
J
H
E
P
1
1
(
2
0
1
2
)
0
1
2

Published for SISSA by Springer

Received: July 31, 2012
Accepted: October 15, 2012

Published: November 5, 2012

Holography, chiral Lagrangian and form factor
relations

Pietro Colangelo, Juan Jose Sanz-Cillero and Fen Zuo

Istituto Nazionale di Fisica Nucleare, Sezione di Bari,
Via E. Orabona 4, I-70125 Bari, Italy

E-mail: Pietro.Colangelo@ba.infn.it, Juan.SanzCillero@ba.infn.it,
fen.zuo@ba.infn.it

Abstract: We derive all the O(p6) Chiral Perturbation Theory low-energy constants from
a class of gravity dual models of QCD described by the Yang-Mills and Chern-Simons
Lagrangian terms, with the chiral symmetry broken through boundary conditions in the
infrared. All the constants of the odd intrinsic parity sector are universally determined by
those at O(p4) in the even sector, together with an extra resonance term. A few relations
for the even sector couplings are also extracted. Our estimates reasonably agree with the
few available O(p6) determinations from alternative phenomenological analyses. Some of
the relations between low-energy constants are the manifestation, at large distances, of
universal relations that we find between form factors in the even and odd sectors, e.g.,
between the γ∗ → ππ and π → γγ∗ matrix elements.

Keywords: AdS-CFT Correspondence, 1/N Expansion, Chiral Lagrangians, QCD

ArXiv ePrint: 1207.5744

c© SISSA 2012 doi:10.1007/JHEP11(2012)012

mailto:Pietro.Colangelo@ba.infn.it
mailto:Juan.SanzCillero@ba.infn.it
mailto:fen.zuo@ba.infn.it
http://arxiv.org/abs/1207.5744
http://dx.doi.org/10.1007/JHEP11(2012)012


J
H
E
P
1
1
(
2
0
1
2
)
0
1
2

Contents

1 Introduction 1

2 The holographic model 3
2.1 The 5D action 3
2.2 The chiral couplings at O(p2) and O(p4) 6

3 Chiral couplings at O(p6) 8
3.1 Resonance lagrangian 8
3.2 Even and odd sector sum rules 10
3.3 Odd-intrinsic parity LECs 13
3.4 Even-intrinsic parity LECs 16

4 Relations between odd and even amplitudes 25
4.1 Green’s function relation: the LR versus the VVA correlator 25
4.2 Form factor relation: γ∗ → ππ versus π0 → γγ∗ 26
4.3 Form factor relation: A→ πππ versus π → AA 27

4.3.1 Odd-sector form factor: π → AA 28
4.3.2 Even-sector form factor: A→ πππ 29
4.3.3 Comparison of anomalous and even-sector form factors 31

5 Conclusions 31

A Holographic models 34
A.1 “Flat” background 35
A.2 “Cosh” model 35
A.3 Hard-wall model 36
A.4 Sakai-Sugimoto model 36

B Son-Yamamoto relation at the one-loop level 37
B.1 V V −AA correlator and A3 → γγ∗ in U(2) 37
B.2 Comparison for fully non-singlet transitions Aa → V bV c ∗ 38

1 Introduction

Chiral symmetry is a crucial ingredient for the understanding of the light quark interac-
tions. The low-energy dynamics of the pseudo-Goldstone bosons from the spontaneous
symmetry breaking is provided by the corresponding effective field theory (EFT), Chiral
Perturbation Theory (χPT), with a perturbative expansion in powers of light quark masses
and external momenta [1–4]. This allows a systematic description of the long-distance

– 1 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
2

regime of QCD, at energies below the lightest resonance mass. The precision required
in present phenomenological applications makes necessary to include corrections of O(p6).
While many two-loop χPT calculations have been already carried out [5, 6], the large num-
ber of unknown low-energy constants (LECs) appearing at this order puts a limit to the
achievable accuracy. The determination of these χPT couplings is compulsory to further
progress in our understanding of strong interactions at low energies. Various techniques
have allowed the determination of some O(p6) LECs: direct comparison of next-to-next-
leading order (NNLO) χPT computations and experiment [7, 8], sum rules and dispersion
relations [9–11], Padé approximants [12–14], resonance chiral Lagrangians [15, 16], Dyson-
Schwinger equation (DSE) [17, 18].

In this paper we study the LECs in a class of holographic theories, which was first
proposed in ref. [19], based on early ideas of dimensional deconstruction [20, 21] and hidden
local symmetry [22]. Later, an explicit model of this kind was constructed from string
theory , in which chiral symmetry breaking was implemented geometrically through the
embedding of the flavor branes [23]. At the same time, it was realized that chiral symmetry
breaking can actually be induced by different boundary conditions (b.c.) in the infrared [24].
In this kind of models, the chiral Lagrangian up to order p4 is automatically accommodated,
both of the even intrinsic parity sector [24] and of the odd sector [23, 25]. Moreover, the
predictions for O(p4) LECs have slight model dependence [24, 26], and agree quite well
with the experimental data. This success at O(p4) has motivated the present study of the
O(p6) LECs within the same class of models. There are also other holographic calculations
of the LECs [27] in another framework involving the quark condensate [27, 28].

The other motivation for our study is that this kind of models have recently led to an
interesting relation between the left-right quark current correlator ΠLR(Q2) and the trans-
verse part wT (Q2) of the anomalous AV V Green’s function, the so-called Son-Yamamoto
relation [29]. The relation does not depend on the details of the different models among
this class, showing some kind of universality. When extrapolated to the large momen-
tum region and combined with the results of the operator product expansion in QCD,
the relation gives the same prediction of the magnetic susceptibility as the early predic-
tion by Vainshtein [30]. However, while the power correction on the ΠLR(Q2) side can be
included [29, 31, 32] through the dual scalar field of the quark condensate [27, 28], the holo-
graphic description of the power corrections in wT (Q2) is still unclear, making the naive
extrapolation ambiguous. For recent studies along this line, see [33–36].

The corresponding analysis at low energies yields a relation between the O(p4) even-
parity χPT coupling L10 and the O(p6) odd-intrinsic-parity coupling CW22 which, respec-
tively, rule the left-right and AV V Green’s functions at large distances [37, 38]. Numerically
this relation is reasonably well satisfied at low energies [31]. Through a detailed analysis of
the O(p6) predictions for the LECs of the odd-intrinsic parity sector in this kind of models,
we find further relations between the remaining LECs CWj and the O(p4) chiral couplings
from the even-parity sector. A few relations among the O(p6) LECs in the even sector have
also been found.

At this stage, one may wonder whether these relations between even and odd sector
LECs hint a more general interplay between even-parity and anomalous QCD amplitudes.
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Here we have focused on the odd couplings CW22 and CW23 , which can be directly related
to the transition of a pion into two photons and two axial-vector currents, respectively.
We shall show that the former amplitude can be related to the vector form factor of the
pion and the latter to the axial-vector form factor into three pions [39, 40]. The relation
involving the vector form factor has already been found in two specific models [41, 42].

In section 2 we provide the details of the class of holographic models employed in
our analysis, and review the previous results for the O(p2) and O(p4) LECs. In section 3
the NNLO LECs are computed, with the help of a series of novel sum rules involving the
resonance couplings. In addition, we shall check how well these sum rules are saturated
by the lightest resonances. We also point out that possible corrections to the LECs could
come from higher dimensional terms, which will appear in the α′ expansion in the dual
string theory, and also from scalar resonances not included in the formalism. The two
relations between the the form factors of the pion in the even and odd sector are derived
in section 4. Our conclusions are gathered in section 5. Some technical details about
the different holographic models are collected in appendix A. In appendix B we study the
proposal in ref. [36] that the Son-Yamamoto relation could hold at the loop level: we show
that the amplitudes in general do not match beyond tree-level.

2 The holographic model

2.1 The 5D action

In the kind of models studied in this paper, with the chiral symmetry broken through b.c.’s,
the action is composed by the Yang-Mills (YM) and Chern-Simons (CS) terms, describing
the even and anomalous QCD sectors, respectively [19, 23–25]:

S = SYM + SCS (2.1)

SYM = −
∫
d5xtr

[
−f2(z)F2

zµ +
1

2g2(z)
F2
µν

]
, (2.2)

SCS = −κ
∫

tr

[
AF2 +

i

2
A3F − 1

10
A5

]
. (2.3)

The fifth coordinate z runs from −z0 to z0 with 0 < z0 ≤ +∞. A(x, z) = AMdxM is the
5D U(Nf ) gauge field and F = dA− iA∧A is the field strength. They are decomposed as
A = Aata and F = Fata, with the normalization of the generators Tr{tatb} = δab/2. The
coefficient κ = NC/(24π2), with NC the number of colors, is fixed by the chiral anomaly of
QCD [43–45]. The functions f2(z) and g2(z) are invariant under the reflection z → −z so
that parity can be properly defined in the model. In appendix A we provide their explicit
definitions for the models we analyze here: flat metric [19], “Cosh” model [19], hard wall [24]
and the Sakai-Sugimoto (SS) model [23, 25].

As first shown in ref. [19], chiral symmetry can be realized as a 5D gauge symmetry
localized on the two boundaries at z = ±z0. The gauging of the chiral symmetry allows one
to naturally introduce the corresponding right and left current sources, respectively rµ(x)

and `µ(x). The Goldstone bosons are contained in the gauge component Az and can be
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parameterized through the chiral field U as

U(xµ) = P exp

{
i

∫ +z0

−z0
Az(xµ, z′)dz′

}
, (2.4)

which transforms as
U(x)→ gR(x)U(x)g†L(x) (2.5)

with gL(x) and gR(x) the gauge transformations located at z = −z0 and z = z0, respectively.
The vector/axial-vector resonances are contained in the gauge field components Aµ,

Aµ(x, z) = `µ(x)ψ−(z) + rµ(x)ψ+(z) +
∞∑
n=1

B(n)
µ (x)ψn(z) , (2.6)

with the UV boundary conditions

Aµ(x,−z0) = `µ(x) , Aµ(x, z0) = rµ(x) . (2.7)

Note that the above boundary conditions are different from those in refs. [25, 29], and
correspondingly the sign of the CS action is different.

The resonance wave-functions ψn(z) are provided by the normalizable eigenfunctions
of the equation of motion for the transverse part of the gauge field,

− g2(z) ∂z[f2(z)∂zAµ(q, z)] = q2Aµ(q, z) , (2.8)

with the resonance masses given by the eigenvalues q2 = m2
n, with b.c.’s ψn(±z0) = 0.

The 4D metric signature (+,−,−,−) is assumed all along the article. In order to have
canonically normalized kinetic terms for the resonance fields in the later derivation, the
orthogonal wave-functions are chosen to be normalized in the form∫ +z0

−z0

1

g2(z)
ψn(z)ψm(z) dz = δnm , (2.9)

leading to the completeness condition,

∞∑
n=1

1

g2(z)
ψn(z)ψn(z′) = δ(z − z′) . (2.10)

In addition, one has ψ±(z) = 1
2(1 ± ψ0(z)), where ψ0(z) is the solution of the EoM

at q2 = 0 with b.c.’s ψ0(±z0) = ±1. It is non-normalizable and will provide the chiral
Goldstone wave-function.

