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4.5 Möbius strip amplitude 23

5 N = 2 supersymmetric sector 25

6 Conclusions and outlook 26

A Variables from reduction 28

A.1 Kähler variables 28

B Variables 31

C Tadpole cancellation in Z′
6 orientifold 32

C.1 Setup 32

C.2 Trigonometry 36

C.3 Partition functions 36

C.4 Tadpole cancellation 38

C.5 Sample configuration 40

C.6 Divergence cancellation in the two-point function 41

D World-sheet correlators 42

E q-series representation of twisted correlator 43

E.1 Vanishing by contour integration 46

E.2 Fourier series of cotangent function 47

F Illustrating image intersections 47

– 1 –



J
H
E
P
1
1
(
2
0
1
2
)
0
9
1

1 Introduction

Since the beginning, D-branes have been very important in the overall development of

string theory as well as in attempts to apply string theory to particle phenomenology and

cosmology. In all these endeavors, a central role is played by the D-brane moduli. These

moduli fields in general include scalar fields whose vacuum expectation values specify the

location of the D-brane, as well as background values of gauge potentials (Wilson lines) for

the gauge fields that are localized on the D-branes. The metric on the field space of these

moduli, in its various incarnations, contributes to determining the dynamics and ground

state of the theory.

For phenomenology, although these moduli fall in the adjoint representation of the

D-brane gauge group and are usually not thought of as matter fields, they have been used

as toy models for matter fields (see e.g. [1]). For cosmology, although these moduli are in

principle charged, they are uncharged under the relevant remnant gauge group, so they are

still appropriate for inflation (see e.g. [2] for a recent review). In general, the metric on the

space of D-brane moduli is of great interest also for applications.

Sometimes, quantum corrections to this metric can become relevant. Symmetries can

render the moduli potential particularly simple or in exceptional cases, can make it van-

ish. Then, quantum corrections to the metric on field space could contribute interesting

dependence on the D-brane moduli. Even if the quantum corrections are not leading, they

can have useful interpretations. For example, when the moduli are all fixed, the correc-

tions may reduce to anomalous dimensions for the D-brane moduli fields (see e.g. [3] for

a related orientifold example), that induce scale dependence in the low-energy effective

theory. Calculations of similar type can also be used to compute masses for adjoint fields,

such as one-loop Dirac gaugino masses (first calculated in [4]). The virtue of these for

phenomenology has been emphasized for example in [5].

In this paper, we continue developing the formalism for computing quantum corrections

to the metric of D-brane moduli, in Type IIA orientifolds with D6-branes at angles. The

D-brane moduli can a priori couple to orbifold-charged open string states localized at

intersections of various orbifold images of D-branes.1 For example, a D-brane at angles can

intersect its own orbifold image, and therefore also states localized at these intersections

can run in an open string loop. Corrections that only appear for D-branes that have

nonvanishing intersection angle along all three two-tori are referred to asN = 1 corrections.

There are also loop contributions due to states not localized at intersections, when

there exist branes that are parallel along one two-torus. (This is the only other nontriv-

ial option, because branes cannot be parallel along two two-tori but not the third and

still preserve supersymmetry.) Such special configurations preserve enhanced N = 2 su-

persymmetry, so those corrections are referred to as N = 2 corrections. The enhanced

supersymmetry actually prevents string oscillators from contributing, so these corrections

only come from zero modes (winding or Kaluza-Klein momentum modes). These correc-

1By “orbifold-charged” we mean charge under the group of space rotations, not to be confused with the

charge under the gauge group. These states are sometimes called “twisted”, but we prefer to reserve this

terminology for operators with non-integer operator product expansions.
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tions are well studied in related situations and we will be able to adapt existing results to

our configurations.

The N = 1 contributions are less well understood. We find by direct calculation

that string loop corrections due to states localized at image intersections vanish, for any

orbifold and any brane configurations with minimal supersymmetry in four dimensions

(N = 1). There is no corresponding nonrenormalization theorem for Kähler metrics in

minimally supersymmetric field theory. With minimal supersymmetry, there is also no

direct argument that would prevent heavy string states from running in loops, and a

priori our expressions contain contributions from massive string states, it is just that the

contributions all vanish. Therefore we have really proven a “string nonrenormalization

theorem”. In addition, it is rather rare that statements can be made about minimally

supersymmetric orientifolds that hold regardless of orbifold group or brane configuration,

but this is one such statement. Another statement of this kind was recently made about

the absence of mass renormalization due to N = 1 contributions, in [6].

It would be interesting to understand how and whether this result can be recast as a

statement about symmetries of the theory. Some tentative arguments in this direction can

be made, but at the moment we do not know how to cleanly formulate the vanishing result

in this paper in terms of symmetries. We will comment on this issue, as well as possible

generalizations, in the conclusions.

In [7] we pursued a similar calculation neglecting the contributions we consider here.

There, following the seminal work [8], we first considered a reduction of the relevant (tree-

level) effective supergravity using the standard curvilinear coordinates on the covering torus

of the orbifold, identified the correct combinations of moduli, then rewrote the worldsheet

action in terms of them. By varying this rewritten worldsheet action directly with respect

to the moduli fields of interest, we obtained the corresponding vertex operators, that then

automatically captured the full moduli dependence. In this paper, we found it useful to

generalize this strategy somewhat to obtain the moduli dependence for D-branes at angles.

Here, we will not use the standard curvilinear coordinates on the covering torus, but a

better choice of coordinate frame that is adapted to the D-branes of interest. A related

approach was used to great effect in the work by Hassan [9]. Our strategy will essentially

be to generalize this to D-branes at angles. Another relevant paper is [10], where similar

vertex operators to ours were introduced and used for tree-level string calculations.

One-loop corrections to gauge couplings have been studied in greater detail than cor-

rections to the Kähler metric, and we will make heavy use of [11] and [12] for much of the

background detail. Although our results will be valid for any orientifold and any brane

configuration, we provide some explicit examples in the appendix, focused on the T 6/Z′6
orientifold and a two-stack configuration (for simplicity). We will not consider any direct

phenomenological applications in this paper, but the interested reader may consult [12] for

phenomenologically interesting spectra in the T 6/Z′6 orientifold with more brane stacks.

There is plentiful literature on string calculations in toroidal orientifolds, but few make

progress on the technical details needed for the kind of calculation we present here. Some

examples of papers that develop techniques that are relevant to this work are [10, 11, 13].
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2 String effective action

We begin by an overview of the dimensional reduction of the tree-level effective supergravity

action and how the D-brane moduli appear. Then we review the vertex operators with

which one can compute this supergravity action as a low-energy limit of string theory.

Finally, in section 4 and 5 we use these vertex operators to calculate string amplitudes,

from which we extract the one-loop Kähler metric of the D-brane moduli.

2.1 Kähler variables

We will work in Type IIA string theory, but let us begin with quick reminder of why the

open string Kähler variables are defined the way they are in effective Type IIB supergravity.

In Type IIB, the open string moduli are defined as

Ai = Uia
i
1 − ai2 (no sum over i) , (2.1)

where Ui is the complex structure modulus of the ith torus. The form (2.1) of the open

string moduli can be derived by dimensional reduction, as in [8]. For D9/D5-branes,

dimensional reduction gives

L(4) = −1

2
R(4)+

∂S∂S̄

(S−S̄)2
+

3∑

i=1


 ∂Ui∂Ūi

(Ui − Ūi)2
+

(∂ImTi)
2

(Ti − T̄i)2
+

(∂ReTi + 1
2

∑
branes a

i
1

↔
∂ ai2)2

(Ti − T̄i)2

+
∑

branes

|Ui∂ai1 − ∂ai2|2
(Ti − T̄i)(Ui − Ūi)

]
. (2.2)

(Strictly speaking this form of the action would arise in a reduction on a factorized six-torus

and some of the complex structure moduli might not be moduli in the orbifold.) The form

of the open string moduli can be inferred from the last term in (2.2). It arises from the

kinetic term of the gauge fields on the brane, i.e. from an expansion of the DBI action.

Under T-duality to Type IIA, the complex structure modulus Ui of Type IIB is mapped

to the corresponding Kähler modulus Ti of the same torus. The above reduction of the

DBI action can now be redone in the Type IIA picture. In order to do so, we distinguish

the indices of coordinates according to whether they are parallel or tangent to the brane

and/or to the non-compact space-time, i.e.

µ : || R1,3 ,

A : || brane but ⊥ R1,3 , (2.3)

a : ⊥ brane .

The coordinates along the brane are denoted by {ξµ, ξA} and the coordinates along space-

time are {Xµ, XA, Xa}. We work in static gauge, i.e. XA = ξA and Xµ = ξµ. To do so,

we concentrate on a single representative of an orbit.

We are interested in expanding
√

det(P [G] + F) to second order in the fluctuations

along or transverse to the branes. F = F+P [B] and P [G] and P [B] stand for the pullbacks

– 4 –
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of the metric and B-field. In appendix A, we obtain for the kinetic term

√
detGµν

√
detGAB

∑

i

1

2

(
(∂µAi −Bi∂µφi)(∂µAi −Bi∂µφi) + ρ2

i ∂µφ
i∂µφi

) 1

L2
i

=
√

detGµν
√

detGAB
∑

i

1

2L2
i

|Ti∂φi − ∂Ai|2 (2.4)

with

Ti = Bi + iρi , (2.5)

where Bi denotes the component of the B-field along the ith torus, ρi is the volume of the

ith torus and Li is the length of the brane along the ith torus, as discussed in more detail

in appendix A.

By analogy to (2.1) and (2.2) we define the open string moduli according to

Φi = Tiφ
i −Ai (no sum over i) . (2.6)

This is in agreement with formula (3.51) in [14].2

2.2 Real vertex operators: no relative angles

As mentioned in the previous section, the coordinates (XA, Xa) are adapted to a specific

brane, with an explicit split into parallel and perpendicular coordinates. A particular

split of this kind will obviously not work for two branes at nonzero angles simultaneously.

However, for our purposes we only need to insert vertex operators on a single stack of

branes. This is because we are interested in calculating a scalar two-point function, and

inserting the two vertex operators on two different boundaries in an annulus diagram would

lead to a vanishing result after summing over all branes and their orientifold images. (We

will come back to which specific diagrams contribute to the two-point function in section 3.)

Therefore, we will only make insertions on a single boundary at a time and our variables

and vertex operators can be adapted to the stack on which we make the insertion.

But correlators of those vertex operators, even if inserted at a single stack, will involve

propagators that are determined by boundary conditions at both ends of the open string.

So we will see that amplitudes will depend on the relative angle between D-branes through

the correlators, even though the vertex operators on any given stack may be adapted to

that stack.

One can consider vertex operators for intrinsic D-brane worldvolume fields or for am-

bient spacetime fields. We will consider spacetime fields, but for completeness we write the

relation to worldvolume fields in appendix B, following Hassan [9]. The vertex operator

for spacetime fields can be read off from that reference.3 We use a plane wave ansatz,

2Note also the definitions of their ε and θ at the bottom of pages 15 and 17, respectively.
3To be specific, formula (52) together with (8)-(11) in [9]. This reference uses a Lorentzian worldsheet,

but we will Wick rotate to a Euclidean worldsheet.This means ∂t → i∂τ . The vertex operators in principle

receive an overall i from the integration measure, but this is absorbed in the Euclidean definition of the

functional integral.

– 5 –
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e.g. AM (X) = AMe
ip·X for constant AM , to obtain the vertex operators. Assuming a

constant matrix EMN = GMN +BMN , the vertex operators for Wilson lines and D-brane

positions are

VAM =
go√
2α′

∫

∂Σ
dτAM

[
i∂τX

M +
α′

2
pN (ψN + ηψ̃N )(ψM + ηψ̃M )

]
eip·X ,

VφM =
go√
2α′

∫

∂Σ
dτφM

[
iBMN∂τX

N −GMN∂σX
N (2.7)

+
α′

2
pK

(
ψK + ηψ̃K

)(
EMNψ

N − ηETMN ψ̃
N
)]
eip·X ,

where go is the (dimensionless) open string coupling, and the α′ factor is such that the

vertex operators are dimensionless (for the normalization factor see [15]). Also η = ±1 is

defined to take the same value at both ends in the Ramond sector and the opposite value

at the two ends in the Neveu-Schwarz sector. Without loss of generality, we assign4

η =





+1 , σ = π{
+1 (R)

−1 (NS)

}
, σ = 0 .

(2.8)

We emphasize that the sign combinations in the above vertex operators are defined to be

T-duality covariant. For example, using the T-dual coordinate X ′(w, w̄) = XL(w)−XR(w̄)

one sees that ∂σ → −i∂τ , which enforces the above sign relation between ∂τX in VAM and

∂σX in VφM . For vanishing B-field background (which we assume from now on), the vertex

operators for the Wilson lines are the same as above, but the position scalars simplify to

VφN = − go√
2α′

∫

∂Σ
dτφN

[
∂σX

N − α′

2
pK

(
ψK + ηψ̃K

)(
ψN − ηψ̃N

)]
eip·X , (2.9)

where

φN = φMGMN . (2.10)

In static gauge, the only non-vanishing components of the fields with lower indices are

φa and AA, cf. eq. (2.3) for the notation, and also appendix B. (That is, φA = Aa = 0,

but we emphasize that this is a gauge-dependent statement, as explained in detail in [9].)

Moreover, we only consider momentum along the non-compact directions so that the only

non-vanishing momentum components are pµ. Thus, the vertex operators become

VAA =
go√
2α′

∫

∂Σ
dτAA

[
i∂τX

A +
α′

2
pµ

(
ψµ + ηψ̃µ

)(
ψA + ηψ̃A

)]
eip·X ,

Vφa = − go√
2α′

∫

∂Σ
dτφa

[
∂σX

a − α′

2
pµ

(
ψµ + ηψ̃µ

)(
ψa − ηψ̃a

)]
eip·X . (2.11)

These can be rewritten purely in terms of the holomorphic ψ using the boundary condi-

tions. To do so, we recall that the relations between the left- and right-moving fermions in

4This is the same choice as in Polchinski [16], Ch. 10, which he calls ν′ = 0.

