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1 Introduction

The pure spinor formalism for the classical Type IIB supergravity was developed in [1]. As

typical for theories with extended supersymmetry, the formalism is technically challenging

and involves many subtle geometrical constructions. Moreover, even the basic postulates

of the formalism are not completely clear (at least to us). We would like to have some set

of axioms which would allow us to encode the space-time dynamics (SUGRA) in terms of

the worldsheet dynamics. Naively, the set of rules can be as follows:

“Postulate the action of the form:∫
dτ+dτ− [Amn(x, θ)∂+x

m∂−x
n +Amα(x, θ)∂+x

m∂−θ
α+

+Aαm(x, θ)∂+θ
α∂−x

m +Aαβ(x, θ)∂+θ
α∂−θ

β +

+ wL+(∂− +A−(x, θ))λL + wR−(∂+ +A+(x, θ))λR +

+ < wL+wR−λLλR >] (1.1)

where λ and w are pure spinors and their conjugate momenta, and request that it satisfies

the properties:

• Classical 2d conformal invariance

• Lagrangian is polynomial in λ and w

• Two separate conserved ghost number charges, left for λL , wL+ and right for

λR , wR−

• Nilpotent BRST symmetry

The constraints guarantee that these coupling constants AMN (x, θ) encode a solution of

the Type IIB SUGRA.”

We believe that this is not very far from the truth, but there are subtleties.

– 1 –
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In order to better understand the pure spinor formalism, it is useful to consider explic-

itly various specific examples beyond the flat space. The most symmetric non-flat example

is AdS5×S5 which was constructed in [2]. In [3] we have discussed a special class of defor-

mations of AdS5 ×S5 known as β-deformations. At the linearized level, we have explicitly

constructed the corresponding deformations of the pure spinor action. They are described

by the integrated vertex operators, which are products of two global symmetry currents

with some constant coupling constant Bab:

U = Babja ∧ jb (1.2)

1.1 Non-physical vertices

As was pointed out in [3], some apparently well-defined vertex operators of the form (1.2)

do not correspond to any physical deformations of the AdS5 ×S5 background. They have:

Babfab
c 6= 0 (1.3)

where fab
c is the structure constants of the SUSY algebra g = psu(2, 2|4). We will call such

vertices “non-physical”. Their appearence does not lead to any obvious contradiction, if

one can either consistently throw them away, or perhaps learn to live with them. Throwing

them away should presumably correspond to an additional restriction of the allowed BRST

cochains, similar to the semi-relative cohomology of the bosonic string [4–6].

In this paper we will study the flat space limit of these unphysical vertices.

1.2 Flat space limit of SUGRA excitations

We will start by pointing out the following general fact about the flat space limit of

SUGRA solutions.

Given a general nonlinear solution (“the background”) of the Type IIB SUGRA we

can consider the linear space of its infinitesimal deformations (“excitations”). Such excita-

tions correspond to solutions of certain linear differential equations, namely the SUGRA

equations of motion linearized around this background).

In particular, let us look at the flat space limit of the excitations of AdS5 × S5. Both

the flat space sigma-model and the sigma-model of AdS5 ×S5 are invariant under a parity

symmetry. Therefore linearized excitations can be separated into parity-odd excitations

and parity-even excitations. Let us restrict ourselves to the bosonic excitations. Those

excitations which involve NSNS and RR B-fields (i.e. RR 3-form field strength) are parity-

odd, while those which involve metric, dilaton, axion, and the RR 5-form field strength

are parity-even.

Let us pick some particular excitation and look at its Taylor expansion around a

fixed “marked point” x∗. Consider only the leading term in the Taylor expansion. It is a

polynomial in x− x∗. We claim that:

The leading term of a parity-odd excitation of AdS5 × S5

is a polynomial solution of the flat space linearized SUGRA
(1.4)

– 2 –
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Proof. Equations of motion of Type IIB SUGRA are systematically reviewed in [7]. For the

leading approximation to the flat space limit of AdS5 × S5, we get the following linearized

equations for HNSNS and HRR:

d ∗ (HNSNS + iHRR) = −
2

3
i ∗ ι(HNSNS+iHRR)F5 (1.5)

where ι(HNSNS+iHRR)F5 is the substitution of the complex 3-form HNSNS + iHRR into

the RR 5-form field strength of AdS5 × S5. We have to prove that the leading term of

HNSNS + iHRR is a solution of the linearized SUGRA in flat space. We expand (1.5) in

Taylor series. For the term with the leading power of x, all that matters is the term with

the maximal number of derivatives. It is the same as in flat space:

d ∗flat (HNSNS + iHRR) = 0 . (1.6)

1.3 Flat space limit of non-physical vertices

Although the non-physical vertices do deform the AdS action consistently, and in a BRST-

invariant way, they do not correspond to any linearized supergravity solution. We can see it

in the flat space limit. We expand the vertex around a fixed “marked point” x∗ ∈ AdS5×S5

and look at the leading term. We observe that the SUGRA fields read from the leading term

do not solve the linearized SUGRA equations in flat space. This confirms the observation

of [3] that the non-physical vertex does not correspond to any deformation of AdS5×S5. If

the non-physical vertex corresponded to a valid deformation of AdS5×S5, then this would

be in contradiction with (1.4).

Moreover, it turns out that there is an essential difference between the non-physicalness

of the AdS deformation vertex (1.2) and its flat space limit. In case of AdS, the vertex

given by eq. (1.2) at least deforms the worldsheet action in AdS5 ×S5 in a consistent way.

Its flat space limit, however, does not even provide a consistent deformation of the flat

space worldsheet action. How can it be?

1.4 Wild deformations of the BRST operator

The mechanism is the following. Remember that usually the BRST-invariant deformations

of the worldsheet action are accompanied by the corresponding deformation of the BRST

operator1 Q. The deformations of the BRST structure are tied to the deformations of the

action. But in the special case of flat space there are “wild” deformations of the BRST

structure, which do not require the deformations of the action:

• We can deform the BRST structure keeping the action fixed.

We will call these deformations of Q “wild”, in the sense that they are not tied to the

deformations of the action. These “wild” deformations of the BRST structure play an

important role in the flat space limit of the unphysical β-deformations. Let us consider a

β-deformation of the AdS space and expand everything around flat space. If the expansion

of the β-deformation vertex starts from R−3, then the flat space limit is perfectly physical;

1Because the BRST-invariant integrated vertex is only BRST-invariant on-shell.
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it is just a constant RR 3-form field strength. But for some vertices (or, equivalently, for

some choice of the expansion point x∗ ∈ AdS5×S5) the expansion starts with R−4. In this

case we get:2

S = R−2Sflat +

∫
R−3UAdS RR 5−form +

∫
εR−4Uβ + . . . (1.7)

Here R is the radius of AdS space, ε the small parameter measuring the strength of the

β-deformation, UAdS RR 5−form is the integrated vertex corresponding to the deformation

of flat space into AdS, and Uβ is the leading term in the expansion of the β-deformation

integrated vertex around the marked point. It turns out that the BRST operator of the

unphysical β-deformation, in the flat space expansion, contains a wild piece at the lower

order then one would expect:

Q = Qflat + εR−1∆wildQ+ . . . (1.8)

where ∆wildQ is a wild deformation of Qflat. Note that the BRST operator gets deformed

at the order R−1, although naively one would expect R−2. Then we get:

(∆wildQ) Sflat = 0 (1.9)

(∆wildQ) UAdS RR 5−form = Qflat Uβ (1.10)

This means that Uβ is not even BRST closed.

In other words, when studying the flat space limit of this β-deformation, it only makes

sense to consider the deforming vertex up to the relative order R−1. But as we see in

eq. (1.7), the beta-deformation starts only at the relative order R−2 (the term with Uβ).

In this sense, the flat space limit of our beta-deformation only affects the BRST operator

without touching the action.

1.5 Deformations of the normal form of the action

However, as explained in [1], in order to read the SUGRA fields from the worldsheet

action, we have to first bring the action to some special normal form. The definition of

this normal form does depend on the BRST operator; therefore the normal form of the

action does get deformed in the flat space limit. We will discuss this in section 6. We

will find that the leading term in the near-flat space expansion of the nonphysical vertex

would have resembled the linear dilaton, but differs from it in not being worldsheet parity

invariant. This leads to the axial asymmetry of the vector components of the worldsheet

Weyl connection, and consequently to the anomaly at the one-loop level.