The solutions ψn(z) are even (odd) functions of z when n is odd (even). Thus, the
modes with odd n describe vector excitations vnµ = B

(2n−1)
µ with m2

vn = m2
2n−1, and those

with even n correspond to axial-vector resonances in an analogous way.
We consider the convenient 5D gauge Az = 0, which can be achieved through the

transformation AM → gAMg−1 + ig∂Mg
−1 with

g−1(x, z) = P exp

{
i

∫ z

0
dz′Az(x, z′)

}
. (2.11)
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The value of this transformation on the UV branes is given by ξR(L)(x) ≡ g−1(x,±z0),
which now encode the original information from Az. The chiral Goldstones can be then non-
linearly realized through the coset representative ξR(x) = ξL(x)† ≡ u(π) = exp{iπata/fπ} [5,
6, 15, 16]. Conversely, after the gauge transformation the space-time components of the 5D
field in eq. (2.6) takes the form

Aµ(x, z) = iΓµ(x) +
uµ(x)

2
ψ0(z) +

∞∑
n=1

vnµ(x)ψ2n−1(z) +

∞∑
n=1

anµ(x)ψ2n(z) , (2.12)

where the commonly used tensors from χPT [5, 6, 15, 16], uµ(x) and Γµ(x), show up
naturally:

uµ (x) ≡ i
{
ξ†R (x) (∂µ − irµ) ξR (x)− ξ†L (x) (∂µ − i`µ) ξL (x)

}
(2.13)

Γµ (x) ≡ 1

2

{
ξ†R (x) (∂µ − irµ) ξR (x) + ξ†L (x) (∂µ − i`µ) ξL (x)

}
. (2.14)

Sometimes it is more convenient to work with the bulk-to-boundary propagators for
the transverse part of the gauge field, rather than in the meson decomposition. These
propagators are the solutions of eq. (2.8) for a general Euclidean squared momentum Q2 ≡
−q2, with b.c.’s V (Q,±z0) = 1 and A(Q,±z0) = ±1 (Q =

√
Q2). They can be nonetheless

expressed by means of the on-shell state decomposition in terms of the infinite summation

V (Q, z) =
∞∑
n=1

gvnψ2n−1(z)

Q2 +m2
vn

, A(Q, z) =
∞∑
n=1

ganψ2n(z)

Q2 +m2
an

(2.15)

with the decay constants given as

gvn = −f2(z)∂zψ2n−1(z) |+z0−z0 , gan = −f2(z)ψ0(z)∂zψ2n(z) |+z0−z0 . (2.16)

When Q2 goes to 0, we have V (Q, z) → 1 and A(Q, z) → ψ0(z), which have been used
before. Alternatively, one can use the Green function G(Q2; z, z′), which satisfies the equa-
tion

g2(z)∂z[f
2(z)∂zG(Q2; z, z′)]−Q2G(Q2; z, z′) = −g2(z)δ(z − z′), (2.17)

together with the same UV boundary conditions as the ψn. With the completeness condition
of the resonances, the Green function can be solved as

G(Q2; z, z′) =

∞∑
n=1

ψn(z)ψn(z′)

Q2 +m2
n

. (2.18)

Therefore, the bulk-to-boundary propagators defined above are related to the Green func-
tion as

V (Q, z) = −f2(z′)∂z′G(Q2; z, z′)|z
′=+z0
z′=−z0

A(Q, z) = −f2(z′)ψ0(z
′)∂z′G(Q2; z, z′)|z

′=+z0
z′=−z0 . (2.19)
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Contrarily, once the propagators are known the Green function can be immediately ob-
tained:

G(Q2, z, z′) =
1

2W (Q2)

[
(V (Q, z)−A(Q, z))(V (Q, z′) +A(Q, z′))θ(z − z′)

+ (V (Q, z) +A(Q, z))(V (Q, z′)−A(Q, z′))θ(z′ − z)
]
. (2.20)

Here W (Q2) is the Wronskian of eq. (2.8)

W (Q2) = f2(z)[V (Q, z)∂zA(Q, z)−A(Q, z)∂zV (Q, z)], (2.21)

which is independent of z. At zero momentum W (0) = f2π/2 and the Green function
simplifies

G(0, z, z′) =
1

f2π

[
(1− ψ0(z))(1 + ψ0(z

′))θ(z − z′) + (1− ψ0(z
′))(1 + ψ0(z))θ(z

′ − z)
]
.

(2.22)

2.2 The chiral couplings at O(p2) and O(p4)

Once we have rewritten the 5D fields in terms of the chiral Goldstones and vector and
axial-vector resonances, the derivation of the meson Lagrangian is rather straightforward.
We consider the 5D gauge Az = 0 and substitute the Aµ decomposition provided in
eq. (2.12) in the 5D action (2.1). The Lagrangian is now expressed in terms of meson
fields (ξR,L(x),vnµ(x), anµ(x)) and the left and right current sources (rµ(x), `µ(x)). Each
of these terms of the action shows then a factorization into an integration over the fifth
dimension, which provides the meson coupling, and an integration over the space-time
components, which provides the chiral structure of the operator in the effective 4D action.

Hence, after substituting the Aµ decomposition (2.12) in the YM action, one gets the
even-parity action without resonance fields [23, 24]:

S2[π] + S4[π] =

∫
d4x

[
f2π
4
< uµu

µ >

+L1 < uµu
µ >2 +L2 < uµuν >< uµuν > +L3 < uµu

µuνuν >

−iL9 < f+µνu
µuν > +

L10

4
< f+µνf

µν
+ − f−µνf

µν
− >

+
H1

2
< f+µνf

µν
+ + f−µνf

µν
− >

]
, (2.23)

with the covariant tensors fµν± ≡ ξ−1L `µνξL ± ξ−1R rµνξR containing the field-strengths `µν

and rµν of the left and right sources respectively. At low energies these terms provide
the Goldstone interaction at the dominant orders and produce the O(p2) and O(p4) χPT
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flat Cosh hard-wall Sakai-Sugimoto χPT
[19] [19] [24] [23, 25] [2–4]

103 L1 0.5 0.5 0.5 0.5 0.9± 0.3

103 L2 1.0 1.0 1.0 1.0 1.7± 0.7

103 L3 −3.1 −3.2 −3.1 −3.1 −4.4± 2.5

103 L9 5.2 6.3 6.8 7.7 7.4± 0.7

103 L10 −5.2 −6.3 −6.8 −7.7 −6.0± 0.7

103 Y 0.5 0.5 0.5 0.6 —
103 Z 0.6 0.8 1.0 1.0 —

Table 1. Predictions for the O(p4) low energy constants in various holographic models. The 5D
integrals Y and Z are defined in eq. (2.25) and will be related to appropriate sum rules and the
odd-sector O(p6) LECs. The experimental determinations in χPT at O(p4) are provided in the last
column for comparison [2–4].

Lagrangian with the corresponding LECs given by the 5D integrals:

f2π = 4

(∫ z0

−z0

dz

f2(z)

)−1
, (2.24)

L1 =
1

2
L2 = −1

6
L3 =

1

32

∫ z0

−z0

(1− ψ2
0)2

g2(z)
dz ,

L9 = −L10 =
1

4

∫ z0

−z0

1− ψ2
0

g2(z)
dz ,

H1 = −1

8

∫ z0

−z0

1 + ψ2
0

g2(z)
dz .

The functions f2(z) and g2(z) have to satisfy some properties in order for these constants
to be finite, with the exception of H1. The numerical results for the O(p4) low energy
constants in four different models are collected in table 1. In the last two lines of table 1
we also provide the 5D integrals

Y ≡
∫ +z0

−z0

(1− ψ4
0)2

48g2(z)
dz

Z ≡
∫ +z0

−z0

ψ2
0(1− ψ2

0)2

4g2(z)
dz (2.25)

which will appear in the next sections.
Conversely, the substitution of the Aµ decomposition (2.12) in the CS action produces

some operators without resonances, with only Goldstone bosons, which give rise to the
Wess-Zumino-Witten (WZW) action [23, 25]:

SWZW = − iNC

48π2

∫
M4

Z − iNC

240π2

∫
M4×R

tr(gdg−1)5 (2.26)
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Figure 1. Examples for the different possible diagram contributing to the Goldstone interactions
at low energies: a) O(p2) and O(p4) local interaction, b) one-resonance exchange (contribution
starting at O(p6)), c) two or more resonance exchanges (contribution starting at O(p8)). The single
lines represent Goldstones and the double ones resonances.

with the source-dependent terms

Z = 〈(`d`+ d``− i`3)(iU−1rU − U−1dU)− d`dU−1rU − i`(dU−1U)3 − 1

2
(`dU−1U)2

−U`U−1rdUdU−1 − i`dU−1U`U−1rU +
1

4
(`U−1rU)2〉 − p.c., (2.27)

where “p.c.” stands for the interchanges U ↔ U−1 and `↔ r.

3 Chiral couplings at O(p6)

3.1 Resonance lagrangian

We now proceed to compute the O(p6) couplings at low energies. After substituting Aµ
in terms of the meson decomposition (2.12), the 5D action (2.1) given by the YM and CS
terms contains operators with only Goldstones of at most O(p4). In general we denote
an operator as O(pk) when it contains a number k of derivatives or external vector and
axial-vector sources (vµ, aµ ∼ ∂µ). The O(p6) LECs are generated by the intermediate
heavy resonance exchanges. More precisely, we need just the one-resonance exchanges as
diagrams with a higher number of intermediate resonances will contribute to the low-energy
χPT action at O(p8) or beyond (see figure 1). Hence, the only operators in the Lagrangian
that interest us are those containing one resonance field:

SYM

∣∣∣∣
Kin.

=
∑
n

∫
d4x〈−1

2
(∇µvnν −∇νvnµ)2 +m2

vnv
n
µ
2− 1

2
(∇µanν −∇νanµ)2 +m2

ana
n
µ
2 〉,(3.1)

SYM

∣∣∣∣
1−res.

=
∑
n

∫
d4x

{
− 〈

fµν+
2

[
(∇µvnν −∇νvnµ)aV vn −

i

2
([uµ, a

n
ν ]− [uν , a

n
µ])aAan

]
〉 (3.2)

−〈 i
4

[uµ, uν ]

[
(∇µvnν −∇νvnµ)bvnππ −

i

2
([uµ, a

n
ν ]− [uν , a

n
µ])banπ3 ] 〉

+〈
fµν−
2

[
(∇µanν −∇νanµ)aAan −

i

2
([uµ, v

n
ν ]− [uν , v

n
µ ])(aV vn − bvnππ)

]
〉
}
,

SCS

∣∣∣∣
1−res.

=
∑
n

∫
d4x

{
− NC

32π2
cvnε

µναβ〈uµ{vnν , f+αβ} 〉+
NC

64π2
canε

µναβ〈uµ{anν , f−αβ} 〉

+
iNC

16π2
(cvn − dvn)εµναβ〈 vnµuνuαuβ 〉

}
, (3.3)
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with vnµ = tavn, aµ , anµ = taan, aµ , and the summation over any possible n implicitly assumed.
The covariant derivative is defined with the connection Γµ as ∇µ . = ∂µ + [Γµ, .]. The
couplings are defined as

aV vn =

∫ z0

−z0

ψ2n−1
g2(z)

dz , bvnππ =

∫ z0

−z0

ψ2n−1(1− ψ2
0)

g2(z)
dz

aAan =

∫ z0

−z0

ψ0ψ2n

g2(z)
dz , banπ3 =

∫ z0

−z0

ψ0ψ2n(1− ψ2
0)

g2(z)
dz ,

cvn = −1

2

∫ z0

−z0
ψ0ψ

′
2n−1dz , dvn =

1

2

∫ z0

−z0
ψ2
0ψ
′
0ψ2n−1dz

can = −1

2

∫ z0

−z0
ψ2
0ψ
′
2ndz . (3.4)

Notice that the aV vn are related to the decay constants gvn , defined previously from the
bulk-to-boundary propagator in eq. (2.16), in the form gvn = m2

vnaV vn . The same happens
for aAan . Likewise, by means of the ψn EoM’s and their b.c.’s one can extract the relations

cvn =
m2
vn

2f2π
bvnππ , can =

m2
an

3f2π
banπ3 , (3.5)

dvn =
m2
vn

12f2π

∫ +z0

−z0

ψ2n−1(1− ψ4
0)

g2(z)
dz. (3.6)

At the level of the generating functional, in order to compute the diagrams with intermediate
resonances one must perform the functional integration over the resonance configurations.
At the tree level this means that one has to find the classical solution vnµ [π, `µ, rµ] and
anµ[π, `µ, rµ] for the resonance fields in terms of the external sources and the Goldstone
fields, and then substitute it in the resonance action. In the LEC analysis in this article only
the terms (3.2) and (3.3) are relevant. Moreover, since we are interested in the Goldstone
interaction at long distances, we need the resonance field solutions in the low-energy limit.
Thus, the resonance action yields for vector and axial-vector mesons the EoM’s:

vnµ = − 1

2m2
vn

(
aV vn∇ρf+ρµ +

i

2
bvnππ∇ρ[uρ, uµ]− i

2
(aV vn − bvnππ)[f−ρµ, u

ρ]

+
NC

32π2
cvnεµναβ{uν , fαβ+ }+

iNC

16π2
(cvn − dvn)εµναβu

νuαuβ
)
,

anµ =
1

2m2
an

(
aAan∇ρf−ρµ +

1

4
banπ3 [[uρ, uµ], uρ]− i

2
aAan [f+ρµ, u

ρ]

+
NC

64π2
canεµναβ{uν , fαβ− }

)
, (3.7)

where terms O(p5/m4
Rn) (with the derivatives and external vector and axial-vector sources

counting as O(p)) and two or more resonance fields are neglected on the right-hand side of
the equations.