– 6 –
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Neumann and Dirichlet directions, respectively, are

ψµ|σ=0,π = η ψ̃µ
∣∣∣
σ=0,π

(Neumann) ,

ψA
∣∣
σ=0,π

= η ψ̃A
∣∣∣
σ=0,π

(Neumann) ,

ψa|σ=0,π = −η ψ̃a
∣∣∣
σ=0,π

(Dirichlet) , (2.12)

where of course both sides have to be taken at the same value of σ, i.e. both at σ = 0 or

both at σ = π. Using this we find

VAA =
go√
2α′

∫

∂Σ
dτAA

[
i∂τX

A + 2α′(p · ψ)ψA
]
eip·X ,

Vφa = − go√
2α′

∫

∂Σ
dτφa

[
∂σX

a − 2α′(p · ψ)ψa
]
eip·X . (2.13)

The reason that each pair of terms in the fermions added up instead of cancelling (which

would have been the other possibility) is that the combinations of worldsheet fields in the

vertex operators are defined as the pieces that are nonvanishing under the given boundary

conditions (see appendix B). However, since we have made explicit use of the boundary

condition for ψ, no trace of the antiholomorphic field ψ̃ remains in the explicit forms (2.13).

We will make similar replacements for ∂X in the next section.

We can also impose boundary conditions in a way that makes no explicit reference to

right-movers by using the well-known “doubling trick” (see e.g. [15]). The trick is to define

a “doubled” holomorphic fermion field extending into the “unphysical” region π < σ ≤ 2π

by using the right-mover ψ̃ there:

ψA(σ, τ) =

{
ψA(σ, τ) , 0 ≤ σ ≤ π

ψ̃A(2π − σ, τ) , π ≤ σ ≤ 2π ,

ψa(σ, τ) =

{
ψa(σ, τ) , 0 ≤ σ ≤ π

−ψ̃a(2π − σ, τ) , π ≤ σ ≤ 2π .
(2.14)

The boundary condition (2.12) at σ = π is automatically fulfilled, while the condition at

σ = 0 amounts to the quasiperiodicity conditions

ψA(2π, τ) = ηψA(0, τ) ,

ψa(2π, τ) = ηψa(0, τ) . (2.15)

We see that the definition (2.14) and the quasiperiodicity (2.15) together replace the bound-

ary condition (2.12). We can still use the expressions (2.13) for the vertex operators with

only the holomorphic ψa and ψA, and now they are simply extended to the full range 0

to 2π.

2.3 Complex vertex operators: angles

In this section we write down vertex operators directly for the complex variables Φi defined

in (2.6). It might be worthwhile to contrast our approach with that of [13]. Those authors

– 7 –
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X2i+3

X2i+4

θ

Wednesday, September 5, 2012

Figure 1. Tilted coordinates for a brane with wrapping number (n,m) = (2, 1). The complex

coordinates Ziθ and Ψi
θ also include the length Li and perpendicular distance Di.

consider vertex operators with branch cuts in the complex plane. We work entirely in

cylinder variables, where there is no branch cut. Instead the vertex operators exhibit

quasiperiodicity as they cross through the unphysical region — in the sense of the method

of images — back into the physical region (see figure 3) below. Another difference is that

those authors begin by performing real matrix rotations, and then diagonalize to obtain

complex embedding coordinates. They can reproduce the DBI action as output. We obtain

our variables by comparing with the reduction of the DBI action as input, but we consider

adapted coordinates, so we do not need to diagonalize. Ultimately, whatever approach one

prefers they should be equivalent, and indeed we reproduce their results on D-branes at

angles, for example in (2.36) below (with the replacement U → −1/U , as we T-dualize on

a different axis). For other work in this direction see also [17].

Now on to the calculation. We want to introduce complex coordinates along the

internal tori. In the conventions of [15], we have ∂σ = ∂+ ∂̄ and ∂τ = i(∂− ∂̄), using which

the boundary conditions are

(∂ + ∂̄)XA = 0 Neumann, along brane (2.16)

(∂ − ∂̄)Xa = 0 Dirichlet, perpendicular to brane. (2.17)

Now for our variables

Ziθ =
1√
2

(
LiX

2i+3 + iDiX
2i+4

)
, (2.18)

Φi = Tiφ
i −Ai (no sum over i) , (2.19)

where X2i+3 is a coordinate along the ith torus parallel to the brane (stack) and X2i+4 is

transverse to it, i.e. X2i+3 is one of the coordinates XA and X2i+4 is one of the coordinates

Xa, but the present notation emphasizes the relation to the ith torus, cf. figure 1. In (2.18),

Li is the length of the brane along the ith torus and Di is the distance to the neighboring

parts of the brane along the ith torus. For more details, see figure 7 and eqs. (A.7) in the

appendix. The normalization in (2.18) was chosen in order to ensure

〈∂Ziθ(z)∂Z̄ ̄θ(w)〉 =
δij

|z − w|2 (2.20)

– 8 –
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at disk level, when normalizing the original real coordinates in such a way that

〈∂XI(z)∂XJ(w)〉 =
GIJ

|z − w|2 . (2.21)

Here, XI , XJ stand for any of the internal coordinates and the internal metric is given by

a product of three factors of the diagonal form given in (A.13).

Using (2.18), the boundary conditions (2.16) and (2.17) can be rephrased as

∂̄Z̄θ
ı̄

= −∂Ziθ , (2.22)

∂̄Ziθ = −∂Z̄θı̄ . (2.23)

Inverting the expressions (2.18) and (2.19) and using T = iT2 for a background without

B-field gives

Ai = −1

2
(Φi + Φ̄ı̄) ,

φi =
Φi − Φ̄ı̄

2i(Ti)2
(2.24)

and

X2i+3 =
1√
2Li

(Ziθ + Z̄θ
ı̄
) , (2.25)

X2i+4 =
1√

2iDi

(Ziθ − Z̄θ
ı̄
) . (2.26)

Note that the boundary action and the corresponding vertex operators (2.13) involve the

position variables φ with a lower index instead of an upper index. Using the metric (A.13),

this can be obtained as

φi = D2
i

Φi − Φ̄ı̄

2i(Ti)2
. (2.27)

Now the boundary Lagrangian for the worldsheet bosons becomes

LXbdry ∼ iAA∂τX
A − φa∂σXa = iAi∂τX

2i+3 − φi∂σX2i+4 (2.28)

= − i
2

(Φi + Φ̄ı̄)i(∂ − ∂̄)
1√
2Li

(Ziθ + Z̄ ı̄θ)−D2
i

Φi − Φ̄ı̄

2i(Ti)2
(∂ + ∂̄)

1√
2iDi

(Ziθ − Z̄ ı̄θ) (2.29)

=
1

2
√

2Li

[
(Φi + Φ̄ı̄)(∂ − ∂̄)(Ziθ + Z̄ ı̄θ) + (Φi − Φ̄ı̄)(∂ + ∂̄)(Ziθ − Z̄ ı̄θ)

]
(2.30)

=
1√
2Li

[
Φi(∂Z

i
θ − ∂̄Z̄ ı̄θ) + Φ̄ı̄(∂Z̄

ı̄
θ − ∂̄Ziθ)

]
, (2.31)

where ∼ means we suppress an overall constant that is restored in (2.45), and in the third

line we used DiLi = (Ti)2, cf. (A.7). Using (2.22), this can be rewritten as

LXbdry ∼
√

2

Li

[
Φi∂Z

i
θ + Φ̄ı̄∂Z̄

ı̄
θ

]
. (2.32)

– 9 –
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U

2θ

n + mU

n + mŪ

Wednesday, September 5, 2012

Figure 2. Covering space. Since |n+mU | = |n+mŪ |, dividing n+mU by n+mŪ gives just the

angle e2iθ. In this example (n,m) = (2, 1).

Before considering the fermions, let us mention that we of course did not have to

use coordinates Zθ adapted to a specific brane. Another obvious choice would be fixed

orthogonal coordinates corresponding to basis vectors along the horizontal and vertical

axis in each internal covering plane. Then θ would correspond to the rotation angle of the

brane with respect to the horizontal axis, cf. figure 1, and the relation to those coordinates

Z is simply

Zθ = e−iθZ . (2.33)

It is of course for this reason that we put the subscript θ on our adapted Zθ coordinate.

In the un-adapted Z coordinate, the boundary conditions become

∂̄Z̄ = −e−2iθ∂Z , (2.34)

∂̄Z = −e2iθ∂Z̄ . (2.35)

In the orbifold the angle is fixed by the wrapping numbers and the complex structure of

the spacetime torus. We see in figure 2 that

eiθ =

√
n+mU

n+mŪ
. (2.36)

We mentioned the un-adapted coordinate for completeness, but we will use the adapted

coordinate Zθ as defined in (2.18) for the remainder of this paper.

We use the same logic to obtain the fermion pieces in the vertex operator as we did

for the terms with bosons. We define complex fields

Ψi
θ =

1√
2

(
Liψ

2i+3 + iDiψ
2i+4

)
, Ψ̃i

θ =
1√
2

(
Liψ̃

2i+3 + iDiψ̃
2i+4

)
. (2.37)

This leads to

ψ2i+3 =
1√
2Li

(Ψi
θ + Ψ̄ı̄

θ) , (2.38)

ψ2i+4 =
1√

2iDi

(Ψi
θ − Ψ̄ı̄

θ) (2.39)
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and the same for the fields with tildes. Using this and (2.24) and we obtain for the fermionic

contribution (suppressing a factor α′pµψ
µ)

Lψbdry ∼ AA(ψA + ηψ̃A) + φa(ψ
a − ηψ̃a) (2.40)

= − 1√
2Li

[
Φi(Ψ

i
θ + η ¯̃Ψı̄

θ) + Φ̄ı̄(Ψ̄
ı̄
θ + ηΨ̃i

θ)
]
. (2.41)

This can still be simplified by using the boundary conditions

ψA = ηψ̃A , ψa = −ηψ̃a , (2.42)

which can be rewritten using (2.38) and (2.39) as

Ψ̄ı̄
θ = ηΨ̃i

θ . (2.43)

Using this in (2.41), we finally obtain

Lψbdry ∼ AA(ψA + ηψ̃A) + φa(ψ
a − ηψ̃a) (2.44)

= −
√

2

Li

[
ΦiΨ

i
θ + Φ̄ı̄Ψ̄

ı̄
θ

]
.

We now have the result for bosons and fermions, and reinstating the factor α′pµψ
µ in the

fermion piece, the total vertex operators are (no summation over i)

VΦi =
go√
α′Li

eiλ
[
∂Ziθ − α′pµψµ Ψi

θ

]
eip·X , VΦ̄ı̄ =

go√
α′Li

ēı̄λ
† [∂Z̄ ı̄θ − α′pµψµ Ψ̄ı̄

θ

]
eip·X ,

(2.45)

where ei is the polarization and λ the Chan-Paton matrix. We emphasize again that these

vertex operators make use of coordinates that are adapted to a particular brane (stack).

Only in the special case that all vertex operators are inserted on the same brane, as we will

consider in the rest of this paper, can they be directly applied. They cannot be directly

applied for non-planar amplitudes, where vertex operators are inserted on different branes

at relative angles (which might be image branes under the orientifold action). In those

cases one must rotate the coordinates Zθ (and similarly the fermions Ψθ) like in (2.33)

with an angle appropriate for the brane on which the vertex operator is inserted. We

note that even for planar amplitudes where (2.45) can be used, the correlators will always

depend explicitly on the relative angle, as we will show momentarily.

Before proceeding further, however, let us perform a quick test of our vertex opera-

tors (2.45), by reproducing the known moduli dependence at tree level. At disk level the

correlator has the moduli dependence

〈VΦiVΦ̄ı̄〉 ∼
e−Φ10

L2
i

∏

j

Lj , (2.46)

where the factor e−Φ10 comes from the usual dilaton dependence of a disk amplitude and∏
j Lj is the volume of the cycle wrapped by the brane under consideration. This factor
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arises from the integration over the zero modes5 of XA. In order to obtain the moduli

dependence of the Kähler metric, one should perform a Weyl rescaling, leading to an

additional factor of e2Φ4 = e2Φ10Vol−1, where Vol =
∏
j(T2)j is the volume of the Calabi-

Yau orientifold. This results in

Gdisk
ΦiΦ̄ı̄

∼ eΦ10

L2
i

3∏

j=1

Lj
(T2)j

=
eΦ4

L2
i

3∏

j=1

Lj√
(T2)j

=
eΦ4

Vi(T2)i

3∏

j=1

√
Vj , (2.47)

where we used (A.7) (together with (A.18)) and (C.39). This moduli dependence precisely

agrees with known results, for example eq. (53) in [18].

We now go through the arguments of the doubling trick again for the complexified

fermion. As in (2.43), the boundary condition at each end can have a phase associated

with that end, and we now emphasize this by an index on the angle θ:

Ψθ0 = η Ψ̃θ0 (at σ = 0) , (2.48)

Ψθπ = η Ψ̃θπ (at σ = π) . (2.49)

We now want to express them in terms of a single field, let us say adapted to the brane at

angle θ0. To do so we simply rotate Ψθπ = e−i(θπ−θ0)Ψθ0 , Ψ̃θπ = e−i(θπ−θ0)Ψ̃θ0 to obtain

Ψθ0 = η Ψ̃θ0 (at σ = 0) , (2.50)

Ψθ0 = η e−2i(θπ−θ0)Ψ̃θ0 (at σ = π) . (2.51)

The doubling trick again extends the fermion into the “unphysical” region π < σ ≤ 2π by

using a translated right-mover Ψ̃θ there:

Ψθ0(w) =

{
Ψθ0(w) , 0 ≤ Rew ≤ π

e2i(θπ−θ0)Ψ̃θ0(2π − w̄) , π ≤ Rew ≤ 2π .
(2.52)

The boundary condition at Rew = π is now fulfilled by construction, while the condition

at Rew = 2π becomes, using (2.48), the quasiperiodicity condition

Ψθ0(2π) = η e2i(θπ−θ0)Ψθ0(0) . (2.53)

So this is a condition on the doubled holomorphic field. Therefore it is best interpreted

on the covering torus. The doubling trick for the complex bosons Z works completely

analogously.

