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1 Introduction

The study of topological strings on Calabi-Yau threefolds has led to important insights

in various aspects of string theory and supersymmetric gauge theories. For instance, the

properties of topological strings on compact Calabi-Yau geometries have impacted our un-

derstanding of BPS states of four-dimensional charged black holes. On the other hand, the
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study of topological strings in the background of non-compact ‘local’ Calabi-Yau geome-

tries has enriched our understanding of N = 2 and N = 1 supersymmetric gauge theories

in four dimensions.

More recently, inspired by the work of Nekrasov on instanton partition functions of

N = 2 gauge theories in four and five dimensions [1], it became clear that there should

exist a refinement of topological strings for the case of non-compact Calabi-Yau threefolds.

This is because these gauge theories can also be engineered using non-compact toric Calabi-

Yau threefolds, for which the topological string partition function is a special limit of the

instanton partition function, i.e.,

Ztop(gs) = ZNek(ǫ1, ǫ2)|−ǫ1=ǫ2=gs ,

where ǫα denote the two equivariant rotations of space-time (taken to be C2), and gs is the

coupling constant of topological strings. This connection implies that there should be a

refinement of the topological string partition function, where the string coupling constant

is split into two independent parameters.

Despite of the above hint, a world-sheet description of such a refined topological string

is still lacking. Nevertheless, the above observation does motivate a definition for the refined

A-model topological string in terms of its lift to M-theory and the degeneracy of BPS states

in five dimensions. In particular, the standard topological string partition function captures

the BPS degeneracy of M2-branes wrapped over 2-cycles. Furthermore, the topological

string coupling constant is related to the chemical potential for the SU(2)L ⊂ SU(2)L ×
SU(2)R = SO(4) rotation group in five dimensions. The refinement of the topological string

captures in addition the SU(2)R rotation quantum numbers of the BPS states, and thus

the full rotational quantum numbers of the BPS states.

Independently, in the context of B-model topological strings that are dual to matrix

models, an alternative definition was proposed in [2], where the refinement involves the

so-called ‘β-ensemble’ of matrix models. This is just the ordinary matrix model, but now

with the power of the Vandermonde determinant of the eigenvalues raised to 2β. The

parameter β is related to the equivariant rotation parameters via β = −ǫ1/ǫ2 and equals

to 1 in the case of the usual topological string.

One natural question is how to actually compute the partition function of the refined

topological string. There are various possibilities. For the A-model, it has been proposed

that the refined topological vertex, which is the one-parameter refinement of the standard

topological vertex, computes the corresponding degeneracies [3]. Another approach, in the

context of the B-model, is to use the standard matrix model techniques but adapted to the

β-ensemble [2]. Finally, yet another approach is to use the fact that the refined topological

string partition function is still expected to be a wave-function, and thus satisfies the

holomorphic anomaly equation. In this way the computation of the partition function

reduces to fixing the holomorphic ambiguities [4–6]. Even though these different approaches

have not been proven to be equivalent, so far they give results which agree with each other

and with the results of Nekrasov in the cases that have been checked.

On the other hand, an interesting observation concerning the instanton partition func-

tion was made by Nekrasov and Shatashvili (NS) [7]. They noticed that in the limit where
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one of the equivariant parameters is sent to zero while the other is kept fixed, for instance

ǫ1 → 0 with ǫ2 = ~ fixed, a connection with certain quantum integrable systems emerges

in the following way:1 The integrally stationary equation of the free energy

exp(∂aIW(~a; ~)) = 1 , (1.1)

where

W(~a; ~) = lim
ǫ1→0

ǫ1F(~a; ǫ1, ǫ2 = ~) , F = logZNek ,

and ~a denotes the collection of all Coulomb parameters {aI} of the theory, gives the Bethe

ansatz equation for the corresponding integrable system. In particular the energy eigen-

values of the integrable system are completely characterized by the aI satisfying these

equations. Even though this is a striking statement, and was checked in many cases, an

explanation of it was not offered. One aim of this paper is to shed light on this relation.

Our approach is to study branes in the context of the refined topological string. It

has been long known that the branes probe geometry in a quantum mechanical way. In

particular, in the context of the standard, unrefined topological string, it was argued in [11]

that for the B-model on a local Calabi-Yau given by

uv +H(x, p) = 0 ,

the wave-function Ψ(x) of a brane whose position is labeled by a point x on the Riemann

surface H(x, p) = 0 classically, satisfies an operator equation

HΨ(x) = 0 , (1.2)

at quantum level, with H := H(x, gs∂x). In other words, one is studying a quantum

mechanical problem given by the Hamiltonian H. Clearly, this is the right context to

elucidate the connection to the results of NS integrability, since the B-model mirror to

a geometrically engineered gauge theory is indeed a geometry of the above form and the

corresponding integrable model is specified by H defined above. However, as pointed

out in [11], when there are cycles in the Calabi-Yau geometry corresponding to magnetic

charges there are further gs corrections to H itself. Therefore, in general the above operator

relation only holds up to order gs corrections.

In this paper we consider brane partition functions in the context of refined topological

strings. In this case there are two types of branes, corresponding in the M-theory language

to M5 branes wrapping a Lagrangian cycle in the Calabi-Yau and a two-plane z1 or z2 in

R
4 ≃ C

2 associated with the ǫ1 and ǫ2 action respectively. In the B-model context, we

show that for a β-deformed matrix model with a polynomial potential, the equation (1.2)

is generalized to an equation which is exact and of the form of a multi-time dependent

version of the Schrödinger equation, i.e.,

HΨ = ǫ1ǫ2
∑

fI(t)
∂Ψ

∂tI
,

1Some aspects of this relation between instanton partition functions and quantum integrable systems

have also been studied from a more mathematical perspective earlier [8–10]. We thank A. Braverman for

pointing this out to us.
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where fI(t) are some functions of the ‘time’ variables tI and the momentum operator is

given by either p = ǫ1∂x or p = ǫ2∂x, depending on the type of brane under consideration. In

the refined topological B-model dual to this matrix model, the tI are identified with certain

moduli of the corresponding Calabi-Yau geometry. This makes concrete and elucidates the

proposal in [7] regarding the existence of the t-deformation of the quantum integrable

system. In the NS limit we have ǫ1ǫ2 → 0 such that the time dependence vanishes, and we

simply obtain the time-independent Schrödinger equation (1.2) for the ǫ2-type brane.

Note however, even though we have found solutions to the time-independent

Schrödinger equation in the NS limit, there is no guarantee that the wave-function has

no monodromy. Some extra quantization conditions are required in order for the wave-

functions to be well-behaved under monodromy. On the other hand, it was known from [11]

that taking branes around the cycles of a Calabi-Yau shifts the dual periods in units of gs
in the usual topological string. In the NS limit we have gs = (−ǫ1ǫ2)1/2 → 0, and the shifts

become equivalent to computing derivatives. Thus we obtain the statement that taking

the brane around the cycles gives the gradient of the closed string partition function with

respect to the closed string moduli. This gives an effective way to compute the closed

string partition function of the refined topological string theory in the NS limit.

Furthermore, to have a well-defined wave-function we need the wave-function to be

single-valued, which by the above argument requires that the exponential of the gradients

of the partition function have to be equal to one, leading to the relation (1.1). Therefore,

we understand the observation of NS regarding the relation between gauge theory and

quantum integrable system as a consequence of the consistency of open refined topological

string theory. Topological string theory with branes is automatically the relevant system to

study to understand the integrable models in the NS limit, and the geometric engineering

of gauge theory tells us that the same physical quantities can also be computed using target

space physics and in particular the instanton calculus, hence closing the circle of ideas.

Even though the derivation we found was done in the context of matrix models, we

conjecture that it applies to all cases where refined topological strings are defined. In

particular, we argue that one can recover the refined closed string partition functions in

the NS limit, simply by computing the wave-function solution to the Schrödinger equation

and seeing what monodromies it picks up as we take it around cycles. We verify this general

conjecture in many examples.

The organization of this paper is as follows. In section 2 we review some earlier results

concerning topological strings and its connection with quantum integrable structures [11],

on which this work heavily relies. This is followed by recalling the various definitions of

refined A- and B-model topological strings in section 3. In section 4 we show that for

B-models dual to matrix models, the brane partition functions in the refined topological

string satisfy a time-dependent Schrödinger equation. Taking the NS limit of the refined

topological string, the time-dependent Schrödinger equation reduces to the usual time-

independent Schrödinger equation as we will show in section 5. We then use this result to

explain the observation of NS about the relation between gauge theory partition functions

and the Bethe-ansatz for integrable systems. Sections 6 and 7 are devoted to explicit

examples illustrating and testing our results and conjectures for the NS limit in the case
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of genus 0 and genus 1 surfaces. In section 8 we consider B-model branes in Penner

type geometries. In this case our time-dependent Schrödinger equation is identical to the

BPZ equation for the corresponding degenerate fields of Liouville, and we show that our

methods provide a way to derive the n-point function by studying the conformal blocks

with degenerate insertions. Finally, in section 9 we present our conclusions.

Recently there has been an increased interest in the NS limit and several papers on

related topics have appeared during the course of this work [12–15].

2 Review of quantum geometry in topological strings

In this section we review some elementary features of topological strings on local Calabi-

Yau threefolds of relevance to this work. Since topological strings on such backgrounds

have been extensively studied, we will be brief.

We will be mainly interested in the B-model topological string and we focus our at-

tention on local Calabi-Yau threefolds X which are given by a hypersurface of the form

uv +H(x, p) = 0 , (2.1)

where u, v ∈ C and x, p ∈ C or C∗. The classical (i.e., tree level) amplitude of the B-model

is encoded via the special geometry of X in the periods of the holomorphic 3-form

ω =
du

u
∧ dp ∧ dx .

For this class of backgrounds, the periods of ω reduce to residue integrals on u = 0.

In detail, if we view the 3-cycles as a fibration of the circle obtained by the rotation

(u, v) → (ueiθ, ve−iθ) over a disc D, where u = 0 on the boundary of the disc, i.e., ∂D ⊂
{H(x, p) = 0}, then the period integrals reduce to

∫

D
dp dx =

∫

∂D
p dx ,

where the boundary ∂D is a curve on H(x, p) = 0. Thus the B-model reduces to the study

of the periods of the 1-form

λ = p dx , (2.2)

along the 1-cycles of the Riemann surface

Σ : H(x, p) = 0 . (2.3)

Hence, we end up with a local version of special geometry which involves a 1-form on a

Riemann surface. The pair (Σ, λ) is often refered to as the spectral curve.

2.1 Quantum mechanics and loop corrections

This is the story at tree level. The natural question is what the quantum corrections do to

this picture, i.e., what is the analog of ‘quantum special geometry’ ? It turns out that an

important role is played by the notion of branes.

– 5 –
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Consider a B-brane given by the v-plane at u = 0, located at a point x of Σ, with

p = p(x) fixed in terms of x by the condition H(x, p) = 0. The classical partition function

Ψ(x) of this brane, which is a function of its moduli x, was studied in [16] and was found

to be

Ψclass.(x) = exp

(

1

gs

∫ x

p(y) dy

)

, (2.4)

where gs is the coupling constant of the topological string. This structure is very reminis-

cent of the WKB approximation to the ground state wave-function, if we identify H(x, p)

as the Hamiltonian of the quantum system. In fact, it was argued in [11] that on the

B-brane phase space the variables p and x do not commute and we have the relation

[p, x] = gs , (2.5)

exactly as one has in the usual set-up of quantum mechanics. Moreover this strongly

suggests that the quantum corrections to the partition function should make Ψ(x) an

exact wave-function for the quantum Hamiltonian H, i.e., we expect a relation of the form

H(x, p)Ψ(x) = 0 , (2.6)

as the operator realization of the geometric condition H(x, p) = 0. This was proposed

in [11] and checked in various examples. It was found that for simple cases this is exactly

right and gives the full answer for the quantum corrections to the wave-function. For

example, in the case of the (deformed) conifold

H(x, p) = −p2 + x2 − µ ,

the full partition function of the brane is indeed given by the corresponding energy eigen-

state of the harmonic oscillator.

A motivation for the above commutation relation is the following. The brane wrapping

the v-plane has fields x, p living on it that capture the normal deformations of the brane

as a function of v. The kinetic term for this brane is given by

SB-brane =
1

gs

∫

v-plane
x∂p+ . . . ,

which leads to the fact that p and x are conjugate variables.

A perhaps more familiar setup to motivate (2.5) is via mirror symmetry. When X is

a mirror to a toric Calabi-Yau manifold X∗, the B-brane on the v-plane gets mapped to

an A-brane on X∗ wrapping a non-compact Lagrangian three manifold L = R
2 × S1. The

theory on a Lagrangian B-brane is a U(1) Chern-Simons theory with classical action

SCS =
1

gs

∫

L
AdA . (2.7)

In the absence of world-sheet instantons, the action (2.7) is exact. The Chern-Simons path

integral on L computes the A-model partition function with the brane inserted [17]. Since

L is a manifold with a T
2 boundary, the Chern-Simons path integral on L determines

– 6 –
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a state in the Hilbert space of the theory on T
2 × Rt in a familiar way. As is evident

from (2.7), when quantizing Chern-Simons theory on T
2 × R with R viewed as time, the

holonomies of the gauge field around the (1, 0) and (0, 1) cycles of T2 become canonically

conjugate to each other. In fact, mirror symmetry directly relates the B-model variables x

and p to the complexified holonomies
∮

S1
(1,0)

A = x ,

∮

S1
(0,1)

A = p .

In general, the world-sheet instantons will correct the classical action, but not in a way

that affects this observation. (Namely, they shift SCS to SCS + Sinst, but the instanton

generated terms are independent of time.)

An example of this is given by the mirror of the A-model on the (trivial) background

X∗ = C
2 × C

∗, with the S1 in L mapped to the circle in C
∗. In this case, the mirror is

H(x, p) = ep − 1 ,

where the holonomy around the S1 maps to x by mirror symmetry. In this case there are

no world-sheet instantons and (2.6) leads to the trivial result

Ψ(x) = 1,

which is the correct answer for the Chern-Simons partition function on L.

