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1 Introduction

AdS/CFT correspondence [1] has taught us to think of a gravitational theory on an asymp-

totically locally AdS geometry as a dual description of a strongly coupled field theory with

a UV fixed point. It is dual in the sense that there is a one to one correspondence between

objects in the gravitational theory and those in the dual field theory [2, 3]. Having an AdS

geometry guarantees that the dual field theory has conformal symmetry.

It is always challenging to see in what extend the gauge/gravity correspondence can

be generalized to geometries which are not asymptotically AdS. In particular one may

consider the case where the theory is not conformally invariant, though it may still be

invariant under a certain scaling. Indeed such a generalization, has been made in literature

in the context of the application of the AdS/CFT correspondence in the condensed matter

physics (for a review see for example [4]). A prototype example of such a model is a theory

with the Lifshitz fixed point where the theory has a spatial isotropic scale invariance which

is characterized by a dynamical exponent, z, as follows

t → λzt, xi → λxi, (1.1)

where t is time and xi are spatial directions of the space-time.

The holographic description of a (d+1)-dimensional theory with the Lifshitz fixed point

has been considered in [5]1 where it was proposed that the corresponding gravitational dual

can be defined by a gravity on the following metric (see also [7])2

ds2d+2 = R2

(

−dt2

r2z
+

dr2

r2
+

∑d
i=1 dx

2
i

r2

)

, (1.2)

1See also [6] for an earlier work on a geometry with the Lifshitz scaling.
2Geometries with non-relativistic conformal symmetry have also been considered in [8, 9]. For earlier

work on geometry with Schrödinger symmetry see [10].
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where R is the radius of curvature.3

It is worth to mention that a metric with Lifshitz isometry is not a solution of a pure

cosmological Einstein gravity. This is simply because in the pure Einstein gravity there

is nothing to produce an anisotropic in the space-time. In fact to obtain such a solution

one needs to couple the Einstein gravity to other fields. In the minimal case the extra

field could be a massive gauge field [7] which can, indeed, produce an anisotropic in the

space-time leading to Lifshitz geometry.

More naturally the Lifshitz metric may be found in an Einstein-Maxwell-Dilaton the-

ory [11–16]. Actually by including both dilaton (in general a scalar with non-trivial poten-

tial) and an abelian gauge field, one can find even more interesting metrics. In particular

one may obtain a metric with the following form [17]

ds2d+2 = r
2θ
d

(

−dt2

r2z
+

dr2

r2
+

∑d
i=1 dx

2
i

r2

)

, (1.3)

where the constants z and θ are dynamical and hyperscaling violation exponents, respec-

tively. This is the most general geometry which is spatially homogeneous and covariant

under the following scale transformations

t → λzt, r → λr, xi → λxi, dsd+2 → λ
θ
ddsd+2. (1.4)

Note that the metric (1.3) is conformally a Lifshitz geometry which is the scale invariant

limit θ = 0 of (1.3). Indeed with a non-zero θ, the distance is not invariant under the

scaling which in the context of AdS/CFT indicates violations of hyperscaling in the dual

field theory. More precisely, while in (d + 1)-dimensional theories without hyperscaling

(dual to background (1.2)) the entropy scales as T d/z with temperature, in the present

case (dual to background (1.3)) it scales as T (d−θ)/z [18, 19].

Holographic aspects of theories with hyperscaling violation have been studied in [20]

where the authors have shown that in order to have a physically sensible dual field theory

one should assume

(d− θ)(dz − θ − d) ≥ 0, (z − 1)(d+ z − θ) ≥ 0. (1.5)

which is a necessary condition for the null energy condition to be satisfied, i.e. TµνN
µNν ≥

0. In particular it was shown that for θ = d−1 the holographic entanglement entropy shows

a logarithmic violation of the area law indicating that the dual theory exhibits an O(N2)

Fermi surface [19, 21]. Therefore the geometry (1.3) with specific values of its parameters

could provide a gravitational dual for a system with Fermi surface in any dimensions.

However, we note that due to hyperscaling violation4 as well as the behavior of dilaton

field at large distances, the background (1.3) cannot provide a dual description of a theory

in all range of energies from UV to IR [22, 23] (see also [20]) . To be precise consider an

Einstein-Maxwell-Dilaton theory theory as follows

S =

∫

dd+2√−g

[

R− 1

2
(∂φ)2 − 1

4
g(φ)F 2 − V (φ)

]

. (1.6)

3Through out this paper we set R = 1.
4In fact the solution may not provide a good gravitational description for energies above a dynamical

scale rF where the system may be controlled by a UV fixed point and the metric becomes scale invariant [20].
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This model, with specific choices of g(φ) and V (φ) admits hyperscaling violating solution

given by the metric (1.3) which comes with non-zero scalar and gauge fields [22, 23]. In

particular the scalar field at IR has a logarithmic behavior, φ(r) ∼ log r, showing that

the solution is IR-incomplete. In fact the model becomes strongly coupled and quantum

corrections should be important. Indeed by including proper corrections the geometry may

be completed by an emergent AdS2 × S2 geometry (for more detail see [22]).5 Therefore

gravity on the background (1.3) may be considered as an effective theory which is valid

over an intermediate energy scale.

One of the aims of the present paper is to further explore certain features of hyper-

scaling violation theories by making use of the gravity dual given by (1.3). More precisely

we will probe the background by an open string which in turns can be used to study the

response of the theory to an external object. In particular we shall study potential between

external objects, drag force as well as a rotating object. We will also make a comment on

a closed string probing the background.

Following [28] we will also consider a geometry with an anisotropic scaling in a spatial

direction. The corresponding geometry can be obtained by a double Wick rotation from

the metric (1.3). To be more concrete, consider a double Wick rotation as follows

t → iy, xd → it, (1.7)

then the metric (1.3) becomes6

ds2d+2 = r
2θ
d

(

dy2

r2z
+

dr2

r2
+

∑d−1
i=1 dx2i
r2

− dt2

r2

)

. (1.8)

The above metric is covariant under the following scale transformations

y → λzy, r → λr, dsd+2 → λ
θ
ddsd+2, (t, xi) → λ(t, xi), (1.9)

for i = 1, · · · , d− 1.

