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1 Introduction

Our understanding of perturbative scattering amplitudes in planar N = 4 SYM is cur-

rently increasing at a rather rapid rate. Indeed in just the last year or so the fruitful

duality between MHV amplitudes and Wilson loops [1–3] has been formally extended to

arbitrary amplitudes [4, 5] once issues of regularisation are properly understood [6]. A

new duality between correlation functions and both Wilson loops and amplitudes has been

found [7–12] and this has already proved useful in both directions, obtaining previously

unknown correlation functions using known amplitudes as well as providing new insights

into amplitudes themselves [13]. And a loop-level integrand version [14, 15] of the BCFW

recursion relation [16] has enabled one to find arbitrary loop level amplitude integrands

from purely algebraic methods [15, 17].

The above impressive results have been largely formulated at the level of the integrand.

Of course ultimately we are interested in the amplitudes themselves, the result of having

performed the integration of these integrands. Much progress has also been made here but

as yet at a somewhat more modest level, and most of the developments [18–28] are still

driven by the original MHV amplitude/Wilson loop duality, and result from the fact that
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the Wilson loop integrals are simpler than the amplitude ones. A major new mathematical

tool, arising from this is the notion of the “symbol” [29, 30]. This allows one to map

highly complicated polylogarithmic functions to tensors involving rational functions. In

this way obscure polylogarithmic identities become manifest algebraic identities satisfied

by this tensor. This allowed the authors of [30] to reduce the huge formula arising from the

impressive direct computation of the hexagon Wilson loop at two-loops [23, 24] to a single

line [30]. Indeed the most recent results concerning amplitudes at the integral level have

actually been given as symbols rather than the functions themselves [5, 28]. For example,

very recently the symbol of the 3-loop hexagon Wilson loop was derived up to two unfixed

coefficients in [28].

Another new tool for analytic amplitude computations is the OPE/near collinear

limit [31–34] allowing an expansion around the collinear limit to be understood in terms

of an OPE expansion. At the moment there is an obstruction to going beyond the next

to leading term in this expansion, but even at this level we obtain important information

about the amplitude which we will make use of here.

In order to investigate further perturbative amplitudes without doing a direct compu-

tation, we will restrict ourselves to the so-called AdS3 special kinematics, first introduced

in [35] in the strong coupling context. This corresponds to assuming that all the external

momenta live in 1 + 1 dimensions rather than the full 3 + 1 dimensions. These provide a

nice arena for studying non-trivial high loop order amplitudes/Wilson loops whilst avoiding

some of the kinematical complications of the full amplitudes.

In [26] we were able to take the 2-loop result for the 8-point Wilson loop in special

kinematics, computed directly in [25] and extend it to all (even) n-points, using symmetry

and collinear limits as well as a simple assumption about its structure. The assumption

was that at 2-loops the conformal part of the answer should depend only on logarithms of

x space cross-ratios

uij =
x2ij+1x

2
i+1j

x2ijx
2
i+1j+1

. (1.1)

We then verified that our analytic expressions for all n agreed with numerical computations

carried out following the numerical algorithm developed in [22] and further used in [36].

However the logs-only structure of the answer cannot be expected to hold beyond 2-

loops since the OPE implies the presence of polylogarithms at 3 loop level [31]. The crucial

insight which enables us to go further in this sector then, is our expectation that, despite

the known complicated variables which occur in MHV amplitudes at two-loops and beyond

for general kinematics, we expect that these all simplify in special kinematics. Indeed all

expected variables in general kinematics (for example those given in [37]) reduce to simple

cross-ratios. So we will assume in this paper that the symbol takes values only over the

standard x-space cross-ratios (1.1). In other words we relax the assumption we made at

two loops that the amplitude depends only on logarithms, but we maintain the assumption

that the arguments of the symbol should be simple cross-ratios only.

So then using this assumption together with cyclic and parity symmetry of the Wilson

loop/MHV amplitude, and the important restriction that the symbol should arise from
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a function (the so called integrability constraint) we can firstly derive the 8 point 2-loop

result of [25] without computation (with one unfixed coefficient), and prove that the uplift

to n-points found in [26] is in fact the unique solution of our constraints. At 3-loops we

can restrict the 3-loop 8-point amplitude down to just 13 unfixed coefficients. The further

constraints arising from the OPE/collinear limit then reduces this to 7 unfixed coefficients.

At higher n we are able to uplift the result to 10 points, albeit with the introduction of 12

new unfixed coefficients. The uplift to 12 points can also be performed, but again there

will be further new unfixed coefficients introduced. However, the uplift from 12 points to

14 points and beyond is then unique at 3 loops within our ansatz.