Conclusion. A classical Type IIB background is not completely characterized by requir-

ing the BRST symmetry of the classical worldsheet theory; it is also necessary to require

the vanishing of the one-loop beta-function.

2Usually the action is defined with the overall coefficient R
2; then the flat space term is of the order 1.

We prefer to define the action so that the flat space is of the order R−2.
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Open question. It is not clear to us if there exists such nonphysical vertices in the

backgrounds other than flat space and AdS5 ×S5. We suspect that, even forgetting about

the quantum anomaly, the non-physical deformation of the classical sigma-model in curved

space-time will be obstructed at the higher orders of the deformation parameter. (Although

in flat space-time, section 4.1.6 shows that it is actually unobstructed.)

In the rest of the paper we will provide technical details.

2 AdS5 × S5 and its β-deformations

2.1 Pure spinor formalism in AdS5 × S5

2.1.1 The action

The action is:

SAdS =

∫
d2z Str

(
1

2
J2̄+J2̄− +

3

4
J1̄+J3̄− +

1

4
J3̄+J1̄− + [ghosts]

)
(2.1)

where the currents are J = −dgg−1, g = eθex, and the indices with the bar denote the

Z4 grading.

2.1.2 Parity symmetry

There is a parity symmetry Σ:

Σ(τ±) = τ∓

Σ(g) = SgS−1 (2.2)

where S is an element of PSU(2, 2|4) given by the following (4|4)× (4|4)-matrix:

S = diag(eiπ/4, eiπ/4, eiπ/4, eiπ/4, e−iπ/4, e−iπ/4, e−iπ/4, e−iπ/4) (2.3)

Under this symmetry:

Σ(Jn̄+) = SJ(−n̄)−S
−1 (2.4)

In particular:

Σ(J3̄+) = SJ1̄−S
−1 (2.5)

A generic string theory sigma-model does not have any parity symmetry. Parity invariance

is a property of those backgrounds which only involve the metric, axion-dilaton and the

RR 5-form field strength, but neither the B-field nor the RR 3-form. AdS5 × S5 is one of

such parity-invariant backgrounds.

2.2 β-deformations

The β-deformations are the simplest deformations of the pure spinor action. The cor-

responding integrated vertex is just the exterior product of two global symmetry cur-

rents [3, 8]:

SAdS −→ SAdS +

∫
εBabja ∧ jb (2.6)
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where ε is a small parameter measuring the strength of the deformation, and Bab is a

constant super-antisymmetric tensor with indices a, b enumerating the generators of the

algebra of global symmetries g = psu(2, 2|4). It turns out that when B is of the form

Bab = fab
cA

c for some constant Ac, the deformation can be undone by a field redefinition.

Therefore the space of linearized β-deformations is:

H = (g ∧ g)/g (2.7)

2.3 Physical and unphysical deformations

Physical β-deformations have zero internal commutator:

Hphys = (g ∧ g)0/g (2.8)

Here (g ∧ g)0 means the subspace consisting of
∑

i ξi ∧ ηi such that:

∑

i

[ξi, ηi] = 0 (2.9)

Physical deformations describe solutions of linearized SUGRA on the background of

AdS5 × S5.

It was explained in [3] that the deformations which belong to the complement H\Hphys

do not correspond to any SUGRA solutions. The spectrum of linearized excitations of

SUGRA on AdS5 × S5 does not contain states with such quantum numbers. Attempt to

naively identify the supergravity fields gives the Ramond-Ramond field strength which is

not closed: dHRR 6= 0. This contradicts the SUGRA equations of motion.

For example, consider B of the form:

Bab =

{
fab
c Ac if both a and b are even (bosonic) indices

0 otherwise
(2.10)

with some constant A ∈ so(6) ⊂ psu(2, 2|4). The corresponding SUGRA solution would

be constant in the AdS directions, and would transform in the adjoint representation of

so(6) (the rotations of the S5). But there is no such state in the SUGRA spectrum [9].

Even without consulting [9], that there is no SUGRA solutions with such quantum

numbers. Let us study the representations of SUGRA fields, even without equations of

motion (off-shell). They are various tensor fields. A tensor field transforms in some rep-

resentation ρ of the small algebra so(5) ⊂ so(6) (we are looking only at the S5 part).

According to the Frobenius reciprocity, a representation of so(6) enters as many times as

ρ enters into its restriction on so(5). In particular, the adjoint representation of so(6)

decomposes as follows:

adso(6) = adso(5) ⊕Vecso(5) (2.11)

But Type IIB SUGRA does not contain vectors, and the only 2-forms are: ∗5HNSNS and

∗5HRR. In the space of 2-forms on S5, the only subspace transforming in the adjoint of

so(6) are dXi∧dXj where S
5 is parametrized by X2

1 + . . .+X2
6 = 1. But HNSNS and HRR

are closed 3-forms, while ∗5(dXi ∧ dXj) is not.

– 6 –
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3 Pure spinor formalism in flat space

3.1 Action, BRST transformation, supersymmetry and parity

The action in flat space is:

Sflat =

∫
dτ+dτ−

[
1

2
∂+x

m∂−x
m + p+∂−θL + p−∂+θR +

+ w+∂−λL + w−∂+λR

]
(3.1)

where x, θL,R are matter fields and λ are pure spinor ghosts, and p±, w± are their conjugate

momenta. The BRST transformation is generated by the BRST charge:

qflat =

∫
dτ+λLd+ +

∫
dτ−λRd− (3.2)

where d± is some composed field built from p±, θ, ∂±x, the explicit expressions are in

section 5.2. The corresponding symmetry (called “BRST transformation”) acts in the

following way:

ǫQflat θL,R = ǫλL,R

ǫQflat x
m =

1

2
((ǫλLΓ

mθL) + (ǫλRΓ
mθR))

ǫQflat λL,R = 0

ǫQflat w± = ǫd±

ǫQflat d+ = Πm
+ΓmǫλL

ǫQflat d− = Πm
−ΓmǫλR (3.3)

or in compact notations:

ǫQflat = ǫλL
∂

∂θL
+ ǫλR

∂

∂θR
+

1

2
((ǫλLΓ

mθL) + (ǫλRΓ
mθR))

∂

∂xm
+

+ ǫd+
∂

∂w+
+ ǫd−

∂

∂w−
+ (Πm

+ΓmǫλL)α̂
∂

∂dα̂+
+ (Πm

−ΓmǫλR)α
∂

∂dα−
(3.4)

We will use the small-case q for both the conserved charge and the capital Q for the cor-

responding symmetry action. The BRST operator ǫQflat has the following key properties:

1. It is a symmetry of the action

2. It is nilpotent: Q2
flat = 0 (up to gauge tranformations)

Besides the BRST invariance, the flat space action is also invariant under the super-

Poincare transformations. In particular, there are supersymmetries t3α and t1α̇ which act

as follows:

καLt
3
α = καL

∂

∂θαL
−

1

2
(κLΓ

mθL)
∂

∂xm

κα̂Rt
1
α̂ = κα̂R

∂

∂θα̂R
−

1

2
(κRΓ

mθR)
∂

∂xm
(3.5)

where καL and κα̂R are constant Grassmann numbers, enumerating the SUSY generators.

– 7 –
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The flat space theory has parity invariance, as eq. (2.2) of AdS5×S5. It exchanges τ+

with τ− and θL with θR.

3.2 Using AdS notations in flat space

Even in the strict flat space limit, it is still convenient to use the AdS notations.

For example:

[θL, ∂+θL]
m = (θLΓ

n∂+θL) (3.6)

[θL, θR]
[mn] = (θLF

mnpqrΓpqrθR) (3.7)

[B2, θL]
α̂ =

(
F̂Bm

2 ΓmθL

)α̂
(3.8)

where Fmnpqr is the RR 5-form field strength of AdS5 × S5 in the flat space limit. We

will also put Z4 indices on the currents; the Lorentz currents will be denoted j0±, the

translations j2±, and the supersymmetries j3± and j1±.

4 Deformations of the flat space structures

4.1 Deforming Qflat keeping Sflat undeformed

4.1.1 Construction of the deformation

Consider the following infinitesimal deformation of the BRST charge, parametrized by the

constant bispinors Bα̂β̂
R and Bαβ

L :

ǫqB = ǫqflat + ǫ∆wildq

where ǫ∆wildq = ε

∫ (
(θLΓmǫλL)Γ

m
αγθ

γ
L

)
Bαβ

L Sβ+dτ
+ +

+ ε

∫ (
(θRΓmǫλR)Γ

m
α̂γ̂θ

γ̂
R

)
Bα̂β̂

R Sβ̂−dτ
− (4.1)

Notations:

• qflat is the standard flat space BRST charge (3.2).