In the present paper we will also intend to study holographic aspects a theory whose

dual gravitational theory is given by a gravity on the background (1.8). In particular, we

study holographic entanglement entropy in this background. We show that for θ = d−1 for

any z, the entanglement entropy exhibits a logarithmic violation of the area law showing

that the geometry may also provide a suitable gravitational description for theories with

O(N2) Fermi surface. We will also probe this geometry by an open string.

The paper is organized as follows. In the next section we study holographic entan-

glement entropy using the metric (1.8). In section three we will consider an open string

5By reducing from ten dimensional supergravity to lower dimensions, typically one gets Einstein-

Maxwell-Dilaton models. Therefore it might be possible( at least for particular parameters) the UV com-

pletion could be provided by string theory (supergravity).
6It is important to note that the hyperscaling violating metrics, typically, come with non-zero gauge

fields. Therefore with a double Wick rotation one generically produces imaginary fluxes. Of course since

we are probing the background with a neutral object, this will not affect our study. Indeed with this double

Wick rotation one could define a new order parameter, known as geometric entropy (see for example [24, 25]).
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probing the metrics (1.3) and (1.8). For completeness of our study we will consider a closed

string probe in section four. The last section is devoted to discussions. In what follows we

only consider the case with θ ≤ d.

2 Holographic entanglement entropy

In this section we will study the entanglement entropy by making use of the AdS/CFT

correspondence. To compute the entanglement entropy via AdS/CFT correspondence one

needs to minimize a surface in the bulk gravity. More precisely, given a gravitational

theory with the bulk Newton’s constant GN , the holographic entanglement entropy is

given by [26, 27]

SA =
Area(γA)

4GN
, (2.1)

where γA is the minimal surface in the bulk whose boundary coincides with the boundary

of the entangling region.

It is important to note that in order to compute the holographic entropy, since we are

dealing with a spatial surface, one needs to work at constant time. In other words, the

gtt component of the metric does not, directly, contribute to the holographic entanglement

entropy. On the other hand, for the hyperscaling violating geometry (1.3), there are non-

trivial effects due to non-relativistic nature of the metric which in turn comes from the gtt
component.

Holographic entanglement entropy of the background (1.3) has been studied in [20]

where it was shown that the entanglement entropy exhibits interesting behaviors for d−1 ≤
θ ≤ d. Indeed while the theory has extensive entropy for θ = d it shows logarithmic

violation of area law for θ = d− 1.

In this section following [28] we would like to study holographic entanglement entropy

for the background (1.8). For this metric even at constant time slices the metric has an

anisotropic scaling.

To proceed, we will calculate entanglement entropy for a strip subsystem in the dual

theory. From gravity point of view one needs to minimize a surface in the geometry (1.8)

whose intersection with the boundary coincides to the strip. In course to do so, we recognize

two possible ways to embed the strip in the theory depending on the directions we choose

for the strip. In the first case the width of the strip is along y direction while in the second

case one may pick up one of the isotropic directions xi’s for the width of the strip. In what

follows we consider both of them.

Case A

For the first case, where the width of strip is along the anisotropic scaling direction, consider

the following strip

ℓ

2
≤ y ≤ ℓ

2
, 0 ≤ xi ≤ L, for i = 1, · · · , d− 1. (2.2)
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Now the aim is to minimize a surface on the bulk whose boundary is the above strip and

its profile in the bulk is given by y = y(r). From the geometry (1.8) the induced metric on

this surface reads

ds2ind = r2
θ
d

[

(

y′2

r2z
+

1

r2

)

dr2 +

∑d−1
i=1 dx2i
r2

]

. (2.3)

Therefore the area of the surface is

A = Ld−1

∫

ǫ
dr

√

r2(z−1) + y′2

rd+z−θ−1
. (2.4)

where prime represents derivative with respect to r. Note that since we are considering

θ ≤ d, one has d+ z − θ − 1 ≥ 0. Therefore the area always diverges at UV where r → 0,

and thus we had to introduce a UV cut off ǫ in the above expression.

To minimize the area one may consider the above expression as an action of a one

dimensional mechanical system whose momentum is a constant of motion

1

rd+z−θ−1

y′
√

r2(z−1) + y′2
=

1

rd+z−θ−1
0

= constant. (2.5)

Here r0 is the turning point where y′|r0 → ∞. The above constraint can be solved to find

the width of the strip as a function of turning point r0,

l = 2rz0

∫ 1

0
dξ

ξd+2z−θ−2

√

1− ξ2(d+z−θ−1)
. (2.6)

Finally for the area we arrive at

A =
Ld−1

rd−θ−1
0

∫ 1

ǫ
r0

dξ
ξθ−d

√

1− ξ2(d+z−θ−1)
, (2.7)

It is now possible to preform the above integrals and eliminate r0 between them to find

the entanglement entropy as a function of width ℓ. For θ 6= d− 1, one finds

ℓ = c0r
z
0, A =

Ld−1

d− θ − 1

(

1

ǫd−θ−1
− b0

rd−θ−1
0

)

, (2.8)

with

c0 =
2
√
π

z

Γ
(

d+2z−θ−1
2(d+z−θ−1)

)

Γ
(

z
2(d+z−θ−1)

) , b0 =
√
π
Γ
(

−d+θ+1
2(d+z−θ−1)

)

Γ
(

z
2(d+z−θ−1)

) . (2.9)

Plugging the obtained minimized area in the equation (2.1), one can find the entanglement

entropy as follows

S =
Ld−1

4(d− θ − 1)GN

(

1

ǫd−θ−1
− b0

c
(d−θ−1)/z
0

ℓ(d−θ−1)/z

)

. (2.10)

As we already mentioned, one would not expect that the metric provides the gravitational

dual for whole range of the energies. In fact above a given dynamical scale, rF , one would
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expect that the UV theory will be described by a UV completion geometry [20].7 Taking

into account the dynamical scale rF , the entanglement entropy reads

S =
Ld−1

4(d− θ − 1)GN





(

ǫ

rF

)θ 1

ǫd−1
−
(

ℓ1/z

rF

)θ
b0c

(d−θ−1)/z
0

ℓ(d−1)/z



 . (2.11)