By substituting the classical field solutions (3.7) back into the resonance action from
eqs. (3.1)–(3.3), one integrates out the one-resonance intermediate exchanges at the gen-
erating functional level and retrieves the corresponding O(p6) Goldstone operators from
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the χPT Lagrangian. However, the obtained O(p6) Goldstone terms do not show up di-
rectly in the chiral basis of operators commonly used in χPT [5, 6, 46]. In order to express
our outcome in this form some care needs to be paid as the scalar/pseudoscalar source is
absent in our holographic model. First we expand our operators using the whole opera-
tor set in refs. [5, 6, 46] and then we eliminate the terms of those operators involving the
scalar/pseudoscalar source at the final step. In the even-parity sector we will see that in
the absence of scalar/pseudoscalar sources it is possible to further reduce the size of O(p6)

operator basis. Conversely, from the study in [47] we find that in the odd-parity sector
the O(p6) basis chosen in refs. [46, 47] in the case when there are no scalar/pseudoscalar
sources, is already minimal.

3.2 Even and odd sector sum rules

Now we discuss a series of sum rules which constrain the resonance couplings, some of
which will be needed in the calculation of the LECs. They can be obtained through the
5D equation of motion (2.8) and the completeness condition (2.10). Indeed, by means of
the expressions (3.4) for the resonance couplings, it is possible to introduce a double 5D
integral in the infinite summation of resonance couplings. Then, thanks to the completeness
condition (2.10), it is possible to eliminate the infinite resonance summation and one of the
5D integrals. We are left with a 5D integral of appropriate products of wave-function ψ0,
which can be in general related to the integrals that provide the O(p2) and O(p4) chiral
couplings [24, 25]. Only in a few cases we were left with two new 5D integrals, Y and Z
defined in (2.25). For the resonance couplings in the YM part we have:

∞∑
n=1

a2V vnm
2
vn −

∞∑
n=1

a2Aanm
2
an = f2π ,

∞∑
n=1

a2V vn −
∞∑
n=1

a2Aan = −4L10 , (3.8)

∞∑
n=1

aV vnbvnππm
2
vn = 2f2π ,

∞∑
n=1

aV vnbvnππ = 4L9 , (3.9)

∞∑
n=1

b2vnππm
2
vn =

4f2π
3
,

∞∑
n=1

b2vnππ = 32L1 , (3.10)

∞∑
n=1

aAanbanπ3m2
an = 2f2π ,

∞∑
n=1

aAanbanπ3 = 4L9 − 32L1 , (3.11)

∞∑
n=1

b2anπ3m
2
an =

4f2π
5
,

∞∑
n=1

b2anπ3 = 4Z , (3.12)

with Z defined in eq. (2.25). The sum rules (3.8) are related to the VV-AA correlator [19].
The relations (3.9), (3.10), (3.11) and (3.12) stem from the ππ vector form factor (VFF) [24],
the ππ-scattering [24], the πππ axial-vector form factor (AFF) and the πππ → πππ scat-
tering respectively. The V V −AA correlator, VFF and ππ-scattering sum rules have been
already studied within the holographic framework in previous works [24, 25, 48]. The others
involving the axial resonances are new. Especially we want to emphasize the two sum rules
in eq. (3.11). They are related to the AFF into πππ, which will be studied in section 4.
They can serve to improve the current phenomenological analyses on the πππ-AFF, which
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employ similar high-energy sum rule constraints [39, 40]. The fifth couple of sum rules (3.12)
would allow us to provide a more physical meaning to the constant Z. Indeed, in the case
when the summation is well defined one can use eq. (3.12) as an alternative definition of
Z, in parallel with L1 in eq. (3.10). Notice that all the sum rules involving bvnππ and banπ3

can be reexpressed in terms of cvn and can through (3.5), and then are relevant for some
anomalous processes.

For the other sum rules involving the anomalous couplings, only those containing cvn−
dvn are independent due to the resonance coupling relations (3.5). They are found to be

∞∑
n=1

cvn(cvn − dvn)

m2
vn

=
4

15f2π
,

∞∑
n=1

cvn(cvn − dvn)

m4
vn

=
1

6f4π
(40L1 − Z) , (3.13)

∞∑
n=1

(cvn − dvn)2

m2
vn

=
68

315f2π
,

∞∑
n=1

(cvn − dvn)2

m4
vn

=
1

3f4π
(16L1 − Z + Y ) , (3.14)

∞∑
n=1

aV vn(cvn − dvn) =
2

3
,

∞∑
n=1

aV vn(cvn − dvn)

m2
vn

=
4

3f2π
(2L1 + L9) . (3.15)

The first two sum rules are related to a set of diagrams in the vector form factor into
four pions, or ππ → πππ scattering replacing cvn with bvnππ. The second two appear, for
instance, in the scattering πππ → πππ, while the last two can be related to the vector form
factor into three pions.

These sum rules perform a summation over the infinite tower of resonances, and in prin-
ciple one may wonder how well the first terms of the series reproduce the full result. The
reason is that, in spite of the fact of having an infinite number of hadrons in the large-NC

limit of QCD [49–51], in the majority of the hadronic analyses only the lightest states are
taken into account, introducing a “truncation” error. Many authors have investigated the
importance of the lightest resonances in the summation [13, 52–55]. Since the development
of the Weinberg sum rules [56, 57], the relations (3.8)–(3.15) have been truncated at their
lowest orders and have been used to make predictions on hadronic phenomenology [16].
Some authors have nonetheless argued about the relevance of the tail of the series and the
numerical (and also theoretical) impact of the higher terms of the series on the QCD ampli-
tudes at low and intermediate energies [13, 55]. For this reason, we consider that the study
of the saturation of the presented sum rules may be useful for most of the phenomenological
studies, which only include the lightest hadrons. Indeed, the first constraints (3.8)–(3.10)
have been previously obtained in the case of resonance Lagrangians from the analysis of the
high-energy behavior of the V V −AA correlator (F 2

V − F 2
A = f2π) [16, 56, 57], the ππ VFF

(FVGV = f2π) [16] and the ππ-scattering (3 G2
V = f2π) [58, 59], where the corresponding

couplings are related to those used in this paper through FV = aV ρmρ, FA = aAa1ma1 and
GV = bρππmρ/2.

In table 2 we check how well the sum rules (3.8)–(3.15) are saturated by the lightest
resonance multiplets of vectors and axial-vectors. The second sum rule in every line in
eqs. (3.8)–(3.15) is always much better saturated by the lightest meson than the first one,
as it contains an extra 1/m2

Rn suppression. One can see that, in general, the first term of the
series already provides a reasonable approximation. The only exception is the V V − AA
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Flat Cosh Hard-wall Sakai-Sugimoto

1−
a2V ρm

2
ρ − a2Aa1m

2
a1

Σn(a2V vnm
2
vn − a2Aanm2

an)
99 % 300 % 350 % 840 %

1−
a2V ρ − a2Aa1∑

n

(a2V vn − a2Aan)
8 % 34 % 41 % 110 %

1−
aV ρbρππm

2
ρ

ΣnaV vnbvnππm
2
vn

18 % 0 -11 % -30 %

1− aV ρbρππ
ΣnaV vnbvnππ

0.8 % 0 -2 % -6 %

1−
3b2ρππm

2
ρ

Σn3b2vnππm
2
vn

0.7 % 0 0.7 % 2 %

1−
b2ρππ

Σnb
2
vnππ

-0.6 % 0 0.2 % 1 %

1− aAa1ba1π3m2
a1

ΣnaAanbanπ3m2
an

39 % 0 -11 % -54 %

1− aAa1ba1π3

ΣnaAanbanπ3
8 % 0 -3.4 % -15 %

1−
5b2a1π3m

2
a1

Σn5b2anπ3m
2
an

8 % 0 0.8 % 6 %

1−
b2a1π3

Σnb
2
anπ3

2 % 0 0.2 % 2 %

1−
cρ(cρ − dρ)/m2

ρ

Σncvn(cvn − dvn)/m2
vn

2 % 0 1.5 % 4 %

1−
cρ(cρ − dρ)/m4

ρ

Σncvn(cvn − dvn)/m4
vn

0.3 % 0 0.3 % 1.4 %

1−
(cρ − dρ)2/m2

ρ

σn(cvn − dvn)2/m2
vn

3 % 0.1 % 3 % 6 %

1−
(cρ − dρ)2/m4

ρ

(cvn − dvn)2/m4
vn

0.6 % -0.6 % 0.6 % 2 %

1− aV ρ(cρ − dρ)
ΣnaV vn(cvn − dvn)

- 30 % - 20 % -30 % -50 %

1−
aV ρ(cρ − dρ)/m2

ρ

ΣnaV vn(cvn − dvn)/m2
vn

- 5 % - 3 % -5 % -10 %

Table 2. Analysis of the saturation of the sum rules (3.8)–(3.15) by the first resonance multi-
plets ρ(770) and a1(1260). The denominators Σn(. . .) represent the resummed expression for the
summations from n = 1 up to ∞ provided in eqs. (3.8)–(3.15).
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Weinberg sum rules in eq. (3.8), which is found to be badly convergent. Indeed, in the
asymptotically anti-de Sitter (AdS) models we are studying (“Cosh” [19] and hard-wall [24])
the resonance masses and couplings scale, respectively, as m2

vn ,m
2
an ∼ n2 and a2V vn , a

2
Aan ∼

n−1: the first WSR — first constraint in eq. (3.8) — is not convergent and, even though
the alternate series in the second sum rule in eq. (3.8) is convergent, it is not absolutely
convergent.1 This kind of pathologies are softened in the case of soft-wall models with a
quadratic dilaton [60–62], as they recover the linear Regge trajectories m2

vn ,m
2
an ∼ n and

a2V vn , a
2
Aan ∼ n−1.

3.3 Odd-intrinsic parity LECs

Now we are ready to show the results for the O(p6) LECs in the odd sector. After expressing
the outcome in the O(p6) basis of odd-parity operators provided in ref. [46], we obtain the
predictions:

CW12 = − NC

128π2
Sπ5 , CW13 =

NC

64π2
(S̃V π3 − SV π3 − SπV V ),

CW14 =
NC

128π2
(S̃V π3 − SπV V ), CW15 =

NC

128π2
(2S̃V π3 + SV π3 − SπV V ),

CW16 =
NC

128π2
(3Sπ5 − 2SV π3 − SAπ4), CW17 =

NC

512π2
(6S̃V π3 − 4SπV V − SAπ4),

CW19 = − NC

128π2
(2SV π3 + SπAA), CW20 =

NC

256π2
(6S̃V π3 − 4SπV V − SπAA),

CW21 =
NC

256π2
(2SV π3 − SπAA), CW22 =

NC

64π2
SπV V ,

CW23 =
NC

128π2
SπAA, (3.16)

with the summations over resonances,

SπV V =
∞∑
n=1

aV vncvn

m2
vn

, SπAA =
∞∑
n=1

aAancan

m2
an

,

SV π3 =
∞∑
n=1

aV vn

m2
vn

(cvn − dvn) , S̃V π3 =
∞∑
n=1

cvnbvnππ
m2
vn

,

Sπ5 =

∞∑
n=1

bvnππ
m2
vn

(cvn − dvn) , SAπ4 =

∞∑
n=1

canbanπ3

m2
an

, (3.17)

which one may find in the sum rules (3.8)–(3.15) with the help of the resonance coupling
relations (3.5). Hence, all the odd intrinsic-parity LECs can be expressed through L1, L9

1The convergence behavior is slightly better in the case of flat metric [19] and worse in the Sakai-
Sugimoto model [23, 25]. In the flat model [19] one has the high-energy behavior ΠV V ,ΠAA ∼ 1/Q and
a2V vn , a

2
Aan ∼ n−2 for large n. On the other hand, in the Sakai-Sugimoto case [23, 25] one has ΠV V ,ΠAA ∼ Q

and a2V vn , a2Aan ∼ n0. In all the holographic theories considered here [19, 23–25] the resonance masses behave
like m2

vn ,m
2
an ∼ n2 for high n. The dependence of the masses and couplings on the excitation number n in

the different models can be found in appendix. A.
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and the constant Z (defined in (2.25)):

CW12 = − NC

384π2f2π
(40L1 − Z) (3.18)

CW13 =
5NC

96π2f2π
(4L1 − L9) (3.19)

CW14 =
NC

64π2f2π
(8L1 − L9) (3.20)

CW15 =
NC

192π2f2π
(52L1 − L9) (3.21)

CW16 =
NC

384π2f2π
(104L1 − 8L9 − 7Z) (3.22)

CW17 =
NC

384π2f2π
(72L1 − 6L9 − Z) (3.23)

CW19 =
NC

96π2f2π
(4L1 − 3L9) (3.24)

CW20 =
NC

192π2f2π
(80L1 − 7L9) (3.25)

CW21 =
NC

192π2f2π
(12L1 + L9) (3.26)

CW22 =
NC

32π2f2π
L9 (3.27)

CW23 =
NC

96π2f2π
(L9 − 8L1). (3.28)

The 1/NC subleading coupling CW18 and those related to operators with scalar/pseudoscalar
sources do not appear. This set of equations provides a relation between the even and odd-
parity sectors of QCD. Actually, taking into account that L9 = −L10 [24, 25], we recover
the result CW22 = − NC

32π2f2π
L10 previously derived through the low-energy expansion of the

Son-Yamamoto relation [37].