• Bα̂β̂
R and Bαβ

L are constant bispinors, Bαβ
L = Bβα

L , Bα̂β̂
R = Bβ̂α̂

R .

• ε is a small parameter, measuring the strength of the deformation; it should not be

confused with ǫ — the formal Grassmann number. Note that ε is bosonic and ǫ is

fermionic. To the first order in ε the deformed BRST operator is a new nilpotent

symmetry of the action.

• Sβ+ and Sβ̂− are the holomorphic (left) and the antiholomorphic (right) supersym-

metry charges3 (see eqs. (5.31) and (5.32) for the explicit formulas)

3The fact that the supersymmetry charges are holomorphic or antiholomorphic is special to flat space,

and is crucial for our construction.
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It follows from the definition that ∆wildq is a conserved charge. Indeed, on-shell ∂−Sβ+ =

∂+Sβ̂− = 0 and ∂−θL = ∂+θR = ∂−λL = ∂+λR = 0.

The deformation ∆wildq consists of the “left” piece (proportional to BL) and the “right”

piece (proportional to BR). These two pieces provide two separate deformations, the left

one and the right one. They are separately well-defined.

4.1.2 Proof that ∆wildq anticommutes with qflat

We will prove this using the Hamiltonian formalism. Let us calculate the Poisson bracket:

{qflat, ∆wildq} = Qflat ∆wildq (4.2)

Notice the descent relation for the density of ∆wildq:

ǫQflat

((
(θLΓmǫ′λL)Γ

m
αγθ

γ
L

)
Bαβ

L Sβ+

)
=

= ∂+

(
1

6

(
(θLΓmǫ′λL)Γ

m
αγθ

γ
L

)
Bαβ

L

(
(θLΓmǫλL)Γ

m
βδθ

δ
L

))
(4.3)

which follows from the descent of the SUSY current:

ǫQflatSα+ = ∂+

(
1

3
(θLΓmǫλL)Γ

m
αγθ

γ
L

)
(4.4)

which can be derived by an explicit calculation, or as a limit of the similar relation in the

AdS5 × S5 sigma-model derived in [10] and reviewed in [3]. Let us introduce the notation:

vLα(ǫ) =
(
(θLΓmǫλL)Γ

m
αγθ

γ
L

)
(4.5)

With this notations we have:

ǫQflat

(
vLα(ǫ

′)Bαβ
L Sβ+

)
=

1

6
∂+

(
vLα(ǫ

′)Bαβ
L vLβ(ǫ)

)
(4.6)

There is a similar descent relation for the charge density of the right deformation. Eq. (4.6)

means that the Qflat-variation of the density of ∆wildq is a total derivative, and this implies:

{qflat, ∆wildq} = Qflat ∆wildq = 0 (4.7)

4.1.3 Deformation of the BRST transformation

This deformation of the BRST charges corresponds to the following deformation of the

BRST transformation:

ǫQB = ǫQflat +∆wildQ (4.8)

where ∆wildQ = εBα̂β̂
R

(
(θRΓmǫλR)Γ

m
α̂γ̂θ

γ̂
R

)
t1
β̂
+ εBαβ

L

(
(θLΓmǫλL)Γ

m
αγθ

γ
L

)
t3β +

+ kα+
∂

∂pα+
+ lα+

∂

∂wα+
+ kα̂−

∂

∂pα̂−
+ lα̂−

∂

∂wα̂−
(4.9)

where t1
β̂

and t3β are the right and left SUSY generators given by eq. (3.5), and

kα+, lα+, kα̂−, lα̂− define some infinitesimal shifts of the momenta p±, w±. We will not

need the explicit formula for these shifts; they are canonically defined in terms of the shifts

of x and θ generated by t1
β̂
and t3β.
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4.1.4 When such a deformation can be undone by a field redefinition?

Sufficient condition. Consider the special case when BL satisfies:

Γm
αβ Bαβ

L = 0 (4.10)

In this case exists WL:

vLα(ǫ
′)Bαβ

L vLβ(ǫ) = ǫQflat

(
ǫ′WL

)
(4.11)

The structure of WL is [θ5LλL]. This implies:

Qflat

(
vLα(ǫ

′)Bαβ
L Sβ+ − ∂+(ǫ

′WL)
)
= 0 (4.12)

Because the cohomology in conformal dimension 1 is trivial, this implies the existence

of yL+:

vLα(ǫ
′)Bαβ

L Sβ+ = ∂+(ǫ
′WL) + ǫ′QflatyL+ (4.13)

(See the discussion in appendix A.) We observe that ∂−yL+ ≃
flat

0. Thus yL+ is a conserved

current of the flat space theory generating some transformation YL. We have therefore:

QB = Qflat + [YL, Qflat] (4.14)

Therefore if (4.10) then the deformation QB → Qflat is trivial.

Necessary condition. Let us assume that exists a vector field YL satisfying eq. (4.14).

Let us assume that YL is a symmetry of the Sflat; in the next section 4.1.5 we will give a

proof without this assumption. Then the conserved current vLαB
αβ
L Sβ+ corresponding to

Q
(1)
B satisfies:

vLαB
αβ
L Sβ+ = YLj flat BRST+ + ∂+φ (4.15)

for some holomorphic φ. Using that Qflatjflat BRST+ = 0, this implies:

Qflat

(
vLαB

αβ
L Sβ+

)
= ∂+ (Qflatφ) (4.16)

Therefore:

vLαB
αβ
L vLβ = Qflatφ (4.17)

In the rest of this paragraph we will prove that this is only possible when (4.10). Indeed,

suppose that (4.10) is not satisfied. Without loss of generality, we can assume: Bαβ
L =

BmΓαβ
m . We want to prove that (vLB̂vL) represents a nonzero cohomology class of Qflat.

Remember that Qflat is defined in (3.3). Let us formally split x into xL and xR:

xm = xmL + xmR (4.18)

ǫQflatx
m
L =

1

2
(ǫλLΓ

mθL) (4.19)

ǫQflatx
m
R =

1

2
(ǫλRΓ

mθR) (4.20)
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Let us extend the BRST complex4 by including functions of xL and xR (and not just of

their sum). Then (vLB̂vL) is BRST trivial:

(vLB̂vL) = QflatA (4.21)

where A = Am(xL)(θLΓ
mλL) + (dA)mn[θ

3
LλL]

[mn] + . . . (4.22)

where Am(xL) is such that:

d ∗ dA = ∗B (4.23)

In other words, A is the Maxwell field created by the constant charge density B. The

question is:

• Is it possible to correct A by adding to it something Qflat-closed, so that the corrected

A depends on xL and xR only through x = xL + xR?

If this is possible then (vLB̂vL) is Qflat exact. We will now prove that it is not possible to

make such a correction of A, and therefore (vLB̂vL) is cohomologically nontrivial.

A function of xL, xR, θL, θR, λL, λR can be written in terms of x, θL, θR, λL, λR if and

only if it is annihilated by ym
(

∂
∂xm

L

− ∂
∂xm

R

)
for any constant vector ym. Notice that:

Qflat

[
ym

(
∂

∂xmL
−

∂

∂xmR

)
A

]
= 0 (4.24)

— this is because ym
(

∂
∂xm

L

− ∂
∂xm

R

)
commutes with Qflat and annihilates (vLB̂vL). Let

us consider the following solution of (4.23):

Aµ =
1

18
x2Bµ (4.25)

Then Fµν = 1
9 (xµBν − xνBµ). We see that (y∂xL

− y∂xR
)A represents a nontrivial co-

homology class of Qflat, corresponding to the Maxwell field of the constant field strength

y ∧B. Now the question is:

• Is it possible to obtain this cohomology class by acting with (y∂xL
− y∂xR

) on some

cohomology class Z of Qflat?

In other words, is it possible that exists Z such that:

(y∂xL
− y∂xR

)A = (y∂xL
− y∂xR

)Z (4.26)

QflatZ = 0 (4.27)

(such a Z will necessarily be nontrivial in the cohomology of Qflat)? If and only if this

were possible, then we could modify A by subtracting from it a representative of Z (and

since Z is closed, this will not change the defining property (4.21)) so that the modified

A depends on xL and xR through x = xL + xR. Then eq. (4.21) would have implied

that (vLB̂vL) is BRST exact. We will now prove that this is impossible.