A less trivial example corresponds to the A-model on X∗ = C
3. This maps to the local

threefold geometry with spectral curve [18]2

H(x, p) = ep + ex − 1 = 0 .

The equation (2.6) now leads to the wave-function given by the quantum dilogarithm

Ψ(x) =

∞
∏

n=0

(1− exqn) ,

where we defined q := egs , as the solution capturing higher loop corrections for the open

topological string. This is mirror to the A-model partition function, when one includes

instanton corrections along with the Chern-Simons functional [16, 19].

It was found in [11] that this simple picture is also true for all the B-model geometries

where Σ is a genus zero Riemann surface. In terms of the mirror A-model, this corresponds

to geometries with no closed 4-cycles. However, it was also found in [11] that the picture

is more complicated if Σ is a higher genus Riemann surface. Namely, in general, Ψ(x) is a

zero eigenstate of an Hamiltonian H ′(x, p) which is not the classical Hamiltonian H(x, p)

but receives gs corrections. In other words we have a quantum Hamiltonian ground state

H ′(x, p)Ψ(x) = 0, where H ′(x, p) = H(x, p) +O(gs) .

2Note that the fact that only terms ∼ enx+mp with n,m integer appear in the equations for B-model

mirrors is related to the fact that x and p are variables mirror to holonomies on T
2, which are clearly

periodic.

– 7 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
9

We do expect such quantum corrections, since in general there are already normal ordering

ambiguities in replacing the classical variables p, x with the quantum operators. This shifts

the question of the utility of this approach to a better understanding of how to compute

corrections to H, which was not addressed in [11], but will be answered later in this paper.

2.2 Branes and period shifts

Besides the calculation of quantum corrections, there is a further issue to address. So far

we have only discussed the partition function of the topological string in the presence of

a brane. How can we obtain the partition function of the closed topological string in the

absence of the brane?

These two issues are in fact closely related. It turns out that the insertion of branes

affects the closed string moduli [11]. The meromorphic 1-form (2.2) acquires a first order

pole with residue gs at the position x0 where a brane was inserted, i.e.,

λ ∼ gs
x− x0

dx+ . . . .

This implies that, if we measure the change in the period of λ around the position of the

brane, we find that we pick up a period

∮

x0

λ = gs . (2.8)

The content of this statement is that topological branes source the topological gravity fields,

i.e., they change the background geometry. This interpretation is in particular supported,

in the mirror setup, by the large N duality of the topological A-model on the (singular)

conifold with the resolved conifold T ∗S3 [20]. Namely, putting N branes on S3 changes

the Kähler class surrounding the S3 by Ngs.

In [11] this statement was used to provide a quantum definition of D-branes in the

closed string field theory of the B-model. Namely, fluctuations of the one-form λ corre-

sponding to quantum fluctuations of complex structures on X are captured by the so-called

Kodaira-Spencer scalar field φ on Σ as

δλ = ∂φ .

Since φ is a closed string field, its two point functions are proportional to g2s , i.e.,

φ(x)φ(x′) ∼ g2s ln(x− x′) + . . . .

Moreover, deformation of the geometry in (2.8) is consistent with the brane insertion

operator ψ(x) being a fermion

ψ(x) = eφ(x)/gs ,

related to φ by bosonization. This is also consistent with the period

∮

x0

∂φ ψ(x0) = gsψ(x0) .

– 8 –
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Furthermore, if we define φ(x) so that it includes the classical piece corresponding to
∫ x

λ =
∫ x

p dx, then naturally (2.4) is the classical piece of the insertion of the operator

ψ(x) at the point x on the Riemann surface. The fact that the B-brane is a fermion of

the Kodaira-Spencer scalar field φ(x) has been used in [11] to compute the exact B-model

amplitudes on some local Calabi-Yau geometries.

The change of moduli due to the insertion of branes means that if we consider a

brane/anti-brane pair, and take one of the branes around a 1-cycle γ on Σ before bringing

it back to annihilate with the other brane, we have changed in the process the periods of

λ along any other 1-cycle α by the amount

δγ

∫

α
λ = gs〈α, γ〉 ,

where 〈α, γ〉 denotes the intersection product of the two 1-cycles.

In particular, if we denote by aI ’s the periods of the A-cycles in the Riemann surface

Σ and decompose the cycle γ into a combination of symplectically paired B-cycles, i.e.,

γ =
∑

mIB
I , 〈AI , B

J〉 = δJI ,

we find that the closed string partition function is shifted by

Zclosed(~a) → Zclosed(~a+ gs ~m) ,

where ~a denotes the collection of the Kähler moduli. This implies that once we know the

partition function of topological strings in the presence of branes, we can in principle find

the closed string partition function by its variation with respect to the closed string moduli,

at least for shifts of aI by integral multiples of gs.

Interesting as these statements are, they leave a gap in their applicability. This is

because for general cases we cannot compute the brane wave-function Ψ(x), since we do

not know how to compute the quantum corrections to the quantum Hamiltonian H(x, p).

It turns out that these problems get remedied when we consider a one-parameter de-

formation of topological strings, inspired by the related deformation of gauge theory

partition functions [1].

3 Refined topological strings

There exists an interesting one-parameter extension of topological strings in the case of

non-compact Calabi-Yau backgrounds. Denoting this parameter by β, the extension can

be combined with the usual string coupling constant gs into two parameters ǫ1, ǫ2 defined by

ǫ1 = −gs
√

β, ǫ2 = gs/
√

β . (3.1)

The standard topological string corresponds to the special case β = 1, where we have

− ǫ1 = ǫ2 = gs . (3.2)

– 9 –
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However, unlike as for usual topological string theory, we do not yet have a world-sheet

description of the refined topological string with generic extra parameter β. Nevertheless,

in various cases we do have a definition in terms of space-time physics. Let us now review

the different definitions.

In the topological A-model we can give a general definition for this one-parameter

deformation in terms of the partition function of target space physics. Assuming mirror

symmetry is general, this would be a working definition for the topological B-model as well.

The extension in the A-model case is accomplished by lifting to M-theory. The addition

of an extra dimension closely parallels the construction of Nekrasov of Ω-backgrounds in

N = 2 gauge theories. In particular, when the Calabi-Yau geometry engineers a four-

dimensional gauge theory, the computation of the target space partition function can be

captured by the instanton calculus of [1]. More generally, the one-parameter extension of

the topological string has a space-time analogue which is a global N = 2 supersymmetric

system in four dimensions.

In the next subsection we will first review the definition of A-model topological strings

in terms of M-theory and show how this definition can be extended to the cases where

the Calabi-Yau is non-compact. Then we will relate this to the spectrum of BPS states

in five dimensions. We then connect this picture to Nekrasov’s definition in the special

case where the Calabi-Yau engineers a five-dimensional gauge theory and briefly comment

on this extension for a general global N = 2 system. Finally, we discuss a direct B-

model definition of this extension when the topological string can be realized in terms

of matrix models.

3.1 The A-model, its M-theory lift and deformation

The partition function of the topological A-model on a Calabi-Yau X is equal to the

partition function of M-theory on the space [21]

X × S1 × TN ,

where TN is the Taub-NUT space, viewed in complex coordinates z1, z2 . Furthermore,

the Taub-NUT space is twisted along the S1, in the sense that going around the circle

rotates the coordinates z1, z2 by

z1 → eiǫ1z1, z2 → eiǫ2z2 .

In order to preserve supersymmetry we need ǫ1 + ǫ2 = 0 , and we find (3.2). The refined

topological string is obtained by relaxing this constraint on the ǫα. However, to do so while

preserving supersymmetry, we need an extra U(1)R symmetry acting on X. This can only

be accomplished with X being non-compact, a condition we will assume from now on.

This partition function is not easy to compute, but can be related to the spectrum of

BPS particles in five dimensions [22, 23]. Namely, the corresponding M-theory partition

function simply computes the BPS indices

N
~d
jL,jR

,

– 10 –
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of BPS states of M2 branes wrapping 2-cycles of X of class ~d ∈ H2(X,Z), and with

SO(4) = SU(2)L × SU(2)R spin quantum numbers jL, jR. Decomposing the corresponding

field into modes

Φ(z1, z2) =
∑

n1,n2

an1,n2z
n1
1 zn2

2 ,

the U(1)L ×U(1)R ⊂ SU(2)L × SU(2)R acts on this by

(z1, z2) → (ei(θL+θR)z1, e
i(−θL+θR)z2) .

The BPS partition function is defined as a trace in the Hilbert space HBPS of a gas of

spinning M2 branes, weighted by their total spin and charges, i.e.,

ZBPS = TrHBPS
(−1)2(mL+mR)q2mL

L q2mR
R e−~a·~d ,

where we have used (mL,mR) to denote the spin content (j3L, j
3
R) of the highest spin state

in a given BPS multiplet. In this case, the Hilbert space is just the Fock space of a single

M2 brane and hence the partition function takes the form3

ZBPS=
∏

~d, jL, jR

jL
∏

mL=−jL

jR
∏

mR=−jR

∏

n1,n2≥0

(

1−e−ǫ1(mL+mR+ 1
2
+n1)eǫ2(mL−mR+ 1

2
+n2)e−~a·~d

)N
~d
jL,jR ,

where qL = e−
ǫ1−ǫ2

2 , qR = e−
ǫ1+ǫ2

2 and ~a = (a1, a2, . . . ) the set of Kähler parameters. Note

that in addition to the intrinsic angular momenta of the particle in five dimensions, the

orbital angular momenta contribute to jL,R as well.

In the special case of qR = 1 we effectively trace over the SU(2)R quantum numbers.

In this limit, the BPS partition function equals the topological string partition function,

and we have the usual relation between the topological string and M-theory amplitude.

For the refined version of the topological string we define

Ztop(~a; ǫ1, ǫ2) = ZBPS(~a; ǫ1, ǫ2) .

Equivalently, we could have obtained FBPS = logZBPS from a one-loop Schwinger

type computation, which involves integrating out M2 brane particles in a gravi-photon

background parameterized by ǫ1 and ǫ2 that is no longer self-dual [23]. This yields

FBPS(~a; ǫ1, ǫ2) =
∑

~d

∞
∑

jL,jR=0

∞
∑

k=1

N
~d
jL,jR

e−k~a·~d

k

×

(

e−(ǫ1+ǫ2)kjR + . . .+ e(ǫ1+ǫ2)kjR
)(

e−(−ǫ1+ǫ2)kjL + . . .+ e(−ǫ1+ǫ2)kjL
)

(ek
ǫ1
2 − e−k

ǫ1
2 )(ek

ǫ2
2 − e−k

ǫ2
2 )

.

(3.3)

For some, but not all choices of X, this will also have a gauge theory interpretation in

terms of a five-dimensional gauge theory on a circle.

3Strictly speaking, this statement is true only with large three-form fluxes turned on [24]. See also [25].
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Branes in the refined A-model topological string. One can extend the above for-

mulation to include A-branes. The usual A-type brane lifts in M-theory to a M5 brane

wrapping the mirror Lagrangian 3-cycle L in X, and the C×S1 subspace of TN ×S1 [19].

A similar consideration also applies to the refined version of topological strings. In this

case we have two inequivalent types of branes, depending on which of the cigar subspaces

of TN , i.e., the z1- or the z2-plane, the M5 brane wraps. For general ǫα’s, the symmetry

between z1 and z2 is broken and the two types of branes are no longer on equal footing.

At low energies, the theory on the brane has N = 2 supersymmetry in three dimensions.

After introducing A-branes, in addition to M2 brane particles wrapping closed holomor-

phic 2-cycles in X, there are also M2 branes wrapping holomorphic disks in X and ending

on L. The branes break the local SO(4) rotation symmetry to SO(2)1 × SO(2)2. Com-

bining the SO(2)L subgroup of it together with the SO(2) R-symmetry, we still have an

SO(2)L × SO(2)R = U(1)L ×U(1)R symmetry available [26]. In the presence of the branes

we consider the BPS partition function of open and closed M2 branes, keeping track of

their spin and the relative homology class in H2(X,L). The latter corresponds to the fact

that the open M2 branes are charged under the world-volume (magnetic) gauge field on

the M5 brane (see [19] for more details). In this way we can define the open BPS partition

function analogously to the closed one. We refer to the partition function in the presence

of the two different types of branes, corresponding to the M5 brane wrapping the zα=1,2

plane, as Ψα.

3.2 Ω-deformation of N = 2, d = 4 theories

The so-called Ω-background for four-dimensional N = 2 supersymmetric theory, where the

parameters ǫ1,2 correspond to the equivariant U(1)× U(1) action on the Euclidean space-

time C
2 ∼= R

4, has been considered in [1, 27, 28], based on earlier work [29, 30]. More

precisely, one considers a deformation of the theory where one replaces the adjoint-valued

scalars Φ by

Φ → Φ+
∑

α

ǫαzα
D

Dzα
, (3.4)

corresponding to adding generators of infinitesimal rotation along the two complex planes

of C2 (with coordinates z1,2), accompanied by an R-symmetry twist. Since Φ gives masses

to charged fields in the theory, this deformation effectively adds a mass to the modes of

the fields in the theory according to their transformation properties under the U(1)×U(1)

action. The partition function of the theory in this background defines a refined partition

function ZN=2(ǫ1, ǫ2).

When the N = 2 theory in question is a gauge theory, the Ω-background allows one

to compute the partition function explicitly by performing integrals over the instanton

moduli space. This applies as well to five-dimensional gauge theory compactified on a

circle. Furthermore, this maps to our M-theory construction above in the cases where

the local Calabi-Yau X engineers the corresponding 5d gauge system, and thereby makes

contact with the refined A-model topological string. In fact, it was explicitly verified

in [31, 32] that in the special case (3.2) the partition function ZN=2(ǫ1, ǫ2)|−ǫ1=ǫ2=gs agrees

with the topological string partition function Ztop(gs) on the corresponding Calabi-Yau
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manifold. Moreover, it was checked that a refined version of the topological vertex not

only reproduces the SU(2)L × SU(2)R quantum numbers of BPS states, but it also agrees

with the full Nekrasov partition function of the N = 2 theory [3].