To summarize, the angle difference 2(θπ − θ0) appears as a twist of the worldsheet

fields, and hence of the vertex operators, in the horizontal direction on the covering torus.

See figure 3 for an illustration. This means that even if the direct dependence on the angle

of the brane can be rotated away for vertex operators inserted at only a single boundary

(using Z and Ψ above), the relative angle of rotation between two branes will still appear

5The integral over zero modes xµ0 usually produces a delta function in spacetime momenta, cf. (6.2.13)

in [15]. However, in our case there is no momentum along the XA directions, so the zero modes xA0 drop

out of the integrand. Then, the integral simply gives the volume of the three-cycle that the brane wraps.
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π 2π

Ψ(2π) = e2i(θπ−θ0)Ψ(0)

Ψ = ηe−2i(θπ−θ0)�Ψ

2πτ = iπt

0 π 2π

θ0 θπ θ0

� �� �
unphysical

unphysical� �� �

0

Thursday, May 24, 2012

Figure 3. As the physical cylinder worldsheet only extends between 0 and π, the quasiperiodicity

of our extended fields on the covering torus lies in the “unphysical” region (in the sense of the

method of images). Notice that the branes at σ = 0 and σ = π may be at angles, (i.e. θ0 6= θπ) but

this is not drawn in the figure.

in correlators of the holomorphic complex fields Z and Ψ, since they must display the

requisite quasiperiodicity (2.53). This is of course reasonable physically; only the relative

angle between branes should ultimately affect physical results.

It may be useful to note that if one insists on working with a physical fundamental

region, without the doubling trick, there is a formal asymmetry between worldsheet bosons

and worldsheet fermions. In particular, the angle appears in correlators of bosons, but

for the fermions, the angle is instead hidden in the boundary relation between Ψ and Ψ̃.6

With the doubling trick, the angle appears in correlators of fermions and bosons in the

same way. We emphasize that this is only a matter of convenience and either point of view

may be adopted.

2.4 One-loop effective action

We now discuss what contributions to the one-loop effective action are expected to occur.

First of all, we do expect moduli-dependent N = 2 contributions, as discussed in the

introduction, by combining the arguments of [7] (for D5-D9 systems) or [19] (for D3-D7

systems) and [11]. With angles we may also expect additional N = 1 contributions for

which there is no analogy without angles.

The N = 2 contributions arise if some of the branes and orientifold planes are parallel

to each other along one of the three tori. Thus, the corrections are very similar to the case

without angles, as will be discussed in more detail in section 5. Focusing on the dependence

on the Kähler moduli T , from [7] we expect a Kähler potential correction that contains a

term quadratic in the D-brane scalar Φ:

∆Kgs(Φ, Φ̄, T, T̄ ) ∼ f(T )ΦΦ̄ + . . . (2.54)

6Compare e.g. eq. (B.9) in the appendix of [13]. There, only the correlator of bosons depends on the open

string metric, which in our T-duality frame means it depends on the angle. The correlator of holomorphic

fermions, on the other hand, depends only on the closed string metric, i.e. without the angle.
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for some nonholomorphic function f(T ). From eq. (2.77) of [7] we may guess

∆Kgs(Φ, Φ̄, T, T̄ ) ∼ −∇2E2(0, T )ΦΦ̄ + . . . , (2.55)

where ∇2 = ∂Φ∂Φ̄ and E2 is the generalized nonholomorphic Eisenstein series. Using the

identity7 ∇2E2(0, T ) = − 2π2i
T−T̄ Ẽ1(0, T ) we see that in fact

f(T ) ∼ Ẽ1(0, T )

T2
∼ 1

T2

(
ln(|η(T )|4T2) + (T -independent terms)

)
, (2.56)

where η is the Dedekind eta function. (This can also be understood somewhat more

indirectly through well-known moduli-dependent corrections to the gauge coupling, by

using N = 2 supersymmetry.) We will see the form (2.56) in section 5. To discuss the

N = 1 contributions, we need to introduce more details.

3 Setup

We are considering an arbitrary type IIA T 6/ZN -orientifold with D6-branes at angles,

but we do not see any reason that our results would not generalize immediately to e.g.

T 6/(ZN × ZM ). The orientifold group is generated by the orbifold generator Θ and the

parity operator ΩR, where Ω is the worldsheet parity operator and R corresponds to a

reflection along the x-axes of the three internal-space tori. The background contains brane

stacks [a] and orientifold planes Ok. Here, [a] stands for the whole orientifold orbit, i.e.

together with a particular brane a, it also contains all images under the orientifold group

actions, i.e. [a] = {ak = Θka,Rak; k = 0, . . . , N − 1}. Moreover, the orientifold planes

Ok lie along the three dimensional submanifolds that are kept fixed by the action of RΘk.

This implies that the image Rak can be obtained from a by a reflection along Ok. In this

paper we only consider so-called bulk branes, i.e. D-branes wrapped on combinations of

bulk cycles that are invariant under the orientifold group. This is to be contrasted with

fractional branes, that are themselves localized at fixed points. More detail in the specific

example of T 6/Z′6 is provided in appendix C.

In this section we would like to review which amplitudes contribute to the 2-point

function of the open string positions φa and Wilson-line scalars AA. The presentation

closely follows the analogous discussion for gauge-coupling corrections in section 2.2 of [11].

The first point to note is that since we are interested in the 2-point function of certain open

string scalars, only worldsheets with a boundary can contribute, i.e. the annulus and Möbius

diagrams.

For the annulus amplitude, only strings with no insertion of the orbifold operator Θk

can contribute. (We note that this is quite different from configurations with no angles,

when all twists can in principle contribute.) The argument is the following. As is well

known [15, 20] the trace in the open string channel is written
∑

k

∑

a,b

〈a, b|qHΘk|a, b〉 , (3.1)

7This is eq. (C.32) and (C.15) in [7], and we also use (C.17) in [7], but note that the latter has a

spurious 1/T2.
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where a and b stand for the branes on which the open string state starts and ends, respec-

tively. More precisely, b could either be a brane in the same orientifold orbit as a or in a

different orbit. Now, Θk|a, b〉 = |Θka,Θkb〉, and the latter is clearly a different open string

state than |a, b〉. So the rotated strings do not contribute to the trace. Strictly speaking

this argument does not hold for k = N
2 (for even N) in which case ΘN/2|a, b〉 = |a, b〉.

However, the k = N
2 -sector contribution vanishes due to cancellation of twisted tadpoles,

which imposes

Tr γa
ΘN/2

= 0 (3.2)

on the Chan-Paton factors [21]. Thus, only the untwisted annulus amplitudes with k = 0

can contribute in principle.

Among these, one has to distinguish amplitudes for which both open string ends lie on

branes with non-vanishing relative angle along all three tori, leading to N = 1 contribu-

tions, and those for which the two branes are parallel along one of the three tori, leading

to the N = 2 contributions discussed in the last section. We will see in section 4 that

the N = 1 contributions actually vanish and we come back to the N = 2 contributions in

section 5.

We now make a general comment. In (3.1) we could move the finite sum over k into

the trace to exhibit the projector

Porbifold =
1

N

N−1∑

k=0

Θk . (3.3)

Because it is a projector (i.e. P 2
orbifold = Porbifold), the annulus amplitude (3.1) then only

propagates invariant (orbifold-neutral) states Porbifold|a, b〉, in the open string channel. But

in actual calculation, the trace is performed without moving the sum over k into the trace.

That is, it is calculated for each orbifold-charged sector of the theory running in the open-

string loop separately, for open strings stretched between specific representatives of the

orbifold orbit, and then the sum is performed at the end. The localized states (N = 1

sectors) that we discuss below arise at the intersections of these orbifold (and orientifold)

images of D-branes.

Once we have identified under the orbifold action, a brane may still self-intersect in the

actual orbifold space at nonzero intersection angle. However, what is generated as factors

in the annulus amplitudes are the intersection numbers in the covering torus, as opposed

to intersection numbers in the actual orbifold space. This will hopefully be clear in the

calculation below, and in figure 11.

There is another potentially slightly confusing point here: as argued earlier, our vertex

operators are adapted to a brane at a specific angle. But the invariant (orbifold-neutral)

open-string states consist of superpositions of open strings stretched between representa-

tives of the orbifold orbit, i.e. we need to use many different angles. This is consistent

because in the covering space, the D-brane moduli of each image brane are independent,

and only when the superposition is formed to make an orbifold-neutral state do we get a

single set of D-brane moduli. This is in fact the same logic given above for states running in
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the loop: if the external-state D-brane moduli are viewed as independent charged states,

the invariant states can be formed at the very end of the calculation by summing over

charged states, i.e. effectively applying a projector.

For the Möbius strip the situation is more complicated, as also k 6= 0 sectors con-

tribute, i.e. now the open string states in the loop can be rotated while traversing the

loop. Analogously to what we wrote for the annulus amplitude, we can write the Möbius

amplitude in the open string channel as a trace
∑

k

∑

a,a′

〈a, a′|qHΩRΘk|a, a′〉 , (3.4)

where a′ ∈ [a]. In order to see which amplitudes actually contribute, let us consider the

two cases a′ = RΘma and a′ = Θma separately.

For the case a′ = RΘma we have

〈a,RΘma|qHΩRΘk|a,RΘma〉 = 〈a,RΘma|qHΩ|RΘka,RΘkRΘma〉 (3.5)

= 〈a,RΘma|qHΩ|RΘka,Θm−ka〉 (3.6)

= 〈a,RΘma|qH |Θm−ka,RΘka〉 , (3.7)

where we used

ΘkR = RΘN−k (3.8)

when going from the first to the second line. It is obvious from (3.7) that there will only

be a non-vanishing contribution to the trace if m = k or if m = k + N/2. However, these

two cases are actually the same (as Θk+N/2a = Θka) and therefore should not be counted

separately.

For the case a′ = Θma we have instead

〈a,Θma|qHΩRΘk|a,Θma〉 = 〈a,Θma|qHΩ|RΘka,RΘk+ma〉 (3.9)

= 〈a,Θma|qH |RΘk+ma,RΘka〉 . (3.10)

We now see (again using (3.8)) that the necessary condition for a non-vanishing contribution

in the case a′ = Θma is

a = RΘk+ma . (3.11)

In other words, when a′ = Θma we need a to lie on top of the Ok+m orientifold plane to

contribute.

If we assume that none of the branes lie on top of the orientifold planes (along all

three tori), we obtain the result that the non-vanishing contributions from the Möbius

strip amplitudes come from the previous case a′ = RΘma, and are
∑

k

∑

a

〈a,RΘka|qHΩRΘk|a,RΘka〉 . (3.12)

It was shown in [11] that these amplitudes have the feature that in the closed string

channel only untwisted closed strings are exchanged. (This is not obvious from (3.12), but
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at least one can observe that since there are no k 6= 0 states that contribute to the annulus

amplitude, we expect to be able to cancel tadpoles if indeed only untwisted closed strings

are exchanged also in the Möbius strip amplitude.) It is still possible that a and RΘka are

parallel along a single torus (i.e. a lies on top of Ok along this particular torus), in which

case the contribution would preserve N = 2 supersymmetry.

In the following section, we will calculate the annulus and Möbius amplitudes in turn.

4 N = 1 supersymmetric sector

In this section we consider the open strings stretched between two stacks of D6-branes

intersecting at non-vanishing angles along every internal torus, where the sum of the three

angles is zero (modulo π):

ϕ1 + ϕ2 + ϕ3 = 0 , ϕ1, ϕ2, ϕ3 6= 0 . (4.1)

This configuration preserves N = 1 supersymmetry in four dimensions and contributions

due to these strings are sometimes called N = 1 sector contributions (cf. for example [11]).

It is important not to confuse this N = 1 untwisted sector with Θk-twisted sectors, which,

for k 6= N/2 and in type IIB, are also called N = 1 sectors.

Let us mention that the angles ϕ are related to the θ used until now by the simple

relation

ϕ =
π

2
− θ , (4.2)

cf. figures 1 and 7.

4.1 Annulus amplitude

We proceed to calculate the annulus amplitude in the k = 0 sector (the untwisted sec-

tor), since as argued above this is the only sector that can contribute. In particular, for

concreteness, we compute the 2-point function of open string scalars Φ3 and Φ̄3̄ polarized

along the third two-torus and belonging to the brane (stack) a. For the complex annu-

lus coordinate νA (cf. (D.3) in the appendix), the vertex operators are integrated along

the positive imaginary axis from the origin to τA = it/2, see figure 4. Using the vertex

operator (2.45), the expression is (see e.g. [22])

〈Φ3Φ̄3̄〉A =
1

4N

∫ i∞

0
dτA

∫ τA

0
dνA

∑

images

∑

αβ
even

ηα,βZtot
A [αβ ] 〈VΦ(νA)VΦ̄(0)〉α,βA (4.3)

= δξe3ē3̄

∫ ∞

0
dt

∫ t/2

0
dν

∑

images

∑

αβ
even

tr(λ1λ
†
2)tr(γ0

6) (4.4)

×ηα,βZext
A [αβ ]Z int

A [αβ ]e−δ〈X(iν)X(0)〉A〈ψ(iν)ψ(0)〉α,βA 〈Ψ(iν)Ψ̄(0)〉α,βA ,

where we wrote Ztot
A = Zext

A Z int
A , Zext

A is the spacetime annulus partition function (C.42),

Z int
A the internal annulus partition function from (C.43) and νA = iν for ν real. Also, the
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τA =
it

2

1/2 1

Wednesday, September 5, 2012

Figure 4. Integration region for νA.

normalization is

ξ = − g2
oα
′

8NL2
3

, (4.5)

whereN is the order of the orientifold group, and δ = p1·p2. On-shell, δ would vanish, so the

entire amplitude (4.4) would seem to vanish. However, in order to calculate the correction

to the Kähler metric, one can temporarily relax momentum conservation and read off the

metric as the coefficient of δ. Similar procedures are often used in the literature, see for

instance [3, 6, 7, 23–27]. We can now insert the expressions for the worldsheet correlators

from appendix D and perform the traces over the U(1) subgroups in which our Chan-

Paton factors sit (the matrices λ are diagonal and have Na entries of 1, at positions that

are appropriate for the member of the orientifold orbit).