4I want to thank M. Movshev for teaching me this trick.
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Suppose that exists Z such that (4.26) and (4.27). As we already said, since the

Qflat-cohomology class of (y∂xL
− y∂xR

)A is nontrivial, Z should be also nontrivial

in Qflat-cohomology. Modulo Qflat-exact terms Z has to be of the following form:

Z = ZLm(xL, xR)(θLΓ
mλL) + ZRm(xL, xR)(θRΓ

mλR) + [xλθ3] + [λθ5] (4.28)

where ZLm and ZRm are quadratic in x. For (4.28) to be Qflat-closed we need:

∂xn

R
ZLm = ∂xm

L
ZRn (4.29)

Since both ZLm and ZRn are quadratic polynomials in (xL, xR), let us introduce

the notations:

ZLm = ZLm,LL + ZLm,LR + ZLm,RR

ZRm = ZRm,LL + ZRm,LR + ZRm,RR (4.30)

where e.g. ZRn,LL is the term with xLxL in ZRm, etc. Eq. (4.29) implies that the

term with xRxL in ZLm and the term with xLxL in ZRm can be gauged away by

Qflat(2ZRn,LLx
n
R):

ZLm,LR(xL, xR)(θLΓ
mλL) + ZRm,LL(xL, xR)(θRΓ

mλR) = Qflat(2ZRn,LLx
n
R)

Similarly, the terms with xRxR in ZLm plus terms with xLxR in ZRm are

Qflat(2ZLn,RRx
n
L), where ZLn,RR is the coefficient of xRxR in ZLn. After such a

gauge transformation, we are left with:

A′ = ZLm(xL)(θLΓ
mλL) + ZRm(xR)(θRΓ

mλR) + [xλθ3] + [λθ5] (4.31)

Now we observe that this corresponds to a pair of Maxwell fields with the field

strength linearly dependent on the spacetime coordinates. One of these two Maxwell

fields corresponds to ZLm, and another to ZRm. Up to gauge transformations, both

transform in the traceless part of the of so(1, 9). At the same time, the cohomol-

ogy class of (y∂xL
− y∂xR

)A is parametrized by the vector B, therefore it transforms

in a vector (i.e. ) of so(1, 9). This implies that (4.26) is impossible.

4.1.5 Another proof of the necessary condition for triviality

Let us take Bαβ = BmΓαβ
m . Suppose that exists an infinitesimal field redefinition YL such

that (4.14). Let us study the action of YL on λL. We observe:

QflatθL = λL (4.32)

(QB −Qflat)θL = B̂ΓmθL(θLΓ
mλL) (4.33)

Therefore in order to satisfy (4.14) we should have:

YLλL = B̂ΓmθL(θLΓ
mλL) +QflatΞ (4.34)
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for some Ξ (we have Ξ = YLθ
α
L). Moreover, we should satisfy the pure spinor constraint:

(λLΓ
kYLλL) = 0 (4.35)

Notice that YLλL is necessarily Qflat-closed, and that Ξ is necessarily of the form [θ3B].

The only expression of the form [θ2λB] which satisfies (4.35) would have been:

YLλL = ΓmnλBl(θΓlmnθ) (4.36)

but this is not BRST closed and therefore is not of the form (4.34).

Comment. But when B is a 5-form rather than a vector, see eq. (A.19).

Conclusion. Eq. (4.10) is a necessary and sufficient condition for the triviality of the

deformation. In other words, the deformation of the flat space BRST operator parametrized

by Bαβ
L can be undone by a symmetry of the action if and only if (4.10).

4.1.6 Extension to higher orders

It should be possible to extend the deformation (4.8) to higher orders in ε. Let us for now

put BR = 0 in (4.8); that is, restrict ourselves to the “left” deformations only. We get:

{QB, QB} = ε2
(
(θΓmλ)

(
θΓmB

∂

∂θ

))2

=

= ε2(θΓmλ)(θΓmBΓnλ)

(
θΓnB

∂

∂θ

)
−

− ε2(θΓmλ)(θΓnλ)

(
θΓmBΓnB

∂

∂θ

)
(4.37)

If B is a 5-form, then one can see that this is BRST exact; but in fact we have already

seen in section 4.1.4 that in this case QB is a trivial deformation of Qflat. If B is a 1-form,

then the obstacle is proportional to BmBm. To calculate the coefficient, we observe:

(θΓmλ)(θΓmBΓnλ)θΓn =
1

2
(θΓmλ)(θΓnλ)θΓmBΓn +Qflat(. . .) (4.38)

This means:

{QB, QB} = −
1

2
ε2(θΓmλ)(θΓnλ)

(
θΓmBΓnB

∂

∂θ

)
+ [Qflat, . . .] (4.39)

In Qflat cohomology this is proportional to BmBm. To calculate the coefficient of propor-

tionality we can substitute B ⊗B = Γk ⊗ Γk. We get:

{QB, QB} =
2

5
|B|2ε2(θΓmλ)(θΓnλ)

(
θΓmn ∂

∂θ

)
+ [Qflat, . . .] (4.40)

Where |B|2 = BmBm. When B is a lightlike vector, we can construct Q
(2)
B such that

the operator:

Q′
B = Qflat + ε(θΓmλ)

(
θΓmB

∂

∂θ

)
+ ε2Q

(2)
B (4.41)

which is nilpotent up to the terms of the order ε3. One can continue this procedure to

higher orders in ε. The only invariant which can arise is |B|2. Therefore we conclude that

the deformation Qflat → QB is unobstructed when B is lightlike, i.e. |B|2 = 0.
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4.1.7 Relation to β-deformation

The deformation of the AdS action given by (2.6) preserves the BRST invariance of the

action, but actually changes the action of the BRST transformation. Indeed, the deforming

vertex is only BRST-closed on-shell:

QAdS

(∫
Babja ∧ jb

)
≃
AdS

0 (4.42)

where ≃
AdS

means “up to the equations of motion of the AdS σ-model”. Because (4.42) only

holds on-shell, the deformed action is not invariant under the orginal BRST transformation,

but instead under a deformed BRST transformation. The necessary deformation of the

BRST transformation was constructed in [3], where it was called Q1:

ǫQ1 = 4
(
g−1(ǫλ3 − ǫλ1)g

)
a
Bab tb (4.43)

Here tb are generators of g = psu(2, 2|4). Expanding
(
g−1(ǫλ3 − ǫλ1)g

)
1̄
in powers of x

and θ, we get:

(
g−1(ǫλ3 − ǫλ1)g

)
1̄
= ǫQΨ1 −

4

3
[θL, [θL, ǫλL]] + . . . (4.44)

where Ψ1 = −θR − [x, θL] +
1

3
[θR, [θR, θL]] (4.45)

where dots stand for the higher order terms. Similarly:

(
g−1(ǫλ3 − ǫλ1)g

)
3̄
= ǫQΨ3 +

4

3
[θR, [θR, ǫλR]] + . . . (4.46)

where Ψ3 = θL + [x, θR]−
1

3
[θL, [θL, θR]] (4.47)

We conclude that:

• up to a BRST exact expression ǫQ1 is identical to ǫQB of (4.8). This means that the

leading effect in the flat space limit of this particular nonphysical β-deformation is

to deform the BRST structure of the flat space action as in Eq (4.8).

4.1.8 Field reparametrization K

Let us consider a particular example of Bab, when the only nonzero component has both

upper indices a and b in g1, and B has the form:

Bα̂β̂ = f α̂β̂
mBm

L2 (4.48)

In this case:

ǫQ1 = −
16

3
[ BL2 , [θL, [θL, ǫλL]] ]

α t3α + [ǫQ , KL] (4.49)

where KL = 4[BL2,Ψ1]
α t3α (4.50)

This means that ǫQ1 is of the form (4.8) after a field reparametrization specified by the

vector field KL.
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Similarly, consider the case when the only nonzero components of Bab are the following:

Bαβ = fαβ
mBm

R2 (4.51)

In this case:

ǫQ1 =
16

3
[ BR2 , [θR, [θR, ǫλR]] ]

α̂ t1α̂ + [ǫQ , KR] (4.52)

where KR = 4[BR2,Ψ3]
α̂ t1α̂ (4.53)

Action of K on SAdS.