This viewpoint on deformation also extends to the open topological string. The A-

branes can be given a purely gauge-theoretic formulation as surface operators, studied

recently in [33–36], for example. For general deformation ǫα’s, the symmetry between z1
and z2 is broken and we obtain two types of branes. The breakdown of symmetry can

already be seen at the classical level.

From the string theory perspective, the surface operators are described by the branes

of the theory. The world-volume theory on the brane wrapping the z1,2-plane starts out

as an N = (2, 2) supersymmetric theory in d = 2 with a superpotential W (x), where x

is a chiral superfield. Since the equivariant action is in essence a kind of Kaluza-Klein

reduction that effectively gives the zα plane a volume proportional to 1/ǫα, the classical

partition function of the brane wrapping the zα plane becomes

ψα,class.(x) = exp

(

W (x)

ǫα

)

, α = 1, 2 .

In the case of the B-model topological string, as discussed in section 2, the corresponding

superpotential is identified with

W (x) = −
∫ x

p(x′)dx′ ,

leading to a WKB-type wave-function

ψα(x) = exp

(

− 1

ǫα

∫ x

p(x′)dx′
)

, (3.5)

for the two types of branes wrapping the zα-plane.

3.3 The β-ensemble as a refinement of the topological B-model

The above discussion was geared towards A-model topological strings. By employing mirror

symmetry it also gives us an answer for the B-model in principle. However, given the

simplicity of the B-model, it is convenient to give a direct definition of the refined B-

model. Indeed a proposal for such a definition has been put forth in [2] in terms of a

certain deformation of matrix models.

Large N matrix models provide an alternative description of topological B-models on a

class of geometry and an excellent testing ground for the ideas we just reviewed. In view of

its importance in the rest of the discussion, we will now review the relation between random

matrices and topological strings. We will start by first reviewing the usual B-model and

focus on the refined case afterwards.

For the type of geometries described by the local curve

H(x, p) = −p2 +W ′(x)2 , (3.6)
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withW (x) a degree g+2 polynomial, there is a conifold singularity near each critical point

of the potential W (x), which we can blow up into a P
1. The B-model topological string in

this background has a matrix model description [37]. Its partition function is given by

Z =

∫

dΦ e
− 1

gs
TrW (Φ)

, (3.7)

expanded around a given distribution NI of eigenvalues of the matrix Φ among the g + 1

critical points of the potential W (x).

This matrix model can be derived from the B-model [11, 37] as follows. If we cut the

geometry into two halves, corresponding to writing (3.6) as

−H(x, p) =
(

p+W ′(x)
)(

p−W ′(x)
)

= HL(x, p)HR(x, p),

the branes on the P
1 are obtained by gluing non-compact branes on HL,R(x, p) = 0 across

their boundary. From HL, with branes inserted at x = zi for i = 1, . . . N , we get4

〈ψ(z1)ψ(z2) . . . ψ(zN )〉L = e
− 1

2gs

∑

i W (zi)
∏

j<k

(zj − zk) . (3.8)

The interaction term comes from the two-point functions of ψ(zi) with each other, while

the potential term is the wave-function of a single D-brane as we explained before. Since

this is a genus zero Riemann surface, the result is exact as we will argue later. Similarly,

from HR(x, p) we end up getting another copy of this, as the orientation of the branes is

naturally opposite. Setting the values of zi equal on both sides and integrating them, we

indeed obtain the partition function (3.7), which reads in the eigenvalue basis

Z =

∫

dNz
∏

i<j

(zi − zj)
2e

− 1
gs

∑

i W (zi) .

It was conjectured in [37, 38] that the geometry with the branes go through a transition

to a smooth geometry where the P
1’s are replaced by S3’s with size

µI = gsNI .

More precisely, we now have the geometry given by

H(x, p) = −p2 +W ′(x)2 + f(x) , (3.9)

where the correction (deformation) term f(x) is a degree g polynomial and determined by

the distribution

N = N1 + . . .+Ng+1 ,

of the N branes over the g + 1 P
1’s given by the critical points of W (x). The open-closed

duality states that the matrix model, in the large N ’t Hooft limit

N → ∞, gs → 0 , Ngs fixed ,

4The normalization here is such that after gluing we are in accord with the normalization of (3.5).
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gives a description of the B-model on the geometry (3.9) after the transition. The curve

Σ : H(x, p) = −p2 +W ′(x)2 + f(x) = 0 , (3.10)

is now the spectral curve of the matrix model, from which the higher gs correction of the

matrix model partition function can be computed [39].

From the same argument, we can also deduce that the insertion of a non-compact

brane corresponds to the insertion of the characteristic determinant on the matrix model

side and leads to the brane partition function

Zbrane(x) = 〈ψ(x)〉 = e
− 1

gs
W (x)

∫

dΦ e
− 1

gs
TrW (Φ)

det(Φ− x) . (3.11)

The generalization of the above picture to the refined background is proposed in [2]. For

β 6= 1, or ǫ1+ǫ2 6= 0, the matrix model obtains a different measure while retaining the same

potential. The generalization simply changes the power of the Vandermonde determinant

to 2β, together with a rescaling of the coupling constant in front of the potential W , i.e.,

Z =

∫

dNz
∏

i<j

(zi − zj)
2βe

−
√
β

gs

∑

i W (zi) .

In terms of the variables ǫ1, ǫ2 this translates into

Z =

∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2 e

− 1
ǫ2

∑

i W (zi) . (3.12)

In particular, for logarithmic potentials relevant for the discussion on relations to N = 2,

d = 4 gauge theories, the β-ensemble matrix model integral takes the form of a Coulomb

gas representation of the conformal blocks of Liouville theory with background charge

given by β.

This deformation can also be understood from our space-time perspective. Namely, if

we consider branes wrapping the zα plane in the space time C
2 rotated by ǫα, the classical

partition function becomes (3.5), instead of (2.4). So, in deriving the matrix model, as we

reviewed in section 2, we expect to simply replace the fermion ψ(x) = exp(φ(x)/gs) by the

operators

ψα(x) = exp(φ(x)/ǫα), α = 1, 2 . (3.13)

On the other hand, the scalar field φ(x) still has the same correlation functions as before

(this is the essence of the Coulomb gas formalism), which is consistent with the fact that

the quantum mechanics of the closed string is unchanged, as we will later discuss in the

context of holomorphic anomaly. This means that the correlator (3.8) computing the

partition function of branes on the halved geometry changes to

〈ψ2(z1)ψ2(z2) . . . ψ2(zN )〉L =
∏

i<j

(zi − zj)
g2s/ǫ

2
2e

− 1
ǫ2

∑

i W (zi) , (3.14)

which leads to the partition function (3.12) upon gluing, using the fact that g2s = −ǫ1ǫ2.
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From the saddle point equation

W ′(zi) = −ǫ1
∑

j 6=i

1

zj − zi
,

we see that the relevant ’t Hooft coupling is given by

µ = ǫ1N .

Hence, the amount by which the branes change the geometry around them now depends

on the type of the brane. More generally, from (3.13) we expect that inserting an ǫ1(ǫ2)

brane at a point x0 on the Riemann surface deforms the geometry by ǫ2(ǫ1), i.e.,

∮

x0

∂φ ψα(x0) =
g2s
ǫα
ψα(x0) . (3.15)

We can also easily describe non-compact D-branes for this matrix model. The two

different kinds of branes

ψ∗
α(x) = exp(−φ(x)/ǫα) ,

correspond in the matrix model language to the operators

e
1
ǫα

W (x) · det(x− Φ)ǫ1/ǫα , α = 1, 2 ,

respectively. Such an explicit realization of branes in the matrix model allows us to study

them very directly. We will come back to this in the next section, where we will derive the

exact, time-dependent Schrödinger equation that they satisfy.

Before we go on, note that we can rewrite the partition function (3.12) as

Z =

∫

dNz
∏

i<j

(zi − zj)
2 e

− 1
ǫ2

(

∑

i W (zi)+(ǫ1+ǫ2)
∑

i<j log(zi−zj)
)

, (3.16)

and view the change of the measure from the usual Vandermonde squared as adding a

non-local operator with a coupling constant

~ := ǫ1 + ǫ2 .

Writing the β-ensemble partition function as in (3.16) makes manifest that, apart from the

usual genus expansion in gs, the free energy F = logZ has another expansion in terms of

the parameter ~ defined above, i.e., the double expansion5

F(~a; ǫ1, ǫ2) =
∑

g≥0,ℓ≥0

F (g,ℓ)(~a) g2g−2
s ~

ℓ . (3.17)

The expansion (3.17) and its recursion relation has been studied in [40–42].

5Note that the refined matrix model free energy (3.17) generally possesses an expansion into even and

odd powers of ~. From the M-theory perspective reviewed in section 2, we expect that the refined topological

string partition function actually possesses an expansion into even powers of ~ only. This simply comes

from the fact that the BPS states fit into complete spin multiplets (3.3). Apparently, the β-ensemble breaks

this symmetry. However, as anticipated in [5], the symmetry can be restored via an appropriate redefinition

of the (deformation) parameters, as we will see later both in the general discussion and in explicit examples.
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3.4 Refinement, topological strings and quantum mechanics

One striking aspect of topological string theory is that quantum mechanics makes two in-

dependent, though related, appearances in the theory. On the one hand, as we reviewed

above, the open topological string partition function is a wave-function with the Riemann

surface as the level set of the Hamiltonian. As we will see later, this continues to be true

after we turn on the two independent parameters ǫ1,2. On the other hand, the holomor-

phic anomaly of [43] implies that the closed topological string partition function is also a

wave-function. In other words, it is a state in the Hilbert space obtained by quantizing

H3(X,C) [44]. This remains true for the refined topological string [4]. As we will explain,

this fact can be understood from the way branes deform the geometry and the monodromy

transformation of the brane partition function. Moreover, in section 5 we will see how

the monodromy properties of the open topological string partition function can be used to

derive differential (or difference) equations that the closed string partition satisfies.

Given a symplectic basis ofH3(X,Z) with AI∩BJ = δJI , the periods of the holomorphic

three-form ω parameterize the phase space H3(X,C). In our case, this is equivalent to

periods of the one-form λ on the Riemann surface Σ

aI =

∮

AI

λ , aJD =

∮

BJ

λ .

Classically, aID and aJ are not independent, but satisfy the special geometry relation

aJD =
∂

∂aJ
F (0) , (3.18)

in terms of the genus zero topological string amplitude F (0). On the exact, unrefined,

topological string partition function

Ztop(~a; gs) = exp

(

∑

g

F (g)(~a) g2g−2
s

)

,

the periods aI , a
J
D are realized as canonically conjugate operators,

[âJD, âI ] = g2sδ
J
I , (3.19)

where we used hats to distinguish the operators from their expectation values. In particu-

lar, (3.18) is a semiclassical approximation to this.

The above quantum equation as well as its generalization to the refined topological

string can be derived by considering the way the branes deform the geometry. As we have

seen in section 3.3, an ǫα-brane deforms the period of ∂φ around any cycle surrounding it

by (3.15).

Consider creating an ǫα-brane/anti-brane pair at a point on Σ, and taking one of the

branes around a cycle γ before annihilating with each other. Taking the branes around

γA =
∑

I ℓ
IAI does not change the expectation value

aI =

∮

AI

∂φ .
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(Note that
∮

γ ∂φ is the quantum generalization of
∮

γ pdx.) However, such a monodromy

around γA changes the phase of the partition function by

MγA : Ztop(~a) → exp

(

1

ǫα

∑

I

ℓIaI

)

Ztop(~a) ,

since this change of phase is induced by the change of phase of

〈. . . exp(−φ(x)/ǫα)〉 ,

as we transport the brane around. This is to be contrasted with the situation in which we

take the branes around a γB =
∑

I mIB
I cycle, i.e.,

MγB : Ztop(~a) → Ztop(~a+
g2s
ǫα
~m) = exp

(

g2s
ǫα

∑

I

mI
∂

∂aI

)

Ztop(~a) ,

as a consequence of (3.15), generalizing the shift reviewed in section 2.2. Now, consider

writing Z in the terms of the dual variables aID associated with the B-cycles instead. In this

dual basis the monodromy around the cycle γB acts on Z as a multiplication operator by

exp(
∑

I
1
ǫα
mIa

I
D), and that around the cycle γA becomes a shift operator. The consistency

of the two dual pictures requires aID to be realized as

aID = g2s
∂

∂aI
,

acting on the partition function in the aI -basis. We conclude that the commutation rela-

tion (3.19) between the operators aI , a
J
D also holds for the refined topological string, and

therefore the closed string partition function Z is indeed a wave-function on H3(X,C)

for arbitrary ǫ1,2. The only effect of the β deformation is to change the unit of the shift

and hence the form of the wave-function. This is consistent with the observation made

in [4, 5] that in known cases the refined topological string partition function still satisfies

the holomorphic anomaly equation of [43].

4 Matrix models and Schrödinger equations

In this section we will show that we can derive from matrix models a multi-time dependent

Schrödinger equation for arbitrary β, satisfied by a brane probing a Riemann surface (3.10)

with

W (x) =

g+2
∑

n=0

tnx
n , (4.1)

and f(x) a polynomial of degree g. We will sometimes take g to infinity, so that W (x)

becomes a formal sum. The relation between quantum geometry and the β-ensemble matrix

model has been discussed in [45–47] in terms of the resolvent of the matrix model. For us,

the natural object to study is the brane partition function for which the quantum geometry

of the matrix model becomes manifest.
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We will also see that the time-dependent Schrödinger equation satisfied by the brane

wave-function can be rephrased in the form of the BPZ equation [48] satisfied by a correla-

tion function in two-dimensional CFT with a degenerate operator insertion, similar as for

surface operators in the Liouville context [12].