On the other hand for θ = d − 1 and any z, one gets zℓ = 2rz0 while for the area one

finds A = −Ld−1 ln ǫ
21/zr0

. Therefore in this case, considering the scaling rF , one arrives at

S =
1

4zπGN

Ld−1

rd−1
F

ln
zℓ

ǫz
, (2.12)

showing that the dual theory exhibits logarithmic violation for the area law which could

be an indicator of having a Fermi surface in the model. Note also that for d = θ, the

expression for A is finite and indeed for the entropy we find

S ∼ Ld−1ℓ1/z. (2.13)

It is interesting to note that, even though in the present case where the anisotropic

scaling was along a spatial direction, the system exhibits similar behaviors as that in [20]

where the anisotropic scaling was along the time direction. Actually the results are almost

identical up to a 1/z factor in the power which can be understood from the fact that the

scaling of the width of the strip in these two cases are related by factor of z. Therefore

from the results of [20] one can find our results by just replacing r0 → rz0, or ℓ → ℓ1/z.

Case B

Let us consider a case where the width of strip is along one of xi’s directions. The corre-

sponding strip subsystem may be given by

ℓ

2
≤ xd−1 ≤

ℓ

2
, 0 ≤ y ≤ L, 0 ≤ xi ≤ L, for i = 1, · · · , d− 2. (2.14)

The holographic entanglement entropy is given by a minimal surface whose shape at the

boundary coincides to the above stripe and has a profile in the bulk given by x1 = x(r).

The induced metric on the surface is

ds2ind = r2
θ
d

[

dy2

rz
+ (1 + x′2)

dr2

r2
+

∑d−2
i=1 dx2i
r2

]

. (2.15)

Thus the area reads

A = Ld−1

∫

dr

√
1 + x′2

rd+z−θ−1
. (2.16)

7With the dynamical scale rF the metric (1.3) should be read

ds
2
d+2 =

(

r

rF

) 2θ
d

(

−
dt

2

r2z
+

dr
2

r2
+

∑d
i=1 dx

2
i

r2

)

.
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One can go through the well known procedure to minimize the surface, as we did in the

previous case. Doing so, one arrives at the following expressions for the width ℓ and area A

ℓ = 2r0

∫ 1

0
dξ

ξd+z−θ−1

√

1− ξ2(d+z−θ−1)
, A =

Ld−1

rd+z−θ−2

∫ 1

ǫ
r0

dξ
ξ−(d+z−θ−1)

√

1− ξ2(d+z−θ−1)
(2.17)

Then it is easy to calculate the above integrals to find the width,ℓ, and area A as functions

of turning point r0. By eliminating r0 between these two functions, we will find the

holographic entanglement entropy as a function of width ℓ. In fact for θ 6= d + z − 2

one finds

ℓ = c0r0, A =
Ld−1

d+ z − θ − 2

(

1

ǫd+z−θ−2
− b0

rd+z−θ−2

)

, (2.18)

where

c0 =
√
π
Γ
(

d+z−θ
2(d+z−θ−1)

)

Γ
(

1
2(d+z−θ−1)

) , b0 =
√
π
Γ
(

d+z−θ
2(d+z−θ−1)

)

Γ
(

1
2(d+z−θ−1)

) . (2.19)

Therefore, taking into account the dynamical scale rF , the entanglement entropy is

S =
Ld−1

4(d+ z − θ − 2)GN

[

(

ǫ

rF

)θ 1

ǫd+z−2
−
(

l

rF

)θ b0c
d+z−θ−2
0

ℓd+z−2

]

. (2.20)

On the other hand for θ = d + z − 2 one gets ℓ = 2r0, while the area exhibits a

logarithmic behavior, A = Ld−1 ln 2r0
ǫ . Thus the entanglement entropy is found to be

S =
1

4GN

Ld−1

rd+z−2
F

ln
ℓ

ǫ
, (2.21)

that violates the area law. Here we have also restored the dynamical scale rF . If we restrict

ourselves to the case of z ≥ 2 we get the above logarithmic violation of area law just for

d = θ. Thus, taking into account that we are interested in θ ≤ d, the subsystem defined

by (2.14), unlike the case of (2.2), can never have an extensive entropy.

However we note that, if we let the dynamical exponent to be one, z = 1, then the

entanglement entropy of the subsystem (2.14) exhibits logarithmic violation of area for

θ = d − 1. Moreover for z = 1 one may have θ = d + z − 1 which means θ = d. In this

case the area turns out to be a constant leading to an extensive entanglement entropy as

follows

S ∼ Ld−1ℓ. (2.22)

Of course it is worth mentioning that in this case the metric (1.3) is, actually, flat space

(more precisely, it is a metric of upper half space) and it is not clear what the holographic

entanglement entropy means!

3 Open string probe

In this section we would like to probe the background (1.3) and (1.8) by an open string.

As we already mentioned these geometries are expected to provide gravitational dual for

– 7 –
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theories with hyperscaling violation in a specific range of energies. Indeed these geome-

tries may be though of as an effective holographic description of the dual theories with

a UV cut off set by the dynamical scale rF over which the geometries may not provide

a good description.

Therefore by probing these geometries with an open string one can explore the inter-

action of an external object in an effective theory exhibiting hyperscaling violation. In

particular we will consider a static or moving open string which in turn can be used to

find the effective potential between two external point like objects or the drag force the

external object may experience.

3.1 Wilson loop

The effective potential between external point like objects may be obtained by computing

the Wilson loop in the model. Actually AdS/CFT correspondence has provided a simple

prescription to compute the Wilson loop in a strongly coupled field theory by making

use of its gravitational dual [29, 30]. In this context the Wilson loop can be computed

by minimizing a world sheet of an open string whose ends on the boundary are, indeed,

representing the external objects.