KSAdS = −

∫
d2τ Str (∂+[B2,Ψ1] j1− − ∂−[B2,Ψ1] j1+) (4.54)

Observe that j1− = −∂−θR + . . . and j1+ = 3 ∂+θR + . . . With our definition of j± we have:

ξ.SAdS = −
1

4

∫
d2τ Str (∂+ξ j− − ∂−ξ j+) (4.55)

4.2 Deforming (Sflat, Qflat) to (SAdS, QAdS)

Going from flat space to AdS changes the action, by turning on the RR five-form field

strength. To describe the corresponding deformation of the action it is useful to introduce

a small parameter 1/R, which corresponds to the inverse radius of the AdS space. The

scaling of the basic fields is as follows:

x ≃ R−1, θL,R ≃ R−1/2, p± ≃ d± ≃ R−3/2,

λL,R ≃ R−1/2, w± ≃ R−3/2 (4.56)

With these notations the flat action (3.1) is of the order R−2. (Usually there is an overall

coefficient R−2 in front of the action, then the action is of the order 1. But we will prefer

to omit this overall coefficient.)

The RR five-form deforms the action as follows:

Sflat → Sflat +

∫
Fαβ̂dαdβ̂ + . . . (4.57)

where . . . is for terms containing θ. We observe that the deformation term is of the order

R−3 (while the Sflat is of the order R−2).

We will denote the AdS deformation vertex UAdS:

UAdS = Fαβ̂dαdβ̂ + [terms with θ] (4.58)

(The complete formula is (5.33).) Once again, observe that the flat space action is of the

order R−2, and the deformation UAdS is of the order R−3.
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4.3 Interplay between the two deformations

We have considered two deformations of the flat space superstring: the deformation (4.8)

which leaves the action invariant and only changes the BRST structure, and the defor-

mation from flat space to AdS5 × S5. Let us look at the interplay between these two

deformations. The action of Qflat on UAdS is a total derivative on the equations of motion

of Sflat. But the deformed Q generally speaking acts nontrivially:

Qflat

∫
UAdS ≃

flat

0 (4.59)

QB

∫
UAdS ≃

flat

R−4 (4.60)

where ≃
flat

means equality up to the equations of motion of flat space. In the next section

we will see that (4.60) is important for understanding the flat space limit.

5 Flat space limit of the β-deformation vertices

5.1 Flat space limit of the AdS5 × S5 sigma-model

5.1.1 Coset space and BRST operator

We choose the following parametrization of the PSU(2, 2|4)/(SO(1, 4)×SO(5)) coset space:

g = eθeX (5.1)

The action of the BRST operator on the matter fields:

ǫQg = ǫ(λL + λR)g + ω(ǫ)g (5.2)

where ω(ǫ) is some compensating SO(1, 4)× SO(5) gauge transformation.

In terms of θ and x:

ǫQ = ǫλL

∂

∂θL
+ ǫλR

∂

∂θR
+

1

2
([ǫλL, θL] + [ǫλR, θR])

∂

∂X
−

−
1

6
[θL, [θL, ǫλR]]

∂

∂θL
−

1

6
[θL, [θR, ǫλL]]

∂

∂θL
+

+
1

3
[θR, [θL, ǫλL]]

∂

∂θL
+

1

3
[θR, [θR, ǫλR]]

∂

∂θL
+

−
1

6
[θR, [θR, ǫλL]]

∂

∂θR
−

1

6
[θR, [θL, ǫλR]]

∂

∂θR
+ (5.3)

+
1

3
[θL, [θR, ǫλR]]

∂

∂θR
+

1

3
[θL, [θL, ǫλL]]

∂

∂θR
+

+
1

24
[θL, [θL, [θR, ǫλL]]]

∂

∂X
+

1

24
[θL, [θR, [θL, ǫλL]]]

∂

∂X
+

+
1

24
[θR, [θL, [θL, ǫλL]]]

∂

∂X
+

1

24
[θR, [θR, [θR, ǫλL]]]

∂

∂X
+

+
1

24
[θR, [θR, [θL, ǫλR]]]

∂

∂X
+

1

24
[θR, [θL, [θR, ǫλR]]]

∂

∂X
+

+
1

24
[θL, [θR, [θR, ǫλR]]]

∂

∂X
+

1

24
[θL, [θL, [θL, ǫλR]]]

∂

∂X
+ . . . (5.4)
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In this formula, the first line is of the order 1, and the following lines are of the order R−1, and the

dots stand for the terms of the order O(R−2). The currents:

−J = dgg−1 = eθ(deXe−X)e−θ + deθe−θ = (5.5)

= eθ
(
dX +

1

2
[X, dX]

)
e−θ + dθ +

1

2
[θ, dθ] +

1

6
[θ, θ, dθ] +

1

24
[θ, θ, θ, dθ] + . . .

−J3̄ = dθL + [θR, dX] +
1

6
[θ, θ, dθ]L + . . . (5.6)

−J2̄ = dX +
1

2
[θ, dθ]2̄ +

1

2
[θ, [θ, dX]]2̄ +

1

24
[θ, θ, θ, dθ]2̄ + . . . (5.7)

−J1̄ = dθR + [θL, dX] +
1

6
[θ, θ, dθ]R + . . . (5.8)

The action (2.1) modulo terms of the order R−3 and higher is:

S =

∫
d2τ

[
R−1∂+θR∂−θL +

1

2
R−2∂+x∂−x+R−2 ( L3 + L4) + . . .

]
(5.9)

where:

L3 = −
1

2
( [θR, ∂+θR] , ∂−x )−

1

2
( ∂+x , [θL, ∂−θL] ) (5.10)

L4 = −
1

24
([θL, ∂+θL], [θL, ∂−θL])−

1

24
([θR, ∂+θR], [θR, ∂−θR]) + (5.11)

−
1

12
([θR, ∂+θR], [θL, ∂−θL]) − (5.12)

−
1

6
([θR, ∂+θL], [θR, ∂−θL])−

1

6
([θL, ∂+θR], [θL, ∂−θR]) − (5.13)

−
1

3
([θL, ∂+θR], [θR, ∂−θL]) (5.14)

5.1.2 First order formalism

We get rid of the leading term R−1∂+θR∂−θL using the first order formalism:

S =

∫
d2τ

[
R−2(p̃1+∂−θL) +R−2(p̃3−∂+θR)−R−3(p̃1+p̃3−)+

+
1

2
R−2∂+x∂−x+R−2 ( L3 + L4) + . . .

]
(5.15)

where dots stand for the terms of the higher order in R−1 (including terms the order R−3,

of which the one which depends on p̃, namely R−3(p̃1+p̃3−), we put explicitly on the first

line). Integrating out p̃±:

p̃1+ = R∂+θR , p̃3− = R∂−θL (5.16)

generates R−1∂+θR∂−θL and brings us back to (5.9).
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Importantly, we can remove the leading nonlinear terms R−2(L3+L4) by a redefinition

of p̃. (Otherwize the flat space limit would not have been a free theory.) It is done as follows:

p1+ = p̃1+ +
1

2
[θL, ∂+x] +

+
1

24
[θL, [θL, ∂+θL]] +

1

24
[θL, [θR, ∂+θR]] +

+
1

6
[θR, [θR, ∂+θL]] +

1

6
[θR, [θL, ∂+θR]] (5.17)

p3− = p̃3− +
1

2
[θR, ∂−x] +

+
1

24
[θR, [θR, ∂−θR]] +

1

24
[θR, [θL, ∂−θL]] +

+
1

6
[θL, [θL, ∂−θR]] +

1

6
[θL, [θR, ∂−θL]] (5.18)

After these changes of variables, the leading terms in the action are:

S =

∫
d2τ

[
R−2(p1+∂−θL) +R−2(p3−∂+θR) +

1

2
R−2∂+x∂−x

]
(5.19)

5.2 Relation between J± and d±

We observe that in the flat space limit J3− and J1+ go like R−3/2. We identify:

J1+ = − d+ +O(R−5/2) (5.20)

J3− = − d− +O(R−5/2) (5.21)

In terms of x and θ, at the order R−3/2:

J1+ = − ∂+θR − [θL, ∂+x] −

−
1

6
[θL, [θL, ∂+θL]]−

1

6
[θR, [θR, ∂+θL]] =

= − p1+ −
1

2
[θL, ∂+x] −

1

8
[θL, [θL, ∂+θL]] (5.22)

5.3 Global symmetry currents

The matter contribution into the global symmetry currents:

−j+ = g−1
(
J3̄+ + 2J2̄+ + 3J1̄+

)
g (5.23)

j− = g−1
(
3J3̄− + 2J2̄− + J1̄−

)
g (5.24)

For example consider the global symmetry currents j3+ and j3−.