〈Φ3Φ̄3̄〉A = δξe3ē3̄

∫ ∞

0
dt

∫ t/2

0
dν Rδ (4.6)

×
∑

images

NaNb

∑

α,β=even

ηα,βZext
A [αβ ](τA)Z int

A [αβ ](τA)GF [αβ ](iν, τA)GF [α+v
β ](iν, τA) ,

where GF [αβ ](iν, τA) is the fermionic correlator (D.13), v is

v ≡ v3
ab =

1

π
(ϕ3

a − ϕ3
b) (4.7)

as defined in the appendix in equation (C.44), where we note that this depends on the

brane representatives a and b, which are not indicated explicitly. Finally the function Rδ
is, from (D.2) and (D.4),

Rδ(ν, t) = e−δ〈X(iν)X(0)〉A =

∣∣∣∣
ϑ1(iν, τA)

ϑ′1(0, τA)

∣∣∣∣
2α′δ

e−
4πα′δν2

t . (4.8)

We have left the sum over brane images implicit in (4.6), as it requires some more notation

that we will not need in this section, and we relegate the details to the appendix.

We first perform the spin structure sum over α, β, using the quartic Riemann identity
∑

α,β=0,1/2
even

ηα,βϑ[αβ ](iν, τ)ϑ[α+v3

β ](iν, τ)
∏

i=1,2

ϑ[α+vi

β ](0, τ)

= ϑ[1/2
1/2

](iν, τ)ϑ[1/2+v3

1/2
](iν, τ)

∏

i=1,2

ϑ[1/2+vi

1/2
](0, τ) . (4.9)
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Doing so, the amplitude reduces to

〈Φ3Φ̄3̄〉A = δξe3ē3̄

∑

images

NaNb

3∏

i=1

Iiab

∫ ∞

0

dt

(4π2α′t)2

∫ t/2

0
dνRδ(ν, t)GF [1/2+v3

1/2
](iν, τA) .

The function Rδ acts as an infrared regulator for δ = p1 · p2 → 0, but we will argue that it

does not contribute and in fact we can set Rδ ≡ 1 in the δ → 0 limit.

We have now reduced the calculation to computing the integral

I =

∫ ∞

0

dt

t2

∫ t/2

0
dν Rδ(ν, t)GF [1/2+v3

1/2
](iν, τA) . (4.10)

It will be convenient to immediately transform to the closed string channel, with ` =

1/t, ν̃ ≡ 2ν`

I = −i
∫ ∞

0
d`

∫ 1

0
dν̃ R̃δ(ν̃, `)GF [ 1/2

1/2+v3 ](ν̃, 2i`) , (4.11)

where

R̃δ(ν̃, `) =

∣∣∣∣
ϑ1(ν̃, 2i`)

2` ϑ′1(0, 2i`)

∣∣∣∣
2α′δ

. (4.12)

Here we performed the modular S transformations (D.5) and (D.14).

This integral is divergent in several regions of the space of worldsheet moduli ν̃ and `.

There is the usual tadpole divergence for ` → ∞ and a possible divergence at ` → 0, and

we regulate both by cutoffs:

I = −i
∫ Λ

µ
d`

∫ 1

0
dν̃ R̃δ(ν̃, `)GF [ 1/2

1/2+v3 ](ν̃, 2i`) . (4.13)

The ` → ∞ divergences cancel between diagrams using tadpole cancellation conditions

from the vacuum amplitude, as we go through in detail below.

There is also a potential divergence from vertex operator collisions ν̃ → 0, which is

regulated by keeping a nonzero (but infinitesimal) δ. We now proceed to show that this

potential divergence is cancelled for each diagram separately.

4.2 Vertex collision divergence

We are interested in the δ → 0 limit of

Iν =

∫ 1

0
dν̃ R̃δ(ν̃, `)GF [ 1/2

1/2+v3 ](ν̃, 2i`) . (4.14)

The reason that we cannot simply immediately set δ = 0, thereby removing R̃δ altogether,

is that there are vertex collision poles at ν̃ = 0 and at ν̃ = 1. First, at ν̃ = 0 we have:

GF (ν̃)→ 1

ν̃
, R̃δ(ν̃)→ ν̃δ as ν̃ → 0 , (4.15)
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where we temporarily absorbed 2α′ into δ in (4.15) i.e. 2α′δ → δ. Because ν̃−1+δ is

integrable for nonzero positive δ, we see that in fact R̃δ regulates the integral in the ν̃ → 0

limit. (It may be useful to recall that the limit δ → 0 is the long-distance limit in spacetime,

but there is some interplay with a short-distance singularity on the worldsheet.) Because of

lim
ν̃→1

GF [αβ ](ν̃, 2i`) = lim
ν̃→1
−e2πiαGF [αβ ] (ν̃ − 1, 2i`) =

−e2πiα

ν̃ − 1

α=1/2−→ 1

ν̃ − 1
(4.16)

there is also a corresponding pole at ν̃ = 1:

GF (ν̃)→ 1

ν̃ − 1
, R̃δ(ν̃)→ (1− ν̃)δ as ν̃ → 1 . (4.17)

We see that R̃δ regulates the divergences at both poles of GF . We would now like to show

that the divergences actually cancel each other, and we do so by isolating a function of

suitable periodicity and singularity, which turns out to be the cotangent function (as one

can easily see also from equation (4.25) below). We split the integrand as follows:

Iν = Iν,1 + Iν,2 =

∫ 1

0
dν̃ R̃δ(ν̃) (GF (ν̃)− π cotπν̃) +

∫ 1

0
dν̃ R̃δ(ν̃)π cotπν̃ . (4.18)

Having subtracted the poles, we will be able to take the δ → 0 limit of the first integral

which will be our potentially finite contribution. In the second integral we have a potential

divergence from each pole as we let δ → 0. However, we need only observe that for any

nonzero δ, no matter how small,

Iν,2 =

∫ 1

0
dν̃ R̃δ(ν̃)π cotπν̃ = 0 , (4.19)

because the regulating function is even under reflection at ν̃ = 1/2: R̃δ(1 − ν̃) = R̃δ(ν̃),

and the cotangent is odd: cot(π(1 − ν̃)) = − cot(πν̃). What happens is simply that the

two poles, the one at ν̃ = 0 and the one at ν̃ = 1, cancel each other, see figure 5. We let

this be our regularization prescription, i.e. in principle we keep a nonzero δ, but we may

make it arbitrarily small such that it will not affect our results. We note that a similar

argument was put forward in [6].

The conclusion is that we may safely set R̃δ ≡ 1 in Iν,1 for the remainder of this

discussion.

Although it is not quite obvious at this point, we will be able to make a very similar

argument for the Möbius strip amplitude.

4.3 Tadpole cancellation

As part of our quest to compute (4.13), we will now analyze the closed-string IR behavior

(l→∞) of the integrand. This is the region that would exhibit divergences in the vacuum

amplitude if tadpoles were not cancelled, and we expect that divergences in the 2-point

function will be cancelled between diagrams if we assume that the brane configuration

cancels tadpoles. We now outline this calculation for the two-point function, with most of

the detail given in the appendix.
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Figure 5. A plot of
∫ x
0
R̃δ(ν̃) cot(πν̃)dν̃ for x = 0 . . . 1, ` = 0.4, δ = [0.01, 0.02, 0.04, 0.08, 0.1]. For

x = 1, the integral yields zero for all nonzero values of δ.

Using the product representation of the theta functions in (D.13) it is easy to see that

GF [ 1/2
1/2+v3 ](ν̃, 2i`)

`→∞→ π sinπ(ν̃ + v3)

sinπv3 sinπν̃
= π cotπν̃ + π cotπv3 , (4.20)

see also eq. (4.25) below. The first term is familiar from our discussion of the vertex operator

collision divergence, the second term depends on the angle, which in turn depends on the

intersection numbers.

First it is useful to recall the ` → ∞ divergences of the 2-point function of vectors,

as opposed to D-brane scalars. As is well known, an efficient way to compute threshold

corrections to gauge couplings is to consider the vacuum amplitude deformed by an external

background field B and expanded to order B2. In [11] it was shown that

NS tadpole for vectors ∝ I3
3∑

i=1

cotπvi × (regulated divergence) . (4.21)

Because cotπvi = V i/Ii (see (C.37)), this becomes of the schematic form “I2V ”. This is

denoted κ in [11] and it is shown that the detailed expressions for κ cancel for the explicit

example of T 6/(Z2 × Z2).

In our calculation of the D-brane scalar 2-point function, we obtain a similar coefficient

but without the sum over the three 2-tori:

〈Φ3Φ̄3̄〉UV = I3 cotπv3 × (regulated divergence) . (4.22)

This is also of the schematic form “I2V ”, and it vanishes by vacuum tadpole cancellation,

as we show explicitly for T 6/Z′6 in appendix C. Note, however, that this is a somewhat

stronger result than the result that (4.21) vanishes after summing over the three two-tori.

In addition, we have the first term in (4.20), which is a possible divergence that has no

analog in the background field calculation, the divergence from vertex operator collisions:

I3 cotπν̃ for ν̃ → 0 or 1 . (4.23)
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We have already shown in the previous section that this kind of divergence cancels before

taking the ` → ∞ limit, and for each diagram separately, when we keep a nonzero δ.

(We showed this for the annulus diagrams and will show it for the Möbius diagrams in

section 4.5.) However, it is somewhat useful to also exhibit that in fact this divergence

would also cancel between diagrams, without using details of the integrand. This does

require some actual model-dependent calculation, which the argument of cancellation in

the integrand does not, so there is a certain complementarity of these two discussions.

Indeed, as indicated above, since the integrand is independent of the angles ϕab, the

sum will be of the schematic form “I3”. The contribution to the coefficient of the ν̃-integral

from some worldsheets in some sectors are nonzero. But it is easy to check that the total

contribution to the coefficient vanishes for any brane configurations. More details are given

at the end of appendix C.6.

It now remains to calculate the finite contribution from the first term in (4.18).

4.4 Vanishing of UV-finite contribution

We want to compute the finite integral

Ifinite = −i
∫ Λ

µ
d`

∫ 1

0
dν̃
(
GF [ 1/2

1/2+v3 ](ν̃, 2i`)− π cotπν̃ − π cotπv3
)
. (4.24)

Since we have argued that closed-string infrared (` → ∞) divergences cancel between

diagrams due to tadpole cancellation, we could in principle remove the cutoff Λ from (4.24).

We also have the explicit `→ 0 cutoff µ. It will be easy to see that none of our results for

the finite part depends on these regulators. For the integrand of (4.24), it is particularly

convenient to use the representation

GF [ 1/2
1/2+v3 ](ν̃, 2i`) = π cotπν̃ + π cotπv3 + 4π

∞∑

m,n=1

e−4π`mn sin(2πnν̃ + 2πmv3) (4.25)

of the fermionic Green’s function, cf. (E.3). Since this representation is perhaps not familiar

to all readers, in appendix E we provide an elementary proof that it is equivalent to

the representation (D.13) in terms of Jacobi theta functions. We then see that (4.24) is

nothing but

Ifinite = −4πi

∫ Λ

µ
d`

∫ 1

0
dν̃

∞∑

m,n=1

e−4π`mn sin(2πnν̃ + 2πmv3)

= −4πi

∫ Λ

µ
d`

∞∑

m,n=1

e−4π`mn

∫ 1

0
dν̃ sin(2πnν̃ + 2πmv3)

= 4πi

∫ Λ

µ
d`

∞∑

m,n=1

e−4π`mn ×
[

cos(2πnν̃ + 2πmv3)

2πn

]ν̃=1

ν̃=0

= 4πi

∫ Λ

µ
d`

∞∑

m,n=1

e−4π`mn × 0

= 0. (4.26)
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1/2

τM =
it

2
+

1

2

Wednesday, September 14, 2011

Figure 6. Integration region for νM.

The integration over vertex position ν̃ gives zero, by periodicity. Note that if we had not

put the UV cutoff µ, the contribution would naively have diverged at the ` = 0 end (where

the exponential in the sum over m and n becomes 1). We see that the result vanishes for

any finite value of µ and Λ and thus also in the limit µ→ 0, Λ→∞.

In appendix E.1, we prove this result in a quicker and less rigorous way by contour

integration.

4.5 Möbius strip amplitude

Now we consider the Möbius strip amplitude, describing an open string starting on a brane

a and ending on one of its orientifold images, cf. (3.12). The orientifold planes of Z′6 are

given explicitly in the appendix; there are six distinct orientifold planes Ok for k = 1, . . . , 6,

but the discussion here will not need details of specific orientifolds. We assume that the

brane a along every torus does not sit on any orientifold plane, so that brane a and its

orientifold images have non-vanishing intersection angles.

Similarly to above (cf. (4.3) and (4.6)),

〈Φ3Φ̄3̄〉M = − 1

4N

∫ i∞+1/2

1/2
dτM

∫ it+1/2

1/2
dνM

∑

images

N−1∑

k=0

∑

αβ
even

ηα,βZtot
M,k[

α
β ] 〈VΦ(νM)VΦ̄(1/2)〉α,βM

= −δξe3ē3̄

∫ ∞

0
dt

∫ t

0
dν Rδ(ν, t)

∑

images

Na

N−1∑

k=0

ρk (4.27)

×
∑

α,β=even

ηα,βZext[αβ ](τM)Z int,k[αβ ](τM)GF [αβ ](iν, τM)GF [α+2vO
β−vO

](iν, τM) ,

where τM = it
2 + 1

2 , νM = iν + 1/2, see figure 6, vO is

vO ≡ v3
a,Ok

= − 1

π
(ϕ3

a − ϕ3
Ok

) (4.28)
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as defined in the appendix in equation (C.47), and ξ is the same as for the annulus, cf. (4.5).