4.1 Time-dependent Schrödinger equation

From section 3.3, inserting an ǫα-brane the refined topological string partition function on

this geometry becomes

Zα(x) = e
1
ǫα

W (x)
∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2

∏

i

(x− zi)
ǫ1/ǫα e

− 1
ǫ2

∑

i W (zi) . (4.2)

To derive the equation satisfied by (4.2), consider differentiating it with respect to x. For

simplicity of the derivation, we will remove the classical piece e
1
ǫα

W (x) for the time being

and restore it later. Moreover, we will denote by h = ǫ1/ǫα the power of the determinant

det(x− Φ) =
∏

i(x− zi). Different values of h correspond to different types of branes.

It is easy to see that differentiating is the same as inserting the following function

inside the intergral

∂2

∂x2
=
∑

i,j

h2

(x− zi)(x− zj)
−
∑

i

h

(x− zi)2

=
∑

i<j

2h2

(x− zi)(x− zj)
+
∑

i

h2 − h

(x− zi)2
.

At the same time, from the loop equation

0 =
N
∑

i=1

∫

dNz
∂

∂zi





1

x− zi
O(z) e

− 1
ǫ2

∑

j W (zj)
∏

j<k

(zj − zk)
−2ǫ1/ǫ2



 , (4.3)

with the choice of operator O =
∏

i(x− zi)
h, we obtain the identity

∑

i

1− h

(x− zi)2
− 1

ǫ2





∑

i

W ′(zi)

x− zi
+ 2ǫ1

∑

i<j

1

(x− zi)(x− zj)



 = 0 ,

under the integral sign. As we will mention in more detail later, the above loop equation

has the meaning of the Ward identity of a quantum symmetry of the matrix theory. In

order to have a simple operator equation, we would like to cancel the terms
∑

i
1

(x−zi)2
and

∑

i<j
1

(x−zi)(x−zj)
. The above equations show that this is possible exactly when h takes the

two values h = ǫ1/ǫα, corresponding to our two types of branes.

Reincorporating the classical piece e
1
ǫα

W (x) and putting everything together, we find

that Zα satisfies an operator equation (under the integral) of the form

− ǫ2α∂
2
x +W ′(x)2 + ǫαW

′′(x) + f(x) = 0 , (4.4)
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with

f(x) = ǫ1

N
∑

i=1

W ′(zi)−W ′(x)

zi − x
.

The effect of inserting f(x) is the same as acting by a linear differential operator

f̂(x) = g2s

g
∑

n=0

xn∂(n) ,

with

∂(n) =

g+2
∑

k=n+2

ktk
∂

∂tk−n−2
.

Here we differentiate the matrix model partition function with respect to the coefficients

tk of the potential. We have also set ∂
∂t0

= − N
2ǫ2
.

In summary, we find that the brane partition functions Zα(x) satisfy a linear differential

equation
(

−ǫ2α∂2x +W ′(x)2 + ǫαW
′′(x) + f̂(x)

)

Zα(x; t) = 0 , α = 1, 2 . (4.5)

We emphasize that we have not taken any limits here — the equation is exact.

This equation is in fact a multi-time dependent Schrödinger equation with the Rie-

mann surface playing the role of a time-dependent Hamiltonian. In order to see this, we

can proceed as follows. To begin with, Zα(x) contains both open and closed string contri-

butions, since it corresponds to an unnormalized expectation value. Correspondingly, the

time-dependent Schrödinger equation we got has no reference to filling fractions, or the

choice of the background, as they do not enter the matrix integral explicitly. For many

purposes, the normalized expectation value Ψα(x) given by

Ψα(x) =
Zα(x)

Z
,

is a more natural quantity. Here Z := Z(µI ; ǫ1, ǫ2) with µI := NIǫ1 the ’t Hooft couplings,

is the matrix model partition function without the brane in the sector corresponding to

specific filling fractions

N → (N1, . . . , Ng+1) ,

around which we expand in the ’t Hooft expansion. The normalization induces explicit

dependence on the background. It follows that Ψα(x) is the purely open string partition

function and satisfies

(

−ǫ2α
∂2

∂x2
+W ′(x)2 + f(x) + g2s

g
∑

n=0

xn∂(n)

)

Ψα(x) = 0 , (4.6)

where

f(x) =

g
∑

n=0

xnbn , (4.7)
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is now a polynomial with some coefficients bn that parameterize the complex structure

moduli, and thus implicitly contain the choice of the background. More precisely, writing

logZ = Fclosed/g
2
s , we have that

bn = ∂(n)Fclosed + ǫα(n+ 1)(n+ 2)tn . (4.8)

Notice that we have incorporated the term proportional toW ′′(x) into our definition of the

polynomial f(x). This shift has its origin in the ordering ambiguity in quantization and

corresponds to the 1
2~ shift in the ground state energy of the harmonic oscillator in case of

the Gaussian potential.

To understand the meaning of this, consider the planar limit

ǫ1 → 0 , NI → ∞ with µI = NIǫ1 fixed .

We immediately see from (4.6) that a particularly interesting limit is to take this planar

limit while keeping

ǫ2 = ~ fixed .

In this limit the time dependence of the differential equation (4.6) drops out and we are

left with an interesting time-independent Schrödinger equation for the ǫ2-brane. We will

devote section 5 to the discussion of this limit.

On the other hand, the theory becomes classical if we in addition take ǫ2 to zero. In

this limit, the Schrödinger equation becomes the Riemann surface equation (3.9),

−p2 +W ′(x)2 + f(x) = 0 .

Here the coefficients bn are fixed in terms of the filling fractions, either by requiring

∮

AI

p dx = µI = NIǫ1 ,

around the cuts that open up from the critical points of the potentialW (x), or equivalently,

from the classical pre-potential F (0)(µ) by bn = ∂(n)F (0). For general ǫ1, ǫ2, the Riemann

surface becomes quantum, as p becomes an operator

p = ǫα
∂

∂x
.

Moreover, the times begin to flow, as the Schrödinger equation is time-dependent. The bn
started out as complicated ǫα dependent functions of the ’t Hooft couplings µI , determined

from (4.8). However, since they parameterize the closed string moduli space equally well

as the µI do (since there are as many of them as there are cuts), we can use them to

parameterize our ignorance of the (in general) complicated closed string amplitude that

underlies them. Later on, we will see that from the solutions to the Schrödinger equation

Ψ(x; {bn}) we can in fact determine Fclosed, at least in the NS limit.
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4.2 Virasoro constraints and hidden conformal symmetry

The matrix model has a conformal symmetry, which is well known in the unrefined case,

and which survives refinement. It leads directly to the Schrödinger equation.

Just as in the usual matrix model [49], in the β-ensemble matrix model with polynomial

potential W (x) we can identify the scalar field as

φ(x) = g−1
s W (x)− gs

ǫ2
Tr log(x− Φ) .

Using the operator equation

TrΦn = −ǫ2
∂

∂tn
,

we get the standard mode expansion of a free chiral boson

∂φ(x) = g−1
s

∞
∑

k=1

ktkx
k−1 + gs

∞
∑

k=0

x−k−1 ∂

∂tk
.

The symmetry of the matrix model corresponding to re-parametrizing the eigenvalues

hides a conformal symmetry. Concretely, the Ward identity

0 =
N
∑

i=1

∫

dNz
∂

∂zi

(

1

x− zi
O e

− 1
ǫ2

(

∑

j W (zj)+ǫ1
∑

k<j log(zk−zj)
))

, (4.9)

ensures the invariance of physical quantities under reparametrizing the eigenvalues via

arbitrary polynomial functions.

Let T (x) be the energy-momentum tensor

T (x) =
∑

k

x−k−2Lk =: ∂φ(x)∂φ(x) : +
ǫ1 + ǫ2
gs

∂2φ(x) ,

where the second term reflects the presence of a background charge Q = (ǫ1 + ǫ2)/gs in the

corresponding conformal field theory. Indeed one can show that the operators Lk satisfy

the Virasoro algebra with a central charge given by Q. Using the formula for φ(x) we arrive

at the following expression for the energy-momentum tensor as an operator

g2sT (x) = ǫ1
∑

i

W ′(x)−X ′(zi)

x− zi
+W ′(x)2 + (ǫ1 + ǫ2)W

′′(x) .

Then one can show that the Ward identity satisfied by the partition function takes simply

the form of the Virasoro constraint satisfied by the ground state wave-function

Ln Z = 0 , n ≥ −1 .

Now we will turn our attention to the brane partition function. We will see that also

the Ward identity equation for the brane partition function can again be written in terms

of Virasoro constraints. But instead of the Virasoro ground state condition satisfied by

the closed partition function, the brane partition function satisfies equations analogous to
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the BPZ equations satisfied by the degenerate states corresponding to reducible represen-

tations of the Virasoro algebra. In particular, the two types of branes of the matrix model

exactly correspond to the two types of degenerate states in the Virasoro minimal model

and Liouville conformal field theory.

The comparison with the conformal Ward identity is analogous to the vacuum equation

discussed above. The only difference is, just as the energy-momentum tensor acts on the

degenerate insertion as well as other operator insertions, in the matrix model energy-

momentum tensor we should use the effective potential W̃ (y) perturbed by the brane

insertion at location x and which is related to the original potential W (y) as

W̃ (y) =W (y)− ǫ1ǫ2
ǫα

log(x− y) .

This correction gives an extra term

1

2πi

∮

W̃ ′(y)2

y − x
dy =W ′(x)2 − ǫ1ǫ2

ǫα
W ′′(x) ,

in the operator

L−2(x) =
1

2πi

∮

dy
T (y)

y − x
.

Using the energy-momentum operator, the differential equation (4.5) can be written as

(

−ǫ2α∂2x + g2sL−2

)

Zα(x) = 0 . (4.10)

Notice that, upon a simple rewriting of the above equation as

(

b2∂2x + L−2

)

Z1 = 0 ,
(

b−2∂2x + L−2

)

Z2 = 0 , b2 =
ǫ1
ǫ2
, (4.11)

the Ward identity equation with a brane insertion takes the form of the BPZ equation

satisfied by a correlation function in two-dimensional CFT with a degenerate operator

inserted at location x.

5 Quantum Riemann surface and the NS limit

In section 4.1 we have seen that an interesting limit to consider in the β-ensemble matrix

model is when

ǫ1 → 0 with ǫ2 = ~ finite . (5.1)

In this limit, the ǫ1-brane decouples, as the corresponding coupling constant ǫ1 vanishes.

However, the coupling constant of the ǫ2-brane remains finite, and the time-dependent

Schrödinger equation (4.6) reduces to a time-independent Schrödinger equation

(

−p2 +W ′(x)2 + f(x)
)

Ψ2(x) = 0 , with [p, x] = ~ . (5.2)

This is the limit considered in [7] in the gauge theory context, and we will refer to it as the

NS limit.
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This section will be devoted to the study of refined topological strings in the NS limit.

Notice that in this limit we have g2s = −ǫ1ǫ2 → 0 and we infer that the refined topological

string theory becomes classical, since gs continues to play the role of the closed string

coupling constant in the refined theory, as we discussed in section 3. This constitutes a

significant simplification.

For the more general class of geometries introduced in section 2, we do not have

a similarly rigorous derivation of the Schrödinger equation satisfied by the brane wave-

function as for the (subclass of) geometries with matrix model duals. In particular, in

general we do not have enough input to settle the ordering ambiguities. However it is

natural to extend the methods of section 4 to the β-deformed Toda matrix model [2], and

show that the same result follows. Moreover, note that by taking the rank r of the Lie

algebra of the Toda matrix model arbitrarily high, we can get an arbitrarily high degree

polynomial for H(x, p). We leave the details to future work. Here, we will just assume

that what we derived from the matrix model is a general phenomenon. Namely, for a

B-brane on any Riemann surface Σ : H(x, p) = 0 arising from a Calabi-Yau geometry,

as described in section 2, we claim that in the NS limit the ǫ2-brane satisfies a time-

independent Schrödinger equation with the Riemann surface as the Hamiltonian, i.e.,

H(x, p)Ψ(x) = 0 , [p, x] = ~ , (5.3)

with Ψ(x) := Ψ2(x). We will test this idea in section 7 for several non-trivial toric geome-

tries and observe that the conjecture checks extremely well, despite the absence of a matrix

model and the presence of ordering ambiguities. A related observation that the gauge the-

ory instanton partition function in the presence of the surface operator becomes in the

NS limit the eigenfunction of the Hamiltonians of the corresponding quantum integrable

systems has been previously made in [12, 14, 50, 51].

In the next subsection, we show how the brane wave-functions transform under mon-

odromy in the NS limit. This will be useful to elucidate the observation of [7], relating the

instanton partition function and the energies of certain quantum integrable systems, as we

will explain in the following subsection.

5.1 Brane monodromies and the NS partition function

As discussed in sections 2.2 and 3.4, the monodromies of the exact wave-functions of the

branes put constraints on the closed topological string partition function. This is true

both for the usual as well as the refined topological string. Combined with the Schrödinger

equation (5.3) describing the probe ǫ2-brane wave-function, this gives important and com-

putable information about the closed string partition function in the NS limit.

Solving the Schrödinger equation for Ψ2(x) and writing

Ψ2(x) = 〈e−
1
ǫ2

φ(x)〉 = e
1
ǫ2

∫ x ∂S
,

we conclude that taking the brane around γB =
∑

I mIB
I induces a change in the phase

of the closed string partition function by

Ztop(~a) → e
1
ǫ2

∮

γB
∂S
Ztop(~a) . (5.4)
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On the other hand, as we have seen in section 3.4 on general grounds, taking an ǫ2-brane

around γB changes the closed string partition function by

MγB : Ztop(~a) → Ztop(~a+
g2s
ǫ2
~m) .

We also know that in the NS limit we have gs → 0 such that

Ztop(~a; ǫ1, ǫ2) = exp

(

1

g2s
F (0)(~a; ~) + . . .