Up to O(R−7/2) and up to terms which do not contain ∂+θR:

j3+ = ∂+Ψ3 + 4[∂+θR, x] + 2[θL, [θL, ∂+θR]] +
2

3
[θR, [θR, ∂+θR]] + . . .

where Ψ3 = θL + [x, θR] −
1

3
[θL, [θL, θR]] (5.25)
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Up to O(R−5/2):

j3− = ∂−Ψ3 − 4∂−θL −
2

3
[θL, [θL, ∂−θR]] + . . . =

= ∂−Ψ3 − 4d3− + 4[θR, ∂−x] +
2

3
[θR, [θR, ∂−θR]] + . . . (5.26)

Similarly:

j1+ = ∂+Ψ1 + 4d1+ − 4[θL, ∂+x]−
2

3
[θL, [θL, ∂+θL]] + . . . (5.27)

j1− = ∂−Ψ1 − 4[∂−θL, x]− 2[θR, [θR, ∂−θL]]−
2

3
[θL, [θL, ∂−θL]] + . . . (5.28)

where Ψ1 is given by (4.44). The density of a local conserved charge is defined up to a

total derivative.

Therefore, let us redefine j± → S±, by removing total derivatives:

j3± = ∂±Ψ3 + S3±

j1± = ∂±Ψ1 + S1± (5.29)

In the flat space expansion:

S1+ ≃ R−3/2, S1− ≃ R−5/2, S3− ≃ R−3/2, S3+ ≃ R−5/2 (5.30)

We should identify S1+ and S3− with the supersymmetry currents of the flat space super-

string. Explicitly we have:

S1+ = 4

(
p1+ −

1

2
[θL, ∂+x]−

1

24
[θL, [θL, ∂+θL]]

)
=

= 4

(
d1+ − [θL, ∂+x]−

1

6
[θL, [θL, ∂+θL]]

)
(5.31)

−S3− = 4

(
p3− −

1

2
[θR, ∂−x]−

1

24
[θR, [θR, ∂−θR]]

)
=

= 4

(
d3− − [θR, ∂−x]−

1

6
[θR, [θR, ∂−θR]]

)
(5.32)

UAdS in terms of the global currents. Now we can write eq. (4.58) precisely, including

the terms with θ:

UAdS = Str(S1+S3−) . (5.33)

5.4 Unphysical vertex of the order R−3

Let us consider the following example of the unphysical vertex:

U0̄ = [j1̄+, j3̄−] + [j3̄+, j1̄−] = [S1̄+, S3̄−] ≃ R−3 (5.34)

In this case the flat space limit of the unphysical vertex appears to be perfectly physical,

and in fact corresponds to turning on the constant RR 3-form field strength. Indeed, there

is a term of the type d+d− plus terms containing θ’s:

U0̄ = [d+, d−] + . . . (5.35)
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A careful analysis of the index structure shows that this actually corresponds to the con-

stant RR 3-form field strength.

The flat space limit of the vertex operator for the beta-deformation is generally speak-

ing of the order εR−3. It typically starts with xdx∧dx, plus terms of the type d+d− (which

are also of the order R−3, since d± are of the order R−3/2). Plus terms with θ. The leading

bosonic term xdx∧ dx describes a NSNS BNSNS-field. At the order εR−3 we can only see

the constant NSNS field strength HNSNS . The terms with d+d− describe the constant RR

field strength HRR. We conclude that we see some constant HNSNS and some constant

HRR. This is nice.

But let us expand it at a different point in AdS, the point at which the field strengths

are zero. Then the leading terms in the vertex will be of the order R−4.

5.5 Unphysical vertex of the order R−4

5.5.1 Definition of the vertex and how the descent procedure does not work

Consider another example of the unphysical vertex:

U2̄ =
1

2
Str ( [B2, j1] ∧ j1 + [B2, j3] ∧ j3 ) = (5.36)

= Str ( B2̄ [jodd , jodd]) (5.37)

The flat space limit of an unintegrated unphysical vertex was derived in [3]:

V2̄, flat = [[θR, [θR, ǫλR]], [θR, [θR, ǫλR]] + [[θL, [θL, ǫλL]], [θL, [θL, ǫλL]] (5.38)

What happens if we apply to it the flat space descent procedure? Observe:

∂−[θR, [θR, ǫλR]] = Q(3S3−) (5.39)

Notice that in flat space the supersymmetry current S3− is holomorphic. Therefore the

second step of the descent procedure is zero:

∂+[ [θR, [θR, ǫλR]] , S3− ] = 0 (5.40)

This means that the corresponding integrated vertex, defined by the descent procedure, is

zero. (If it were not zero, it would have been of the order R−3.)

Conclusion. The leading flat space limit of (5.36) is not related to V2̄, flat by a descent

procedure.

5.5.2 Explicit formula for the vertex in flat space

We observe:

ǫQ

∫
U2̄ = −

∫
Str

( [
B2 , g

−1(ǫλL − ǫλR)g
]
(dj1 + dj3)

)
(5.41)

The variation is proportional to the equation of motion dj1 = 0, dj3 = 0. To compensate

this variation we need the field redefinition:

ǫQ1 = 4
[
B2 , g

−1(ǫλL − ǫλR)g
]α
3
t3α + 4

[
B2 , g

−1(ǫλL − ǫλR)g
]α̂
1
t1α̂ (5.42)
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Then the deformed action:

SAdS +

∫
Str ( B2 jodd ∧ jodd) (5.43)

is invariant under the deformed BRST transformation ǫ(Q+Q1).

To get the expression starting with R−4, we do the field redefinition with the vector

field K given by (4.50) plus (4.53). Then the deformed action

SAdS +KSAdS +

∫
Str (B2 jodd ∧ jodd) (5.44)

is invariant under the deformed BRST transformation:

ǫQ+ ǫQ′
1

where ǫQ′
1 = ǫQ1 + [K, ǫQ] =

= −
16

3
[B2, [θL, [θL, ǫλL]]]

αt3α +
16

3
[B2, [θR, [θR, ǫλR]]]

α̂t1α̂ (5.45)

Using (4.54) we get:

SAdS +KSAdS +

∫
Str ( B2 j1 ∧ j1) +

∫
Str ( B2 j3 ∧ j3) =

= SAdS +

(
−

∫
d2τ Str (∂+[B2,Ψ1] j1− − ∂−[B2,Ψ1] j1+) +

+

∫
d2τ Str([B2, j1+] j1−) + (1 → 3)

)
=

= SAdS +

(∫
d2τ Str ([B2 , (j1+ − ∂+Ψ1)] (j1− − ∂−Ψ1) ) + (1 → 3)

)
=

= SAdS +

∫
d2τ Str (B2 [S1+, S1−] +B2 [S3+, S3−]) (5.46)

Now formulas of section 5.3 imply that the flat space limit is of the order R−4:

U2̄, flat = Str

(
B2

[
4[d1+, x] + 2[θL, [θL, d1+]] +

2

3
[θR, [θR, d1+]] ,

− 4d3− + 4[θR, ∂−x] +
2

3
[θR, [θR, ∂−θR]]

]
+

+ B2

[
4d1+ − 4[θL, ∂+x]−

2

3
[θL, [θL, ∂+θL]] , (5.47)

− 4[d3−, x]− 2[θR, [θR, d3−]]−
2

3
[θL, [θL, d3−]]

])
(5.48)

where . . . stand for the terms of the same order R−4 containing higher number of thetas.

Also the ghosts contribute:

U2̄, flat, gh = 4 [[θL, {w1+, λL}] , S3−] (5.49)

but their contribution will not be very important here.
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We observe that there is the term xd+d−, more precisely:

16 Str ([B2, x][d1+, d3−]) (5.50)

which usually corresponds to the Ramond-Ramond field. Since it is odd under the world-

sheet parity (i.e. under the exchange d+ ↔ d−) we should have concluded that it corre-

sponds to the Ramond-Ramond 3-form field strength H. But we also find that dH 6= 0.

In the usual notations (5.50) would correspond to H = ιB2∧xF , where F is the leading

flat space limit of the RR field of AdS5 × S5. This is not a closed form. Naively this is in

contradiction with [1], as dH = 0 is one of the SUGRA equations of motion. The resolution

is, as explained in section 1.4, that U2̄, flat is actually not annihilated by Qflat.