Note that vO depends on the sector k. The external spacetime partition function Zext is the

same as (C.42), the internal partition function Z int,k is given in (C.46). The phase ρk arises

from the Chan-Paton matrices representing the twist action ΩRΘk on the branes (see the

remarks below (2.11) in [11]). Note that the angle vO is that between the brane and the

orientifold plane, which is half the angle between the brane and its orientifold image. We

emphasize that unlike the annulus amplitude (4.4), the amplitude (4.27) contains k-twisted

sectors.

After summation over even spin structures using the quartic Riemann identity

∑

α,β=even

ηα,βϑ[αβ ](ν, τ)ϑ[α+h3

β+g3
](ν, τ)

2∏

i=1

ϑ[α+hi
β+gi

](0, τ)

= ϑ[1/2
1/2

](ν, τ)ϑ[1/2+h3

1/2+g3
](ν, τ)

2∏

i=1

ϑ[1/2+hi
1/2+gi

](0, τ) (4.29)

with
∑3

i=1 hi = 0 =
∑3

i=1 gi, the integral of (4.27) reduces to

IM = −
∫ ∞

0

dt

t2

∫ t

0
dν Rδ(ν, t)GF [1/2+2vO

1/2−vO
](iν, τM) . (4.30)

Note that Rδ(ν, t) here is not the same as Rδ(ν, t) for the annulus, but it is defined anal-

ogously, cf. eq. (4.8). The explicit form of Rδ(ν, t) does not play any role. The correlator

can be rewritten in the closed string channel:

GF [1/2+2vO

1/2−vO
] (iν, τM)

ν̃≡4ν`
= −4i`GF [ 1/2

1/2+vO
] (ν̃, `M) , (4.31)

where we performed the sequence ST 2S of modular transformations:

τM =
it

2
+

1

2
→ − 1

τM
→ − 1

τM
+ 2 →

(
1

τM
− 2

)−1

= 2i`− 1

2
=: `M . (4.32)

In the last step, we used the relation (see for instance [28])

t =
1

4`
. (4.33)

Thus, in the closed string channel the amplitude is

4i

∫ ∞

0
d`

∫ 1

0
dν̃ R̃δ(ν̃, `)GF [ 1/2

1/2+vO
] (ν̃, `M) . (4.34)

We see that this is very similar to the annulus closed channel amplitude, in particular the

only non-half-integer characteristic of GF is the lower one. This is as stated in section 3:

although (4.27) has k-twisted sectors, only k = 0 contributes in the closed string channel,

so we expect it to be similar to the analogous annulus result. The same argument for

cancellation of vertex collision divergences goes through and we will set R̃δ ≡ 1. The IR

behavior of the integrand can again be isolated,

GF [ 1/2
1/2+vO

] (ν̃, `M)
`→∞→ π sin(πν̃ + πvO)

sin(πvO) sin(πν̃)
= π cot(πν̃) + π cot(πvO) , (4.35)
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and the remaining finite part is

IMfinite = 4i

∫ Λ

µ
d`

∫ 1

0
dν̃
[
GF [ 1/2

1/2+vO
] (ν̃, `M)− π cot(πν̃)− π cot(πvO)

]
. (4.36)

Using a similar representation to the one that we used for the annulus amplitude

GF [ 1/2
1/2+v

] (ν̃, `M) = π cot(πv) + π cot(πν̃)

+4π

∞∑

m,n=1

(
−e−4π`

)mn
sin (2πnν̃ + 2πmv) (4.37)

and following similar steps as in the case of the annulus, we find

IMfinite = 0 . (4.38)

Neither annulus nor Möbius N = 1 amplitudes contribute finite parts to the two-point

function, and we have shown that the divergent parts cancel, so there are no contributions

at all from these sectors.

5 N = 2 supersymmetric sector

In this section we investigate the cases where two branes are parallel along internal tori. The

supersymmetry condition
∑3

j=1 v
j = 0 for annulus (

∑3
j=1 v

j
O = 0 for Möbius) then requires

that two branes have vanishing angle along at most one torus. This configuration preserves

N = 2 supersymmetry so states associated with this kind of configuration are called N = 2

sectors (cf. [11]). The partition functions can be obtained using (C.43), (C.46), (C.48)

and (C.49) in the appendix. The correlators remain the same as for the N = 1 sectors.

Thus the spin structure dependence of the amplitudes is the same as in the case of N = 1

sectors, and the spin structure summation proceeds in the same way using (4.9) and (4.29).

If there is a vanishing intersection angle on the ith torus, that is, if hi = 0 = gi for i = 1

or 2, then the right-hand sides of (4.9) and (4.29) both vanish. In other words, if two

branes are parallel along either the first torus or the second torus, then the spin-structure

sum gives zero. Therefore, only when two branes are parallel along the third torus the

amplitude is non-zero.

Therefore, from now on we consider the case where v3 = 0 = v3
O. Then after spin-

structure sum, as usual in N = 2 sectors the functions in the numerator cancel those in the

denominator, and the entire ν-dependence disappears from the integrand of the amplitude,

for all worldsheets. Thus the amplitudes reduce to the following:

〈Φ3Φ̄3̄〉N=2
A = δe3e3̄L

−2
3 ξA

∫ ∞

1/Λ

dt

t2

∫ t/2

0
dν ΓA(t, T 3, V 3

a )e−2πχt (5.1)

=
1

2
δe3e3̄L

−2
3 ξA

∫ ∞

1/Λ

dt

t
ΓA(t, T 3, V 3

a )e−2πχt (5.2)
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for annulus, and

〈Φ3Φ̄3̄〉N=2
M = −δe3e3̄L

−2
3 ξM

∫ ∞

1/4Λ

dt

t2

∫ t

0
dν ΓM(t, T 3, V 3

Ok
)e−2πχt (5.3)

= −δe3e3̄L
−2
3 ξM

∫ ∞

1/4Λ

dt

t
ΓM(t, T 3, V 3

Ok
)e−2πχt (5.4)

for Möbius, where a sum over branes is implicit and the lattice sums ΓA and ΓM are given

in (C.50) and (C.51) in the appendix. Here the normalization constants ξ are

ξA = − g2
oα
′

8N(4π2α′)2
cA , ξM = − g2

oα
′

8N(4π2α′)2
cM , (5.5)

where cA and cM are the usual traces involving also the intersection numbers along the

two tori with non-trivial angles (these terms become the beta functions for gauge fields).

The calculation of (5.1) and (5.3) was performed for example in [11] (section 3.3) but

since the angles do not play a role, we can also use results from [29] that are summarized

in the appendix:

〈Φ3Φ̄3̄〉N=2
A = −δe3e3̄

ξA

2
ln
(
T 3

2 V
3
a |η(T 3)|4

)
L−2

3 (5.6)

for annulus8 (note that the superscript 3 stands for the third torus and not for the third

power),

〈Φ3Φ̄3̄〉N=2
M = δe3e3̄

ξM

4
ln
(
T 3

2 V
3
Ok
|η(T 3)|4

)
L−2

3 (5.7)

for Möbius, and the total is

〈Φ3Φ̄3̄〉N=2
A + 〈Φ3Φ̄3̄〉N=2

M . (5.8)

This is of course consistent with the expectation (2.56), if we take into account the T 3
2 -

dependence of L3, given in (A.7).

6 Conclusions and outlook

In this paper we have computed N = 1 and N = 2 contributions to the one-loop renormal-

ization of the Kähler metric of D-brane moduli, and shown that the N = 1 contributions

vanish. The N = 2 contributions, that exist for parallel branes only, do not vanish, but

are given by some explicit expressions depending on the closed string moduli.

That theseN = 2 contributions are present is no surprise, but the vanishing of theN =

1 contributions appears nontrivial to us. It may represent an interesting statement about

the underlying string theory rather than a nonrenormalization theorem of the effective field

theory. Such statements are somewhat rare in string effective actions.

We do not know any symmetry arguments that the N = 1 contributions should vanish,

but it is possible that charge selection rules prohibit couplings of the kind needed to generate

these loop-level contributions.9

8Comparing to the explicit expression in the appendix, we have used a scheme for t → ∞ divergences

where we subtract ln(8π3χ), where χ is the IR-cutoff in (5.1) and (5.3). This does not affect the moduli

dependence, of course. Also we dropped the Λ-terms that cancel by tadpole cancellation.
9We thank M. Goodsell for very interesting email discussions on this topic.
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In future work, it would be interesting to also compute the analogous quantities with

magnetized branes instead of branes at angles. We see no clear reason that the former

should vanish, as the configurations are not T-dual in these nontrivial backgrounds.

In more general terms, it would be interesting to understand how robust this result

is. One obvious test to subject it to would be to deform away from the orientifold point

by adding infinitesimal blowup modes. In the example of [30], it was argued that it was

discrete symmetries at the orbifold point which caused a result to vanish, and therefore

that result was nonzero away from the orbifold point. Since our amplitude is zero sector by

sector, it is not clear to us whether this is the reason for nonrenormalization, but it would

be very interesting to find out. Another direction would be to attempt the calculation at

higher genus.

The first obvious application is to D-brane inflation. One could a priori have worried

that an analogue of these corrections in smooth backgrounds would produce additional

contributions to the eta problem (see [2]). Of course, we have not shown that this gen-

eralizes to smooth backgrounds, but there are similar partial vanishing results in smooth

backgrounds (see the appendix of [31]) and one could pursue that connection further.

If the two-loop contribution does not vanish, and at the moment we see no reason why

it should, one could picture one interesting kind of application of the nonrenormalization

result in this paper, in orbifolds where there are no N = 2 subsectors. In [1, 32] and

related work, flavor physics is studied in this context. This is very challenging in a top-

down approach; even if one can arrange good flavor structure at tree-level (for an explicit

example see [33]), it is not obviously enough, since it would be ruined by generic quantum

corrections at a level that is still inconsistent with experiment. A familiar example of how

nontrivial this can be is the GIM (Glashow-Iliopoulos-Maiani) mechanism in the Standard

Model, by which flavor-changing neutral currents are suppressed to effectively two-loop

order. Of course, we have not shown that our result generalizes to visible-sector matter

fields, and it may not.

For this and other reasons, it would be interesting to apply the same techniques to

calculating one-loop corrections to the Kähler metric of chiral matter fields. One example

of this direction can be found in [27].

In general, we find it important to further develop the technology for calculating

moduli-dependent string effective actions with minimal supersymmetry. As emphasized for

example in [34], there are still many fundamental issues for which techniques are lacking.
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A Variables from reduction

A.1 Kähler variables

In this appendix we perform a dimensional reduction of the DBI action to see what the

natural variables are to work with. For the following we refer the reader to equations (2.1)

and (2.2) in the main text.

We are interested in expanding
√

det(P [G] + F) to second order in the fluctuations

along or transverse to the branes. Here F = F + P [B] and P [G] and P [B] stand for the

pullbacks of the metric and B-field. Thus, we need

P [G]µν = Gµν +Ga(µ∂ν)φ
a +Gab∂µφ

a∂νφ
b = Gµν +Gab∂µφ

a∂νφ
b ,

P [G]µA = GµA +Ga(A∂µ)φ
a +Gab∂Aφ

a∂µφ
b = GaA∂µφ

a , (A.1)

P [G]AB = GAB +Ga(A∂B)φ
a +Gab∂Aφ

a∂Bφ
b = GAB .

Here we assumed that all fields only vary with respect to the external coordinates Xµ and

not with respect to XA. Moreover, the metric is supposed to have no off-diagonal entries

with one external and one internal index.

Moreover, we will need the components of the gauge field:

FµA = FµA +BµA −Ba[µ∂A]φ
a +Bab∂µφ

a∂Aφ
b = ∂µAA −BAa∂µφa , (A.2)

FAB = FAB +BAB −Ba[A∂B]φ
a +Bab∂Aφ

a∂Bφ
b = 0 (A.3)

and Fµν . Here we used again that all fields only depend onXµ and also the fact that we only

consider untwisted components of the B-field.10 The untwisted B-field factorizes, i.e. there

is one component along each torus. This implies that the only non-vanishing components

are of the form BaA, because BAB or Bab would have legs along two different tori.

In order to proceed further, we need the form of the torus metric. There are two

metrics that are commonly used, cf. the discussion in chapter 5.1 of [15]. The first choice is

ds2 =
ρ

U2
|dx̃1 + Udx̃2|2 =

ρ

U2

(
(dx̃1)2 + 2U1dx̃1dx̃2 + |U |2(dx̃2)2

)
, (A.4)

where x̃1 and x̃2 are periodic with period 1, for instance, and ρ denotes the volume of the

torus. Alternatively, the second choice is

ds2 =
ρ

U2
|dx1 + idx2|2 =

ρ

U2

(
(dx1)2 + (dx2)2

)
, (A.5)

10That is, we expand the B-field only along the untwisted (1, 1)-forms and not the twisted ones, cf.

formula (2.1) in [35].
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Figure 7. The wrapped brane with (n,m) = (2, 1).

where now the periodicity of x1 and x2 is

(x1 + ix2) ≡ (x1 + ix2) + (m+ nU) . (A.6)

In (A.1), we need the metric components using coordinates XA, Xa which are adapted to

the worldvolume of the brane, i.e. coordinates along and transverse to the brane (in static

gauge). Thus, it is more convenient to consider a different elementary cell for the torus, i.e.

the region between two neighboring parts of the brane, cf. the shaded region in figure 7.