To proceed consider the following ansatz for the open string

t = τ, r = σ, x1 = x(r), (3.1)

one the background (1.3). For this ansatz the Nambu-Goto action reads8

I = − 1

2πα′

∫

dtdr r−
d(z+1)−2θ

d

√

1 + x′2. (3.2)

This action can be thought of as a one dimensional mechanical system for x whose mo-

mentum is a constant of motion. With this interpretation, denoting the turning point by

r0 where x′ → ∞, one finds

ℓ = 2

∫ r0

0
dr

(

r
r0

)
d(z+1)−2θ

d

√

1−
(

r2

r20

)
d(z+1)−2θ

d

, (3.3)

where ℓ is the distance between two external objects. Note that in the cases we are

interested in one has d(z + 1)− 2θ ≥ 0. It is, then, easy to perform the integral yielding

ℓ = c0r0, with c0 =
√
π
Γ
(

d(2+z)−2θ
2(d(z+1)−2θ)

)

Γ
(

d
2(d(z+1)−2θ)

) (3.4)

8It is worth to note that the end points of the string can be fixed at UV. In other words one could

impose the Dirichlet boundary condition on the open string at r → 0. This can be seen from the fact that

the factor r−
d(z+1)−2θ

d in the action for (3.2) diverges as we approach the boundary where r → 0. Therefore

to get a finite action for the small fluctuations, one should set x′ = 0 at the boundary.
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On the other hand the on shell action of the string reads

I = − T

2πα′

∫ r0

ǫ
dr

r−
d(z+1)−2θ

d

√

1−
(

r2

r20

)
d(z+1)−2θ

d

= − Td

2π(zd− 2θ)α′





1

ǫz−
2θ
d

+
I0

r
z− 2θ

d
0



 , (3.5)

where T is the time interval over which the Wilson loop is calculated, and

I0 =

√
π

1 + 2z − 4 θ
d

Γ
(

−dz+2θ
2(d(z+1)−2θ)

)

Γ
(

−d(1+2z)+4θ
2(d(z+1)−2θ)

) (3.6)

Therefore for zd 6= 2θ, restoring the dynamical scale rF , the effective potential reads

Veff = − d

2π(zd− 2θ)α′





(

ǫ

rF

) 2θ
d 1

ǫz
+

(

ℓ

rF

) 2θ
d I0c

z− 2θ
d

0

ℓz



 . (3.7)

While for zd = 2θ one has ℓ = 2r0 and for the action one gets

I = − T

2πα′

∫ 1

ǫ
r0

dξ

ξ
√

1− ξ2
= − T

2πα′
ln

2r0
ǫ

. (3.8)

Thus in this case the effective potential has a logarithmic behavior as follows

Veff = − 1

2πrzFα
′
ln

ℓ

ǫ
. (3.9)

So far we have considered an open string probing the metric (1.3). We would like to

extend our study for the metric (1.8) too. In this case we recognize two distinctive cases

depending on whether the distance between the external objects is along the anisotropic

scaling direction, y, or along one of xi’s directions. Actually for both of cases one may go

through the similar computations as presented above to calculate the effective potential

between two point like external objects. Doing so one arrives at

Along y direction Veff ∼











−ℓ
2θ−d
zd θ 6= d

2 ,

−1
z ln

ℓ
ǫ θ = d

2 ,

Along x1 direction Veff ∼











−ℓ
2θ−d

d θ 6= d
2 ,

− ln ℓ
ǫ θ = d

2 .

(3.10)

It is worth to note that since θ ≤ d, it is possible (for example for θ = d) to get linear

or fractional power law effective potential. In fact due to the anisotropic in the spatial

directions, it is possible to get a power law effective potential in one direction while a

confining potential in other directions.

Note that, in general, the potential we have found has fractional power. Since we are

considering classical gravity, this might be related to the effects of strongly coupled field

theory. It would be interesting to understand this point better.
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3.2 Drag force

Let us consider an open string moving in the background (1.3) which could represent an

external point like moving source in an effective theory with hyperscaling violation. This

can be used to study the drag force that the external object might feel [31].9 Drag force for

non-relativistic theories with Schrödinger or Lifshitz symmetries have been studied in [33]

and [34], respectively, where it was shown that even at zero temperature the drag force is

non-zero. It is indeed the aim of this subsection to study the drag force for theories with

hyperscaling violation.

Consider the following ansatz for the moving string

t = τ, r = σ, x1 = vt+ x(r), (3.11)

and all other coordinates are set to zero. Then the Nambu-Goto action for this string reads

I = − 1

2πα′

∫

dtdr r2
θ
d
−2
√

r2(1−z)(1 + x′2)− v2, (3.12)

Since the metric components are t independent, the above action may be treated as a one

dimensional mechanical system whose momentum is the constant of motion

r2
θ
d
−2 r2(1−z)x′
√

r2(1−z)(1 + x′2)− v2
= −2πα′Πx = constant, (3.13)

which can be solved to find x′ as follows

x′
2
= 4π2α′2Π2

x

1− r2(z−1)v2

r4
θ
d
−2(z+1) − 4πα′2Π2

x

. (3.14)

In terms of the constant Πx, energy, E, and momentum, P , that the open string gains from

through its end point are given by

dE

dt
= Πxv.

dP

dt
= Πx. (3.15)

The constant Πx can be obtained by requiring that the numerator and denominator

of (3.14) vanish at the same point, imposed by the fact that x′ should be real. Set-

ting the numerator to zero one finds v = r1−z
0 . From this solution we observe that as we

are varying r0 from infinity to zero (flowing from IR to UV), the velocity takes its value

from zero to infinity. This is, in fact, due to the non-relativistic property of the dual field

theory. Moreover by plugging the solution r0 into the denominator one arrives at

Πx = − v

2πα′
v

2(d−θ)
d(z−1) . (3.16)

9After we submitted our paper we were aware that the drag force in the background (1.3) has also been,

recently, studied in [32].

– 10 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
4

Now consider a single non-relativistic particle with momentum P and mass M , then we

have P = Mv. It is useful to formally rewrite the above expression for the drag force in

terms of P . Then we can perform the integral which for d 6= θ yielding to

P =

(

P
−

2(d−θ)
d(z−1)

0 +
d− θ

d(z − 1)πα′

t

M
d(z−3)+2θ)

d(z−1)

)−
d(z−1)
2(d−θ)

, (3.17)

while for d = θ one finds

P = P0e
− t

2πα′M . (3.18)

Here P0 is the initial momentum.