5.6 Demonstration of the l.h.s. of (1.10) being nonzero

Let us calculate the variation of the AdS action along the vector field (4.8). We get the

following expression of the order R−4:
(
[B2, [θL, [θL, ǫλL]]]

α̂ t1α̂

)
SAdS = (5.51)

=

∫
d2τ Str (∂−[θL, [θL, ǫλL]] S1+ − ∂+[θL, [θL, ǫλL]] S1−) (5.52)

The term with ∂−[θL, [θL, ǫλL]] S1+ generates:
∫

d2τ Str ([d3−, [θL, ǫλL]] d1+ + [θL, [d3−, ǫλL]] d1+) (5.53)

which does not have anything to cancel with. This demonstrates that the l.h.s. of (1.10)

is nonzero.

5.7 Parity even physical vertex

It is also interesting to consider the following physical vertex:

U2̄, phys =
1

2
Str ( [B2, j1] ∧ j1 − [B2, j3] ∧ j3 ) (5.54)

It differs from (5.36) by the relative sign of the two terms. Unlike (5.36), this vertex does

satisfy the physical condition (2.9), and does correspond to a meaningful excitation of

AdS5 × S5. Notice that U2̄, phys is parity-even, therefore it should correspond to either a

metric, or a dilaton, or a RR 1-form, or a RR 5-form.

As becomes clear from section 6, the flat space limit of the parity even vertex is the

linear dilaton background. (Whereas the parity odd vertex is unphysical and does not

correspond to anything.)

6 Bringing the action to the normal form of [1]

This section was added in the revised version of the paper.

Generally speaking, given a sigma-model, we can always rewrite it in many different

forms using field redefinitions, introducing Lagrange multipliers, alternative gauge fixings,
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etc. In order to make contact with the spacetime description in terms of Type IIB SUGRA

fields, the authors of [1] used a special “normal form” of the sigma-model action. The

definition of this normal form depends on how the BRST symmetry acts. Although in

our case the action of the sigma-model does not change, but the BRST operator does

get deformed. Therefore, the normal form of the action does get deformed. We will now

study the deformation of the normal form of the action. We will show that it leads to the

nontrivial spin connection. It turns out that the vector components of the left and right

spin connections do not coincide (contrary to what was conjectured in [1]); this is why the

deformation is nonphysical.

We will use the notations of [1]; we also recommend [11] for the detailed explanations

of the formalism. We will continue using the flat space notations (with Γ-matrices) and

the AdS notations (commutators and Str) intermittently, as explained in section 3.2.

6.1 Action in terms of d±

As we explained, the action is undeformed:

Sflat =

∫
dτ+dτ−

[
1

2
∂+x

m∂−x
m + pα+∂−θ

α
L + pα̂−∂+θ

α̂
R + (6.1)

+ wα+∂−λ
α
L + wα̂−∂+λ

α̂
R

]
= (6.2)

=

∫
dτ+dτ− Str

[
1

2
∂+x2∂−x2 + p1+∂−θL + p3−∂+θR +

+ w1+∂−λL + w3−∂+λR

]
(6.3)

(Eq. (6.1) uses traditional notations, while eq. (6.3) uses AdS notations.) The deformation

only touches the BRST operator. In order to bring the action to the form of [1], we need

to trade p± for d±, where d± is defined as the density of the BRST charge:

QL|R =

∮
λL|Rd± (6.4)

In the undeformed theory, the relation between d± and p± is given by eqs. (5.31), (5.32):

p1+ = d1+ −
1

2
[θL, ∂+x]−

1

8
[θL, [θL, ∂+θL]] (6.5)

p3− = d3− −
1

2
[θR, ∂−x]−

1

8
[θR, [θR, ∂−θR]] (6.6)

After the deformation, this relation is modified. Let us consider the case when BR = 0

(only the left deformation):

p1+ = d1+ −
1

2
[θL, ∂+x]−

1

8
[θL, [θL, ∂+θL]] +

+ [θL, [θL, [B2, S1+]]] (6.7)

p3− = d3− −
1

2
[θR, ∂−x]−

1

8
[θR, [θR, ∂−θR]] (6.8)
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Let us substitute S1+ from (5.31) into (6.7):

p1+ = d1+ −
1

2
[θL, ∂+x]−

1

8
[θL, [θL, ∂+θL]] +

+ 4

[
θL,

[
θL,

[
B2 ,

(
d1+ − [θL, ∂+x]−

1

6
[θL, [θL, ∂+θL]]

)]]]
(6.9)

Therefore, we get the following formula for the action, which at this point is almost in the

normal form of [1]:

S =

∫
dτ+dτ− Str

(
1

2
∂+x2∂−x2 + d1+∂−θL + d3−∂+θR −

−
1

2
[θL, ∂+x]∂−θL −

1

8
[θL, [θL, ∂+θL]]∂−θL −

−
1

2
[θR, ∂−x]∂+θR −

1

8
[θR, [θR, ∂−θR]]∂+θR + (6.10)

+ w1+∂−λ3 + w3−∂+λR +

+ 4

[
B2 ,

(
d1+ − [θL, ∂+x]−

1

6
[θL, [θL, ∂+θL]]

)]
[θL, [θL, ∂−θL]]

)

6.2 B-field

In particular this allows us to read the B-field part:

BMN dZM ∧ dZN =Str

(
−

1

2
[θL, dx2]dθL −

1

8
[θL, [θL, dθL]] dθL −

−
1

2
[θR, dx2]dθR −

1

8
[θR, [θR, dθR]] dθR −

− 4

[
B2,

(
[θL, dx2] +

1

6
[θL, [θL, dθL]]

)]
[θL , [θL, dθL]]

)
(6.11)

The 3-form field strength H = dB is:

H = Str

(
−

1

2
[dθL , dx2]dθL +

1

4
[dθL , dθL] [θL , dθL] −

−
1

2
[dθR , dx2]dθR +

1

4
[dθR , dθR] [θR , dθR] −

− 4

[
B2 ,

(
[dθL, dx2] +

1

4
[θL, [dθL, dθL]]

)]
[θL , [θL, dθL]] +

+ 6

[
B2 ,

(
[θL, dx2] +

1

6
[θL, [θL, dθL]]

)]
[θL , [dθL, dθL]]

)
(6.12)

For example, let us demonstrate that:

Hαβmλαλβ = 0 (6.13)

in accordance with [1]. The last row in (6.12) does not contribute, because {λL , λL} = 0.

In the previous rows, the terms containing dxdθLdθL combine into:

1

2
Str

(
dx2

[
dθL − 4[B2, [θL, [θL, dθL]]] , dθL − 4[B2, [θL, [θL, dθL]]]

])
(6.14)

Notice that ǫQθL = ǫλL + 4 [B2, [θL, [θL, ǫλL]]] and (6.13) follows.
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6.3 Torsion

The action (6.10) is almost in the normal form, but not completely. To complete the

procedure described in [1] we have to eliminate some components of the torsion, namely

Tαβ
γ . Let us therefore study the torsion.

The 16-beins Eα and Eα̂ are defined as the coefficients of d± in the worldsheet ac-

tion (6.10):

Eα = Eα
MdZM = dθαL − 4 [B2 , [θL , [θL , dθL]]]

α (6.15)

Eα̂ = Eα̂
MdZM = dθα̂R (6.16)

Notice that the pure spinor terms in the action (6.10) are the same as in flat space, therefore

ΩM
α
β = Ω̂M

α̂
β̂
= 0. Therefore the torsion is defined as in flat space: Tα = Tα

MNdZMdZN =

dEα, T α̂ = T α̂
MNdZMdZN = dEα̂. In particular:

Tα =− 6 [B2 , [θL , [dθL , dθL]]] (6.17)

in other words T γ
αβ =− 6 Γn

αβ(B
m
2 ΓmΓnθL)

γ (6.18)

Here the notation B
m

stands for: Bm for m ∈ {0, 1, . . . 4} and −Bm for m ∈ {5, . . . , 9}.

The difference between B and B does not play any role in our discussion here; it is an

artifact of notations in section 3.2.

Removing T
γ
αβ. As instructed in [1], we have to remove T γ

αβ by a special field redefinition

which at the same time modifies the spin connection Ω
[mn]
α and Ω

(s)
α . This is done in the

following way. Notice that the following field redefinition d → d̃, parametrized by haα(Z):

dα+ = d̃α+ + hbβΓk
αβ(w+ΓbΓkλ) (6.19)

does not change the expression (6.4) for the BRST current, and therefore is a residual field

redefinition preserving the normal form of [1] of the worldsheet action/BRST structure.