)

, (5.5)

with the dotted terms subleading in gs. Hence, the finite shift due to the brane monodromy

becomes infinitesimal, so Ztop(~a) changes by

lim
ǫ1→0,
ǫ2=~

MγB : Ztop(~a) → exp

(

1

~

∑

I

mI∂aIF (0)(~a; ~)

)

Ztop(~a) . (5.6)

Consistency of the two equations (5.4) and (5.6) implies that as we take the ǫ2-brane

around a BI cycle, its phase changes by

∮

BI

∂S = ∂aIF (0)(~a; ~) . (5.7)

Note that this is accompanied by

∮

AI

∂S = aI(~) , (5.8)

by definition of what we mean by the AI -cycle.

We conclude that solving for the brane wave-function via (5.3) for a given classical curve

Σ : H(x, p) = 0 (which involes some arbitrary coordinates on the Calabi-Yau moduli space),

and computing the periods (5.7) and (5.8) via brane monodromies, defines a ‘quantum’

special geometry on the Calabi-Yau moduli space. This is an ~-dependent generalization

of the usual special geometry. In particular, the aI(~) periods obtained in this way are

good, ‘flat’ coordinates on the moduli space.

5.2 An explanation of the results of Nekrasov-Shatashvili

From the point of view of four-dimensional gauge theory, the NS limit (5.1) is clearly an

interesting one. In this limit, two of the four dimensions become effectively compactified

and we are left with a system that is effectively two-dimensional. Indeed, in [7] Nekrasov

and Shatashvili observed that the gauge theory in the Ω-background in this limit is con-

nected to various quantum integrable systems in a highly non-trivial way, a feature shared

by various two-dimensional supersymmetric gauge systems [29, 52–56]. The Bethe ansatz

equation for the corresponding integrable system turns out to coincide, according to [7],

with the critical points of the free energy in this limit. More precisely it is given by

exp

(

∂W(~a; ~)

∂aI

)

= 1 . (5.9)
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These equations determine aI given a g-tuple of integers nI by

∂W(~a; ~)

∂aI
= 2πinI .

The function W is related to the refined gauge theory partition function ZN=2(~a; ǫ1, ǫ2) at

arbitrary ǫ1,2 via

W = lim
ǫ1→0

ǫ1 logZN=2 .

Furthermore, the corresponding eigenvalues of the g commuting Hamiltonians can be ex-

pressed in terms of functions of the solutions aI to the above equation. The question to

address is why the partition function of a 4d gauge theory system in such a limit should

have anything to do with an integrable model. Here we would like to explain this fact.

The basic point will be the following: We can study an N = 2 gauge theory system in 4d

in two different ways. The first one uses a target space description while the second one

uses world-sheet techniques. The fact that these two approaches have to render the same

results will be the key to an explanation of the observation in [7]. A related consideration

has also appeared in [15]. See also [57].

In particular, the NS computation is the target space viewpoint, and the integrable

system emerges from the world-sheet viewpoint. The equality of ZN=2 and the refined

topological string partition function Ztop implies

W(~a, ~) = 1
~
F (0)(~a; ~) ,

where F (0)(~a; ~) is the genus zero refined topological string amplitude (cf., (5.5)).

Consider an N = 2 system given by a Seiberg-Witten curve Σ : H(x, p) = 0. We

assume, as in the rest of this paper, that the corresponding SW differential is λ = p dx.

This theory can be engineered in type IIB strings by considering a local CY given by a

hypersurface with the equation (2.1), or in M-theory in terms of M5 brane wrapping the

curve Σ in the complex two dimensional space (x, p) ⊂ C
2. Let us assume this curve has

genus g. Then we know that there are g deformations of this curve given by the g Coulomb

parameters aI=1,···,g. Let us further assume, as is the case in all the known examples, that

the aI dependence of H can be written as

H(~a;x, p) = H0(x, p) +

g
∑

I=1

fI(x, p)EI(~a) ,

for some parameters EI that are functions of the flat coordinates aI . The NS prescription

turns out to translate in this language to the statement that aI are fixed by the ‘critical

points’ of W and these specify the eigenvalues EI of the g commuting Hamiltonians.

The key idea to connect the integrable system to the refined topological string con-

siderations is a trick known as ‘separation of variables’ (SOV) [58]. Think about C
2 as a

complexified classical phase space. Consider g points on it given by (pI , xI), as I runs from

1, . . . , g. We can choose the moduli of the SW curve to pass through all these points. In

particular, this fixes all the EI in the above equation in terms of these g points:

EI = hI(p1, x1; p2, x2, . . .) ,
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for some functions hI that are readily computed from requiring that

H(pJ , xJ) = 0 , J = 1, . . . g .

It is not difficult to see that the defined hI are classically, as well as quantum mechanically,

commuting and thus define an integrable structure (i.e., we have g commuting Hamiltonians

hI for a 2g dimensional phase space (pI , xI)) [59]. Furthermore, it can be shown that in

the quantum theory the eigenstates of hI can be written using the separation of variables

in terms of single-particle wave-functions:

Ψ(x1, . . . , xg) =
∏

I

ΨI(xI) ,

where each ΨI(xI) is annihilated by H(x, p). Namely, they separately satisfy the equa-

tion (5.3). In the context of refined topological strings, we identify the corresponding wave-

functions Ψ(x) as the amplitudes for the branes in the refined open topological strings, in

the NS limit. We are almost finished except for the fact that the brane wave-functions are

holomorphic functions defined on the complex x-plane and not just on a real space. Hence,

the wave-functions could have monodromies and the question of their single-valuedness

arises. To study this issue, let us assume that we have chosen a real subspace as well as a

choice of the real coefficients hI in the SW geometry, such that H = 0 leads classically to

g physically allowed intervals in the x space. Let us call these intervals bI , for I = 1, . . . , g.

Note that the end-points of the classical intervals correspond to p = 0, and in the hyper-

elliptic case correspond to branch points of the SW curve over the x-plane. Let us assume

that the exact wave-functions have nI zeros in the interval bI . Consider cycles BI in the

complex plane encircling bI . These would correspond to a basis of B-cycles of the SW curve.

The fact that Ψ has nI zeroes on the interval bI implies that in the analytically continued

picture, surrounding the BI cycle picks up a phase exp(2πinI). This would also guarantee

that the restriction of Ψ to the real slice is single-valued and well-defined. On the other

hand, we have seen in the last section in (5.6) that taking the brane around the BI cycles

changes its phase by the derivative of the closed string partition function ∂IW(~a), i.e.,

Ψ(x+BI) = exp

(

∂W(~a; ~)

∂aI

)

Ψ(x) .

Putting the two together, we conclude that

∂W(~a; ~)

∂aI
= 2πinI ,

thus explaining the results of NS. This relation between the phase of the wave-function and

the integers nI is known as the ‘exact Bohr-Sommerfeld’ quantization rule. It generalizes

the usual rule to a form which is true to all orders in ~. In this context, the relevance of

the NS limit was also pointed out in [12, 60, 61].

The scaling nI ∼ βÑI . As a side remark, note that the quantization of nI for the

solutions of the Bethe-ansatz equations is reminiscent of the filling fractions in the context
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of matrix models. Let us consider a case where the topological string theory is dual

to a matrix model. More specifically, consider a dual matrix model with a number of

critical points, for which the above physical intervals bI become the cut around the critical

points in the eigenvalue plane C at large N . By considering this matrix model we are

effectively exchanging what we call the A- and the B-cycle. Let us denote by Ñ I the filling

fractions for each of the critical points. As noted before, the NS limit corresponds to taking

ǫ1 → 0, Ñ I → ∞ while keeping the ’t Hooft coupling µ̃I = ǫ1Ñ
I finite. The period around

the cycle BI encircling the cut is given by
∮

BI

p dx = Ñ Iǫ1 .

On the other hand, in the WKB approximation the Bethe-ansatz equation reduces to
∮

BI

p dx = nIǫ2 .

Thus in this limit we have

nIǫ2 = Ñ Iǫ1 ⇔ nI = Ñ Iβ .

Of course this relation is only valid to leading order in ~ = ǫ2.

6 Genus zero examples

In the context of matrix models we have shown that for the Gaussian the brane wave-

functions satisfy the exact equations H(x, p)Ψα(x) = 0, with Hamiltonian

H(x, p) = −p2 + x2 − µ ,

and [p, x] = ǫα. In particular, the time-dependent Schrödinger equation (4.6) has a trivial

time dependence that has been absorbed in the shift of the background. Therefore we

obtain the same equation in the NS limit as in the general case without taking the NS limit.

For multi-cut matrix models with higher degree potentials this is no longer true. In these

cases the genus of the spectral curve is greater than zero, and the multi-time dependence

of the Schrödinger equation captures the moduli of the higher genus curve, which are

absent for the genus zero case. It is thus natural to conjecture that for all the cases where

Σ : H(x, p) = 0 is a genus zero curve, as for the Gaussian matrix model example, the time

dependence of the Schrödinger equation is absent. As already noted, the exact equation

satisfied by the branes for any ǫ1, ǫ2 is the time independent Schrödinger equation.

Recall that on a genus zero Riemann surface we have generally a set of compact A-

cycles, while all the B-cycles are by necessity non-compact. Furthermore, we can find a

basis of cycles satisfying AI ∩BJ = δJI . The monodromies around the A-cycles define the

flat coordinates ∮

AI

∂S/ǫ2 = aI/ǫ2 .

In particular, the partition function of the brane depends only on one ǫα, associated to the

corresponding brane

Ψα(x) = exp(S(x, ǫα)/ǫα) .

– 28 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
9

Solving the Schrödinger equation, we can find not only the brane partition functions, but

also the closed string partition functions.

Consider taking the brane Ψ2 around a B-cycle. On the one hand, from general

considerations
∮

BI

∂S/ǫ2 = F(aI + g2s/2ǫ2)/g
2
s −F(aI − g2s/2ǫ2)/g

2
s ,

where F(~a; ǫ1, ǫ2) = g2s logZtop is the exact free energy of the refined topological string.

On the other hand, since the solution for the brane is independent of ǫ1, and taking the

NS limit ǫ1 → 0, we find that the same amplitude equals ∂IW, i.e.,
∮

BI

∂S/ǫ2 = ∂IW .

Hence, we derive that

F(aI + g2s/2ǫ2)/g
2
s −F(aI − g2s/2ǫ2)/g

2
s = ∂IW ,

and both equal to the change of phase of the brane after being transported around the B-

cycle. The fact that the two expressions agree is special for genus zero Riemann surfaces.

Below we will present two classes of examples along these lines. The first one involves the

Gaussian matrix model and the second class involves toric geometries without compact

4-cycles.

6.1 The Gaussian

The simplest matrix model to which our derivation of the Schrödinger equation of section 4

applies is the Gaussian

Z =

∫

dNz
∏

i<j

(zi − zj)
−2ǫ1/ǫ2e

− 1
2ǫ2

∑

k z2k .

The classical spectral curve is the deformed conifold

H(x, p) = −p2 + x2 − µ = 0 , (6.1)

which has one A-cycle, corresponding to the circle at real values of x and p, and one non-

compact B-cycle. The β-ensemble matrix model partition function can be easily evaluated

explicitly to find the free energy (under the shift µ→ µ+ (ǫ1 + ǫ2)/2)

F(µ)/g2s = logZ =

∫

ds

s

e−µs

(eǫ1s/2 − e−ǫ1s/2)(eǫ2s/2 − e−ǫ2s/2)
.

One infers that this is exactly the partition function of the c = 1 string at radius R =

1/β [2], which has been computed in [62]. Note that the NS limit in this case corresponds

to the R → ∞ limit at fixed µ. In particular, the partition function per unit volume

corresponds precisely to the NS definition of the partition function in this limit:

W(µ) = lim
ǫ1→0

ǫ1 logZ ,
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with

∂µW =

∫

ds

s

e−µs

(eǫ2s/2 − e−ǫ2s/2)
. (6.2)

Note that from this it follows immediately that
(

F(µ+ g2s/2ǫ2)−F(µ− g2s/2ǫ2)
)

/g2s = ∂µW ,

in agreement with our claim.

One can also check that one can explicitly recover W via the monodromies of the

brane solving the Schrödinger equation we derived in sections 4 and 5. The corresponding

‘quantum’ Riemann surface reads

(−ǫ22∂2x + x2)Ψ(x) = µΨ(x) .

This is the (inverted) quantum harmonic oscillator. The monodromies of the wave-function

Ψ(x) around the B-cycle have been in fact calculated to all orders in ~ already some time

ago in the context of Stokes phenomena in quantum mechanics, see for instance [63, 64].

Alternatively, they can also be computed using the matrix model techniques of solving the

loop equations, see [65]. The results of these calculations can be matched with the power

series expansion of W inferable from (6.2), i.e.,

W =
1

2
µ2 log µ+W(0) log µ+

∑

n>0

ǫn2
µn

W(n) ,

with

W(0) =
1

24
, W(n) =

(2−n−1 − 1)

n(n+ 1)(n+ 2)
Bn+2 . (6.3)

In order to illustrate the technique we will use later in the context of the more com-

plicated cubic potential in section 7, let us re-derive this result in a simpler, but non-exact

fashion. In detail, we can solve the Schrödinger equation for the brane wave-function Ψ(x)

via the usual WKB Ansatz known from elementary quantum mechanics, i.e.,

Ψ(x) = exp

(

1

~
S(x)

)

, (6.4)

with

S(x) = S0(x) +
∞
∑

n=1

Sn(x) ~
n . (6.5)

(We defined ~ = ǫ2 for the rest of this section.) Plugging this Ansatz into the Hamiltonian

and expanding in ~ yields for the first few orders

∂xS0 = p , ∂xS1 = −1

2
∂x log p , ∂xS2 = −(∂x log p)

2 − 2∂2x log p

8p
, . . . . (6.6)

Note that the WKB approximation determines directly not S(x), but ∂xS. Near any point

on the Riemann surface, we can integrate this to obtain S(x) locally, however the global

solutions have monodromies. In particular, to obtain from the semi-classical wave-function
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Ψ(x) the (quantum corrected) periods ΠC =
∑∞

n=0Π
(n)
C ~

n, we have to integrate ∂S along

the classical cycles of the geometry.