We note that even though the theory we considered here was at zero temperature the

drag force is non-zero. In other words, as the open string moves on the metric (1.3) it

experiences a non-zero friction. Therefore if we let the open string (external point like

object) moves with an initial velocity (initial momentum p0) after some time it will stop

unless one compensates the losing energies by an external force.

Actually having a non-zero drag force even at zero temperature appears when there is

an anisotropic scaling between time and the direction the string moves. This is of course a

typical feature of non-relativistic field theories whose gravitational duals have metrics with

an anisotropic scaling.

In fact it is straightforward to compute the induced metric on the string worldsheet and

argue that there is an event. For example for an open string moving in the geometry (1.3)

the induced metric on its worldsheet is

ds2 = r
2θ
2
−2
[

−(r2(1−z) − v2)dt2 + (1 + x′
2
)dr2 + 2vx′drdt

]

, (3.19)

which can be diagonalized by the following change of coordinates [35]

t = τ + η(r), with η′(r) =
vx′

r2(1−z) − v2
, (3.20)

by which the induced metric reads

ds2 = r
2θ
2
−2

[

−(r2(1−z) − v2)dτ2 +
r

4θ
d
−2(z+1)

r
4θ
d
−2(z+1) − 4π2α′2Π2

x

dr2

]

. (3.21)

As we see the induced metric develops an event horizon whose location is given by r
2(1−z)
0 −

v2 = 0, and the Hawking temperature is

T =

√

(z − 1)(z + 1− 2θ
d )

2πrz0
. (3.22)

On observes that even the bulk is at zero temperature, the worldsheet is thermal which

should be responsible of having energy loss in this case. Note that for z = 1 the temperature

is zero and indeed for this the energy loss is zero too.

Let us now study an open string moving in the metric (1.8). In this case we could

consider a situation where either the string moves in x1 or y directions. In the first case,

– 11 –



J
H
E
P
1
1
(
2
0
1
2
)
0
3
4

actually, due to the rotational symmetry in x1 and t directions when the string moves in

x1 direction, one gets nothing new, except that of the pure AdS case [31]. Namely there is

no drag force.

On the other hand when the open string moves in y direction, the induced metric on

its worldvolume is

ds2 = r
2θ
2
−2
[

−(1− v2r2(1−z))dt2 + (1 + x′
2
r2(1−z))dr2 + 2vx′r2(1−z)drdt

]

, (3.23)

which, by making use of the equation of motion of φ, can be recast to the following form

ds2 = r
2θ
2
−2

[

−(1− v2r2(1−z))dτ2 +
r

4θ
d
−2(z+1)

r
4θ
d
−2(z+1) − 4π2α′2Π2

x

dr2

]

. (3.24)

It seems that the resultant world-volume metric has an event horizon and the situation

could be the same as before. We note, however, that if we went through the standard pro-

cedure, as we did in the previous case, the Hawking temperature turns out to be imaginary

which could mean that the ansatz we considered for the open string is not a consistent

solution. Therefore it seems that even in this case where the string moves along a direction

with an anisotrpoic scaling, the drag force is zero.

3.3 Rotating open string

As a final example of open strings probing the geometries (1.3) and (1.8), in this subsection

we will consider a rotating open string in the bulk that describes, holographically, an exter-

nal point like object in the strongly coupled theories with hyperscaling violation undergoes

circular motion. Such a study has been first done for a rotating quark in strongly coupled

N = 4 SYM theory in [36, 37] where the authors “have computed the energy density and

angular distribution of the power radiated by a rotating quark in this theory.”10 To start

let us consider the following change of coordinates in the metrics (1.3) and (1.8)

(x1, x2) → (ρ, φ); such that dx21 + dx22 = dρ2 + ρ2dφ2, (3.25)

by which the metrics (1.3) and (1.8) may be recast to the following forms

ds2d+2 = r
2θ
d

(

−dt2

r2z
+

dr2

r2
+

dρ2

r2
+

ρ2dφ2

r2
+

∑d
i=3 dx

2
i

r2

)

, (3.26)

ds2d+2 = r
2θ
d

(

dy2

r2z
+

dr2

r2
+

dρ2

r2
+

ρ2dφ2

r2
+

∑d−1
i=3 dx2i
r2

− dt2

r2

)

. (3.27)

Let us now consider the following ansatz for a rotating open string in these backgrounds

t = τ, r = σ, ρ = ρ(r), φ = ωt+ φ(r), (3.28)

and all other coordinates are set to zero. From dual field theory point of view this cor-

responds to an extremal point like object undergoes a circular motion around the center

ρ = 0 with frequency ω.

10Rotating massive quark in an anisotropic strongly coupled plasma has also been studied [38]. For

rotating strings on non-conformal holography see [39].
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The Nambu-Goto action for this open string in the background (3.26) is

I = − 1

2πα′

∫

dtdr r2
θ
d
−1−z

√

(1− ρ2ω2r2(z−1))(1 + ρ′2) + ρ2φ′2, (3.29)

whereas for the metric (3.27) it becomes

I = − 1

2πα′

∫

dtdr r2
θ
d
−2
√

(1− ρ2ω2)(1 + ρ′2) + ρ2φ′2. (3.30)

Note that the action (3.30) up to a factor of r2
θ
d is the same as that for pure AdS case

studied in [37] .