The corresponding metric is most conveniently chosen to be flat and diagonal, similar to

the one in (A.5). However, now the new elementary cell has length and hight [36]

L2 =
ρ

U2
|n+mU |2 , D2 =

ρ2

L2
=

ρU2

|n+mU |2 . (A.7)

The integers n and m are the wrapping numbers of the brane under consideration which

wraps the cycle

Π = nπ1 +mπ2 . (A.8)

From figure 7, we see that the complex structure for the new elementary cell is

Ũ ≡ D

L

(
1

tan(θU − (π/2− ϕ))
+ i

)
=
D

L

(
1

− cot(θU + ϕ)
+ i

)
. (A.9)

Comparing with (A.5) and noting that

ρ

Ũ2

=
DL

D/L
= L2 , (A.10)

one might be tempted to use the metric

ds2 = L2
(
(dxA)2 + (dxa)2

)
, (A.11)

with periodicity

(xA + ixa) ≡ (xA + ixa) + (m+ nŨ) . (A.12)
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However, this definition would have the disadvantage that some of the moduli dependence

of the low energy effective action would be hidden in the integration region of xa. To avoid

this, one should rescale the coordinate xa in such a way that xa = 1 corresponds to the

physical distance D, in the same way as xA = 1 corresponds to the length L. Comparing

with (A.12) we see that this can be done by rescaling xa by 1/Ũ2 = L/D. This, on the

other hand, implies a change of the metric which becomes

ds2 = L2(dxA)2 +D2(dxa)2 . (A.13)

Now we have for the DBI action
√√√√det

[(
Gµν 0

0 GAB

)
+

(
Fµν +Gab∂µφ

a∂νφ
b GBa∂µφ

a + (∂µAB −BBa∂µφa)
GAa∂νφ

a − (∂νAA −BAa∂νφa) 0

)]

=
√

detGρσ
√

detGCD

(
1− 1

4
FµνFµν +

1

2
Gab∂µφ

a∂µφb

+
1

2

(
(∂µAB −BBa∂µφa)(∂νAA −BAa∂νφa)−GAaGBb∂νφa∂µφb

)
GµνGAB

)
.

(A.14)

The first term in (A.14) is a contribution to the potential which is cancelled once

tadpole cancellation is imposed. We now note that GaA = 0 and

Gab ∼ δab , GAB ∼ δAB , (A.15)

Gab ∼
{
6= 0 a = b

= 0 a 6= b
, GAB ∼

{
6= 0 A = B

= 0 A 6= B
, (A.16)

as the 6-torus is a product of three 2-tori. Thus, denoting the Wilson line along the ith

torus with Ai and the position modulus with φi, the kinetic terms of the scalars can be

rewritten as

√
detGρσ

√
detGCD

∑

i

(
1

2
Gi22∂µφ

i∂µφi

+
1

2

(
(∂µAi −Bi∂µφi)(∂νAi −Bi∂νφi)

)
Gµν

1

Gi11

)

This can be simplified using (A.7) and (A.13), resulting in

√
detGρσ

√
detGCD

∑

i

1

2

(
(∂µAi −Bi∂µφi)(∂µAi −Bi∂µφi) + ρ2

i ∂µφ
i∂µφi

) 1

L2
i

=
√

detGρσ
√

detGCD
∑

i

1

2L2
i

|Ti∂φi − ∂Ai|2 (A.17)

with

Ti = Bi + iρi , (A.18)
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where Bi denotes the component of the B-field along the ith torus, and ρi is the volume of

the ith torus. The result (A.17) is used in section 2.1 in order to argue for the form of the

variables (2.6).

In order to obtain the kinetic term in the Einstein frame, one still has to perform a

Weyl rescaling. Although we will not need this in detail, let us end this appendix by a

closer look at this rescaling. The kinetic terms of the vectors and scalars are

∫
d4x

√
detGρσ

(
e−Φ

∫

Σ
d3ξ

√
detGCD

)[
− 1

4
FµνFµν +

∑

i

1

2L2
i

|Ti∂φi − ∂Ai|2
]
, (A.19)

where Σ is the cycle wrapped by the brane stack. The gauge coupling is given by the

volume of the 3-cycle wrapped by the brane stack. For a brane wrapping a calibrated

3-cycle, this volume can also be expressed as [36]

e−Φ

∫

Σ
d3ξ

√
detGCD = e−Φ

∫

Σ
Re Ω = e−Φ

√∏

i

ρiU
−1
2i |ni + Uimi|2 = e−Φ

∏

i

Li , (A.20)

which depends on the complex structure of the Calabi-Yau orientifold. After a Weyl rescal-

ing the kinetic term for the scalars takes the form

∫
d4x

√
detGµν

∑

branes

∫
Σ Re Ω

2e−ΦV
∑

i

|Ti∂φi − ∂Ai|2
L2
i

+ . . . . (A.21)

The prefactor
∫
Σ Re Ω

e−ΦV scales like the inverse of a 3-cycle volume and it should be possible

to express it in terms of the complex structure of the orientifold. Note that writing it as

eΦ
∫

Σ d
3ξ
√

detGAB∫
Y d

6X
√

detGAB detGab
, (A.22)

it is analogous to the prefactor in (4.85) of [36].

B Variables

It is important conceptually that one could work with vertex operators that are adapted

to the intrinsic coordinates of the brane and make no reference to the ambient space.

However, there is a certain tension between this and using complex embedding coordinates

where target space rotations are simple. For our calculation we have used the latter, but

for completeness, here we discuss how we can use the former. We follow [9, 37] and, for ease

of notation, we only consider branes in a non-compact spacetime so that we do not have to

distinguish between coordinate Xµ and XA as in (2.3). Let the spacetime coordinates be

denoted by XM , the D-brane worldvolume coordinates by ζα, and the D-brane embedding

function by XM (ζα). We can introduce a set of normal vectors aMI that are orthogonal to

∂αX
M in the spacetime metric GMN , and normalize them:

∂αX
MGMNa

N
I = 0 , aMI GMNa

N
I = δIJ . (B.1)
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We can write intrinsic field variables Âα, φ̂I

AMa
M
I = 0 , AM∂αX

M = Âα , φMaIM = φ̂I . (B.2)

In static gauge, Xµ = ζµ, then Aµ = Âµ. We convert back by

Âαg
αβ∂βX

MGMN = AN , φ̂IaMI = φM (B.3)

where gαβ is the induced metric on the worldvolume. Amongst other things, we note that

φµ 6= 0, but φµ = 0.11

The boundary conditions are12 ∂αX
LNL = 0 and aILD

L = 0, where

NL = GLN∂σX
N + FLN∂τX

N (on boundary) , (B.4)

DL = ∂τX
L (on boundary) , (B.5)

whereas the projections that survive are

NI = aLINL (normal) , (B.6)

Dα = gαβ∂βX
MGMLD

L (parallel) , (B.7)

and with these, the boundary couplings are

NI φ̂
I , DαÂα . (B.8)

We then expect vertex operators for the intrinsic coordinates to be converted as above:

VÂα = GMNe
N
α VAM (B.9)

Vφ̂I = aIMVφM (B.10)

where eα
N = ∂αX

N . As stated before, we will work with the vertex operators (2.7) in the

ambient space.

C Tadpole cancellation in Z′
6 orientifold

C.1 Setup

In this section we give some background on the T 6/Z′6 orientifold, following [35] closely.

We take the orbifold generator of the Z′6 orientifold to be defined via the vector

~v =

(
1

6
,
1

3
,−1

2

)
. (C.1)

There are a few different implementations of the Z′6 orientifold, we will focus on what is

known as the AAa lattice (see for example [35] for more on the classification). We show

this lattice with orbifold fixed points in figure 8.

11Note that standard Buscher rules mix closed string fields G and B under T-duality, but they do not mix

in the open-string field F . One can still use them with F as follows. Set F = 0, B 6= 0, perform T-duality,

then perform an O(d, d) gauge transformation to map B → F . We will not use the Buscher rules here.
12Here σ± = 1

2
(τ ± σ), so in (42) in [9] , ∂−X − ∂+X = −∂σX.
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Figure 8. The AAa lattice.

We will consider branes wrapped only on bulk cycles, that are not shrunk to zero, as

opposed to fractional cycles. The bulk cycles are inherited from the covering torus of the

orbifold. For T 6/Z′6, the invariant forms are dz1 ∧ dz2 ∧ dz3, dz1 ∧ dz2 ∧ dz̄3 and their

complex conjugates (see e.g. [38]), so we have b3,0 = b0,3 = b2,1 = b1,2 = 1, i.e. a total of

four three-cycles. We can expand a generic three cycle (not necessarily invariant) in terms

of the six elementary 1-cycles of the covering six-torus

n1π1,0,0 +m1π2,0,0 + n2π0,3,0 +m2π0,4,0 + n3π0,0,5 +m3π0,0,6 , (C.2)

with the wrapping numbers (ni,mi). Alternatively, we can expand an invariant three cycle

in terms of the four basis cycles ρi as

Πbulk = Pρ1 +Qρ2 + Uρ3 + V ρ4 (C.3)

for some integer expansion coefficients (P,Q,U, V ).13 For the basis cycles ρi to be invariant

under the orbifold action Θ we can form orbits by acting on the elementary cycles as

ρ1 = (1 + Θ + Θ2 + Θ3 + Θ4 + Θ5)π1,3,5 (C.4)

= 2(1 + Θ + Θ2)π1,3,5 (C.5)

= 2π1,3,5 + 2π2,4−3,−5 + 2π2−1,−4,5 . (C.6)

In total the four orbits are

ρ1 = 2π1,3,5 + 2π2,4−3,−5 + 2π2−1,−4,5 , (C.7)

ρ2 = 2π1,4,5 + 2π2,−3,−5 + 2π2−1,3−4,5 , (C.8)

ρ3 = 2π1,3,6 + 2π2,4−3,−6 + 2π2−1,−4,6 , (C.9)

ρ4 = 2π1,4,6 + 2π2,−3,−6 + 2π2−1,3−4,6 . (C.10)

At this point it is clear why there are three members ak of each orbit [a], i.e. three terms

in each line above — it corresponds to the action Θk for k = 0, 1, 2. These cycles can also

13In order to comply with the notation in [35] we denote the basis cycles by ρ, even though we also

use ρ for the volume moduli of the tori, cf. (2.5) and for the Chan-Paton phase in the Möbius amplitude,

cf. (C.71). As the basis cycles only appear in this appendix, we feel that it should be always clear from the

context what we mean.
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be decomposed in terms of the elementary cycles as

ρ1 = 2π1,3,5 − 4π2,4,5 + 2π2,3,5 + 2π1,4,5 , (C.11)

ρ2 = 4π1,4,5 + 4π2,3,5 − 2π2,4,5 − 2π1,3,5 , (C.12)

ρ3 = 2π1,3,6 − 4π2,4,6 + 2π2,3,6 + 2π1,4,6 , (C.13)

ρ4 = 4π1,4,6 + 4π2,3,6 − 2π2,4,6 − 2π1,3,6 , (C.14)

so we can sum over either. This latter representation is perhaps less intuitive (there are now

four terms in each basis cycle), but convenient: we can easily see which cycles intersect.

To do so, recall that self-intersection is zero, so a nonvanishing example is π1,3,5 ◦ π2,4,6 =

(π1 ◦ π2)(π3 ◦ π4)(π5 ◦ π6) = 1. Our conventions are π1 ◦ π2 = −π2 ◦ π1 = 1 and so on. We

then easily establish that

ρ1 ◦ ρ3 = (−1)3 1

6

[
(2π1,3,5) ◦ (−4π2,4,6) + (−4π2,4,5) ◦ (2π1,3,6) (C.15)

+(2π2,3,5) ◦ (2π1,4,6) + (2π1,4,5) ◦ (2π2,3,6)
]

(C.16)

= (−1)3 1

6
[−8 · 1− 8 · 1 + 4 · (−1) + 4 · (−1)] = 4 . (C.17)

(Note that the formula for the intersection number contains a factor 1/N for a ZN orbifold,

cf. eq. (3.49) in [36].) Continuing like this, the intersection matrix becomes

Iρiρj = ρi ◦ ρj =




0 0 4 2

0 0 2 4

−4 −2 0 0

−2 −4 0 0


 . (C.18)

Comparing (C.2) and (C.3) we can relate the expansion coefficients (P,Q,U, V ) and the

wrapping numbers. To do so, it is convenient to note that the action of Θ on the wrapping

numbers is (cf. eq. (2.2) in [35]).


n1 m1

n2 m2

n3 m3


 , k = 1 :




−m1 n1 +m1

−(n2 +m2) n2

−n3 −m3


 , k = 2 :



−(n1 +m1) n1

m2 −(n2 +m2)

n3 m3


 .

(C.19)

We can then extract expressions for the expansion coefficients in (C.3) in terms of wrapping

numbers:

P = (n1n2 −m1m2)n3 , (C.20)

Q = (n1m2 +m1n2 +m1m2)n3 , (C.21)

U = (n1n2 −m1m2)m3 , (C.22)

V = (n1m2 +m1n2 +m1m2)m3 . (C.23)

As an example, the cycle with wrapping numbers (1, 0; 1, 0; 1, 0) produces P = 1 and

Q = U = V = 0, i.e. it corresponds to ρ1. What this means is that (1, 0; 1, 0; 1, 0) is one

representative in the collection of wrapping numbers that forms the orbit ρ1.
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Using the intersection numbers for the ρ, we can compute

Iab = Πbulk
a ◦Πbulk

b = (Paρ1 +Qaρ2 + Uaρ3 + Vaρ4) ◦ (Pbρ1 +Qbρ2 + Ubρ3 + Vbρ4)

= 2(PaVb +QaUb) + 4(PaUb +QaVb)− (a↔ b) . (C.24)

These are our desired intersection numbers of orbifold invariant collections of cycles.

