW corrections δtreeEW and

the one-loop weak radiative corrections δ1-loopweak are only slightly affected by the y∗ binning,

while there is a significant dependence in the M12 distribution discussed in the previous

section. Additionally, we present the corresponding transverse-momentum distributions

with respect to the subleading jet in figures 15 and 17. Recall that leading and subleading

jets have the same transverse momenta (kT,1 = kT,2) in all 2 → 2 particle configurations,

i.e. that only the real emission corrections to the four-quark channels show a different

behaviour here. In particular, δtreeEW remains the same when going from the leading to the

subleading jet. On the other hand, the weak loop corrections δ1-loopweak turn out to be more

pronounced for small y∗. This is due to the fact that subleading jets fill bins with smaller

kT in the spectra which rapidly decrease with higher kT’s. Since the positive real-emission

contribution on the kT axis of the subleading jets is, thus, shifted to the left as compared

to the leading jet, the sum of negative virtual and positive real corrections for a fixed bin

is somewhat shifted to more negative values for the subleading jet. This effect is largest for

the smallest y∗ where the cross section is largest, because the real emission has a particular

tendency to reduce maxima in distributions.

3.3.3 Dijet production at the Tevatron

In the following, we present the results for dijet production at the Tevatron, i.e. for a pp̄

initial state and a CM energy of
√
s = 1.96TeV.

Figure 18 shows the various contributions of the different partonic channels at LO

contributing to dijet production at the Tevatron for the invariant-mass distribution of the

two jets. Since the Tevatron is a pp̄ collider, with valence quark-antiquark pairs in the initial

state, there is a strong qq̄ dominance at large values of the invariant mass M12 (several

hundred GeV), which requires large scattering energies and thus large momentum fraction

x of the partons. At the moderate values M12
<∼ 500GeV, there is still some dominance

of channels with gluons in the initial state, with even the largest contribution from gg

scattering for very low M12, because the gluon PDF has the strongest rise at small x.

The differential distributions with respect to the dijet invariant mass M12, the trans-

verse momentum of the leading jet kT,1 and the subleading jet kT,2 are shown in fig-

ure 19(a)–19(c), respectively. In accordance with the observations made for the LHC, the

weak corrections δ1-loopweak are much smaller for M12-based observables as compared to those

based on the transverse momenta of the jets. We further observe that the LO EW con-
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Figure 13. Double-differential distribution with respect to the transverse momentum of the leading

jet kT,1 and y∗ at the LHC with a CM energy of 8TeV. In the absolute prediction (uppermost

plot) the cross section is divided by the bin width in y∗.
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Figure 14. Same as in figure 13, but for a CM energy of 14TeV.
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Figure 15. Differential distributions with respect to the transverse momentum of the subleading

jet kT,2 at the LHC with CM energies 7TeV, 8TeV, and 14TeV. Left: absolute predictions; right:

relative contributions δ.
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Figure 16. Double-differential distribution with respect to the transverse momentum of the sub-

leading jet kT,2 and y∗ at the LHC with a CM energy of 8TeV. In the absolute prediction (upper-

most plot) the cross section is divided by the bin width in y∗.

– 27 –



J
H
E
P
1
1
(
2
0
1
2
)
0
9
5

10−6

10−4

10−2

100

102

104

0 200 400 600 800 1000 1200 1400 1600

kT,2 [GeV]

d2σ0/(dkT,2 dy
∗) [nb/GeV]

pp −→ jj +X

√
s = 14 TeV

y∗ < 0.5

0.5 < y∗ < 1.0

1.0 < y∗ < 1.5

1.5 < y∗ < 2.0

2.0 < y∗ < 2.5

−10

−5

0

5

10

15

0 200 400 600 800 1000120014001600

kT,2 [GeV]

δ
[%

]

y∗ < 0.5

−10

−5

0

5

0 200 400 600 800 1000 1200 1400 1600

kT,2 [GeV]

δ
[%

]

0.5 < y∗ < 1.0

−8
−6
−4
−2
0
2
4
6

0 200 400 600 800 1000 1200

kT,2 [GeV]

δ
[%

]

1.0 < y∗ < 1.5

−6

−4

−2

0

2

4

0 200 400 600 800 1000

kT,2 [GeV]

δ
[%

]

1.5 < y∗ < 2.0

−6
−5
−4
−3
−2
−1
0
1
2
3

0 100 200 300 400 500 600 700

kT,2 [GeV]

δ
[%

]

pp −→ jj +X at
√
s = 14 TeV

2.0 < y∗ < 2.5

δtree
EW

+δ1-loop
weak

δtree
EW

δ1-loop
weak

Figure 17. Same as in figure 16, but for a CM energy of 14TeV.
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Figure 18. The LO contributions to the dijet invariant mass M12 distribution from the differ-

ent initial-state parton combinations at the Tevatron. Left: absolute predictions; right: relative

contributions δtree.

tributions δtreeEW in the M12 distribution is similar in magnitude and opposite in sign as

compared to δ1-loopweak , similarly to the case of the LHC. For the transverse-momentum distri-

butions, however, δtreeEW becomes negative for higher kT,i, further increasing the corrections

in δtreeEW+δ1-loopweak , which reach around −12% for kT,i = 800GeV. It is interesting to note

that the radiative corrections δ1-loopweak are similar for both, the leading and subleading jet

kT, which is different from the behaviour we observed at the LHC, where the corrections to

kT,2 are significantly larger. To understand this, recall that the difference in the corrections

for leading and subleading jets is merely due to real emission corrections in the four-quark

channels. These are the real QCD corrections to the interference of weak and QCD tree

diagrams. Generically these interferences, which are part of δtreeEW in LO, are much smaller

at the Tevatron than at the LHC, as is obvious from δtreeEW in figure 19. Moreover, it is

interesting that the corrections are even slightly larger for the leading jet than for the sub-

leading one, because the real QCD corrections to the weak-QCD interference are negative

at high energy scales, as also observed for δtreeEW before.