In both cases the actions are independent of φ(r), and therefore the corresponding an-

gular momentum, Πφ = − ∂L
∂φ′ , is an integral of motion. In other words for the action (3.29),

setting p = 2 θ
d − 1− z and q = 2(z − 1) one has

Πφ =
−rpρ2φ′

√

(1− ρ2ω2rq)(1 + ρ′2) + ρ2φ′2
= constant, (3.31)

while for action (3.30), setting p̃ = 2 θ
d − 2 one gets

Πφ =
−rp̃ρ2φ′

√

(1− ρ2ω2)(1 + ρ′2) + ρ2φ′2
= constant. (3.32)

Using these expressions one can find the equation of motion for φ(r) as follows

for action (3.29) φ′2 =
Π2

φ(1− ω2ρ2rq)(1 + ρ′2)

ρ2(r2pρ2 −Π2
φ)

, (3.33)

for action (3.30) φ′2 =
Π2

φ(1− ω2ρ2)(1 + ρ′2)

ρ2(r2p̃ρ2 −Π2
φ)

. (3.34)

Finally, utilizing the above expressions, the equation of motion for ρ(r), is then given by

for action (3.29) ρ′′ +

(

ρ(r − pρρ′)

r(r−2pΠ2
φ − ρ2)

+
(2− qrq−1ω2ρ3ρ′)

2ρ(1− ρ2ω2rq)

)

(1 + ρ′2) = 0,

for action (3.30) ρ′′ +

(

ρ(r − p̃ρρ′)

r(r−2p̃Π2
φ − ρ2)

+
1

ρ(1− ρ2ω2)

)

(1 + ρ′2) = 0. (3.35)

We have now all equations to study the rotating strings. To proceed, in what follows we

will only consider the first case which is based on the action (3.29). Actually the results

for the second case can be obtained from the first one by replacing p → p̃ and q → 0.

In general to find a solution for the rotating string we have to solve the equations of

motion of ρ and φ with a given initial data [37]. Actually to solve the equation of motion

for ρ we find that it is singular when Π2
φ − ρ2r2p = 0 or 1 − ρ2ω2rq = 0. On the other

hand in order to impose the reality condition on φ′ one has to assume that these two
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Figure 1. ρ as a function of r for the cases of z = 2 and θ = 3d
4
, d
2
, 0 which are shown by

dashed, dotted and thin curves, respectively. In order to compare our results with that of AdS case

(z = 1, θ = 0), we have also plotted this case which is shown by a thick curve. Note that to solve

the equation we have set the initial date as ω = Πφ = 1.

expressions should vanish at the same point. Let us denote by r0 the point where both of

the expressions vanish. Then one gets

ρ0 =
(Πφω)

−q
2p−q

ω
, r0 = (Πφω)

2
2p−q , (3.36)

where ρ0 = ρ(r0). On the other hand ρ′(r0) may also be fixed by ω and Πφ as follows.

Following [37] let us expand ρ around r0,

ρ = ρ0 + ρ1(r − r0) +
1

2
ρ2(r − r0)

2 + · · · . (3.37)

Plugging this expansion in the equation of motion for ρ and requiring all terms in the

expansion vanish identically we can read the coefficients ρi. At the first order, for 2p+q 6= 0,

one finds

ρ21 −
2
(

2ω2 − pq(Πφω)
2q+4
q−2p

)

(q + 2p)ω(Πφω)
q+2
q−2p

ρ1 − 1 = 0, (3.38)

which can be solved to find ρ1 in terms of ω and Πφ.

Therefore with ω and Πφ as the initial data one should be able to find a unique solution

for the rotating open string. Indeed, by making use of a numerical method we have solved

the equation of motion for ρ with specific values of p and q. In particular in the figure (1)

we have plotted ρ as a function of r for the cases of q = 2 and p = −3/2,−2,−3 which

correspond to the cases where z = 2 and θ = 3d
4 ,

d
2 , 0. In order to compare the results with

that in the pure AdS case [37], we have also plotted ρ as a function of r for the case of

z = 1, θ = 0.

The function of ρ(r) shows how the string spreads as a function depth [37]. Actually

as we can see from the figure (1) for the rotating string in the AdS case, the string spreads

linearly, ρ ∼ r, as we approach the IR region (see also the exact solution given in [37]). On

the other hand although in the present case the string still spreads as a function of depth,

the rate of spreading is slower than that in the AdS case. In fact in our case, as one can see

– 14 –
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Figure 2. Here we have plotted ρ as a function of φ for the cases of z = 1, θ = 0 (left), z = 2, θ = 0

(middle) and z = 2, θ = d
2
(right). The function is projected in to x1 − x2 plane, where ρ and φ are

polar coordinates of this place. Here we have set ω = Πφ = 1.

from our numerical solution, the asymptotic behavior is ρ ∼ rα for r ≫ 1 with α < 1. Of

course for r < 1 the string on the hyperscaling violation metrics spreads faster than that

on the pure AdS (see figure 1). Pictorially, these behaviors can be visualized by projecting

the function ρ(φ) to a r = constant (boundary) surface as we have depicted in figure (2).

On the other hand looking at the behavior of the function φ which describes how the

string winds in azimuthal angle as a function of depth [37], one finds that in the present

case where we have the hyperscaling violation, it grows faster that that in AdS as we move

toward the core of the space-time.

For 2p + q = 0, expanding ρ around ρ0 we find that all ρi = 0. Indeed it is easy to

show that in this case ρ = constant is an exact solution of the equation of motion where

the constant is found to be ρ =
√

Πφ/ω which is consistent with (3.36). Moreover, in this

case the equation of motion of φ can also be solved exactly. In fact for 2p + q = 0, which

corresponds to θ = d for all values of z, one finds11

φ = ω

(

t+
rz

z

)

, ρ = ρ0 =

√

Πφ

ω
, r0 = (Πφω)

1
2(1−z) . (3.39)

To wrap up this section we note that looking at the induced metric of the string

worldsheet one observes that it has an even horizon. More precisely, with a proper change

of coordinates, the induced metric of the string worldsheet is found

ds2 = r
2θ
d
−2−q

[

−(1− ω2ρ2rq)dτ2 +
r2p+qρ2(1 + ρ′2)

r2pρ2 −Π2
φ

dr2

]

, (3.40)

which has an even horizon at r = r0. The corresponding Hawking temperature is

T =
1

4πρ0rz0

√

−2(qρ0 + 2ρ1r0)(pρ0 + ρ1r0)

1 + ρ21
. (3.41)

It is crucial to note that to have a solution for ρ(r) in the vicinity of r0, the positivity

condition of the right hand side of the equation (3.33) reduces to the following inequality

(qρ0 + 2ρ1r0)(pρ0 + ρ1r0) < 0, (3.42)

11Note that this solution is not valid for z = 1. Actually for θ = d and z = 1 the geometry reduces to

the flat space-time where we do not have a well defined holography.
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Figure 3. Here we have plotted ρ∗ as a function of L = Πφω for the case of z = 2, θ = 0. Essentially

this is the energy loss rate in terms of the radius of circle the external object moves.

which is necessary to have a well defined real Hawking temperature.