Finally, we want orbifold invariant collections of orientifold planes and their wrapping

numbers. The reflection R acts as (π1, π2) → (π1, π1 − π2) in the first two 2-tori and as

(π1, π2)→ (π1,−π2) in the third. This means for the wrapping numbers



n1 m1

n2 m2

n3 m3


 R−→



n1 +m1 −m1

n2 +m2 −m2

n3 −m3


 . (C.25)

The R images for the AAa lattice are then found as:

ρ1 → ρ1 , (C.26)

ρ2 → ρ1 − ρ2 , (C.27)

ρ3 → −ρ3 , (C.28)

ρ4 → ρ4 − ρ3 . (C.29)

We want to form invariant combinations. Obviously ρ1 and ρ2 transform among themselves,

and so do ρ3 and ρ4, so we expect two sub-orbits. The first one can obviously be chosen to

be ρ1, and the second can be chosen as ρ3 − 2ρ4. The representatives of these two orbits

are mapped into each other by even powers RΘeven and odd powers RΘodd, respectively,

so we label them by this. The wrapping numbers are:

ΩRΘeven : ρ1 (ni,mi) = (1, 0; 1, 0; 1, 0) , (C.30)

ΩRΘodd : ρ3 − 2ρ4 (ni,mi) = (1, 1; 0, 1; 0,−1) . (C.31)

The representatives are generated from (C.19). The complete set of O6-plane wrapping

numbers is:




1 0

1 0

1 0


 Θ→




0 1

−1 1

−1 0


 Θ→



−1 1

0 −1

1 0


 , (C.32)




1 1

0 1

0 −1


 Θ→



−1 2

−1 0

0 1


 Θ→



−2 1

1 −1

0 −1


 . (C.33)

It may also be useful to note that if we act further with Θ, we can obtain wrapping

numbers that differ from these by an even number of sign flips, but as three-cycles, those

are equivalent to this set of six.
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C.2 Trigonometry

The angle ϕ between the brane a and the y-axis is determined by

cosϕ =
nR1 +mR2 cos θU

V , sinϕ =
mR2 sin θU

V , (C.34)

where θU is the angle that U makes with the x-axis, and V = R1L is the physical length of

the cycle, i.e. before we scaled the coordinates so the horizontal basis vector is unit length

(~e1 → ~e1/|~e1| = ~e1/R1). Now it is easy to compute

cot(ϕb − ϕa) =
cosϕb cosϕa + sinϕb sinϕa
cosϕa sinϕb − cosϕb sinϕa

(C.35)

=
nanb

R1
R2

+mamb
R2
R1

+ (namb + nbma) cos θU

Iab sin θU
(C.36)

=
Vab
Iab

, (C.37)

where we introduced

Vab =
1

sin θU

(
nanb

R1

R2
+mamb

R2

R1
+ (namb + nbma) cos θU

)
. (C.38)

For a = b, this is the square of the length of brane a which can alternatively be expressed as

Vaa ≡ Va =
|na + Uma|2

U2
. (C.39)

For a 6= b, it has no particular meaning.

Note the occurrence of the intersection numbers Iab = namb − nbma; this comes from

the ‘sin(ϕb − ϕa)’ in the denominator. Also note the special cases14

Vab =

{
nanb

R1
R2

+mamb
R2
R1

(θU = π/2) ,
2√
3

(
nanb +mamb + 1

2(namb + nbma)
)

(θU = π/3) ,
(C.40)

where the last expression follows from U ≡ R2/R1e
iθU = eπi/3 for Z3, i.e. R2/R1 = 1. One

can now write completely analogous expressions for Va,Ok , where Ok is one of the orientifold

planes (C.32).

C.3 Partition functions

We consider the brane stack a as a representative of the orientifold orbit [a]. The complete

partition function is given in terms of vacuum amplitudes on each worldsheet surface,

Z =
∑

a∈[a],b∈[b]

Aa,b +
∑

a∈[a]

5∑

k=0

Mk
a,Rak +K + T , (C.41)

14Correct with (12) in [12].
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where ak := Θka denotes the orbifold image of the brane a and Rak the orientifold image

thereof. The external partition functions are [28]

Zext[αβ ](τ) =
1

(4π2α′t)2

ϑ[αβ ](0, τ)

η(τ)3
, (C.42)

where τ is τA for annulus and τM for Möbius. The annulus partition function is

Z int
A [αβ ](τA) =

3∏

i=1

Iiab
ϑ[α+viab

β
](0, τA)

ϑ[
1/2+viab

1/2
](0, τA)

, (C.43)

where τA = it/2 and the angles are15

vjab ≡
1

π
(ϕja − ϕjb) =

1

π
ϕjab . (C.44)

This contains the rotation angle ϕ that depends on the representatives a and b.

We note that when the supersymmetry condition
∑3

i ϕ
i
ab = 0 mod π holds, we can

rewrite this as equation (2.13) in [11].16 There, the angle appears in the argument instead

of the upper characteristic.

Now we need the annulus partition function for strings stretching between some brane

a and its image a′. This could be either the orbifold image ak, or the orientifold image

thereof, Rak. We need only specialize the expression (C.43) to this case:

Z int
A [αβ ](τA) =

3∏

i=1

Iiaa′
ϑ[
α+vi

aa′
β

](0, τA)

ϑ[
1/2+vi

aa′
1/2

](0, τA)
. (C.45)

Even when a is rotated by an angle ϕ relative to another system of branes (or O-planes),

this of course does not affect the angle between a representative a and its image a′, so the

Aa,a′ amplitude does not depend on the rotation angle ϕ directly.

For the Möbius vacuum amplitude17 for strings stretching from brane a to the orien-

tifold image Rak we have

Z int,k
M [αβ ](τM) =

3∏

j=1

Ik;j
a,O

ϑ[
α+2vja,Ok
β−vja,Ok

](0, τM)

ϑ[
1/2+2vja,Ok
1/2−vja,Ok

](0, τM)

, (C.46)

where

vja,Ok = − 1

π
(ϕja − ϕjOk) (C.47)

and τM = it/2 + 1/2. Note that unlike (C.44), this explicitly depends on the sector k. As

before, the internal part can be rewritten with the shift in the argument instead of in the

15Note that this definition differs by a factor of i from the definition in [11].
16In their eq. (2.17), we set d = 3 for intersection in all three tori, ε → 0, β → 0 as there is no external

gauge field, and Zi = 1 as there are no zero modes.
17In their eq. (2.23), since d′ = 0, there is no product over i, so no dependence on nO6.
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characteristics provided
∑

i v
i = 0, and then it can be checked with [11]. Here Ik;j

a,O is the

number of RΘk-invariant intersections of the two branes.

If along the ith torus the intersecting angle vanishes, the internal partition func-

tions (C.43) and (C.46) are modified as follows:

Iiab

ϑ[
1/2+viab

1/2
](0, τA)

viab=0
=⇒ ΓA(t, T i, V i

a )

η3(τA)
(C.48)

for annulus and

Ik;i
a,O

ϑ[
1/2+2via,Ok
1/2−via,Ok

](0, τM)

via,Ok
=0

=⇒
ΓM(t, T i, V i

Ok
)

η3(τM)
(C.49)

for Möbius. The zero mode contributions ΓA and ΓM to the partition functions are18

ΓA(t, T i, V i
a ) =

∑

m,n

e
− πt

Ti2V
i
a
|m+T in|2

=
∑

~n

e−πt~n
TGA~n = ϑ(itGA) , (C.50)

ΓM(t, T i, V i
Ok

) =
∑

m,n

e
− πt

Ti2V
i
Ok

|m+T in|2

=
∑

~n

e−πt~n
TGM~n = ϑ(itGM) , (C.51)

where in the latter sum, V i
Ok

refers to O-planes that are parallel to D-branes (in these

N = 2 sectors), and

GA =
1

T i2V
i
a

(
1 T i1
T i1 |T i|2

)
, GM =

1

T i2V
i
Ok

(
1 T i1
T i1 |T i|2

)
. (C.52)

For zero B-field, it is easy to see that these are in fact simply

ΓA(t, T i, a) =
∑

m,n

e−πt(m
2L2

i+n
2D2

i ) (C.53)

with the Li and Di from (A.7), and similarly for ΓM. We can now use the known result

(see e.g. [29]) that

∫ ∞

1/Λ2

dt

t
ϑ(itG)e−2πχt =

Λ2

√
G
− ln(8π3χ)− ln

(
T i2|η(T i)|4√

G

)
(C.54)

= V i
aΛ2 − ln(8π3χ)− ln

(
T i2V

i
a |η(T i)|4

)
. (C.55)

C.4 Tadpole cancellation

The charge cancellation condition is

∑

a

Na(Πa + Πa′)− 2× 4ΠO6 = 0 , (C.56)

where the factor of 2 arises from the fact that the O-planes come in pairs of two in ori-

entifolds with one rectangular torus (as is the case for our third torus). This can be seen

18See for example (2.19) and (2.27) in [11]
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nicely in figure 1 of [39]. For concreteness, we will focus on an example with two stacks a

and b, with intersection numbers (ni,mi) and (qi, pi). Then (C.56) becomes two conditions

on the wrapping numbers:

D1 = 0 , D2 = 0 , (C.57)

where

D1 = Na(2n1n2 + n1m2 +m1n2 −m1m2)n3 (C.58)

+Nb(2q1q2 + q1p2 + p1q2 − p1p2)q3 − 8 ,

D2 = −Na(n1m2 +m1n2 +m1m2)m3 −Nb(q1p2 + p1q2 + p1p2)p3 − 8 . (C.59)

We sketch the well-known derivation of this result, again specifying to two stacks only

(a generalization to more stacks is straightforward but a bit cumbersome to write down

explicitly). Take the UV limit in the vacuum amplitude, where “UV” means in the open

string sense t→ 0, that is `→∞, and focus on the Ramond sector (α, β) = (1/2, 0) piece

of the spin structure sum19 and use that in this limit,

ϑ[1/2
0 ](0)

η3
→ 2 ,

ϑ[1/2
0 ](v)

ϑ[1/2
1/2

](v)
→ − cot(πv) . (C.60)

The sum of the UV limits of the vacuum amplitudes in the R sector is then

δR =
(

2AUV
[a][b] +AUV

[a][a] +AUV
[b][b] +MUV

[a] +MUV
[b] +KUV

)∫ ∞

0
d` (R sector) , (C.61)

where

AUV
[a][b] =

1

6
NaNb

2∑

k,l=0

(Vak,bl + Vak,Rbl + VRak,bl + VRak,Rbl) , (C.62)

AUV
[a][a] =

1

6
N2
a

2∑

k,l=0

(Vak,al + Vak,Ral + VRak,al + VRak,Ral) , (C.63)

AUV
[b][b] =

1

6
N2
b

2∑

k,l=0

(Vbk,bl + Vbk,Rbl + VRbk,bl + VRbk,Rbl) , (C.64)

MUV
[a] =

1

3
Na

2∑

k=0

5∑

m=0

(Vak,Om + VRak,Om) , (C.65)

MUV
[b] =

1

3
Nb

2∑

k=0

5∑

m=0

(Vbk,Om + VRbk,Om) , (C.66)

KUV =
2

3

5∑

m,n=0

VOm,On . (C.67)

19This is sufficient for the vacuum amplitude as long as supersymmetry is not broken. In the presence of a

background field B supersymmetry is broken and, thus, for the B2 terms, the NS tadpoles are independent

of the R tadpoles, cf. [11].
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The additional factors of 2 and 4 in the Möbius and Kleinbottle amplitudes have the same

origin as the factor of 2 in (C.56). Here we introduced the notation Vab =
∏
j V

j
ab (and

similarly for VaO and VOO) with each V j
ab given by (C.38).20 This can be obtained by first

noticing

AUV
a,b = 2NaNb

3∏

j=1

Ijab cot
(
πvjab

)∫ ∞

0
d` , (C.68)

Mk,UV
a,Rak = −8Naρk

3∏

j=1

Ik;j
a,Rak cot

(
πvja,Ok

)∫ ∞

0
d` , (C.69)

KUV = 16

3∏

j=1

IjOmOn

∫ ∞

0
d` , (C.70)

where the factors N and the phase ρk come from the Chan-Paton traces of eq. (2.11) in [11]:

tr((γΩRΘka
ΩRΘk )∗γaΩRΘk) = ρkNa . (C.71)

We find that tadpoles cancel if ρk = 1 for all k. One then uses (C.37) from above:

cot(vjab) =
V j
ab

Ijab
, (C.72)

and similarly for cot(πvja,Ok). We see that the intersection numbers in the angles cancel

the explicit overall intersection numbers from multiple intersections in the amplitude.

Demanding untwisted R tadpole cancellation δR = 0 leads to (C.57) which are two

conditions on Na, Nb and the wrapping numbers.21

C.5 Sample configuration

From (C.57) it follows that the two-stack configuration of D6-branes (with the O6-plane

configuration as above) given by

a = [1, 0, 1, 0, 1, 0] (C.73)

b = [0, 1, 0, 1, 0,−1] (C.74)

cancels all untwisted tadpoles if

4N2
a − 32Na + 64 = 0 , 3N2

b − 48Nb + 192 = 0 , (C.75)

whence Na = 4, Nb = 8.

20With a slight abuse of notation we use the same symbol Vab as in (C.38) to now denote
∏
j V

j
ab. In a

moment we will similarly use Iab to denote
∏
j I

j
ab, cf. the end of appendix C.6.

21One has to demand the vanishing of δR for any value of the complex structure and, thus, the coefficients

of R2
R1

and R1
R2

in δR have to vanish independently. Hence the existence of two different conditions.
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C.6 Divergence cancellation in the two-point function

Using the notation of the previous sections, we can now write out the divergences in terms

of wrapping numbers and R2/R1. There are no contributions from A[b][b], M[b] (for b 6= a)

or K when calculating a 2-point function for the brane scalars of stack a.