The M12 and kT,1 distributions with a further binning in y∗ are shown in figures 20

and 21.

3.3.4 Comparison to other work

Preliminary results for the weak radiative corrections to dijet production at the LHC have

been presented by A. Scharf in the proceedings contribution [18], where the contributions

from external bottom quarks were not considered as part of dijet production, but discussed
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Figure 19. Differential distributions with respect to the dijet invariant massM12 (a), the transverse

momentum of the leading jet kT,1 (b) and the subleading jet kT,2 (c) at the Tevatron for a CM

energy of 1.96TeV. Left: absolute predictions; right: relative contributions δ.
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Figure 20. Double-differential distribution with respect to the dijet invariant mass M12 and y∗ at

the Tevatron. In the absolute prediction (uppermost plot) the cross section is divided by the bin

width in y∗.
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Figure 21. Double-differential distribution with respect to the transverse momentum of the leading

jet kT,1 and y∗ at the Tevatron. In the absolute prediction (uppermost plot) the cross section is

divided by the bin width in y∗.
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Figure 22. Comparison of the weak one-loop correction δ1-loopweak to the transverse-momentum spec-

trum of the leading jet as obtained from our calculation to the result of ref. [18].

separately. For comparison, we here adopt the calculational setup of ref. [18] for the LHC,

√
s = 14TeV, kcutT,1 = kcutT,2 = 50GeV,

ycut : none, µF = µR = 2kcutT = 100GeV,

αs = 0.1, α = 1/128,

MW = 80.425GeV, MZ = 91.1876GeV,

PDF set : CTEQ6L, (3.11)

which is partially inferred from ref. [19]. According to the author of ref. [18], further details

on the jet algorithm and the precise treatment of the W/Z resonances are not available

anymore, but those loose ends should only play a minor role. This is confirmed in figure 22

which shows our result on the corrections to the transverse-momentum spectrum of the

leading jet in comparison to the one shown to figure 9 of ref. [18]. The two results show

good agreement over the considered kT,1 range.

We have also tried to perform a tuned comparison to the results of ref. [17], but have

not found agreement.3

3To find the source of discrepancy seems to require a careful comparison of individual components of

the calculation. Since the correctness of our results is backed by our two calculations and the comparison

to ref. [18], we do not see a reason to await the outcome of this procedure before publication.
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4 Conclusions

In this paper we have presented the calculation of the most important electroweak cor-

rections to dijet production at the LHC and the Tevatron. These corrections comprise

electroweak contributions of O
(
αsα, α

2
)
to the LO QCD prediction as well as NLO correc-

tions through the order α2
sα. Guided by the electroweak Sudakov-type logarithms induced

by soft or collinear W/Z exchange at high energies, we have restricted ourselves to the

calculation of the purely weak loop corrections in a first step.

For the integrated cross section with minimal cuts we find that the weak corrections are

negligible, typically staying below the per-cent level, both at the LHC and the Tevatron.

However, the electroweak Sudakov logarithms affect the tails of kinematic distributions that

are sensitive to the high energy scales of the hard scattering process. We have discussed

this feature in some detail, considering the distributions in the dijet invariant mass (M12),

and in the transverse momenta of the leading (kT,1) and the subleading (kT,2) jets.

For the
√
s = 14TeV LHC setup, we observe weak loop corrections of O

(
α2
sα

)
reaching

up to −12% (−16%) for a transverse momentum of kT = 3TeV of the leading (subleading)

jet, whereas the dijet invariant-mass distribution only receives weak corrections up to −6%

for M12 = 6TeV. This difference is explained by the fact that observables based on specific

ranges in M12 are not dominated by the Sudakov regime (large energies at fixed angles) for

largeM12 values, but rather characterized by the Regge (forward) regime. The weak correc-

tions to dijet production at the Tevatron show similar features, though their size is smaller

(−10% for kT = 800GeV) than for the LHC because of the smaller scattering energy.

The LO EW contributions ofO
(
αsα, α

2
)
turn out to be of the same order of magnitude

as the weak loop corrections. At the LHC, these two types of corrections partially cancel,

but the degree of this cancellation depends on the chosen observable, setup, and cuts, so

that the full calculation is necessary in order to correctly include the considered electroweak

effects. At the Tevatron the LO electroweak corrections are somewhat smaller than the

weak loop effects, but of the same sign at high transverse jet momenta, thus somewhat

enhancing the electroweak effects to −12% at kT = 800GeV.

The electroweak corrections considered in this paper are supposed to be the by far

dominant electroweak effects in dijet production at hadron colliders. Their numerical

impact of 10−20% in the TeV range is not negligible and will certainly play a significant role

once the NNLO QCD corrections are known. In contrast to the weak corrections, which get

dominated by the large Sudakov logarithms at high energies, the so-far-neglected photonic

loop corrections do not receive particular enhancements over their parametric suppression

by the electromagnetic coupling α. The calculation of these effects, which are expected to

stay at the few-per-cent level, are left to the future.
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