We provide in table 3 the numerical results for the four holographic models mentioned
before. Among them, the “Cosh” model accommodates better the low-energy inputs and
the required gauge coupling value g5 needed to recover the right coefficient for the pQCD
log of the two-points correlators [19]. Thus we take this as our preferred set of estimates.
Nonetheless, it is worthy to remark that the LEC predictions from the various models
considered here are relatively stable, with variations between one and another of the order
of ∼ 1 · 10−3GeV−2, similar to the renormalization µ scale dependence of the O(p6) LECs
in χPT [46]. In cases like CW12 , CW15 or CW21 the shift is pretty small, while for others like
CW13 , CW19 or CW20 one sees larger oscillations depending on the models at hand.

Along the years, many analyses have been devoted to the study of QCD amplitudes
under the minimal hadronical approximation [52–54], where one considers just the lightest
multiplets of resonances entering in the problem at hand. A recent study of the low-energy
contributions from a general odd-intrinsic resonance Lagrangian with only the lightest me-
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Flat “Cosh” Hard-wall Sakai-Sugimoto
CW12 −2.1 −2.1 −2.1 −2.1

CW13 −6.5 −8.8 −9.9 −11.9

CW14 −0.6 −1.3 −1.7 −2.3

CW15 4.5 4.4 4.2 4.0

CW16 0.9 −0.2 −0.8 −1.6

CW17 0.6 −0.1 −0.5 −1.1

CW19 −5.6 −7.0 −7.7 −8.8

CW20 1.1 −0.4 −1.3 −2.3

CW21 2.4 2.6 2.7 2.9

CW22 6.5 7.9 8.6 9.7

CW23 0.4 0.9 1.1 1.5

Table 3. Numerical results for the O(p6) low energy constants in the odd sector from different
holographic models. The O(p6) LECs are in units of 10−3 GeV−2.

“Cosh” DSE χPT CQM Res. Lagr. VMD
[18] [8]

CW12 −2.1 −5.13+0.15
−0.25 −4.3± 0.3 [63]

CW13 −8.8 −6.37+0.18
−0.31 −70± 60 [8] 14± 15 −20.0 [8]

−10± 70 [8] −7± 20

CW14 −1.3 −2.00+0.06
−0.10 30± 11 [8] 10± 8 −6.0 [8]

1± 15 [8] −1± 10

CW15 4.4 4.17+0.12
−0.20 −25± 24 [8] 20± 7 2.0 [8]

−3± 29 [8] 9± 10

CW16 −0.2 3.58+0.10
−0.17

CW17 −0.1 1.98+0.06
−0.10

CW19 −7.0 0.29+0.01
−0.01

CW20 −0.4 1.83+0.05
−0.09

CW21 2.6 2.48+0.07
−0.12

CW22 7.9 5.01+0.14
−0.24 6.5± 0.8 [8] 3.9± 0.4 8.0 [64] 8.0 [65–67]

5.1± 0.7 [8] 6.5 [68]
5.4± 0.8 [69] 8.1± 0.8 [70]
7.0+1.0
−1.5 [71]

CW23 0.9 2.74+0.08
−0.13

Table 4. Numerical results for the odd-intrinsic parity O(p6) low energy constants within the
“Cosh” model compared to alternative determinations in other frameworks: Dyson-Schwinger Equa-
tion (DSE) [18], χPT [8, 69], Constituent Chiral Quark Model (CQM) [8], Hidden Local Symme-
try [63], Resonance Chiral Theory [64, 68, 71], rational approximations [70] and Vector Meson
Dominance (VMD) [8, 65–67]. The O(p6) LECs are given in units of 10−3 GeV−2.
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son multiplets has led to the relation [64]

F 2
V

2GV
CW12 − FV (CW14 − CW15 ) = GV C

W
22 . (3.29)

One can verify that this is a direct consequence of our results (3.16) when keeping only
the lightest resonance multiplets in the sums (3.17) involved. Since all the sums are well
saturated by the lowest multiplets, as shown in the previous subsection, this relation should
be reasonably satisfied with the exact values of the couplings. We have checked that this
relation is pretty well fulfilled for various holographic models, with deviations that vary
from 1% in the flat background to 11% in the Sakai-Sugimoto model.

One can also compare our predictions with previous phenomenological determinations
in various frameworks. The full set of O(p6) LECs was computed in ref. [18] by means of the
DSE. Other approaches are based on the analysis of experimental decays and anomalous
processes directly through χPT [8, 69], although in general the determinations are not very
precise except for CW22 . Alternatively, several authors have estimated LECs by considering
just the lightest multiplet of resonances in the effective Lagrangian [63, 64, 68], rational
approximations [70] and the assumption of vector meson dominance (VMD) [8, 65–67].
All these results are compared in table 4. There are some couplings (CW16 . . . CW21 , CW23 )
that, except for the DSE computation [18], are completely unknown, so that the present
work may help further explorations of anomalous QCD amplitudes. One has to take into
account that variations of the renormalization scale µ induce shifts in the physical O(p6)

chiral couplings in the form [46]

dCWk
d lnµ2

= − ηk

32π2
, (3.30)

with
∣∣∣∣ ηk
32π2

∣∣∣∣ ∼ 1 · 10−3GeV−2 [46]. Hence, no comparison to a large-NC estimate can claim

an absolute precision beyond that. In most cases, we find a reasonable agreement with the
few previous determinations. Some LECs like CW15 and CW21 agree extremely well with the
DSE determinations. Conversely, the predictions for other couplings like CW19 seem to be
far more spread. In any case, with the exception of CW22 which is relatively well know from
the π0 → γγ∗ decay, the remaining estimates carry large uncertainties, if known at all, so
our results are expected to be of help for the development of the study of the anomalous
sector of QCD.

3.4 Even-intrinsic parity LECs

For the even-parity sector we proceed in a similar way. Our results for the constants in the
three-flavor notation are listed in table 5.

Here the chiral couplings are given in terms of the summations over resonance ex-
changes,

SV V =
∞∑
n=1

a2V vn

m2
vn

, SV ππ =
∞∑
n=1

aV vnbvnππ
m2
vn

, Sπ4 =
∞∑
n=1

b2vnππ
m2
vn

,

SAA =

∞∑
n=1

a2Aan

m2
an

, SAπ3 =

∞∑
n=1

aAanbanπ3

m2
an

, Sπ6 =

∞∑
n=1

b2anπ3

m2
an

. (3.31)
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C1 −1
4SAπ3 + 1

32Sπ4

C3
1
16SAπ3

C4 − 3
16SAπ3 + 1

32Sπ4

C40
1
4SAπ3 − 1

32Sπ4 − 1
32Sπ6

C42
1
8SAπ3 − 1

32Sπ4 − 1
32Sπ6 +

17N2
C

80640π4f2π

C44 −1
2SAπ3 + 1

16Sπ4 + 1
8Sπ6 − 17N2

C
40320π4f2π

C46 −1
8SAπ3 − 17N2

C
80640π4f2π

C47
1
4SAπ3 − 1

16Sπ6 +
17N2

C
40320π4f2π

C48
1
16SAπ3 − 1

32Sπ4 +
N2
C

1920π4f2π

C50
1
4SAπ3 + 1

8SV ππ +
N2
C

960π4f2π

C51
3
8SAπ3 − 1

16Sπ4 + 1
8SV ππ

C52 −1
8SV ππ −

N2
C

1920π4f2π

C53
3
16SAA −

1
16SV ππ −

3
16SV V +

N2
C

3072π4f2π

C55 − 3
16SAA + 1

16SV ππ + 3
16SV V +

N2
C

3072π4f2π

C56 −3
8SAA −

1
8SV ππ + 3

8SV V −
N2
C

1536π4f2π

C57 −1
8SAA + 1

4SV ππ + 1
8SV V

C59
1
4SAA −

1
16SV ππ −

1
4SV V −

N2
C

3072π4f2π

C66 − 1
16SAπ3 + 3

32Sπ4 − 1
16SV ππ

C69
1
16SAπ3 − 3

32Sπ4 + 1
16SV ππ

C70 −1
8SAA + 3

8SAπ3 − 1
32Sπ4 − 1

16SV ππ + 1
8SV V +

N2
C

46080π4f2π

C72
1
8SAA −

3
16SAπ3 + 1

16SV ππ −
1
8SV V +

N2
C

46080π4f2π

C73
1
8SAA −

1
2SAπ3 + 1

8SV ππ −
1
8SV V −

N2
C

23040π4f2π

C74
1
8SAA + 3

8SAπ3 − 5
16Sπ4 − 1

8SV ππ −
1
8SV V

C76 −1
8SAA + 1

4SAπ3 + 1
8Sπ4 + 1

8SV V −
N2
C

46080π4f2π

C78 −1
4SAA + 1

16SV ππ + 1
4SV V

C79 −1
8SAA −

1
16SV ππ + 1

8SV V

C87 −1
8SAA + 1

8SV V

C88 −1
8SV ππ

C89 −1
4SAA + 3

8SV ππ + 1
4SV V

C92 SV V

C93 −1
4SV V

Table 5. Holographic predictions for the O(p6) LECs in the even sector.

– 17 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
2

With the help of the decomposition (2.18) of the Green function, we can write these sums
in the form

SV V =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)

g2(z)g2(z′)

SV ππ =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)(1− ψ0(z)
2)

g2(z)g2(z′)
,

Sπ4 =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)(1− ψ0(z)
2)(1− ψ0(z

′)2)

g2(z)g2(z′)

SAA =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)ψ0(z)ψ0(z
′)

g2(z)g2(z′)

SAπ3 =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)ψ0(z
′)ψ0(z)(1− ψ0(z)

2)

g2(z)g2(z′)

Sπ6 =

∫ +z0

−z0
dz

∫ +z0

−z0
dz′

G(0, z, z′)ψ0(z)(1− ψ0(z)
2)ψ0(z

′)(1− ψ0(z
′)2)

g2(z)g2(z′)
. (3.32)

They can be calculated through the expression (2.22) once ψ0 is known. In deriving the
low energy constants in table 5 we have also used the sum rules (3.13) and (3.14), which
allow us to express all the contributions from the odd intrinsic parity resonance sector in
terms of just fπ. These odd-sector terms were not considered in previous RχT estimates of
the O(p6) chiral couplings [72, 73].

In table 5 we find contributions for all the even-sector χPT operators at O(p6) which
do not contain scalar/pseudoscalar sources except for a few of them:

0 = C2 = C41 = C43 = C45 = C49 = C54 = C58

= C60 = C67 = C68 = C71 = C75 = C77 . (3.33)

They correspond to multi-trace operators and are suppressed by 1/NC . In addition, we
obtain C90 = 0, which we want to discuss here in more details. If scalar-pseudoscalar
sources χ are not included in χPT (χ = 0), the basis of O(p6) even operators can be further
simplified beyond the trivial simplifications O5, ...39 = O61, ...65 = O80, ...86 = O91, 94 = 0. In
the usual χPT computation with scalar-pseudoscalar sources we have the SU(3) operator
relation [5, 6]

− 〈 f+µν [χµ−, u
ν ] 〉 =

[
O50 +O51 −O52 −

1

2
O53 +

1

2
O55 −O56 + 2O57 −

1

2
O59

−1

2
O70 +

1

2
O72 +O73 −

1

2
O76 +

1

2
O78 −

1

2
O79 −O88 −O90

]
+

[
1

2
O63 +O65 +

1

4
O104

]
, (3.34)

with χµ− = ∇µχ−− i
2{χ+, u

µ} [5, 6]. The operators in the second bracket on the right-hand
side of (3.34) contain the tensor χ and, hence, in the absence of scalar-pseudoscalar sources
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the basis of O(p6) operators can be simplified through the relation

0 =

[
O50 +O51 −O52 −

1

2
O53 +

1

2
O55 −O56 + 2O57 −

1

2
O59

−1

2
O70 +

1

2
O72 +O73 −

1

2
O76 +

1

2
O78 −

1

2
O79 −O88 −O90

]
. (3.35)

Therefore, when one describes QCD matrix elements in the chiral limit without scalar-
pseudoscalar sources — as we do in the present article — the number of independent
operators is actually smaller than that one would naively assume. Thus, for instance,
if one removes the operator O90 from the minimal basis, we find that the only physical
combinations of O(p6) couplings one may determine in the χ = 0 case are

C50 + C90 , C51 + C90 , C52 − C90 , C53 −
1

2
C90 , C55 +

1

2
C90 ,

C56 − C90 , C57 + 2C90 , C59 −
1

2
C90 , C70 −

1

2
C90 , C72 +

1

2
C90 ,

C73 + C90 , C76 −
1

2
C90 , C78 +

1

2
C90 , C79 −

1

2
C90 , C88 − C90 , (3.36)

and the remaining couplings not listed in (3.34). We want to remark that our analysis of
the O(p6) operators in the absence of scalar-pseudoscalar sources is not exhaustive, and
more relations might be found, allowing a further reduction of the O(p6) basis.