More generally, at l loops, once the 4l-point function is known the uplift via inverse

soft/triple collinear limits is unique.

Although we initially perform all this analysis at the level of the symbol, we are able to

invert the symbol and obtain the functions themselves. Indeed although the corresponding

symbols become quickly very large indeed with increasing n, the functions themselves can

be written fairly compactly.

In section 2 we review the set up and some background material we will need. In

section 3 we discuss further our assumption that only uij ’s should appear in the symbol.

Section 4 reviews the remainder function at one- and two-loops from this perspective. In

section 5 we determine the octagon 3-loop amplitude as far as we can and in section 6 we

discuss the uplift to higher points at 3-loops.

2 Background material

MHV amplitudes and null polygonal Wilson loops in planar N = 4 SYM are traditionally

characterised by the remainder function Rn which is defined as the difference between the

logarithm of the Wilson loop Wn and the known BDS expression of [38, 39],

Rn = log(Wn)− (BDS)WL
n . (2.1)

Rn is a conformally-invariant function and thus depends only on conformally-invariant

cross-ratios [2, 19]. For a polygonal contour with n light-like edges, in general, there are

n(n − 5)/2 independent conformal cross-ratios (if we do not, as in [22], impose the Gram

determinant constraints). A basis for the cross ratios is provided by uij , defined in (1.1).

2.1 Special kinematics

In this paper we will be restricting our attention exclusively to the case of special kinemat-

ics, first introduced in [35], where the external momenta lie entirely in 1 + 1 dimensions.

For the Wilson loop contour to be embeddable into two space-time dimensions the number

of edges n must be even and the number of independent cross-ratios reduces and they have

to satisfy the following conditions,

ui ,i+odd = 1

u2i+1 ,2j+1 = u+ij 2 ≤ (i− j) mod n/2 ≤ n/2− 2 (2.2)

u2i ,2j = u−ij
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Here the vertices of the contour have the following simple light-cone representation:

x2i = (x+i , x
−
i ) , x2i+1 = (x+i , x

−
i+1) , i = 1, . . . , n , (2.3)

and the cross-ratios u±ij appearing on the right hand side of (2.2) are functions of only

either x+ or x− light-cone coordinates:

u+ij :=
x+ij+1 x

+
i+1j

x+ij x
+
i+1j+1

, u−ij :=
x−ij+1 x

−
i+1j

x−ij x
−
i+1j+1

. (2.4)

As such, these cross-ratios are essentially made from one-dimensional distances. This

results in the following simple identity

(1− u±i j+1)(1− u±i+1 j) = (1− 1/u±i j)(1− 1/u±i+1 j+1) (2.5)

ui,i+1 = ui+1,i = 0 ui,i = ∞ , (2.6)

which is precisely the AdS3 Y-system equation of [40], where the Y ’s of [40] (evaluated at

ζ = 0) are associated with the cross-ratios as

u+k,−k−1 =
Y2k

1 + Y2k
u−k,−k−2 =

Y2k+1

1 + Y2k+1
. (2.7)

We will thus refer to (2.5) as the Y-system from now on.

For the two lowest-n cases, the octagon and the decagon, all the cross-ratios different

from 1 in (2.2) are of the form ui,i+4, with i = 1, . . . , 4 for the octagon, and i = 1, . . . , 10

for the decagon. To simplify notation in these two cases, we define ui := ui,i+4. Similarly,

for their decomposition into ± components, we will often use u±j := u±j,j+2.

Clearly, the cross-ratios ui are not all independent, as we have seen above, they are

further constrained by the Y-system equations, leaving n− 6 (i.e. 2 for the octagon and 4

for the decagon) independent solutions. Nevertheless, as in our earlier work, [26] we will

use the full set of ui as the set of variables appearing in all expressions.

More details of the special kinematics in this context can be found in [26].

2.2 Collinear limits

The collinear limits which allow us to remain in the special kinematics have to reduce the

number of edges (number of external momenta for amplitudes) by an even number. The

minimal such limit is the triple-collinear limit in which three consecutive edges become

collinear.1 For concreteness, consider the limit of Rn in which edges n − 2, n − 1 and n

become collinear (and in which in fact edge n− 1 becomes soft). In this case one has

ui,n−1 → 1 , u1,n−3 → 0 , (2.8)

1A more appropriate way to visualise this limit in the way which is consistent with the zig-zag construc-

tion of the polygon, is in terms of the collinear-soft-collinear limit. In this case the middle edge becomes

soft and the two edges, one on the left and one on the right of it, are collinear to each other; thus the three

edges are reduced to one.
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while the remaining cross-ratios ui,j remain unchanged. The remainder functionRn reduces

in this limit toRn−2 plus a correctionR6 arising from the triple-collinear splitting function2