Having found the shape of the rotating string, it is then possible to compute the

radiation power of the string. From the Nambu-Goto action one can obtain the energy

density and energy flux of string from which the energy loss rate of the string is found [37]

dE

dt
=

Πφω

2πα′
. (3.43)

Of course the goal is to compute the energy loss rate in terms of the parameters of the

dual field theory which is frequency and the radius of circle the external object moves

around, i.e. ρ∗ = ρ(r → 0). With the numerical solution we have obtained, it is easy to

find L = Πφω as a function of ρ∗ which is indeed the energy loss rate up to factor of 1/2πα′.

In the figure (3) we have drown the function of L in terms of ρ∗ for the case of z = 2, θ = 0.

Form our numerical solution, for large ρ∗, one finds L ∼ ρ4∗.

As a final remark we note that r0 fixes the local velocity of string. Since r0 can

change from zero to infinity, it means that the local velocity could be infinity, indicating

the non-relativistic nature of the dual theory.

4 Closed string probe

Since it is possible to find a geometry with non-trivial hyperscaling exponent from string

theory (see for example [20, 40, 41]) it is natural to study a closed string propagating

in this background which could be dual to an operator in the dual field theory with a

hyperscaling violation.12 In fact in this section, for completeness of our study, we will

probe the geometry (1.3) by a closed string. Via AdS/CFT correspondence a closed string

moving in the bulk should correspond to a field (operator) configuration with specific energy

and probably some other quantum numbers. Therefore it could be possible to study certain

properties of the dual theory by making use of a semi-classical closed string on the bulk.

In what follows we will consider a folded rotating closed [42] and circular pulsating [43]

strings in the background (1.3).13

12Although our geometry, in general, may not be embedded into string theory, studying closed strings in

this background may give an insight about general features of the dual theory.
13Circular pulsating closed string on the confining geometry has also been studied in [44].
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4.1 Folded closed string

In this subsection we study a solution representing a rotating closed string configuration

which is stretched along the radial coordinate. In order to study this system one needs

to write an action for this closed string. Let us parameterize the string worldsheet by

σ and τ . We can fix the reparameterization invariance by a parameterization such that

the time coordinate of space-time, t to be equal to worldsheet time, i.e. t = τ . In this

gauge a closed string configuration representing a rotating string with angular velocity ω

on geometry (1.3) stretched along the radial coordinate is given by

t = τ, φd−1 = φ = ωτ, r(σ) = r(σ + 2π),

φi =
π

2
(for i = 1 · · · d− 2), ρ = ρ0 = constant. (4.1)

where σ and τ are coordinates of the string world sheet. Moreover we parametrize the

d-dimensional Euclidean space in the metric (1.3) as follows

d
∑

i=1

dx2i = dρ2 + ρ2(dφ2
1 + sin2 φ1dφ

2
2 + · · ·+ sin2 φ1 . . . sin

2 φd−2dφ
2
d−1). (4.2)

For this ansatz the Nambu-Goto action, reads

I = −4
T

2πα′

∫ r0

0
r

2θ
d
−2
√

r2−2z ṫ2 − ρ20φ̇
2 dr (4.3)

where dot represents derivative with respect to τ and r0 = (ρ0ω)
1/(1−z). The factor of 4

comes from the fact that we are dealing with a folded closed string. Working with one

fold string, the string can be divided to four segments. Using the periodicity condition we

just need to perform the integral for one quarter of string multiplied by factor 4. When

the periodicity condition is satisfied, using the above Nambu-Goto action the conserved

quantities are given by

E =
2T

πα′

∫ r0

0
dr

r
2θ
d
−2z

√

r2−2z − ρ20ω
2
, S =

2Tρ20ω

πα′

∫ r0

0
dr

r
2θ
d
−2

√

r2−2z − ρ20ω
2
, (4.4)

From these expressions we could find a relation between E and S. Actually the above inte-

grals can be performed exactly, though generically they diverge and need to be regularized.

Indeed setting x = r/r0, one has

E =
πα′

2T
E = r

2θ
d
−z

0

∫ 1

0

x
2θ
d
−z−1

√
1− x2z−2

dx = E0r
2θ
d
−z

0 (4.5)

S =
πα′

2Tρ0
S = r

2θ
d
−1

0

∫ 1

0

x
2θ
d
+z−3

√
1− x2z−2

dx = S0r
2θ
d
−1

0 (4.6)

where constants E0 and S0 are given by

E0 =
√
π

2(z − 1)

Γ
(

2θ−zd
2d(z−1)

)

Γ
(

2θ−1
2d(z−1)

) , S0 =

√
π

2(z − 1)

Γ
(

2θ+zd−2d
2d(z−1)

)

Γ
(

2θ+2zd−3d
2d(z−1)

) . (4.7)
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Therefore with a proper regularization one finds

E = E0S
zd−2θ
2θ−d

0 S
2θ−zd
2θ−d . (4.8)

Looking at the explicit form of the energy and spin, depending on the nature of the

divergences we recognize two distinct cases. Actually although in a typical case we get

power law divergence, there are cases where we get logarithmic divergences that correspond

to the cases where either 2θ = zd, or θ = 0, z = 2. Note that the latter case is indeed

Lifshitz geometry with scaling exponent z = 2.