There are combinations of couplings where the sums over the resonances can be elimi-
nated. In particular, in the comparison with the phenomenology there are a few relations
of interest:

3C3 + C4 = C1 + 4C3 ,

2C78 − 4C87 + C88 = 0 ,

8C53 + 8C55 + C56 + C57 + 2C59 =
N2
C

256π4f2π
,

C56 + C57 + 2C59 = −
N2
C

768π4f2π
,

8C53 − 8C55 + C56 + C57 − 2C59 + 4C78 + 8C87 − 4C88 = 0 ,

C56 + C57 − 2C59 − 4C78 = 0 . (3.37)

The first relation is connected to the ππ scattering, and the combination of LECs in the
second line yields the contribution to the axial-vector form factor to πγ, GA(Q2), at O(p6)

in the chiral limit [6]. Actually, this form factor vanishes identically in this class of models,
GA(Q2) = 0 [24]. This is one example of those universal relations of amplitudes in these
models, which will be studied further in the next section. The relation is not in serious
conflict with experiments since the branching ratio of the relevant decay π+ → l+νγ is
suppressed by more than two orders of magnitude with respect to the dominant decay
channel π+ → µ+ν. At O(p4), it leads to the identity L9 +L10 = 0 shown before. From the
view of resonance exchanges, one finds that all the decay amplitudes an → πγ vanish [24,
25]. These decay amplitudes receive contributions from the 〈fµν+ [uµ, a

n
ν ]〉 and 〈fµν− ∇µanν 〉
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terms in the resonance Lagrangian (3.3), which have the same coupling and cancel exactly
with each other [24]. Actually, in the original hidden local symmetry model with the
lightest resonance multiplets [74], no a1 → πγ decay occurs. Moreover, in the holographic
framework where a scalar field dual to the quark condensate is introduced, these amplitudes
also vanish [27]. Experimentally the partial width if a1 → πγ is very small compared to
the total width, so it is supposed to be induced by some higher derivative terms or 1/NC

suppressed terms [19, 24, 25, 27].
The other relations are connected to the photon-photon collision. For the γγ → π0π0

process, the following quantities are introduced [75]:

a002 = 256π4 f2π (8C53 + 8C55 + C56 + C57 + 2C59) ,

b00 = −128π4 f2π (C56 + C57 + 2C59) . (3.38)

For γγ → π+π− a similar set of quantities are defined [76]:

a+−2 = 256π4 f2π (8C53 − 8C55 + C56 + C57 − 2C59 + 4C78 + 8C87 − 4C88) ,

b+− = −128π4 f2π (C56 + C57 − 2C59 − 4C78) . (3.39)

We have assumed the large-NC limit to express the SU(2) definitions of the low-energy
parameters a00,+−2 and b00,+− [75, 76] in terms of SU(3) chiral couplings. Taking into
account these definitions, our relations simply predict:

a002 = N2
C , b00 =

N2
C

6
,

a+−2 = 0 , b+− = 0. (3.40)

A simple explanation can be found for these results. From the previous discussion we
know that there is no anπγ interaction. One can also check that the vnγγ interaction
vanishes due to the special group structure from the 〈fµν+ ∇µvnν 〉 term. As a result, the only
contribution to γγ → π0π0 at O(p6) comes from the vector resonance exchanges in the
crossed channels with two odd vertices, which turns out to be universal, i.e., independent
of the 5D background. For γγ → π+π− even this kind of diagram does not exist, so that
a+−2 and b+− vanish. It will be interesting to calculate the corresponding amplitudes, to
see if these properties remain. More relations among the other constants seem to hold, and
this requires further investigation.

In table 6 we list the numerical results in different models, and isolate the odd-sector
contributions, which are not negligible for some LECs and are sometimes even dominant.
The different models provide similar results, up to a variation of the order of±1·10−3GeV−2.
One must be aware that when we perform a tree-level estimate of the renormalized chiral
couplings we cannot specify at what renormalization scale µ they correspond, and a devia-
tion of that order of magnitude might occur as one has the running [5, 6]

dCk

d lnµ2
=

1

32π2

[
2Γ

(1)
k + Γ

(L)
k (µ)

]
, (3.41)

with
∣∣∣∣ 1
32π2

[
2Γ

(1)
k + Γ

(L)
k (µ)

]∣∣∣∣ ∼ 1 · 10−3GeV−2 [5, 6].
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Odd contrib. flat “Cosh” Hard-wall Sakai-Sugimoto
C1 — 0.5 −0.3 −0.9 −1.9

C3 — 0.1 0.3 0.4 0.7

C4 — 0.6 0 −0.5 −1.2

C40 — −0.5 0.2 0.8 1.8

C42 2.6 1.9 2.2 2.5 3.0

C44 −5.2 −4.1 −5.5 −6.6 −8.7

C46 −2.6 −2.8 −3.2 −3.5 −4.0

C47 5.2 5.5 6.2 6.8 7.8

C48 6.4 5.6 5.8 5.9 6.2

C50 + C90 12.7 17.4 19.1 20.2 22.2

C51 + C90 — 3.1 5.2 6.7 9.2

C52 − C90 −6.4 −10.6 −11.6 −12.1 −13.1

C53 − 1
2C90 4.0 −5.6 −8.8 −10.5 −13.4

C55 + 1
2C90 4.0 13.5 16.7 18.4 21.3

C56 − C90 −7.9 2.6 7.1 9.5 13.3

C57 + 2C90 — 13.4 17.2 19.2 22.8

C59 − 1
2C90 −4.0 −16.0 −20.1 −22.3 −26.0

C66 — 0.4 −0.3 −0.7 −1.5

C69 — −0.4 0.3 0.7 1.5

C70 − 1
2C90 0.3 2.8 5.3 6.9 9.6

C72 + 1
2C90 0.3 −2.9 −4.7 −5.9 −7.8

C73 + C90 -0.5 -2.0 -4.4 -6.0 -8.7
C74 — −17.1 −19.0 −19.5 −20.4

C76 − 1
2C90 −0.3 8.5 11.1 12.7 15.3

C78 + 1
2C90 — 12.0 16.1 18.3 22.0

C79 − 1
2C90 — 2.8 4.1 4.8 6.0

C87 — 4.9 6.8 7.7 9.3

C88 − C90 — −4.2 −5.2 −5.8 −6.7

C89 — 22.6 29.2 32.7 38.8

C92 — 42.4 68.8 87.3 171.0

C93 — −10.6 −17.2 −21.8 −42.8

Table 6. Numerical results for the O(p6) low-energy constants of the even sector from different
holographic models. All the results are in units of 10−3 GeV−2. In the second column we provide
the contribution from the odd-parity resonance sector.

In tables 7, 8 and 9 we compare our results from the “Cosh” model with the outcomes
from other frameworks. In general, the different works constrain particular combinations of
LECs through the analysis of various matrix elements. Some determinations consider the
O(p6) determination of the amplitudes and extract the couplings directly from the experi-
mental data: ππ and πK scattering [11, 77], ππ VFF [78] an the V V −AA correlator [9, 10].
Many authors were able to compute these LECs through rational approximants [12, 14],
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“Cosh” DSE O(p6) χPT Reson. Lagr.
[17] & Rational App.

(−4C1 + 8C2 2.6 6.29+0.28
−0.42 10.1± 2.6 [77] 7.2 [77]

+5C3 + 7C4) 5.9± 3.3 [59, 85]
7.3 [6, 84]

(3C3 + C4) 0.9 2.95+0.11
−0.19 2.6± 0.3 [77] 2.0 [77]

0.99± 0.25 [11] 1.00 [11]
2.10± 0.25 [11] 1.7± 0.3 [59, 85]
2.35± 0.23 [11] 2.0 [84]

(C1 + 4C3) 0.9 3.59+0.13
−0.21 2.07± 0.49 [11] 0.72 [11]

2.81± 0.49 [11]
C2 0 0.00+0.13

−0.00 −0.92± 0.49 [11] −0.05 [11]
−0.74± 0.49 [11]

(C1 + 2C2 + 4C3) 0.9 3.59+0.13
−0.21 0.23± 1.08 [11] 0.62 [11]

1.34± 1.08 [11]
ππ, πK scattering 1.88± 0.72 [11]

(C88 − C90) -5.2 −7.91−0.35+0.57 −7.3± 0.5 [78] −6.1± 0.5 [87]
-8.6 [6, 78]
-5.2 [82]
-6.9 [81]
-6.5 [81]
-8.6 [81]

γ → ππ form factor −6.2± 0.6 [14]
(2C78 − 4C87 + C88) 0 −0.73−0.17+0.25 2.5 [82]

3.6 [6, 88]
2.3± 8.4 [69]

0.8 [81]
1.8 [81]

π,K → `νγ form factor 3.2 [81]

Table 7. Comparison of our results from the the “Cosh” model for some particular combinations of
the O(p6) LECs in the even sector, with those from other approaches. All the results are in units of
10−3 GeV−2. The χPT and resonance determinations [6, 59, 77, 84, 85] of (−4C1+8C2+5C3+7C4)

stem from the SU(2) combination of couplings r5 under the assumption that the loop correction —
1/NC suppressed — is neglected in the relation between SU(3) and SU(2) couplings at large NC . A
similar argument applies for the determinations [59, 77, 84, 85] for (3C3 +C4), which derives from
the SU(2) parameter r6.

large-NC resonance estimates [6, 11, 16, 59, 69, 72, 73, 75–77, 79–85] and resonance determi-
nations at NLO in the 1/NC expansion [86, 87]. For the study [82] of the V AP , the V V−AA,
the SS − PP Green’s functions and the scalar and vector form factors in RχT, we have
used the inputs mρ = 0.776GeV, ma1 = 1.26GeV, mπ′ = 1.3GeV. Conversely, the analysis
through the Dyson-Schwinger equation [17] is able to determine all the LECs (table 9).
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“Cosh” DSE O(p6) χPT Reson. Lagr.
[17] & Rational App.

(8C53 + 8C55 47.7 20.7+0.2
−0.3 69± 19 [75, 80]

+C56 + C57 + 2C59)

(C56 + C57 + 2C59) -15.9 −17.7+0.6
−1.0 −32± 11 [75, 80]

(8C53 − 8C55 + C56 0 −5.52−0.40+0.67 3.7 [76]
+C57 − 2C59 + 4C78

+8C87 − 4C88)

(C56 + C57 0 2.20+0.20
−0.25 -4.2 [76]

−2C59 − 4C78)

γγ → ππ scattering
C87 6.8 7.57+0.37

−0.60 4.9± 0.2 [9, 10] 4.8± 1.3 [69]
4.0 [82]
7.6 [79]
5.3 [81]
6.2 [81]
8.6 [81]

4.1± 1.5 [86]
V V −AA correlator 5.7± 0.5 [12](

C78 + 1
2C90

)
16.1 18.73+0.83

−1.36 11.8 [82]

14.4 [81]
16.6 [81]
23.1 [81]

C89 29.2 34.74+1.61
−2.62 19.6 [82]

26.0 [81]
30.3 [81]
42.5 [81]

C93 -17.2 -8.4 [16, 72, 73]
-17 [79]

Table 8. Comparison of our results from the the “Cosh” model for some particular combinations
of the O(p6) LECs in the even sector, with those from other approaches. All the results are in
units of 10−3 GeV−2. The γγ → ππ determinations [75, 76, 80], based on resonance estimates, were
extracted from the SU(2) parameters ar2 and br under the assumption that the (1/NC suppressed)
loop corrections are neglected in the relation between SU(2) and SU(3) couplings at large NC .