(in our special kinematics R6 = const). Specifically, one has [20, 22, 26]

Rn(ui,j) → Rn−2(ûi,j) +R6 . (2.9)

Here the (n − 2)-point cross-ratios ûi,j are defined in terms of the n-point cross-ratios in

the collinear limit as

ûi,n−2 = ui,n−2 ui,n , ûi,j = ui,j i, j 6= n− 2 . (2.10)

In particular, for the octagon we have R8(ui) → 2R6 = const, and for the decagon,

R10(ui) → R8(ûi) +R6 where û4 = u4 u10 . (2.11)

In the above equation the u’s solve the 10-point Y-system equation (2.5) and the û’s then

automatically solve the 8-point Y-system equation. From now on we will always refer to

these (triple) collinear-soft limits as collinear limits. For more detail on collinear limits in

special kinematics we refer the reader to [26].

2.3 Symbols

The “symbol” is an important new mathematical tool, introduced in the context of particle

physics in [30], and already proving highly useful in N = 4 SYM amplitudes, but which

should also be relevant more generally in particle physics (see for example [41]).

The symbol associates to any (generalised) polylogarithm, a tensor whose entries are

rational functions of the arguments. The rank of the tensor is equal to the weight of the

polylogarithm. For example log x has weight 1 and gives rise to a 1-tensor

S(log x) = x (2.12)

whereas the classical polylogarithms have symbol given as

S
(
Liw(x)

)
= −(1− x)⊗

w−1
︷ ︸︸ ︷

x⊗ . . .⊗ x . (2.13)

The symbol has the following properties inherited from the logarithm

. . .⊗ x y ⊗ . . . = . . .⊗ x⊗ . . .+ . . .⊗ y ⊗ . . . (2.14)

. . .⊗ 1/x⊗ . . . = − . . .⊗ x⊗ . . .

from which follows the important property that the symbol vanishes when any entry

equals unity

. . .⊗ 1⊗ · · · = 0 . (2.15)

2An especially nice feature of the remainder function is that the contribution of the splitting function

to the collinear limit is itself a remainder function. Indeed, in the limit where m adjacent momenta

become collinear, the contribution of the splitting function is Rm−3 and one has Rn → Rn+1−m +Rm−3

(see [22, 26]).
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It is also blind to multiplication by constants. The final property of the symbol we need

is the symbol of products of functions. This is given by taking the shuffle product of the

symbol of each function

S(fg) = S(f)∐∐S(g) . (2.16)

For example

S
(
Li2(x) log y

)
=

(
− (1− x)⊗ x

)
∐∐ y

= −(1− x)⊗ x⊗ y − (1− x)⊗ y ⊗ x− y ⊗ (1− x)⊗ x , (2.17)

or for three log functions we have,

S
(
log(x) log(y) log(z)

)
= x∐∐ y∐∐ z = (x⊗ y + y ⊗ x)∐∐ z

= x⊗ y ⊗ z + x⊗ z ⊗ y + z ⊗ x⊗ y + y ⊗ x⊗ z + y ⊗ z ⊗ x+ z ⊗ y ⊗ x . (2.18)

The symbol can be defined recursively. One can write the total derivative of any weight

w generalised polylogarithm (here by this we mean any function with a well-defined rank-w

symbol) as follows

df =
∑

i

gi d log(xi) (2.19)

where the gi are weight w − 1 polylogarithms. Then the corresponding symbol is given as

S(f) =
∑

i

S(gi)⊗ xi . (2.20)

This definition (together with (2.12)) gives all the above properties.

The symbol is incredibly useful since it trivialises otherwise complicated identities

involving polylogarithms. The most spectacular example of such a simplification is the

reduction of the formula found for the hexagon two-loop Wilson loop in [23, 24] to the

single line formula in [30]. However the inverse process of finding the function from the

symbol is far from straightforward to do in practice. Indeed the symbol is often much

more complicated and longer than the actual functions which produce it due to the shuffle

product for example. The symbol is also non-unique. It is equivalent to the “maximally

transcendental” piece of the function, but all information about lower weight terms is lost

in the symbol.

The great advantage of the special kinematics we consider here is that the functions

that occur will turn out to be relatively simple and after obtaining the symbol we will be

able to reconstruct the functional form in section 5.