For 2θ = zd the energy diverges due to UV divergence of the integral. Therefore we

need to regularize it by performing the integral with a UV cut off ǫ. Doing so, one arrives at

E =

∫ r0

ǫ

dr

r
√

1− ( r
r0
)2(z−1)

= ln
r0
ǫ
+

1

z − 1
ln 2. (4.9)

On the other hand in this case one has S = rz−1

z−1 . Therefore one finds

E =
1

z − 1
ln

2(z − 1)S
ǫz−1

. (4.10)

In the case of θ = 0, z = 2, although the energy and spin both diverge logarithmically,

the relation between energy and spin is still given by the equation (4.8) for θ = 0 and z = 2.

It is also obvious from the equation (4.8) that the expression becomes ill-defined for

θ = d
2 . In fact in this case starting from the original expression for the energy and spin in

the equation (4.5) one finds that the spin is a constant for any turning point, i.e. S = π
2(z−1) ,

while the energy is zero.

It is interesting to note that although the closed string, depending on ω could be short

or long, the relation between energy and spin remains unchanged in all cases discussed

above. It is in contrast to the AdS case where for short string (ω → ∞) we find the

flat space Regge trajectory, while for long string (ω → 0) the energy in terms of spin has

logarithmic behavior [42].

4.2 Circular pulsating string

In this subsection we will consider a pulsating string which wrapped m times around φd−1

direction. In other words we study a circular string that expand and contract in the radial

direction. The corresponding ansatz for the circular pulsating string is

t = τ, r = r(t), φd−1 = mσ, φi =
π

2
, ρ = ρ0 = constant. (4.11)

For this configuration the string action reads

I = −mρ0
α′

∫

dt r2
θ
d
−z−1

√

1− r2(z−1)ṙ2. (4.12)

Setting ξ = rz/z the above action can be recast to the following form

I = −mρ0
α′

∫

dt f(ξ)

√

1− ξ̇2, with f(ξ) = (zξ)
2θ−zd−d

zd . (4.13)
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This action can be treated as a one-dimensional quantum mechanical system whose Hamil-

tonian is

H =

√

Π2 + (
mρ0
α′

)2f2(ξ) (4.14)

where Π is the canonical momentum given by

Π =
mρ0
α′

f(ξ)
ξ̇

√

1− ξ̇2
. (4.15)

Following [43] H2 can be considered as a one dimensional quantum mechanical system with

the potential (mρ0
α′ )2f2(ξ). Therefore using the Bohr-Sommerfeld quantization we have

(

n+
1

2

)

π = E

∫ ∞

ξ0

dξ

√

1−
(

f(ξ)

f(ξ0)

)2

, (4.16)

where ξ0 defined by the root of f(ξ0) = α′E
mρ0

. Performing the integral, with a proper

regularization, one finds

(

n+
1

2

)

π = −
√
π

2z

Γ
(

d−2θ
d(z+1)−2θ

)

Γ
(

1
2 + d−2θ

d(z+1)−2θ

)

(

α′E

mρ0

) zd
2θ−zd−d

E. (4.17)

It is worth to note that, unlike the AdS case, in the present case due to the non-trivial

IR geometry, the string while pulsating cannot approach r = 0. Indeed there is a low

bound for the string in the radial direction fixed by

r ≥
(mρ0
Eα′

) d
d+dz−2θ

. (4.18)

5 Discussions

In this paper we have studied certain features of strongly coupled theories with hyperscaling

violation by making use of AdS/CFT correspondence. More precisely we have considered a

gravitational model on a background which is conformally a metric with the Lifshitz isome-

try. The metric has two parameters corresponding to dynamical and hyperscaling violation

exponents. This geometry may be found from an Einstein-Maxwell-Dilaton theory.

By making use of a double Wick rotation it is possible to have a situation where

the anisotropic scaling could be along either time or one of spatial directions. In both

cases, using AdS/CFT correspondence, we have computed several quantities including

holographic entanglement entropy, Wilson loop, drag force as well as energy loss of a

rotating string.

Although we have studied the different quantities for a generic dynamical and hy-

perscaling violation exponents in arbitrary dimensions, we have found that for particular

values of the parameters the theory exhibits interesting behavior.

To compute the entanglement entropy for a strip in a theory with an anisotropic

scaling along a spatial direction we considered two distinctive cases depending on whether
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the width of the strip is along the anisotropic direction. When the width of the strip is along

the anisotropic direction we have found that when θ = d − 1 for any z, the entanglement

entropy exhibits a logarithmic violation of area law while for θ = d, the system has an

extensive entropy. Indeed the situation is very similar to the case where the anisotropic

scaling is along the time direction [20]. On the other hand for the case where the width

of strip is along a spatial direction with a normal scaling, the entanglement entropy shows

logarithmic behavior for θ = d and z = 2, while in this case the subsystem never has an

extensive entropy. Having found the logarithmic behavior might indicate that the model

has a Fermi surface.

For an open string probing the geometry one can read several interesting quantities,

such as Wilson loop which in turn can be used to read the effective potential between

two external point like objects in the system. We have shown that typically the effective

potential is power law, though for special cases it could be logarithmic.

For a moving or rotating open string we have observed that even though the geometry

are at zero temperature, the induced metric on the worldvolume of the open string has an

event horizon leading to a non-zero Hawking temperature for worldvolume theory. This

might be the reason we are getting non-zero drag force for the string. Again in this case

we find that θ = d is an special case where the string shows an anomalous behavior.

We have also probed the background with different closed strings. The closed strings

we have considered include rotating folded and circular pulsating strings. From the gravity

point of view it is possible to find the energy of the strings in terms of the quantum

numbers the strings may have. This may be used to find the dispersion relation of a

possible field configuration in the dual strongly coupled hyperscaling violation field theory.

The anomalous behavior can also been seen for closed string too. In particular for zd = 2θ

(which includes θ = d, z = 2) the dispersion relation is logarithmic.

In this paper we have only considered a zero temperature background, though it could

be generalized to the finite temperature too. In fact the finite temperature metric has the

following form [20]

ds2d+2 =
R2

r2

(

r

rF

) 2θ
d
(

−r−2(z−1)f(r)dt2 +
dr2

f(r)
+ dx2i

)

, (5.1)

where

f(r) = 1− rd+z−θ

rd+z−θ
h

(5.2)

It would be interesting to study the quantities we have considered in this paper at finite

temperature.
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