In tables 7 and 8 we show the results for particular combinations of the LECs that con-
tribute directly to some processes. Here, some of these estimates have been extracted from
SU(2) analyses [6, 59, 75–77, 80, 84, 85] under the assumption that the 1/NC-suppressed
loop corrections are neglected in the relation between the SU(3) and SU(2) LECs at large
NC . One can see that some of the couplings (C88−C90, 2C78−4C87+C88, C87, C78+ 1

2C90,
C89, C93) are in relatively fair agreement. These are related with amplitudes with a small
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“Cosh” DSE [17]
C1 -0.3 3.79+0.10

−0.17
C3 0.3 −0.05+0.01

−0.01
C4 0 3.1+0.09

−0.15
C40 0.2 −6.35−0.18+0.32

C42 2.2 0.60+0.00
−0.00

C44 -5.5 6.32+0.20
−0.36

C46 -3.2 −0.60−0.02+0.04

C47 6.2 0.08+0.01
−0.00

C48 5.8 3.41+0.06
−0.10

C50 + C90 19.1 11.15+0.40
−0.66

C51 + C90 5.2 −9.05−0.20+0.37

C52 − C90 -11.6 −7.48−0.29+0.47

C53 − 1
2C90 -8.8 −13.21−0.68+1.10

C55 + 1
2C90 16.7 18.01+0.77

−1.26
C56 − C90 7.1 16.90+0.90

−1.44
C57 + 2C90 17.2 12.80+0.58

−0.93
C59 − 1

2C90 −20.1 −23.71−1.02+1.66

C66 -0.3 1.7+0.07
−0.12

C69 0.3 −0.86−0.04+0.06

C70 − 1
2C90 5.3 0.51+0.11

−0.16
C72 + 1

2C90 -4.7 −2.08−0.14+0.23

C73 + C90 -4.4 2.94+0.05
−0.10

C74 -19.0 −5.07−0.16+0.27

C76 − 1
2C90 11.1 −2.66−0.04+0.08

C78 + 1
2C90 16.1 18.73+0.83

−1.36
C79 − 1

2C90 4.1 −1.78−0.11+0.17

C87 6.8 7.6+0.4
−0.6

C88 − C90 -5.2 −7.91−0.35+0.57

C89 29.2 34.7+1.6
−2.6

C92 68.8 —
C93 -17.2 —

Table 9. Comparison of our results for O(p6) LECs of the even sector from the “Cosh” model and
those from DSE [17]. The chiral couplings are in units of 10−3 GeV−2.

number of external legs, which might be dominated by the lightest vector and axial-vector
mesons. For those related to the ππ → ππ and γγ → ππ scattering, the agreement is a little
worse, but still reasonable taking into account possible sub-leading differences between the
physical and the large-NC values of the chiral couplings.

In table 9 we compare our results for individual LECs from the “Cosh” model to those
from the DSE approach [17]. For most couplings one finds a reasonable agreement, although

– 24 –



J
H
E
P
1
1
(
2
0
1
2
)
0
1
2

for a few others there are larger deviations. In some cases, the discrepancy can be attributed
to the odd-odd contributions mentioned before. Adding these contributions to the results
from the DSE approach, many couplings, e.g., C42, C46, C47, C52, C53 and C56, agree much
better with ours. Some of the others are pushed towards our results, like C44 and C50.
Still, there are large differences for a few couplings, the most serious ones being C51, C74

and C76.
There are other possible contributions that may be responsible of the deviations. First,

one should keep in mind that the present models include only the spin-1 resonance con-
tributions, and that scalar mesons may play an important role in scattering processes.
Second, our effective holographic action in principle could also accommodate operators of
even higher dimension, e.g., of the type (FMN )3, that would modify the LECs related to
processes with a larger number of external legs. These higher dimensional terms can appear
from the low energy expansion of the Dirac-Born-Infeld (DBI) action [89, 90], and are com-
panied by factors of α′. Since the α′ expansion on the string side corresponds to the large
λ expansion on the gauge theory side [91], the contributions from these operators will be
suppressed when the ’t Hooft coupling λ is very large. However, they could give corrections
when this constraint is relaxed.

4 Relations between odd and even amplitudes

4.1 Green’s function relation: the LR versus the VVA correlator

The relations between the anomalous O(p6) constants and the O(p4) constants in the even
sector indicate possible relations between correlation functions or form factors in this class
of models. One example is the Son-Yamamoto relation between the transverse triangle
structure function wT (Q2) and the left-right correlator [29]. Explicitly, wT (Q2) is defined
as the transverse part of the correlation function of the vector current and the axial current
in a weak electromagnetic background field F̂µν :

i

∫
d4x eiqx〈jaµ(x)j5bν (0)〉F̂ =

Q2

8π2
dabPα⊥µ

[
P β⊥ν wT (q2) + P β‖ν wL(q2)

]
εαβσρF̂

σρ, (4.1)

where Q2 = −q2, a and b are flavor indices and dab = (1/2)tr(Q{ta, tb}) with Q being the
electric charge matrix, and Pα⊥µ = ηαµ − qµqα/q2 and Pα‖µ = qµq

α/q2 are the transverse and
longitudinal projection tensors.

With the bulk-to-boundary propagators introduced before, wT , ΠV and ΠA can be
expressed in the holographic models as

wT (Q2) =
NC

Q2

∫ z0

−z0
dzA(Q, z)∂zV (Q, z) (4.2)

ΠV (Q2) =
1

Q2
f2(z)V (Q, z)∂zV (Q, z)|z=+z0

z=−z0 (4.3)

ΠA(Q2) =
1

Q2
f2(z)A(Q, z)∂zA(Q, z)|z=+z0

z=−z0 . (4.4)
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Taking into account that V (Q, z) and A(Q, z) are two independent solutions of eq. (2.8)
with different boundary conditions, one obtains the relation [29]

wT (Q2) =
NC

Q2
+
NC

f2π
[ΠV (Q2)−ΠA(Q2)] . (4.5)

Taking the Q2 → 0 limit on both sides, one gets the relation between CW22 and L10 consistent
with our result (3.27). Recent studies concerning the inclusion of the power corrections to
the relation can be found in refs. [31, 32, 34–36].

4.2 Form factor relation: γ∗ → ππ versus π0 → γγ∗

Now let us study more the relation (3.27) between CW22 and L9. Since CW22 is also related
to the anomalous πγ∗γ∗ form factor [92] and L9 to the vector form factor of the pion [4], it
is natural to ask if there is some relation between these two form factors. Actually, it has
been pointed out that in two specific models they are equal up to normalization [41, 42].
We show that the relation is universal in the class of models considered here. The vector
form factor Fπ(Q2) is defined as

〈π+(p1)|jEMµ (0)|π+(p2)〉 = Fπ(Q2)(p1 + p2)µ , (4.6)

with jEMµ = q̄γµQq the electromagnetic current (Q the charge operator), and Q2 = −(p2 −
p1)

2. Holographically, it has been derived in ref. [24] (see also [41]), and in our notation is
given by

Fπ(Q2) = 1− Q2

2f2π

∫ z0

−z0

1

g2(z)
V (Q, z)(1− ψ2

0)dz

=
1

f2π

∫ z0

−z0
f2(z)V (Q, z)ψ′0(z)

2dz. (4.7)

The anomalous πγ∗γ∗ form factor is defined by∫
d4x e−iq1x〈π, p|T

{
JµEM(x) JνEM(0)

}
|0〉 (4.8)

= εµναβq1αq2β Fγ∗γ∗π0

(
Q2

1, Q
2
2

)
,

where q1, q2 are the momenta of photons, and q21,2 = −Q2
1,2. For real photons

Fγ∗γ∗π0 (0, 0) =
NC

12π2fπ
(4.9)

reproduces the anomaly in QCD. From the holographic approach, the form factor was
derived in ref. [41] in the hard wall, and the expression for a general background is

Fγ∗γ∗π(Q2
1, Q

2
2) =

NC

24π2fπ

∫ z0

−z0
V (Q1, z)V (Q2, z)ψ

′
0(z)dz. (4.10)

Taking the limit Q2
1 = Q2

2 = 0 one recovers the value in eq. (4.9). As shown in ref. [41], this
confirms the choice of the coefficient of the CS term in the action. Employing the equation
of motion for ψ0(z), one finds

Fγ∗γ∗π(Q2, 0) =
NC

12π2fπ
Fπ(Q2). (4.11)
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Taking the slope at Q2 = 0 on both sides, one obtains the relation between CW22 and L9 in
eq. (3.27).

In the previous section we have shown that the results for the LECs do not sensibly
depend on the details of the different models. However, for the form factors, the results
from different models can differ from each other, especially in the high momentum region.
Depending on the asymptotic metric in the UV, the form factor exhibits different power
behavior when Q2 → ∞. For Fγ∗γ∗π(Q2, 0), the explicit high-energy power structure in
different models is analyzed in ref. [93]. In figure 2 and figure 3 we show the numerical
results of both the form factors in the relation (4.11) for the four different models, together
with the available experimental data.2 From the figures one clearly finds the different power
behavior of each model. To reproduce the observed 1/Q2 behavior for the form factors, the
models need to be asymptotically AdS in the UV, and this is the case of the “Cosh” and
hard wall models. In such models, one can simplify the metric functions in the UV region
by using the Poincaré coordinates

f2(u) = 1/g2(u) ∼ 1/g25u, u→ 0. (4.12)

Following the procedure in ref. [103], one finds the large-Q2 behavior of the form factors [41]

Fπ(Q2)→ f2πg
2
5

Q2
, Fγ∗γ∗π(Q2, 0)→ NCg

2
5fπ

12π2Q2
. (4.13)

The relation (4.11) between the two form factors dictates that the leading-power coefficients
are proportional to each other. However, new experimental data for the vector form factor
in the large momentum region are needed to confirm this. It is worth mentioning that,
if the 5D coupling g5 is fixed through the comparison with the perturbative logarithmic
term of the vector correlator, g25 = 24π2/NC [19], then the above asymptotic behavior of
Fγ∗γ∗π(Q2, 0) is the same as the perturbative result [104–106]. With this, the vector form
factor has the high energy behavior Q2Fπ(Q2)→ 8π2f2π [41].

4.3 Form factor relation: A→ πππ versus π → AA

One may speculate whether there is a similar relation between the form factors involving
the axial-vector source, based on eq. (3.28). In addition to the one-resonance terms (3.2)
and (3.3), we need the operators with two resonance fields:

SYM

∣∣∣∣
2−res.

= i camvnπ

∫
d4x 〈 (∇µvnν −∇νvnµ) [uµ, am ν ] + (∇µamν −∇νamµ ) [uµ, vn ν ] 〉+ . . .

SCS

∣∣∣∣
2−res.

=
NC

6π2
c̃anam ε

µναβ

∫
d4x 〈uµ{anν ,∇αamβ } 〉 + . . . (4.14)

where the dots stand for operators which are not relevant for the calculation of the π → AA

and A→ πππ form factors. The resonance couplings are given by the 5D integrals

camvnπ =

∫ z0

−z0
dz

1

g2(z)
ψ0(z)ψ2m(z)ψ2n−1(z) ,

c̃anam =

∫ z0

−z0
dz ψ0(z)ψ2n(z)ψ′2m(z) , (4.15)

A detailed calculation of the resonance couplings from the CS term can be found in ref. [112].
2For a review and references of the πγ∗γ∗ form factor, please see ref. [94–102].
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Figure 2. Vector form factor Fπ(Q2) from the flat, “Cosh”, hard wall and Sakai-Sugimoto models,
denoted by the dotted, solid, dashed and dash-dotted lines, respectively. The experimental data
are from ref. [107] (diamonds) and ref. [108] (triangles).