For specific examples, or better potentials V (x), things considerably simplify, since we

can turn the contour integration for the higher order corrections into a differentiation. For

example, this idea has been put forward in the gauge theory context in [60]. In detail, we

can argue for differential operators D(n) such that

Π
(n)
C = D(n)Π

(0)
C . (6.7)

Defining

D = 1 +

∞
∑

n=1

D(n)
~
n ,

the full quantum corrected periods are simply given by ΠC = DΠ
(0)
C .6

We can partially integrate the contour integrals of (6.6) to obtain the more convenient

expressions7

S′
0(x) =

√

(V (x)− E) ,

S′
2(x) =

V ′′(x)

48(V (x)− E)3/2
,

S′
4(x) = − 7V ′′(x)2

1536(V (x)− E)7/2
− V ′′′′(x)

768(V (x)− E)5/2
,

...

(6.8)

where we used the parametrization p(x) =
√

W ′(x)2 + f(x) =:
√

V (x)− E. For the

Gaussian, we can identify V (x) = x2 and E = µ. The operators D(n) are particularly

simple because V ′′(x) = 2 and ∂>2
x V (x) = 0. Namely, one has

D(2) = − 1

24
∂2µ , D(4) = +

7

5760
∂4µ , D(6) = − 31

967680
∂6µ , . . . . (6.9)

We conclude that the period Π
(0)
A does not receive any quantum corrections, while we

obtain for the B-period ΠB = DΠ
(0)
B ,

ΠB(µ) = Π
(0)
B (µ)− 1

24
µ−1

~
2 +

7

2880
µ−3

~
4 − 31

40320
µ−5

~
6 + . . . , (6.10)

or, after integrating over µ,

~W(µ) = F (0)(µ)− ~
2

24
log µ− 7

5760
µ−2

~
4 +

31

161280
µ−4

~
6 + . . . , (6.11)

in agreement with the expectation (6.3).

6Note that we know from the M-theory picture described in section 3.1 that the refined partition function

in the NS limit is odd in ~, hence D(n) with n odd should vanish. In particular, since S′
n is always a total

derivative for n odd, the integral of a total derivative has to vanish, i.e., there are no subtleties involving

singularities.
7For simplicity, we absorbed a normalization factor of

√
2.
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6.2 Toric geometries without 4-cycles

Consider the A-model topological string on a toric Calabi-Yau X without compact 4-cycles.

This is mirror to the B-model on the Calabi-Yau

uv +H(ex, ep) = 0 .

The corresponding Riemann surface has genus zero and is of the form

H(ex, ep) = Pn(e
x) + ep+mxPk(e

x) = 0 , (6.12)

where Pn,k(e
x) are polynomials of degree n and k in variable ex, and m is an arbitrary

integer. This Calabi-Yau has n+k−1 moduli which enter as coefficients of the polynomials.

The simplest example is the conifold with n = k = 1 and m arbitrary. As explained

in [16, 66], there is a particularly natural way of writing the Calabi-Yau geometry in terms

of open and closed string flat coordinates that are typically given by certain periods on the

mirror geometry. By a change of variables we can rewrite (6.12) as

H(ex̂, ep̂) =
n
∏

I=0

(1−QαIe
x̂)− ep̂+mx̂

k
∏

J=0

(1−QβJ
ex̂) . (6.13)

Depending on the chamber, it is natural to set one of the QαI or QβJ
to 1, which we can

do by a leftover degree of freedom to shift x̂ and p̂ by constant values. This gives indeed

altogether k+n− 1 moduli. The Riemann surface can be viewed as a copy of a û cylinder,

where the one-form

∂φ = p̂ dx̂ ,

has singularities at x̂ = tαI , x̂ = tβJ
. Up to a gauge degree of freedom discussed above, x̂,

tαI := − logQαI and tβJ
:= − logQβJ

are flat coordinates on the open and closed moduli

space. The canonically conjugate variables are

[p̂, x̂] = ǫ2 .

In particular, the brane Ψ(x̂) satisfies the exact Schrödinger equation

H(ex̂, ep̂)Ψ(x̂) = 0 , (6.14)

which is a difference equation,

n
∏

I=0

(1−QαIe
x̂q

−1/2
1 )Ψ(x̂)− emx̂

k
∏

J=0

(1−QβJ
ex̂q

−1/2
1 )Ψ(x̂+ ~) = 0 ,

where q1 = e−ǫ1 . Note that we have redefined the Kähler parameters tα and tβ with a

shift. This has exact solutions in terms of quantum dilogarithm functions

Ψ(x̂) = e−
mx̂2

2~
+mx̂

2

∏n
I=0 L(QαIe

x̂)
∏k

J=0 L(QβJ
ex̂)

,

– 32 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
9

where

L(ex) =
∞
∏

ℓ=1

(1− q
ℓ−1/2
1 ex) .

Note that L(ex), given by the quantum dilogarithm, satisfies

L(ex+ǫ1) = (1− q
−1/2
1 ex)L(ex) .

This includes, for example, the conifold. In this case

Ψconifold(x̂) =
L(ex̂Q)

L(ex̂)
,

solves (6.14) with

Hconifold(x̂, p̂) = (1− ex̂q
−1/2
1 )ep̂ − (1− ex̂Qq

−1/2
1 ) .

Note that in general there are ordering ambiguities in defining the Hamiltonians, but they

can all be absorbed into the shifts of the open and closed moduli, i.e., what we mean by x̂,

t. As a consequence, in this particular case, there is really no physics behind the quantum

shifts such that we can simply choose them in a way that is most convenient. Any two

such choices differ by re-parametrization of the moduli space, and hence are physically

equivalent. Finally, the above expressions all assume we are in the regime of the moduli

space where Qex̂ < 1. If that fails to be the case, for example due to moving the brane

around the Riemann surface, it is better to use the analytic continuation

L(ex) = e−(x2+iπx)/ǫ2L(e−x) ,

to rewrite the wave-function.

Consider now moving the branes around. Firstly, it is easy to show that the t and x̂ co-

ordinates we defined via (6.13) are already the open and closed A-periods. Secondly, since

there are no compact B-periods, the branes are essentially single-valued on the Riemann

surface (the only shifts come from the classical piece of the wave-function). As a conse-

quence, computing the B-periods amounts to evaluating Ψ at the poles of the Riemann

surface. The good B-periods are obvious either from the A-model — they are mirror to

non-compact 4-cycles, or equivalently, by asking that the only infinities in evaluating the

periods come from the classical pieces of the wave-function, corresponding to the fact that

at infinity all instanton corrections are suppressed. Consider, for example, the B-period

corresponding to bringing a brane in from infinity to a singularity with x̂ = tαI , and sending

the brane back out to infinity at the singularity with x̂→ ∞. Correspondingly, we find

exp

(

1

ǫ2

∫

BI

∂S

)

=
Ψ(tαI )

Ψ(∞)
,

up to the contribution of the classical piece x2/ǫ2 (which is ambiguous due to the non-

compactness of the geometry). On the other hand, this non-compact B-cycle intersects all

the 2-cycles whose areas are of the form
∫

A
k =

∑

I

nItαI ,
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by

BI ∩A = nI .

This implies that the free energy jumps as

exp

(

1

ǫ2

∫

BI

∂S

)

=
Z(tαI +

ǫ1
2 )

Z(tαI − ǫ1
2 )

,

or
Ψ(tαI )

Ψ(∞)
=
Z(tαI +

ǫ1
2 )

Z(tαI − ǫ1
2 )

.

To compute Ψ(tαI ) we need to analytically continue all the terms in the solution above

for which Qex̂ becomes greater than one at x̂ = tαI . There are similar equations with tα
replaced by tβ . We can view this as n + k equations for the partition function Z(tα, tβ),

depending on n+ k parameters, which we can solve for with the boundary condition that

in the limit where all t→ ∞, we recover the partition function of n+k disconnected copies

of C3. It is easy to see that the solution to these equations is the refined partition function

of the closed topological string on the corresponding Calabi-Yau, i.e.,

Z(tαI , tβJ
) =M(1)n+k

∏

0≤I<I′≤nM(QαIαI′
)
∏

0≤J<J ′≤kM(QβJβJ′ )
∏n,k

I,J=0M(QαaβJ
)

,

where QαIβJ
is understood to be QαI/QβJ

if Re(tαI ) > Re(tβJ
) and QβJ

/QαI otherwise.

Similarly for the other Q. Furthermore,

M(Q) =
∞
∏

ℓ1,ℓ2=1

(1− q
ℓ1−1/2
1 q

ℓ2−1/2
2 Q)−1 ,

is the refined MacMahon function and we have defined q2 = eǫ2 . Note that above we have

repeatedly used relations such as L(Q) =
M

(

Qq
1/2
2

)

M
(

Qq
−1/2
2

) . For example, for the conifold, we

simply get

Zconifold(t) =
M2(1)

M(Q)
.

The fact that this is also consistent with the monodromies being computed by W
can be seen as follows. Note that we can write the free energy of the topological string,

F/g2s = log(Z) as

F/g2s =
∑

0≤I<I′≤n

γ(tαIαI′
) +

∑

0≤J<J ′≤k

γ(tβJβJ′ )−
n,k
∑

I,J=0

γ(tαIβJ
) ,

where

γ(t; ǫ1, ǫ2) = logM(Q) . (6.15)

In particular,

γ(t, ǫ1, ǫ2) =
∞
∑

n=1

Qn

n[n]ǫ1 [n]ǫ2
,
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with [n]ǫα := (q
n/2
α − q

−n/2
α ), and Q = e−t. On the other hand, the reduced partition

function W = limǫ1→0F/ǫ2 is built out of the function

γNS(t, ǫ2) =
∞
∑

n=1

Qn

n2[n]ǫ2
,

as

W =
∑

0≤I<I′≤n

γNS(tαIαI′
) +

∑

0≤J<J ′≤k

γNS(tβJβJ′ )−
n,k
∑

I,J=0

γNS(tαIβJ
) .

The fact that

γ(t+ ǫ1
2 )− γ(t− ǫ1

2 ) = ∂tγNS ,

immediately implies that we could have equivalently written

exp

(∫

BI

∂S/ǫ2

)

= exp(∂tαI
W) ,

in agreement with our claim.

7 Genus one examples

Let us now consider some more non-trivial geometries and confirm that also for them the

NS limit of the refined topological string partition function can be recovered from a brane

probing the quantum geometry, as expected from the discussion of section 5.

7.1 The cubic

Let us consider the matrix model with cubic potential

W (x) = g

(

1

3
x3 +

δ

2
x2
)

.

The β-ensemble matrix model partition function can be calculated perturbatively, as for

example done in [67]. The most leading ~-correction to the free energy of the cubic β-

ensemble matrix model has also been computed in [42] using the loop equation techniques.

Here we will use the techniques discussed in section 5 and obtain more non-trivial higher

order results.

As a check of the statements of section 5.1, we now want to compute the first few terms

in the ~-expansion in the refined topological string free energy for the cubic by studying

the brane wave-function satisfying the Schrödinger equation of section 5, which can be

obtained by simply canonically quantizing the spectral curve. For that, note that in the

case of the cubic, the 1-form of the matrix model spectral curve (3.10) can be expressed in

terms of the branch-points (roots) x1,...,4 as

λ = dx g
√

(x− x1)(x− x2)(x− x3)(x− x4) . (7.1)
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Following [38], we define new variables

z1 =
1

4
(x4 − x3)

2 , z2 =
1

4
(x2 − x1)

2 ,

Q =
1

2
(x1 + x2 + x3 + x4) , I =

1

2
(x3 + x4 − x1 − x2) .

(7.2)

In terms of these variables, explicit expressions for the periods Π
(0)
A1
,Π

(0)
A2
,Π

(0)
B1

and Π
(0)
B2

can

be easily found via expansion for small z1 and z2 of the corresponding contour integrals of

λ (see appendix B of [38]). As usual, we will set Q = −δ and I =
√

δ2 − 2(z1 + z2).

On the other hand, it is expected that the B-model refined 1-loop amplitude on this

geometry is given by

F (1)(s1, s2;β) =
1

2
log det g +

3
∑

I=1

κI(β) log(∆I) , (7.3)

where κI(β) are β-dependent coefficients, s1,2 denote the flat coordinates given by the

A-periods, gij := ∂sizj (with z1,2 as defined in (7.2)) and ∆I parameterizing the three

discriminant loci (cf., [68]),

∆1 = z1z2 , ∆2 =
√

δ2 − 2(z1 + z2) , ∆3 = (δ2 − 3z1)
2 − 6z2δ

2 + 9z22 + 14z1z2 .

In particular, we expect that in the B-model all the information about the refinement is

encoded in the coefficients κI(β), hence is of a purely holomorphic nature.

It remains to fix κI(β) by the behavior of the topological strings amplitude near the

singular points. Since ∆1 is a conifold like singularity, we expect from [4] that

κ1(β) = − 1

24
(β + β−1) . (7.4)

The other two κ2,3(β) can be fixed by considering the special slice in moduli space s1 =

−s2 = s(δ) that is related to SU(2) Seiberg-Witten theory [69]. By matching the refined 1-

loop amplitude at these special moduli to the SU(2) partition function in the Ω-background,

we conclude

κ2(β) = −1

2
, κ3(β) =

1

12
(6− β − β−1) . (7.5)

Comparing with the explicit perturbative matrix model expansion shows that (7.3)

with (7.4) and (7.5) indeed reproduces the refinement of the cubic results, and hence we

have verified that the refined B-model is indeed dual to the β-ensemble, at least at the

1-loop level.

For later comparison let us give the following explicit expansions of F (1)(s1, s2;β),

obtained using (7.3), (7.4) and (7.5)

lim
β→0

β ∂2sF (1)(s,−s;β) = 1

12
s−2 + 153 +

46810

3
s+ 1217160 s2 + . . . , (7.6)

lim
β→0

β ∂2s1F (1)(s1, s2;β) =
1

24
s−2
1 +

97

3
+

4004

3
s1 −

6467

3
s2 −

299731

2
s1s2 + . . . , (7.7)
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where we have set for simplicity δ = g = 1.8

Seiberg-Witten slice. Let us consider first the simplified case with s = s1 = −s2 (the

Seiberg-Witten slice). This restriction of parameters has been discussed in detail in [69].