This field redefinition changes the string worldsheet action by adding to it the term:

∂−Z
MEα

MΓk
αβh

bβ(w+ΓbΓkλ) (6.20)

which encodes the modification of the left connection Ωα:

Ω(s)
α = Γk

αβh
kβ , Ω[mn]

α = Γ
[m
αβh

n]β (6.21)

This changes the Tα
MN :

Tα
MN → Tα

MN + 2Eβ
(MΩN)

α
β = Tα

MN + Eα′

MEβ′

N Γb
α′β′Γb

γ′δ′Γ
αγ′

c hcδ
′

(6.22)

Taking haα as follows:

haα = 6B
a
2θ

α
L (6.23)

we get rid of T γ
αβ (i.e. the T γ

αβ calculated with this new Ω is zero) at the price of generating

Ω
(s)
α and Ω

[mn]
α given by (6.21). Notice that Ω

(s)
α̂ = 0, as it should be. Also notice that the
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right connection remains zero, both Ω̂
(s)
α̂ and Ω̂

(s)
α . According to [1] we should then be able

to solve the equations (Dα +Ω
(s)
α )Φ = 0 and (Dα̂ + Ω̂

(s)
α̂ )Φ = 0 which imply:

(
∂

∂θαL
+ Γm

αβθ
β
L

∂

∂xm
+ 6B

m
2 Γm

αβθ
β
L

)
Φ = 0 (6.24)

(
∂

∂θα̂R
+ Γm

α̂β̂
θβ̂R

∂

∂xm

)
Φ = 0 (6.25)

The first of these equations can be solved by the linear dilaton:5

Φ = −6B
m
2 xm + const (6.26)

but this does not satisfy the second equation (6.25). In fact, (6.25) immediately implies

that Φ = const. This result can be also formulated in the following way:

• it is not true in this case that Ω
(s)
m = Ω̂

(s)
m

Notice that the equality of the vector component of the left and right spin connections was

only conjectured (but not proven) in [1]; our construction provides a counter-example to

this conjecture.

We feel that this problem only arizes for the states of low momentum, although it is

not very clear what “low momentum” would mean in a generic background. Perhaps the

non-physical vertex only exists in AdS and flat space, and the corresponding deformation is

obstructed at the higher orders of the deformation parameter. In any case, as was demon-

strated in [3], the non-physical vertices go away if, in addition to the BRST invariance,

we also impose the 1-loop conformal invariance. This suggests that a modification of the

BRST complex, taking into account the additional structure provided by the b-ghost [4–6],

would take care of the problem.

A Vector field YL

A.1 Ansatz for y+

It is usually assumed that the pure spinor BRST cohomology at the positive conformal

dimension is trivial. We do not have a general proof of this fact. Let us consider a

particular example which we needed in section 4.1.4:

QflatM+ = 0

where M+ = (θΓmλ)(θΓm)αB
αβ
L Sβ+ − ∂+(ǫ

′WL) (A.1)

We want to prove that exists such y+ that M+ = Qflaty+. We do not have the complete

proof, but only a schematic expression:

y+ = [θLθLN+] + [θLθLθLd+] + [θ5L∂+θL] + [θ4L∂+x] (A.2)

5It is not surprizing that the linear dilaton is involved. In the case of bosonic string, also the linear

dilaton background does not deform the worldsheet action on a flat worldsheet, but does deform the BRST

trasnformation. We would like to thank Nathan Berkovits for suggesting to look at it from this angle.
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where N[mn]+ = (λLΓmnw+) is the contributions of the pure spinors to the Lorentz current.

The term with [θLθLN+] is necessary because Sβ+ contains dβ+, and its coefficient in M+

(which is (θLΓ
mλL)(θLΓm)αB

αβ
L ) is not Qflat-exact. Such term can only come from the

BRST variation of something of the type [θLθLN+]. In the next section we will discuss the

structure of this term.

A.2 The term θθN+

In order to obtain the term (θLΓ
mλL)(θLΓm)αB

αβ
L d+, we need the first term [θLθLN+]

in (A.2) of the form:

[θLθLN+] ≃ Blmnpq(θLΓ
lmnθL)(λLΓ

pqw+) (A.3)

where Blmnpq is a self-dual antisymmetric tensor defined so that:

BlmnpqΓ
αβ
lmnpq = Bαβ (A.4)

We observe that Qflat of so defined [θLθLN+] does not contain w+:

Blmnpq(θLΓ
lmnλL)(λLΓ

pqw+) = 0 (A.5)

Let us prove (A.5). This is equivalent to:

Blmnpq(θLΓ
lmnF̂ Γpqw+) = 0 (A.6)

for any self-dual 5-forms F and B, with F̂ = FijklmΓijklm. To prove (A.6), we consider

particular values for F̂ and B. Let us work in the Euclidean signature: Γ2
0 = Γ2

1 = . . . = 1.

Modulo SO(10) rotations, there are exactly 3 cases to consider.

Case 0.

F̂ = B̂ = Γ01234 + iΓ56789 (A.7)

In order to calculate Blmijk(w+Γ
lmF̂ ΓijkθL), we need:

Γ[01|(Γ01234 + iΓ56789)Γ|234] + iΓ[56|(Γ01234 + iΓ56789)Γ|789] =

= (Γ01234 + iΓ56789)2 = 0 (A.8)

Case 1.

F̂ = Γ01234 + iΓ56789 (A.9)

B̂ = Γ01235 − iΓ46789 (A.10)

To calculate Blmijk(w+Γ
lmF̂ ΓijkθL), consider:

120
(
Γ[01|(Γ01234 + iΓ56789)Γ|235] − iΓ[46|(Γ01234 + iΓ56789)Γ|789]

)
=

= 72 Γ[01|(Γ01234 + iΓ56789)Γ|23]5 + 48 Γ5[0|(Γ01234 + iΓ56789)Γ|123] −

− 48 i Γ4[6|(Γ01234 + iΓ56789)Γ|789] − 72 i Γ[67|(Γ01234 + iΓ56789)Γ|89]4 =

= 0 (A.11)
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Case 2.

F̂ = Γ01234 + iΓ56789 (A.12)

B̂ = Γ01256 + iΓ34789 (A.13)

In order to calculate Blmijk(w+Γ
lmF̂ ΓijkθL), we consider:

120
(
Γ[01|(Γ01234 + iΓ56789)Γ|256] + iΓ[34|(Γ01234 + iΓ56789)Γ|789]

)
=

= 36 Γ[01|(Γ01234 + iΓ56789)Γ|2]56 + 12 Γ56(Γ01234 + iΓ56789)Γ201 −

− 36 Γ5[2|(Γ01234 + iΓ56789)Γ|01]6 + 36 Γ6[2|(Γ01234 + iΓ56789)Γ|01]5 +

+ 12 i Γ34(Γ01234 + iΓ56789)Γ789 + 36 i Γ[89|(Γ01234 + iΓ56789)Γ7]34 −

− 36 i Γ3[7|(Γ01234 + iΓ56789)Γ|89]4 + 36 i Γ4[7|(Γ01234 + iΓ56789)Γ|89]3 =

= 0 (A.14)

Therefore, in this case also Blmijk(w+Γ
lmF̂ ΓijkθL) = 0. This concludes the proof of (A.5).

Proof that Blmnpq(θΓ
lmnθ)λΓpq is not BRST-exact. The only possibility for it to

be BRST-exact would be:

Blmnpq(θLΓ
lmnθL)λLΓ

pq ?
≃ Q

(
Blmnpq(θLΓ

lmnθL)θLΓ
pq
)

(A.15)

The r.h.s. is a linear combination of two BRST-closed expressions:

Blmnpq(θLΓ
lmnθL)λLΓ

pq and Blmnpq(θLΓ
lmnλL)θLΓ

pq (A.16)

These expressions are linearly independent. Indeed, we have:

Blmnpq(θLΓ
lmnθL)(λLΓ

pq ΓkλL) = 0 (A.17)

Blmnpq(θLΓ
lmnλL)(θLΓ

pq ΓkλL) 6= 0 (A.18)

Therefore
(
Q
(
Blmnpq(θLΓ

lmnθL)θLΓ
pq
)
ΓkλL

)
is nonzero.

But Blmnpq(θLΓ
lmnθL)(λLΓ

pq ΓkλL) is zero. This implies that (A.15) is false.

A.3 Pure spinor redefinition

Therefore the vector field YL of section 4.1.4 involves an infinitesimal redefinition of the

pure spinor field:

YLλ
α
L = Blmnpq(θΓ

lmnθ)(λΓpq)α (A.19)

which preserves the pure spinor condition: (λLΓ
kYLλL) = 0.
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