4.3.1 Odd-sector form factor: π → AA

In parallel with the pion-photon transition form factor, we can relate CW23 to the form factor
involving two axial-vector sources:∫

< πc(p)|T{j5aµ (x)j5bν (0)}|0 > e−iq1xd4x

=
i NC

24π2fπ
Dabc εµναβ q

α
1 q

β
2 FπAA(Q2

1, Q
2
2), (4.16)

with p = q1 + q2, Q2
1 = −q21, Q2

2 = −q22. Here we are considering the axial current
j5aµ = q̄γµγ5t

aq with ta the generator in U(Nf ), Dabc = 2Tr({ta, tb}tc) is the corresponding
fully symmetric tensor. At low-energies, this form factor is given in χPT by the expression

FπAA(Q2
1, Q

2
2) = 1 +

192π2CW23
NC

(Q2
1 +Q2

2) + O(E4) , (4.17)

where higher order corrections are in the O(E4) term. Computing the local diagrams from
the WZW term and the one and two axial-vector resonance exchanges one gets:

FπAA(Q2
1, Q

2
2) = 1 −

∑
n

3aAancan

2

[
Q2

1

m2
an +Q2

1

+
Q2

2

m2
an +Q2

2

]
+
∑
m,n

3canamaAanQ
2
1

(m2
an +Q2

1)

aAamQ
2
2

(m2
am +Q2

2)
. (4.18)
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Figure 3. Anomalous πγ∗γ∗ form factor from the flat, “Cosh”, hard wall and Sakai-Sugimoto
models, with the same notation as in figure 2. The experimental data are from CLEO [109] (tri-
angles), BABAR [110] (squares) and BELLE collaboration [111] (diamonds).

where canam = −1
2 c̃anam −

1
2 c̃aman . If one sets to zero the squared momentum of one of the

axial-vector sources, the π → AA form factor becomes

FπAA(Q2, 0) = 1 −
∑
n

3aAancan

2

Q2

m2
an +Q2 . (4.19)

In the holographic approach, following the same procedure as the πγ∗γ∗ form factor,
we can express this form factor through the bulk-to-boundary propagator A(Q, z)

FπAA(Q2
1, Q

2
2) =

3

2

∫ z0

−z0
A(Q1, z)A(Q2, z)ψ

′
0(z)dz. (4.20)

4.3.2 Even-sector form factor: A→ πππ

In the YM part, in parallel with the vector form factor, we can define the form factor
involving an axial-vector source and three pions

< πa(p1)π
b(p2)π

c(p3)|ij5dµ |0 >
= f bcefade P ν⊥µ (q)[F1(Q

2, s, t)(p1 − p3)ν + F2(Q
2, s, t)(p2 − p3)ν ] + (a↔ c),(4.21)

where q = p1+p2+p3, P
µ⊥
α (q) = ηµα−qαqµ/q2, Q2 = −q2, s = (p1+p3)

2, t = (p2+p3)
2, and

we also use u = (p1 + p2)
2, which obeys the Mandelstam relation s+ t+ u = q2 (the light
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pseudo-scalars are massless in the chiral limit considered all along this article). Due to Bose
symmetry, the two form factors F1 and F2 are related through F1(Q

2, s, t) = F2(Q
2, t, s).

At large distances, χPT yields the amplitude

F1(Q
2, s, t) =

2

3fπ

[
1 +

2L9 q
2

f2π
− 16L1(u+ t− s/2)

f2π
+ O(E4)

]
. (4.22)

In the limit s, t→ 0 (i.e., pµ3 → 0), hence u→ q2, this expression becomes:

F1(Q
2, 0, 0) =

2

3fπ

[
1 +

2q2 (L9 − 8L1)

f2π
+ O(q4)

]
. (4.23)

The extraction of the form factor through the 5D action turns out to be difficult.
Instead, we choose to work in the 4D picture and include all the contributions diagram by
diagram. Summing up the diagrams with only Goldstones, one-resonance and two-resonance
exchanges, we obtain:

F1(Q
2, s, t) =

2

3fπ

{
1 +

2L9 q
2

f2π
− 16L1(u+ t− s/2)

f2π
+
∑
n

aAanbanπ3

2f2π

q2(u+ t− s/2)

m2
an − q2

+
∑
n

[
(aV vn − bvnππ)bvnππ

4f2π

(
(2u− t)s
m2
vn − s

− (u− s)t
m2
vn − t

)
+
aV vnbvnππ

4f2π

(
(6s+ u+ 2t)s

m2
vn − s

− (s− u)t

m2
vn − t

)
− 3b2vnππ

8f2π

(u+ t)s

m2
vn − s

]
+
∑
m,n

aAamcamvnπbvnππ

4f2π

q2

m2
am − q2

(
s(2u+ t)

m2
vn − s

+
t(s− u)

m2
vn − t

)}
. (4.24)

In the kinematic configuration s = t = 0 the contribution from diagrams where two of the
Goldstones are produced through an intermediate vector resonance vanishes. Thus, the
form factor is greatly simplified into

F1(Q
2, 0, 0) =

2

3fπ

[
1 +

2q2 (L9 − 8L1)

f2π
+
∑
n

aAanbanπ3

2f2π

q4

m2
an − q2

]
. (4.25)

It is interesting to observe that, in the case when the resonance summations in the sum
rules in eq. (3.11) are convergent, the dominant high-energy power behavior is given by

F1(Q
2, 0, 0) =

2

3fπ

[
q2

2f2π

(
4L9 − 32L1 −

∑
n

aAanbanπ3

)
+

(
1 −

∑
n

aAanbanπ3m2
an

2f2π

)
+ . . .

]
, (4.26)

where the dots stand for contributions that vanish at high energies. A closer look at the

sum rules (3.11) leads to the prediction F1(Q
2, 0, 0)

q2→∞−→ 0. This short-distance condition
can serve to further constrain the A → πππ amplitude in the case when only the lightest
resonances are taken into account [39, 40].
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The form factor can be rewritten in terms of the bulk-to-boundary propagators and
the Green’s function G(Q2; z, z′) provided in (2.18):

F1(Q
2, s, t) =

2

3fπ
+

1

3fπ
(6s+ 3u+ t)

Fπ(−s)− 1

s

− 2

3f3π
L9(3s+ 3u+ t) +

1

3f3π
(u+ t− s/2)

F0(Q
2)

Q2

+
1

6f3π
(s− u)T1(−t)−

1

18f3π
(8u− t)T1(−s)−

1

3f3π
(s− u)T2(Q

2,−t) (4.27)

with

F0(Q
2) ≡ Q2

∫ z0

−z0

ψ0(1− ψ2
0)

g2(z)
A(Q, z)dz

T1(−t) ≡
∫ z0

−z0

∫ z0

−z0

1− ψ0(z)
2

g2(z)

1− ψ0(z
′)2

g2(z′)
tG(−t, z, z′) dzdz′

T2(Q
2,−t) ≡

∫ z0

−z0

∫ z0

−z0

1− ψ0(z)A(Q, z)

g2(z)

1− ψ0(z
′)2

g2(z′)
tG(−t, z, z′) dzdz′, (4.28)

and Fπ the vector form factor. Since the final result for the form factor involves only those
5D quantities, it seems possible to derive it directly from the original YM action: this is
still under investigation. In the kinematical limit s, t→ 0 this expression becomes:

F1(Q
2, 0, 0) =

2

3fπ

[
1 − 1

2f2π
F0(Q

2)

]
. (4.29)

4.3.3 Comparison of anomalous and even-sector form factors

By means of the equation of motion for the bulk-to-boundary propagator A(Q, z), one can
also express the anomalous form factor (4.20) in terms of the previously defined function
F0(Q

2). Hence, independently of the precise details of the models, one finds the relation:

F1(Q
2, 0, 0) =

2

3fπ
FπAA(Q2, 0) . (4.30)

This constitutes the generalization of the relation CW23 = NC
96π2f2π

(L9 − 8L1) in eq. (3.28)
between the odd-sector O(p6) LEC CW23 and the even-sector O(p4) chiral couplings L1 and
L9. Indeed, as a final check, if one studies (4.30) at low energies with the help of their
χPT expansions (4.17) and (4.23), one recovers the relation (3.28). In figure 4 we show the
numerical results of the form factor FπAA(Q2, 0) in different models. One finds that the
asymptotic behavior is similar to the corresponding one for the πγγ∗ form factor.

From eqs. (3.18)–(3.26) one might speculate the possible existence of more relations
of this kind between even and odd-sector amplitudes. This will be the subject of future
studies.

5 Conclusions

We have performed an exhaustive study of the O(p6) LECs for the 5D holographic theories
which implement chiral symmetry breaking through different boundary conditions in the
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Figure 4. Results for the πAA transition form factor in the flat (dotted), “Cosh” (solid), hard
wall (dashed) and Sakai-Sugimoto (dash-dotted) models.

infrared. The five-dimensional action was given by the Yang-Mills and the Chern-Simons
terms. All the theoretical relations are determined for general backgrounds f2(z) and g2(z).
Only for the numerical results we specified the precise expressions for such functions, which
were taken from four models: “flat” background [19], “Cosh” model [19], hard-wall [24] and
the Sakai-Sugimoto model [23, 25]. We found that the outcome for the LECs was stable,
with a weak dependence on the background. We considered the results from the “Cosh”
model as our best estimate, since this model, among the four studied ones, better matches
the experimental ρ(770) mass and pion decay constant in addition to the perturbative QCD
log coefficient in the V V correlator. Remarkably, this model reproduces fairly well the new
experimental data for the π0 → γγ∗ transition form factor.

As a previous step, we worked out several resonance sum rules which became essential
for the relations between the odd-parity and even LEC’s derived later. Likewise, some of
these sum rules were employed in the form factor analysis. For the sake of completeness,
we derived (or rederived in some cases [24, 25]) all the sum rules we could, regardless of
whether we used them in our later study. As many of these sum rules are used in hadronic
phenomenology to fix the resonance parameters, we checked and found that, in general, the
lowest meson exchanges provide the dominant contributions. The only exception was the
sum rules related to the V V − AA correlator, which are divergent due to the meson mass
behavior m2

Rn ∼ n2 in this kind of holographic models.
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We have computed the O(p6) chiral couplings by integrating out the heavy resonances
in the generating functional. In the odd-parity sector, we were able to express all the odd
O(p6) LECs in terms of even-sector O(p4) couplings L1 and L9, and the 5D integral Z,
which can be also defined from a sum rule. In particular, we recovered the LEC relation
CW22 = − NC

32π2f2π
L10 [37] that stems from the Son-Yamamoto relation between the LR and

AV V Green’s functions [29]. These relations are general for the type of holographic theories
considered here, and do not depend on the details of the functions f2(z) and g2(z) that
specify the model. At the numerical level, the outcomes were found to be fairly stable,
suffering little variation between the various holographic models studied here. Not much is
known about the LECs of the odd-parity sector: we have compared our holographic deter-
minations to those from other approaches (DSE, O(p6) χPT phenomenological analyses,
resonance estimates and rational approximations). In general we have found a reasonable
agreement, considering that subleading 1/NC corrections are not taken into account in
the holographic approach and that there is an inherent uncertainty on the renormalization
scale µ at which our large-NC determinations correspond. We also tested a theoretical
relation (3.29) derived from Resonance Chiral Theory [64], which was pretty well satisfied
by the lightest resonance multiplets.

The O(p6) even-parity LECs have also been determined. Since our framework does not
include scalar-pseudoscalar sources χ, we obtained predictions only for the χPT operators
without χ. Indeed, in the χ = 0 limit the basis of O(p6) operators in the chiral action
can be further simplified, and we chose to eliminate the operator referred by C90. We have
also found some relations between O(p6) couplings in the even-parity sector. In particular,
those combinations of LECs related to the axial-vector form factor in the P → `νγ decay
and to the γγ → ππ collision either vanish or can be expressed in terms of just fπ, indepen-
dently of the holographic theory at hand. There is a wider phenomenology on the O(p6)

couplings of the even sector. Nonetheless, most of them remain essentially unknown. The
agreement with former results (DSE, O(p6) χPT determinations, resonance estimates and
rational approximations) is reasonably good. Apart from a DSE analysis, which was able
to provide the full set of LECs [17], there are no other approaches to compare most of our
chiral coupling estimates with. The larger disagreements are found for the couplings that
receive contributions from two odd-parity resonance couplings. Taking these contributions
into account, one finds a better agreement with the corresponding DSE outcomes. In other
few cases, the disagreement cannot be explained in this way, however, the corresponding
couplings are related to processes with a high number of external legs. In string construc-
tions, higher dimensional terms like (FMN )3 could appear from the low energy expansion
of the DBI action. They would modify the value of those LECs if we do not insist that the
’t Hooft coupling λ be very large. Likewise, scalar resonances are absent in our approach,
and they may play a role in some LECs.