The one-form takes the simpler form

λ = dx
√

(x2 − a2)(x2 − b2) ,

and the periods can be easily expressed through complete elliptic integrals of first and

second kind, i.e.,

Π
(0)
A =

1

2πi

∫ b

a
λ =

a

6π

(

(a2 + b2)E(k1)− 2b2K(k1)
)

,

Π
(0)
B = 2

∫ b

−b
λ =

2a

3

(

(a2 + b2)E(k2)− (a2 − b2)K(k2)
)

,

(7.8)

with k21 = 1 − b2

a2
and k22 = b2

a2
. The relation between the parameters a, b and the original

parameters δ,Λ reads

a = −1

2

√

δ2 + 8Λ2 , b = −1

2

√

δ2 − 8Λ2 .

Inverting Π
(0)
A (Λ), plugging it into Π

(0)
B (Λ) and taking the Π

(0)
A derivative yields the gauge

kinetic function of the cubic matrix model under specialization s1 = −s2 = s [69].

Let us now apply the approach of section 5, using the technique introduced in sub-

section 6.1. It is convenient to absorb the energy E into the potential V (x) such that

V (x) = (x2 − a2)(x2 − b2) and E = 0. Hence, at order ~2 we have to integrate (see (6.8))
∫

dx
V ′′(x)

48((x2 − a2)(x2 − b2))3/2
. (7.9)

It is convenient to define a differential operator D(2) acting on

1

2πi

∫ b

a
dx

1
√

(x2 − a2)(x2 − b2)
= − 1

2πa
K(k1) ,

and

2

∫ b

−b
dx

1
√

(x2 − a2)(x2 − b2)
=

2

a
K(k2) ,

to obtain (7.9). It is easy to see that

D(2) = − 1

6ab(a2 − b2)

(

a(a2 − 5b2)∂b − b(b2 − 5a2)∂a
)

,

8As explained in the previous sections, from the quantum mechanics point of view it is more natural to

consider a double expansion in g2s = −ǫ1ǫ2 and ~ = ǫ1 + ǫ2, while from the point of view of the holomorphic

anomaly equation it is more natural to expand in gs and treat β = −ǫ1/ǫ2 as a parameter. Note that

the parameter β always enters in the symmetric combination β + β−1 in the latter formalism. In order

to compare the results obtained from these two viewpoints, observe that g2s(β + β−1) = ~
2 + 2g2s . So

limβ→0 β F (1) should really be compared with the terms of order g0s~
2 in the gs, ~ expansion when taking

the NS limit. More generally, limβ→0 β
g F (g) contributes to the terms of order g0s~

2g in the gs,~-expansion.
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does the job. Hence, (7.9) evaluates to

S(2) = − 1

12πab2(a2 − b2)

(

(a4 − 10a2b2 + b4)E(k1) + 4b2(a2 + b2)K(k1)
)

,

Π(2) = − 1

3ab2(a2 − b2)

(

(a4 − 10a2b2 + b4)E(k2)− (a4 − 6a2b2 + 5b4)K(k2)
)

.

Proceeding for s := Π
(0)
A +~

2Π
(2)
A and ΠB = Π

(0)
B +~

2Π
(2)
B as sketched for the pure classical

part above, yields the first order quantum correction to the gauge kinetic function. The

result precisely matches the expectation (7.6).

General case. Let us check that the agreement also holds for the general cases where

s1 and s2 are independent. The starting point is as in the previous section the one-form

expressed through the roots given in (7.1). We have to integrate
∫

dx
V ′′(x)

48((x− x1)(x− x2)(x− x3)(x− x4))3/2
, (7.10)

where now V (x) = (x − x1)(x − x2)(x − x3)(x − x4). As above, this can be achieved via

defining an operator D(2) acting on the classical periods. In order to construct such an

operator, note that it is sufficient to find operators DI (with I = 0, 1, 2) satisfying

DIV (x) = xI ,

since V ′′(x) is a polynomial of degree 2. The operator D(2) is then a combination of the

DI . Such a basis of operators for the given potential can be inferred to be

D0 =
1

(x1 − x2)(x3 − x4)

(−(x2 − x3)∂x1 + (x1 − x3)∂x2 − (x1 − x2)∂x3

(x1 − x3)(x2 − x3)

+
(x2 − x4)∂x1 − (x1 − x4)∂x2 + (x1 − x2)∂x4

(x1 − x4)(x2 − x4)

)

,

D1 =
1

(x4 − x3)

(

x4
(x2 − x4)(∂x2 − ∂x1)− (x1 − x2)(∂x2 − ∂x4)

(x1 − x2)(x2 − x4)(x1 − x4)

+ x3
(x2 − x3)∂x1 − (x1 − x3)∂x2 + (x1 − x2)∂x3

(x1 − x2)(x1 − x3)(x2 − x3)

)

,

D2 =
1

∏4
I<J(xI − xJ)









4
∑

I=1

4
∏

J<K
J,K 6=I

(xJ − xK)x2I∂xI









.

The combined operator reads

D(2) =
1

3
(c2D2 + c1D1 + c0D0)D0 ,

with

c0 = 2(x2x3 + (x2 + x3)x4 + x1(x2 + x3 + x4)) ,

c1 = −6(x1 + x2 + x3 + x4) ,

c2 = 12 .
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β1

α1

α2

α3α4

z1, z2 ≪ 1

x̃ = −1

x̃ = 0

x̃ = ∞

Figure 1. The skeleton of the B-model geometry of local P1 ×P
1. A-period contours are drawn in

red while B-period contours in blue.

Applying D(2) to the classical periods yields the first quantum corrections. Inverting sI :=

(1 + ~
2D(2))Π

(0)
AI

yields the quantum correction to the mirror map at order ~2, i.e.,

z1(s1, s2)|~2 = 2 + 62s1 − 78s2 − 4808s1s2 + . . . ,

z2(s1, s2)|~2 = 2 + 78s1 − 62s2 − 4808s1s2 + . . . .

Plugging these into ΠB1 = (1+~
2D(2))Π

(0)
B1

and taking the s1 derivative yields the expected

expansion (7.7).

7.2 Local P1 × P
1

Let us consider non-trivial toric Calabi-Yau geometries of genus 1. For example, the mirror

curve for local P1 × P
1 can be parameterized as

H(p, x) = −1 + ex + ep + z1e
−x + z2e

−p = 0 . (7.11)

The skeleton of the corresponding Riemmanian surface is illustrated in figure 1 together

with the integration contours for the classical periods [70].

Inspired by the matrix model results of section 5, we consider the brane wave-function

satisfying the difference equation

(−1 + ex + z1e
−x)Ψ(x) + Ψ(x+ ~) + z2Ψ(x− ~) = 0 , (7.12)

obtained by canonically quantizing the curve (7.11). In the limit x→ ∞, we can view (7.12)

approximately as a difference equation with constant coefficients, whose solution takes the

form

Ψ(x) = π1(x)e
a1
~
x + π2(x)e

a2
~
x , (7.13)

with some functions πI(x) periodic under x→ x+ ~ and some constants aI . In particular,

for a1 > a2 one can show that [71]

ea1 = lim
x→∞

Ψ(x+ ~)

Ψ(x)
. (7.14)

– 39 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
9

However, comparing (7.13) with the general form of the brane wave-function near x→ ∞,

which can be inferred from [66], one infers that actually

a1 =
1

2
(ΠAI

− log zI) , I = 1, 2 ,

where ΠAI
denotes the fully quantum corrected A-periods. Explicit calculation of a1 yields

a1 =− (z1 + z2)−
(

4 +
1

q
+ q

)

z1z2 −
3

2
(z21 + z22)

−
(

16 +
1

q2
+ q2 +

6

q
+ 6q

)

(z1z
2
2 + z21z2)−

10

3
(z31 + z32) + . . . ,

for the first few orders in a small z1,2 expansion, where we have kept only the finite terms

and defined q := e~. Expansion in ~ yields ΠAI
=
∑∞

n=0Π
(n)
AI

~
n with Π

(0)
AI

the classical

period and the first few quantum corrections

Π
(1)
AI

= 0 ,

Π
(2)
AI

= −2z1z2 − 20(z21z2 + z1z
2
2)− 420z21z

2
2 + . . . ,

Π
(3)
AI

= 0 .

...

(7.15)

Inverting ΠAI
gives the mirror maps including quantum corrections thereof. We obtain

z1(Q1, Q2)|~1 = z1(Q1, Q2)|~3 = 0 ,

z1(Q1, Q2)|~2 = −2Q2
1Q2 − 4Q2

1Q
2
2 + . . . ,

(7.16)

with Qi = e−ti and ti the Kähler parameters of the geometry. One can also solve the

difference equation order by order in ~ using a WKB Ansatz. For the leading (classical)

piece we obtain

S′
0 = p(x) = log

(

−−1 + ex + z1e
−x ± e−x

√

(−ex + e2x + z1)2 − 4e2xz2
2

)

,

where the two different signs correspond to the two solutions Ψ±(x). The higher order

terms S′
n can be easily obtained, though they are too lengthy to be displayed here. It is

convenient to use the coordinate x̃ = ex instead of x. Let us fix a branch, say Ψ+(x̃) and

let us expand S′
n for small zi. Effectively, this means that we restrict to a local C3 patch

of the geometry, as also shown in figure 1. We observe that in this limit the expansion of

S′
n has poles at x̃ = 0 and x̃ = −1. The poles correspond to the two ‘internal’ punctures

of the local C3 patch. Taking for instance the residue at x̃ = 0 yields the instanton part of

the classical A-period, i.e.,

1

2

(

Π
(0)
AI

− log zI

)

=

∮

α1

dx̃

x̃
S′
0 = −(z1 + z2)− 6z1z2 −

3

2
(z21 + z22)− 30(z21z2 + z1z

2
2) + . . . .

(7.17)
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Integrating the higher order S′
n we can indeed reproduce our previous results (7.15), as

explicit calculation shows.9

Let us now consider the B-period. We observe that we can recover the instanton part

of the classical B-period in the local patch via the integral

∫ Λ

δ

dx̃

x̃
S′
0 = −z2 −

1

2
z21 −

11

4
z22 − 5z1z2 −

77

2
z1z

2
2 −

47

2
z21z2 −

1377

4
z21z

2
2 + . . . ,

up to a constant in the limit δ → 0,Λ → ∞. Note that this integral diverges as δ → 0 and

we kept only the finite terms. Hence,

∫ Λ

δ

dũ

ũ
S′
0 =

1

2

(

Π
(0)
B1

− 1

2
Π

(0)
A log(z1)−

1

4
log(z1)

2

)

.

Similarly, we obtain for the order ~2

Π
(2)
B1

= −1

6
z2 −

8

3
z1z2 −

1

2
z22 −

62

3
z21z2 −

107

3
z1z

2
2 − 564z21z

2
2 + . . . .

Plugging the mirror map (7.16) into ΠB1 = Π
(0)
B1

+Π
(2)
B1

~
2 yields at order ~2

ΠB1(Q1, Q2)|~2 = c− Q2

6
− 7

3
Q1Q2 −

Q2
2

6
− 17

2
Q2

1Q2 −
551

3
Q2

1Q
2
2 + . . . ,

where c denotes some constant.

Let us compare this result to what we expect. In the B-model, it is easy to see that

the refined 1-loop amplitude

F (1)(β) =
1

2
log(det g)− β + β−1

24
log(∆)− 15− (β + β−1)

24
log(z1z2) ,

with gIJ := ∂QJ
zI |~0 and ∆ = 1 − 8(z1 + z2) + 16(z1 − z2)

2 reproduces the refined vertex

results of [3]. Taking the NS limit, we conclude

ΠB1(Q1, Q2)|~2 = Q1∂Q1 lim
β→0

β F (1) ,

up to the constant part of 1
24 .

10

Let us also check the order ~4. For simplicity, we will focus on the special moduli slice

of the moduli space with z = z1 = z2. The mirror map at this order comes out to be

z(Q)|~4 = −Q
3

6
− 14

3
Q4 + . . . .

9Depending on the actual parameterization of the curve, one might have to take the correct combination

of ‘small’ periods αi, i.e., Π
(n)
AI

=
(

∮

α1

−
∮

α2

)

dũ
ũ

S′
n [66], to ensure that the odd sector in ~ drops out. The

contour integral around α2 can be obtained by performing a SL(2,Z) transformation of the curve such that

in the limit z1, z2 ≪ 1 we end up in the corresponding local patch.
10The reason why we do not get the constant part in our calculation appears to be a technical subtlety

due to our method of B-cycle integration rather than a conceptual issue.
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α2

α1

α1

α3

α3

β

β1

β2

x̃ = 0

x̃ = 0

x̃ = −1z ≪ 1

i)

ii)

Figure 2. The skeleton of the B-model geometry of local P2. A-period contours are drawn in red

while B-period contours in blue. Case (i) shows the effective geometry of the parametrization (7.18)

under the limit z ≪ 1, while (ii) of (7.21).

We obtain for the B-period

Π
(4)
B = −2z − 33

2
z2 − 1280

9
z3 + . . . .

Hence,

Π
(4)
B (Q) =

Q

360
− 19

60
Q2 − 199

20
Q3 + . . . .

Comparison with the refined vertex results of [3] shows that this indeed matches the β → 0

limit to the corresponding order under the identification Q := Q1 = Q2.

7.3 Local P2

Let us consider local P2 as our final example. We parameterize the mirror curve as

H(p, x) = −1 + ex + ep + ze~/2e−x−p = 0 . (7.18)

The corresponding geometry is sketched in figure 2. A canonical quantization yields the

difference equation11

(−1 + ex)Ψ(x) + Ψ(x+ ~) + ze−xe~/2Ψ(x− ~) = 0 .