〈ΦΦ̄〉UV
A[a][b]

= −2NaNb

(
m1(n2 −m2)+n1(2n2 +m2)

)
n3

(
p1(q2 − p2)+q1(2q2 + p2)

)
q3
R1

R2

−6NaNb

(
m1(n2 +m2) + n1m2

)
m3

(
p1(q2 + p2) + q1p2

)
p3
R2

R1
, (C.76)

〈ΦΦ̄〉UV
A[a][a]

=

[
−2N2

a

(
m1(n2 −m2) + n1(m2 + 2n2)

)2
n2

3

]
R1

R2

+

[
−6N2

a

(
m1(n2 +m2) + n1m2

)2
m2

3

]
R2

R1
, (C.77)

〈ΦΦ̄〉UV
M[a]

=
[
16Na

(
m1(n2 −m2) + n1(2n2 +m2)

)
n3

] R1

R2

+
[
−48Na

(
m1(n2 +m2) + n1m2

)
m3

] R2

R1
. (C.78)

We demand cancellation of

δ2pt =
(
〈ΦΦ̄〉UV

A[a][b]
+ 〈ΦΦ̄〉UV

A[a][a]
+ 〈ΦΦ̄〉UV

M[a]

)∫ ∞

0
d` (C.79)

for any values of complex structures, by the prefactor of R1
R2

and R2
R1

vanishing. The result

is two conditions for twelve integers. However, this cancellation condition should not

restrict the brane configurations any more than they have already been restricted by tadpole

cancellation. We find that as expected, the divergence factorizes

δ2pt = P1D1
R1

R2
+ P2D2

R2

R1
(C.80)

= 0 , (C.81)

where P1, P2 are cubic polynomials in the wrapping numbers, and D1 and D2 are the

vacuum amplitude tadpole cancellation conditions given in (C.58) and (C.59). To be

explicit, we find

P1 = 2Na(m1m2n3 − n2n3m1 − 2n1n2n3 − n1n3m2) , (C.82)

P2 = 6Na(m2m3n1 + n2m3m1 +m1m2m3) . (C.83)

Thus, the tadpole cancellation conditionsD1 = D2 = 0, that we compute by factorization of

vacuum amplitudes, already imply divergence cancellation in the scalar two-point function.

We have already imposed twisted tadpole cancellation by eq. (2.7) of [11] so we only

see the untwisted ones, cf. eq. (2.7) of [35].

Finally, we consider the “I3” contributions, where the integrand does not depend on

the wrapping numbers at all. These terms arise from vertex operator collisions and do not
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have any analog in the calculation using the background field method, cf. the discussion

around formula (4.23). For these coefficients we find

∑

k.l

Iak,bl = −
∑

k,l

Iak,Rbl , (C.84)

∑

k.l

Iak,al =
∑

k,l

Iak,Ral = 0 , (C.85)

∑

k.l

Iak,Ol = −
∑

k.l

IRak,Ol , (C.86)

so the total contribution vanishes (for the notation in these formluas compare footnote 20

above).

D World-sheet correlators

The correlators on the annulus A and Möbius strip M are obtained by symmetrizing

the corresponding correlators on the covering torus under the involutions that define the

surfaces in the first place:

IA(w) = IM(w) = 2π − w̄ (D.1)

producing (cf. the appendix of [8])

〈X(w1)X(w2)〉σ = 〈X(w1)X(w2)〉T + 〈X(w1)X(Iσ(w2))〉T , (D.2)

where σ ∈ {A,M}. The formulas are somewhat simpler in the rescaled variable

ν =
w

2π
, Re(ν) ∈ [0, 1] . (D.3)

The bosonic correlation function on the torus T in the untwisted directions is

〈X(ν1, ν̄1)X(ν2, ν̄2)〉T = −α
′

2
ln
∣∣∣ϑ1(ν1 − ν2, τ)

ϑ′1(0, τ)

∣∣∣
2

+ α′π
(Im(ν1 − ν2))2

Im(τ)
. (D.4)

We will also need the S-transformed expression on the annulus, for which ν and τ are

imaginary

〈X(ν, ν̄)X(0, 0)〉A = −α′ ln
∣∣∣
τϑ1(ντ ,− 1

τ )

ϑ′1(0,− 1
τ )

∣∣∣
2
. (D.5)

Since the bosons in the amplitude we are interested in are polarized in external directions

only, we will not need twisted boson correlation functions in this paper.

For untwisted world-sheet fermions in the even spin structures, the correlation function

on the torus is

GF [αβ ](ν1, ν2)δµν ≡ 〈ψµ(ν1)ψν(ν2)〉α,βT =
ϑ[αβ ](ν1 − ν2, τ)ϑ′1(0, τ)

ϑ[αβ ](0, τ)ϑ1(ν1 − ν2, τ)
δµν . (D.6)
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Just as for bosons, fermion propagators for the remaining surfaces can be determined from

the torus propagators by the method of images. The result (taken from the appendix

of [8]) is

〈ψ(ν1)ψ(ν2)〉α,βσ = GF [αβ ](ν1, ν2) , σ ∈ {A,M} . (D.7)

In the following we will sketch the derivation using periodicity of the doubled fermionic

fields. On the covering torus, we have for a worldsheet fermion ψ with spin structure (α, β)

ψ(w + 2π, τ) = −e2πiαψ(w, τ) , (D.8)

ψ(w + 2πτ, τ) = −e−2πiβψ(w, τ) . (D.9)

The signs are conventional: they are chosen such that (α, β) = (1/2, 1/2) corresponds to

double periodicity. Thus, for the Green’s function we are looking for an expression that

transforms under translations around the two cycles of the covering torus as

GF [αβ ](w + 2π, τ) = −e2πiαGF [αβ ](w, τ) , (D.10)

GF [αβ ](w + 2πτ, τ) = −e−2πiβGF [αβ ](w, τ) (D.11)

and satisfies

∂̄GF [αβ ](w, τ) = δ(w) , (α, β) 6= (1/2, 1/2) . (D.12)

This determines the expression to be

GF [αβ ](ν, τ) =
ϑ[αβ ](ν)ϑ′1(0)

ϑ[αβ ](0)ϑ1(ν)
, (α, β) 6= (1/2, 1/2) , (D.13)

where we fixed the residue at ν = 0 to be 1. In this subsection, α has been a generic real

number between 0 and 1. To connect to the discussion in the main text, we now give a

concrete example for the annulus amplitude. In that case, for angles v = ϕ/π we have that

the generic α above is actually α̃ + v, where α̃ is now 0 or 1/2. In the main text we drop

the tilde and let α only take the values 0 or 1/2.

By using modular transformations of the Jacobi theta functions, it is easy to see that

GF [αβ ] (ν/τ ,−1/τ) = τGF [ β−α ](ν, τ) . (D.14)

E q-series representation of twisted correlator

We want to find a different representation of (D.13). We begin by observing

ϑ[ 1/2
1/2+v

](ν, τ) = ϑ[1/2
1/2

](ν + v, τ) , (E.1)

as is obvious from the sum representation of the Jacobi theta function. Then we have

GF [ 1/2
1/2+v

](ν, τ) =
ϑ1(ν + v, τ)ϑ′1(0, τ)

ϑ1(v, τ)ϑ1(ν, τ)
. (E.2)
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Figure 9. Path of integration C in the complex z plane.

In the main text, the left hand side is the fermion Green’s function in the closed string

channel. In this section only, τ is not the specific open-string channel τ of the main text,

but rather we will derive a general identity for generic τ . Also, for clarity we relabel ν = y,

v = z in this section only. We will prove that

f(y, z) ≡ ϑ1(y + z)ϑ′1(0)

ϑ1(y)ϑ1(z)
= π cotπy + π cotπz + 4π

∞∑

m=1

∞∑

n=1

qmn sin(2πmy + 2πnz) (E.3)

with q = e2πiτ . This is literally a textbook problem, exercise 13 in chapter 21 of [40]. For

the reader’s convenience we will solve this problem here. Note that f(y, z) is symmetric

under interchange y ↔ z. (This is rather interesting in the original variables, as one would

in general not expect the integrand to be symmetric in the vertex position and the angle.)

We will concentrate on the z dependence of f(y, z), assuming that y is away from zero. To

prove (E.3), perform the contour integration around the cell in figure 9.

1

2πi

∮

C
f(y, z)e2πinzdz =

1

2πi

[∫ 1/2−τ/2

−1/2−τ/2
dz
(
f(y, z)e2πinz − f(y, z + τ)e2πin(z+τ)

)]
(E.4)

− 1

2πi

[∫ −1/2+τ/2

−1/2−τ/2
dz
(
f(y, z)e2πinz − f(y, z + 1)e2πin(z+1)

)]

=
1

2πi

[∫ 1/2−τ/2

−1/2−τ/2
dz
(
f(y, z)(e2πinz − e2πin(z+τ)−2πiy)

)]

− 1

2πi

[∫ −1/2+τ/2

−1/2−τ/2
dz
(
f(y, z)(e2πinz − e2πin(z+1))

)]

=
1

2πi
(1− qne−2πiy)

∫ 1/2−τ/2

−1/2−τ/2
dzf(y, z)e2πinz , (E.5)

– 44 –



J
H
E
P
1
1
(
2
0
1
2
)
0
9
1

where n is a positive integer and we used f(y, z+1) = f(y, z) and f(y, z+τ) = e−2πiyf(y, z),

which follow from the properties of theta functions, or more directly, from the defining

transformation properties (D.10), (D.11). In fact, we do not need the explicit theta func-

tion representation of f to complete the proof, we only need to know its quasiperiodicity

properties and singularity (including the residue). Knowing that f has a simple pole at

the origin with residue one lets us immediately see that the integral on the left-hand side

of (E.4) is equal to one, because

Res[f(y, z)e2πinz, z = 0] = 1 . (E.6)

Thus, we obtain

∫ 1/2−τ/2

−1/2−τ/2
dzf(y, z)e2πinz =

2πi

1− qne−2πiy
, (E.7)

and assuming |qne−2πiy| < 1, the r.h.s. can be Taylor expanded to give

∫ 1/2−τ/2

−1/2−τ/2
dzf(y, z)e2πinz = 2πi

∞∑

m=0

qmne−2πimy . (E.8)

On the other hand, from the pole structure and the periodicity of f(y, z) we can use the

following ansatz:

f(y, z) = π cot(πy) + π cot(πz) +

∞∑

m=−∞

∞∑

n=−∞
cm,ne

−2πinze−2πimy, (E.9)

where the cotangent terms arise due to the fact that the poles are located at zero. (The

Fourier series of the cotangent function itself are written down in section E.2 below.) And

note that f(−y,−z) = −f(y, z), so it is easy to see that

cm,n = −c−m,−n, (E.10)

meaning in particular c0,0 = 0. On the other hand due to the symmetry under y ↔ z it is

easy to show

cm,n = cn,m. (E.11)

Inserting these pieces of information into the integral in (E.8) and using the expansion (E.18)

below for π cot(πz), we find

2πi+

∞∑

m=−∞
cm,ne

−2πimy = 2πi

∞∑

m=0

qmne−2πimy, (E.12)

which by matching term by term gives

cm,n = 2πiqmn , c−m,n = 0 , c0,n = 0 for m,n > 0 , (E.13)
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Figure 10. Path of integration in the complex ν plane.

and using (E.10) we have

c−m,−n = −2πiqmn , cm,−n = 0 , c0,−n = 0 for m,n > 0 , (E.14)

and due to (E.11) it follows that cm,0 = 0 for any m.

To summarize, we are left with

∞∑

m=−∞

∞∑

n=−∞
cm,ne

−2πinze−2πimy = 2πi
∞∑

m=1

∞∑

n=1

qmne−2πinze−2πimy (E.15)

−2πi
−∞∑

m=−1

−∞∑

n=−1

qmne−2πinze−2πimy

= 2πi
∞∑

m=1

∞∑

n=1

qmn
(
e−2πinze−2πimy − e2πinze2πimy

)

= 4π

∞∑

m=1

∞∑

n=1

qmn sin(2πmy + 2πnz).

Thus (E.9) gives (E.3), which is what we wanted to show.

E.1 Vanishing by contour integration

Once we have convinced ourselves that the poles do not contribute, we can prove (4.26) by

performing a line integral over the deformed contour of figure 10. Because GF has no pole

in the interior of the fundamental domain, we find by a similar argument to above

0 =

∮
dν GF [ 1/2

1/2+v
](ν) = (1− e−2πiv)

∫ 1

0
dν GF [ 1/2

1/2+v
](ν) . (E.16)

If e2πiv 6= 1, the factor in parenthesis does not vanish, then the integral along the real axis

from 0 to 1 of GF must instead vanish, which is what we wanted to show. We note that if

it had not been for the quasiperiodicity induced by the angle v, the factor in parenthesis

would vanish trivially, and the contour integration would provide no information about the

value of the integral of GF from 0 to 1.
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E.2 Fourier series of cotangent function

For |e2πiν | < 1 we have that (writing x = e2πiν)

π cotπν = πi
e2πiν + 1

e2πiν − 1
= −πi

(
x

1− x +
1

1− x

)
(E.17)

= −πi
( ∞∑

n=1

xn +

∞∑

n=0

xn

)
= −πi

(
1 + 2

∞∑

n=1

e2πinν

)
,

but for |e−2πiν | < 1 we have that

π cotπν = πi
1 + e−2πiν

1− e−2πiν
= +πi

(
1

1− 1/x
+

1/x

1− 1/x

)
(E.18)

= +πi

( ∞∑

n=1

(
1

x

)n
+
∞∑

n=0

(
1

x

)n)
= +πi

(
1 + 2

∞∑

n=1

e−2πinν

)
.

F Illustrating image intersections

Let us focus on a single brane a and its images ak on a single T 2 let us say the second one.

From (C.19) we have

I[a][a] = Ia,Θa + Ia,Θ2a (F.1)

=
1

2
[n1 · (n1 +m1) +m1 ·m1] +

1

2
[n1 · n1 +m1 · (n1 +m1)] (F.2)

= n2
1 + n1m1 +m2

1 . (F.3)

For example, for [a] given by (n1,m1) = (n, 1) we have for the orbit that

I[a][a] = n2 + n+ 1 (F.4)

= 7, 13, 21, 31, 43, . . . . (F.5)

This is illustrated in figure 11.
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Figure 11. Orbifold multiplets of intersection points for [a] given by (n,m) = (n, 1), n = 2, . . . , 10.

We see that including the origin, I[a][a] = 7, 13, 21, 31, 43, . . . = n2 + n+ 1.
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