Some of the relations we have just found among couplings of different parity χPT
Lagrangians are the consequence of relations between QCD amplitudes of the anomalous
and even-parity sectors. The original motivation for this work was the relation found by
Son and Yamamoto between the LR and AV V Green’s functions [29]. We found that, for
any type of background, the ππ vector form factor and the π → γγ∗ transition form factor
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are identical for any energy up to a known overall normalization, as it was already hinted in
previous works [42, 103]. At large momentum, this relation dictates that the leading-power
coefficients are proportional to each other, which can be experimentally checked. In the
last section we studied the pion transition into two axial-vector currents and the axial-
vector form factor into three pions. We found a relation between them for a particular
kinematical configuration. In addition, we showed how this and the previous amplitudes
could be rewritten from the 4D picture (with an infinite number of resonance exchanges)
into a holographic form (in terms of bulk-to-boundary propagators). However, in the case
of the πππ AFF, with four external legs, one also needs to include the contributions with
bulk-to-bulk Green’s function propagators connecting two points in the bulk z and z′. All
these amplitude relations, when taken to the low energy limit and compared at each chiral
order, reproduce the relations between the odd and even-parity LECs we derived through
the generating functional, serving as a double-check of our chiral coupling determinations.

The study of other consequences of some of the relations obtained here both in the odd
and even sectors of QCD, e.g., those in the P → `νγ decay or the γγ → ππ scattering,
requires new dedicated analyses. Moreover, new experimental data on the various form
factors, in particular at high energies, would definitely help to discern the most appropriate
version among the various holographic models, in the search of a precise dual formulation
of QCD.
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A Holographic models

Four different holographic models have been studied in the present paper, among them
the “Cosh” and “hard wall” background are asymptotically AdS in the UV. In all these
models there are two parameters, the 5D gauge coupling g5, and the energy scale Λ (or
z−10 ). We fix them in a unified way through the ρ meson mass mρ = 0.776 GeV and
the pion decay constant fπ = 0.087 GeV. Therefore, the results for g5 differ from that
fixed through the high-energy vector correlator in asymptotically AdS models, which gives
g25 = 24π2/NC [19]. In the non-AdS models, one is able to fix it in this way because the
perturbative QCD logarithm is not recovered.
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A.1 “Flat” background

The model is specified by [19]

f2(z) = Λ2/g25, g2(z) = g25, z0 = 1. (A.1)

The pion decay constant, meson masses, wave functions and couplings are given by

V (Q, z) =
cosh(Qz/Λ)

cosh(Q/Λ)
, A(Q, z) =

sinh(Qz/Λ)

sinh(Q/Λ)
,

f2π =
2Λ2

g25
, ψ0(z) = z,

m2
n =

π2Λ2

4
n2, ψn(z) = (−1)n−1g5 sin

(
nπ

2
(z + 1)

)
,

aV vn = a2n−1, aAan = a2n, an =
4

nπg5

cvn =
2g5

(2n− 1)π
, can =

2g5
nπ

,

dvn =
2g5

(2n− 1)π

[
1− 8

(2n− 1)2π2

]
. (A.2)

A.2 “Cosh” model

The background functions are specified by [19]

f2(z) = Λ2 cosh2(z)/g25, g2(z) = g25, z0 =∞. (A.3)

The various solutions and physical quantities are

V (Q, z) = −π
2

csc(νπ)
√

1− tanh2 z[P 1
ν (tanh z) + P 1

ν (− tanh z)],

A(Q, z) =
π

2
csc(νπ)

√
1− tanh2 z[P 1

ν (tanh z)− P 1
ν (− tanh z)],

f2π =
2Λ2

g25
, ψ0(z) = tanh z,

m2
n = n(n+ 1)Λ2,

ψn(z) = −g5cn
P 1
n(tanh z)

cosh z
, cn =

√
2n+ 1

2n(n+ 1)
, (A.4)

aV vn = a2n−1, aAan = a2n, an =
1

g5

√
2(2n+ 1)

n(n+ 1)
,

cvn =
g5√

3
δn,1, can =

2g5√
15
δn,1,

dvn =

√
3g5
15

δn,1 +
2
√

42g5
105

δn,2, (A.5)

where ν(ν + 1) = −Q2/Λ2, and P 1
ν (z) is the associate Legendre function.
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A.3 Hard-wall model

In this case the functions f2(z) and g2(z) are given by [24]

f2(z) =
1

g25(z0 − |z|)
, g2(z) = g25(z0 − |z|), z0 <∞. (A.6)

It is more convenient to focus on the interval 0 < z < z0, and use the coordinate z̃ = z0−z.
Then we have:

V (Q, z̃) = Qz̃

[
K1(Qz̃) + I1(Qz̃)

K0(Qz0)

I0(Qz0)

]
,

A(Q, z̃) = Qz̃

[
K1(Qz̃)− I1(Qz̃)

K1(Qz0)

I1(Qz0)

]
,

f2π =
4

g25z
2
0

, ψ0(z̃) = 1− z̃2

z20
,

mvn =
γ0,n
z0

, man =
γ1,n
z0

,

ψvn(z̃) =
g5

z0|J1(γ0,n)|
z̃ J1 (mvn z̃) ,

ψan(z̃) =
g5

z0 [−J0(γ1,n)J2(γ1,n)]1/2
z̃ J1 (man z̃) . (A.7)

Here Kn(x), In(x) and Jn(x) are Bessel functions, and γn,m is the mth root of Jn(x). The
couplings aV vn , aAan , cvn , can , dvn can be calculated from these wave functions. Since the
integrals of the Bessel functions in the final results can not be further simplified, we do not
list them individually.

A.4 Sakai-Sugimoto model

The model is determined by [23, 25]

f2(z) =
Λ2(1 + z2)

g25
, g2(z) = g25(1 + z2)1/3, z0 =∞. (A.8)

In this model one only finds analytic results for the pion decay constant and the wave
function ψ0:

f2π =
4Λ2

πg25
, ψ0(z) =

2

π
arctan z. (A.9)

The quantities related to the resonances need to be calculated numerically, as done in
ref. [23]. The results for the first two excitations are:

m2
v1 = 0.669 Λ2, m2

a1 = 1.57 Λ2,

aV v1 =
3.15

g5
, aAa1 =

3.20

g5
,

cv1 = 0.415 g5, ca1 = 0.321 g5, dv1 = 0.0875 g5. (A.10)
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B Son-Yamamoto relation at the one-loop level

In this appendix we study the relation (4.5) between wT and ΠV − ΠA, obtained by Son
and Yamamoto [29], that we rewrite here:

wT (Q2) =
NC

Q2 +
NC

f2π
( ΠV (Q2)−ΠA(Q2)), (B.1)

at the one-loop level, as proposed in ref. [36]. This relation was derived in the large-NC

limit, i.e., for tree-level amplitudes.
At low energies, the comparison of the leading terms in the χPT expansion of the l.h.s.

and r.h.s. of eq. (B.1) yields a relation between the O(p6) odd-parity coupling CW22 and the
O(p4) even-parity constant L10 [37], corresponding to eq. (3.27), that again we write:

128π2f2πC
W
22 = − 4NCL10 . (B.2)

The possible validity of this relation (B.1) at the one-loop level was studied in ref. [36],
where the AV V transition A3 → γγ∗ was analyzed. Here A3 refers to the t3 generator
for the axial-vector current. The Goldstone-loop contribution was computed in the two-
flavor case including singlet sources, this is, in U(2), with the electric charge operator
Q = t3 + 1

61 = t3 + 1
3 t

0. Indeed, for nf = 2 the only non-zero flavor structures come from
the components A3 → V 0V 3 ∗ and A3 → V 3V 0 ∗ in the A3 → γγ∗ transition.

The leading one-loop contribution in the χPT expansion, i.e., O(p6) in wT and O(p4)

in ΠV −ΠA, was found to also fulfill the Son-Yamamoto relation (B.1), hence it was argued
that this expression might be valid beyond large NC , at the loop level [36]. We have
investigated whether the agreement between the one-loop corrections in (B.1) is also valid
at higher orders in the χPT expansion. In particular, we have looked at the one-loop
correction (single log) at O(p8) in wT , NLO in its χPT expansion. We have also studied
the effect of considering a higher number of light quarks nf and different flavor decay
structures Aa → V bV c ∗.

B.1 V V −AA correlator and A3 → γγ∗ in U(2)

Considering the V V −AA correlator in the massless quark limit, we get [79]

NC

Q2 +
NC

f2π
(ΠV −ΠA) =

1

f2π

[
− 4NCL10 −

nf
2

NC

48π2
ln
−q2

ν2

]
(B.3)

+
q2

f4π

[
8NCC87 − L9 ×

nf
2

NC

12π2
ln
−q2

ν2
+O(N0

C)

]
+O(q4),

where the U(nf ) singlet components do not play here any role. We present the results for
an arbitrary number of light quarks, even though we focus on the nf = 2 case. We have
used the nf = 3 notation L9, L10 and C87 for the O(p4) and O(p6) LECs, regardless of the
number of light flavors.
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For the transition A3 → γγ∗ with electric charge operator Q = t3 + 1
3 t

0, the χPT
calculation up to O(p8) yields:

wT (Q2) =
1

f2π

[
128π2f2π

(
CW22 −

c̃13
2

)
−
nf
2

NC

48π2
ln
−q2

ν2

]

+
q2

f4π

[
K −

(
L9 +

16π2f2π
NC

(
− CW13 + CW14 + CW15 + CW19 − CW20 − CW21 + CW22

))
×
nf
2

NC

24π2
ln
−q2

ν2
+ O(N0

C)

]
+ O(q4) , (B.4)

whereK represents the correspondingO(p8) chiral low-energy constant. For the sake of gen-
erality, we have computed the matrix element wT with the flavor structure specified above
for a general number of light flavors, from where one can extract the expressions for the U(2)

case. Notice that in addition to the single trace operator CW22 εµναβ〈uµ{∇γf+ γν , f+αβ} 〉 at
O(p6) one also needs to take into account the contribution from a double-trace operator
c̃13ε

µναβ〈∇γf+ γµ 〉 〈 f+ ναuβ 〉 for nf ≥ 3 [46], appearing only in the U(nf ) theory. This
coupling is 1/NC suppressed with respect to CW22 and does not appear at largeNC . However,
it is essential in order to renormalize the various Aa → V bV c ∗ flavor structures.

The last needed ingredient for the comparison with ΠV −ΠA is the value of the O(p6)

odd-parity LECs which multiply the logs in wT in terms of the O(p4) even-sector cou-
plings. For holographic models where the chiral symmetry is broken through boundary
conditions [19, 24, 25, 25], we found the large-NC relations (3.18)–(3.28) for the relevant
CWk couplings, producing the transverse amplitude:

wT (Q2) =
1

f2π

[
128π2f2π

(
CW22 −

c̃13
2

)
−
nf
2

NC

48π2
ln
−q2

ν2

]
+
q2

f4π

[
K −

(
L9 − 2L1

)
×
nf
2

NC

12π2
ln
−q2

ν2
+O(N0

C)

]
+O(q4). (B.5)

The comparison of this result and ΠV −ΠA in eq. (B.3) shows that there is a disagreement
at O(p8) in the Son-Yamamoto relation, and that the agreement at O(p6) is a coincidence.

B.2 Comparison for fully non-singlet transitions Aa → V bV c ∗

Indeed, the agreement found in ref. [36] at the lowest chiral order only occurs for a particular
choice of the flavor structure of vector and axial-vector currents. In the case when all
the three currents are U(nf ) non-singlets, one finds for the Aa → V bV c ∗ transition the
transverse structure function:

wT (Q2) =
1

f2π

[
128π2f2πC

W
22 −

nf NC

72π2
ln
−q2

ν2

]
+ O(q2) , (B.6)

to be compared to the expression which derives from the V V −AA correlator,

NC

Q2 +
NC

f2π
( ΠV −ΠA ) =

1

f2π

[
− 4NCL10 −

nf NC

96π2
ln
−q2

ν2

]
+ O(q2) , (B.7)
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for a general number of flavors nf . The result is also valid for nf = 2, although in this case
the overall group factor dabc in the amplitude is zero when all the a, b, c are non-singlet.
One can easily see that the leading one-loop logarithms of wT and ΠV −ΠA do not match.
This conclusion also comes from observing that the corresponding couplings entering at
tree-level have different running [2–4, 46]:3

dL10

d ln ν2
= − Γ

(nf )
10

32π2
=

nf
3

1

128π2
,

− 32π2f2π
NC

dCW22
d ln ν2

=
32π2f2π
NC

(
η
(nf )
22

32π2

)
=

nf
3

1

96π2
. (B.8)
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