11Implicitly, we fixed the ordering such that p is always already to the right before quantization.
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As in the previous example, we solve for a1 defined in (7.14) to extract the quantum

A-period given by a1 =
1
3 (ΠA − log(z)). We obtain

a1 = −1 + q√
q
z −

(

6 +
1

q2
+

7

2q
+

7

2
q + q2

)

z2

− 3 + 9q + 36q2 + 88q3 + 144q4 + 144q5 + 88q6 + 36q7 + 9q8 + 3q9

3q9/2
z3 + . . . .

Hence, via expansion in ~ we infer for ΠA =
∑∞

n=0Π
(n)
A ~

n the first few corrections

Π
(1)
A = 0 ,

Π
(2)
A = −3

4
z − 45

2
z2 − 630z3 − 17325z4 + . . . ,

Π
(3)
A = 0 ,

Π
(4)
A = − z

64
− 39

8
z2 − 2961

8
z3 − 19635z4 + . . . .

...

(7.19)

Inverting ΠA(z) gives the quantum corrected mirror map. We obtain for the first few orders

in ~ and in Q expansion

z(Q)|~1 = z(Q)|~3 = 0 ,

z(Q)|~2 = −3

4
Q2 − 9Q3 − 171Q4 + . . . ,

z(Q)|~4 = − 1

64
Q2 − 15

4
Q3 − 3429

16
Q4 + . . . .

(7.20)

Let us now solve the difference equation via the WKB Ansatz given by (6.4) and (6.5).

The leading term of the solution reads

S′
0(x) = log

(

1− ex ± e−
x
2

√

ex(1− ex)2 − 4z

2

)

.

Higher order solutions S′
n can be obtained easily, but are too length to be explicitly dis-

played here. Similar as in the previous example, expansion for z ≪ 1 effectively zooms

into a C
3 patch of the geometry and the classical A-period can be read of from a contour

integral around one of the singular points (cf., figure 2), i.e.,

1

3

(

Π
(0)
A − log(z)

)

=

∮

α1

dx̃

x̃
S′
0 .

Similarly, the higher order Π
(n)
A can be obtained via integrating S′

n and we can indeed

reproduce (7.19). Let us turn to the B-period. The integration contour is indicated in blue

in figure 2. We split the integration contour into two parts

β = β1 + β2 .
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Taking the limit z ≪ 1 of the parametrization of the curve given in (7.18) restricts to a C
3

patch which includes β1 (cf., figure 2).

Explicit evaluation shows that for integrating along β1

∫ Λ

δ

dx̃

x̃
S′
0 =

1

3

(

Π
(0)
B − 1

3
log(z)Π

(0)
A − 1

6
log(z)2

)

,

where Λ → ∞, δ → 0 and we kept only finite terms. Let us calculate

Π
(n)
β1

=

∫ Λ

δ

dx̃

x̃
S′
n .

For example, for even n we obtain the first quantum corrections

Π
(2)
β1

= c− 11

24
z − 87

8
z2 − 3349

12
z3 − 176005

24
z4 + . . . ,

Π
(4)
β1

= − 127

5760
z − 577

160
z2 − 71081

320
z3 − 758401

72
z4 + . . . ,

with c some constant. In contrast to local P1 ×P
1 discussed in the previous section, we do

not have anymore a Z2 symmetry of the integration contour β and hence we can no longer

expect that the integration along β1 and β2 yields up to signs the same result. Thus,

we have to explicitly calculate the integrals along β2. For that, we have to change the

parametrization of the curve (7.18) such that we end up in the limit z ≪ 1 in the patch

which includes β2. It is not hard to see that the transformation x→ −x, p→ −p combined

with a change of complex structure achieves this. We obtain the curve

− 1 + ze−x + e−p + e~/2ex+p = 0 , (7.21)

which we quantize and solved via a WKB Ansatz as above. We obtain

∫ Λ

δ

dx̃

x̃
S′
0 = −2

3

(

Π
(0)
B − 1

3
log(z)Π

(0)
A − 1

6
log(z)2

)

.

Hence, adding up the integrations along β1 and β2 yield indeed the classical B-period.

Integrating along β2 for some higher S′
n yields

Π
(2)
β2

= c− 5

12
z − 57

4
z2 − 2509

6
z3 − 141355

12
z4 + . . . ,

Π
(4)
β2

=
67

2880
z − 317

80
z2 − 45401

160
− 532285

36
z4 + . . . .

Adding up Π
(n)
B = Π

(n)
β1

+Π
(n)
β2

and inserting the quantum corrected mirror map (7.20), we

finally obtain (up to the constant part of Π
(2)
B )

Π
(2)
B = c− 7

8
Q− 129

8
Q2 − 589

2
Q3 + . . . ,

Π
(4)
B =

29

640
Q− 207

32
Q2 − 55341

160
Q3 + . . . .

(7.22)
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Let us compare this result to what we know. From the results of [4] one expects that the

refined B-model 1-loop amplitude is given by

F (1)(β) =
1

2
log (τ) +

−16 + β + β−1

24
log (z)− β + β−1

24
log (1− 27z) ,

with τ := Q∂Qz(Q)|~0 and one can easily infer that this indeed matches the corresponding

refined vertex results. Using the usual holomorphic anomaly equations, it is straightforward

to calculate in the B-model higher genus amplitudes F (g)(β), which can again be matched

with refined vertex results [72] (this also has been confirmed in [6]). Comparing with (7.22)

shows that

Π
(2)
B = Q∂Q lim

β→0
β F (1)(β) ,

Π
(4)
B = Q∂Q lim

β→0
β2F (2)(β) .

8 Brane wave-functions and Liouville amplitudes

In section 4 we have seen that the brane partition functions of the β-ensemble matrix

models satisfy an operator equation which takes the form of the conformal Ward identity

equation. When specializing to the Penner type logarithmic potential, it is well-known

that the matrix model computes the Liouville conformal blocks with background charge

Q̃ = b+ b−1, where

b2 = −β =
ǫ1
ǫ2
.

In this case, the ǫ1- and ǫ2-brane are exactly given by the two types of degenerate

vertex operators, denoted by V− 1
2b

and V− b
2
respectively, and the differential equation (4.11)

becomes nothing but the usual BPZ equation [48] for conformal blocks with degenerate field

insertions
(

b±2∂2x −
∑

a

1

x− za
∂za −

∑

a

∆αa

(x− za)2

)

Zα(x) = 0 ,

where ∆α = α(Q̃− α) is the conformal dimension of the operator with momentum α. We

have also argued that, provided we know the answer for the open string partition function,

this knowledge can help us to deduce the closed string partition function, in particular in

the NS limit. We will see below how this idea is realized in the Liouville case.

The key observation is that the ǫ1-brane partition function (4.2) is always a polynomial

of degree N in the brane location x. To be explicit, let us choose the logarithmic matrix

model potential − 2
ǫ2
W (x) = 2b

∑n−2
a=0 αa log(x− za) corresponding to the n-point function

〈Vαn−1(∞)
∏n−2

a=0 Vαa(za)〉, where the vertex inserted at infinity carries momentum given by

the conservation rule
∑n−1

a=0 αa = Q̃−Nb. Suppose we are interested in the corresponding

n-point conformal block computed by an appropriate choice of contour, following [73]. We

can probe the n-point function by inserting an ǫ1-brane, or V− 1
2b
(x) in Liouville language,

and arrive at the brane partition function

Z1(x) =
∏

a<b

(za − zb)
2αaαb

∏

a

(x− za)
αa/b

×
∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

∏

i,a

(zi − za)
2αab

∏

i

(zi − x) , (8.1)
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which is explicitly a polynomial in x.

As alluded above, this ǫ1-brane has the property that we can move it close to any

other point za of insertions without introducing any non-analyticity. This gives us various

relations among the n-point function with momenta shifted in units of − 1
2b . In this way we

can obtain essential information about the n-point function (the closed partition function)

from the knowledge of the n+ 1-point function (the brane partition function).

In more detail, consider the n-point function

Zclosed(α) =
∏

a<b

(za − zb)
2αaαb

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

n−2
∏

a=0

(zi − za)
2αab .

It is easy to see that it satisfies the following relation to Z1(x) given in (8.1):

Z1(za) = lim
x→za

Z1(x) = ZN (αa − 1
2b) . (8.2)

Thus we find a set of difference equations for logZclosed, one for each non-degenerate

insertion point, which depends on the open partition function Z1(x) but not on its normal-

ization, i.e.,

Zclosed(αa − 1
2b)/Zclosed(α) = Z1(za)/Z1(∞) .

On the left hand side, we keep everything fixed in both the numerator and the denominator,

apart from the momentum of the insertion point Z1(x) approaches.
12 From these, at least

in principle, we can determine (up to normalization) Zclosed from the knowledge of Z1(x).

In the remainder of this section we will illustrate this procedure at hand of the 3 + 1-

point function. In this case the potential W (x) has only one critical point and hence the

corresponding spectral curve has genus zero. Recall that from the general discussion in

section 6, the time dependence of the Schrödinger equation is trivial and one does not need

to take the NS limit.

In this case, the open partition function

Z1(x) = x∆α0−1/2b−∆α0−∆1/2b(1− x)∆α1−1/2b−∆α1−∆1/2bΨN (x) ,

with

ΨN (x) =

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

(zi)
2α0b (zi − 1)2α0b

∏

i

(zi − x) ,

satisfies the differential equation

(

−b2 d
2

dx2
+
(1

x
+

1

x− 1

) d

dx
− ∆α0

x2
− ∆α1

(x− 1)2
+

∆α0+∆α1+∆−1/2b−∆α2

x(x− 1)

)

Z1(x) = 0 ,

with

α0 + α1 + α2 − 1/2b = Q̃−Nb . (8.3)

12From the point of view of Liouville conformal blocks, Z1(∞) is related to 〈Vαn−1−1/2b(∞)
∏n−2

a=0 Vαa
(za)〉

where the momentum of the insertion at infinity has been shifted by −1/2b.
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This is solved by

ΨN (x) = c F (A,B;C;x) ,

with

A = −N , B = N − 1 + 2
b (α0 + α1 − 1

b ) , C = 2
b (α0 − 1

2b) ,

and F (A,B;C;x) is the hypergeometric series

F (A,B;C;x) =
∞
∑

n=0

(A)n(B)n
(C)n

xn

n!
,

where (A)n := A(A+1) . . . (A+ n− 1). The normalization constant c remains to be fixed.

Since A = −N is a negative integer in our case, the solution ΨN (x) is a finite polynomial

in x of degree N , as we argued earlier. From this we can find the recurrence equations

satisfied by the chiral half of the Liouville 3-point function

ZN (α0, α1) =

∫

dNz
∏

1≤i<j≤N

(zi − zj)
−2b2

N
∏

i=1

(zi)
2α0b (zi − 1)2α1b .

Using (8.2), colliding x with 0, 1 and ∞, and using analyticity of ΨN (x), it immediately

follows that
ZN (α0 + 1/2b, α1)

ZN (α0, α1)
=

ΨN (0)

ΨN (∞)
,

ZN (α0, α1 + 1/2b)

ZN (α0, α1)
=

ΨN (1)

ΨN (∞)
.

Using the special values

F (A,B;C;x = 1) =
Γ(C)Γ(C −A−B)

Γ(C −A)Γ(C −B)
,

lim
x→∞

x−NF (A = −N,B;C;x) = (−1)N
(B)N
(C)N

,

the above recursive relation reads

ZN (α0 − 1
2b , α1)

ZN (α0, α1)
=

N−1
∏

j=0

(

2bα0 − 1 + jb2

2bα2 − 1 + jb2

)

,

ZN (α0, α1 − 1
2b)

ZN (α0, α1)
=

N−1
∏

j=0

(−2bα1 + 1− jb2

2bα2 − 1 + jb2

)

,

where α2 is given by α0,1 as in (8.3).

From this we conclude that the chiral three-point function must satisfy

ZN (α0, α1) ∼
N−1
∏

j=0

Γ(1− 2bα1 − jb2)

Γ(2bα0 + jb2)Γ(2bα2 + jb2)
.

After fixing the value ZN (0, 0) as the initial condition, we obtain the expression

ZN (α0, α1) =
N−1
∏

j=0

Γ(−(1 + j)b2)Γ(1− 2bα1 − jb2)

Γ(−b2)Γ(2bα0 + jb2)Γ(2bα2 + jb2)
,

which indeed gives the chiral half of the Liouville three-point function [73, 74].
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9 Conclusion

In this work we have discussed several aspects of refined topological strings, emphasizing

the role of branes. In particular, we have argued that brane partition functions are quan-

tum mechanical wave-functions satisfying multi-time dependent Schrödinger-like equations,

with times given by non-renormalizable moduli. The derivation was done using a matrix

model realization of the refined topological string on specific geometries. However, we ex-

pect this to hold in more generalities, though in general the precise identification of the

times is not transparent yet.

In the NS limit, the time dependence drops out and we end up with a time-independent

Schrödinger equation, making contact with the earlier results of [11, 45, 46]. The refined

partition function in this limit can be recovered from the brane wave-function via consider-

ing the monodromies around the cycles of the local geometry, which we have also checked

explicitly in several non-trivial examples. Using this fact, we have explained the observa-

tion of Nekrasov and Shatashvili connecting integrable systems to gauge theory partition

functions: The integrable system arises in the study of the world-sheet amplitudes and

their target interpretation can be phrased in terms of gauge theory partition functions,

thus explaining the NS result.

There are various extensions of the present work one can consider. The simplest one,

which should be straightforward, is to generalize the discussions in this paper from a single

matrix model to Toda-like matrix models. This should in principle allow us to get arbitrary

B-model geometries with arbitrary analytic H(x, p), where the powers of p, x are bounded.

A more important extension of this work involves a deeper understanding of the brane

partition function away from the NS limit. As already mentioned above, away from this

limit we expect an interesting wave-function, which is time-dependent. Uncovering the

meaning of this wave-function from the perspective of integrable systems could be very

interesting. Also, finding a way to compute via the time-dependent wave-function the

complete refined topological string partition function, as we have done in the NS limit

via the time-independent wave-function, would be clearly important. We are currently

elaborating on these ideas and plan to report on them elsewhere.
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