2.4 The integrability constraint

The fact that d2f = 0 together with its recursive definition (2.19), (2.20) give non-trivial

and powerful constraints on symbols of functions. Namely for a function of weight w, which

will have a symbol in the form

S(f) =
∑

i1,...,iw

consti1...iwxi1 ⊗ . . .⊗ xiw (2.21)
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we obtain the w − 1 integrability equations
∑

i1,...,̂ıa ,̂ıa+1,...,iw

d log xia ∧ d log xia+1
xi1 ⊗ . . .⊗ xia−1

⊗ xia+2
⊗ . . .⊗ xiw = 0 , (2.22)

true for any value of a = 1 . . . w − 1, with no sum over ia and ia+1 in the second line. We

will make extensive use of this constraint in deriving the 8-point 3-loop remainder function.

3 Fundamental assumption: the symbol contains u’s only

In the rest of this paper we will attempt to constrain, as far as possible, the analytic form

of the remainder functions using symmetries and collinear limits. In order to do this we

make one fundamental assumption which makes this possible. Namely we assume that the

function has a symbol whose entries can always be taken from the basis of cross-ratios

ui j . In other words, the symbol is made of sums of the tensor products of ui j ’s, and no

functions of the cross-ratios should appear in the symbol. This is certainly not the case

in general kinematics where, for example at 6-points one can have entries 1− u as well as

functions involving square roots of combinations of u’s. However in the special kinematics

we consider, we expect these will always reduce to u’s.

For example twistor brackets, in terms of which remainder function symbols seem to

be naturally given (see for example [15, 30, 37, 42]) always reduce in special kinematics to

simple products of x’s. So for example in a conformally invariant expression a four-bracket

of two even and two odd twistors reduces as

〈2i2j(2k − 1)(2l − 1)〉 → x+ijx
−
kl , (3.1)

with any other possibility vanishing, whereas more complicated twistor invariants which

should appear reduce similarly, e.g.

〈X2iZ̄2j ∩ Z̄2k−1〉 ∼ x+ij x
−
j j+1 x

+
k−1 k x

−
ik . (3.2)

Furthermore it is always possible to rewrite 1− u in terms of product of u’s using the

Y-system equations (2.5). Indeed one can check that

1− u±ij =

j−1
∏

k=i+1

i−1∏

l=j+1

u±kl . (3.3)

Clearly inside a symbol, using (2.14), this can then be written in terms of a sum of terms

involving uij ’s.

For the case of octagon, (3.3) collapses to

n = 8 : 1− u1 = u3 , 1− u2 = u4 , (3.4)

and for the decagon we have

n = 10 : 1− u±i = u±i−1u
±
i+1 i = 1, . . . , 5 . (3.5)

In summary the natural assumption that the entries in the symbol are always uij ’s in

special kinematics, is consistent with all expectations for general kinematics.
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4 The one- and two-loop remainder functions revisited

In this section we revisit the two-loop n-point remainder functions in 1 + 1 dimensional

kinematics. The 8-point remainder function was first obtained by a direct computation of

the Wilson loop in [25]. It can be written as

R
(2)
8 = −

1

2
log(u1) log(u2) log(u3) log(u4)−

π4

18
. (4.1)

where ui := uii+4. We then uplifted this in [26] to give the two-loop remainder function

for any n (in 1+1 dimensions) in the remarkably concise form

R(2)
n = −

1

2

(
∑

S

log(ui1i5) log(ui2i6) log(ui3i7) log(ui4i8)

)

−
π4

72
(n− 4) , (4.2)

where the sum runs over the set

S =
{
i1, . . . i8 : 1 ≤ i1 < i2 < · · · < i8 ≤ n , ik − ik−1 = odd

}
. (4.3)

This uplift from 8 points to n points was done by considering collinear limits alone.

We found functions satisfying these and we then checked the result using the numerical

code constructed in [22].

This result was derived in [26] following the assumption (based on the explicit form of

the 8-point 2-loop result as well as the n-point 1-loop results) that only logs of cross-ratios

can appear. This is correct at 2-loops, but at 3-loops the OPE analysis suggests that one

needs to consider more general functions than simple logarithms [32]. To find the strategy

which works at all loops, we are thus lead to re-derive the two-loop results (4.1) and (4.2)

from a weaker assumption. In this paper therefore we will instead make the much less

restrictive assumption (motivated in section 3) that the function has a symbol as a sum

of tensor products of basis cross-ratios, uij ’s. As we shall see, this weaker assumption,

together with collinear limits, and cyclic and parity symmetry implies the appearance of

log(u)’s only at two loops.

It turns out that under this simple and natural assumption, we can both rule out the

existence of a 1 loop remainder function and derive, without any direct computations, the

8-point 2-loop remainder function (up to 1 unfixed constant). We will also show that under

this assumption the uplift to the n-point 2-loop remainder (found in [26]) is unique (but

not the 3-loop uplift which will be constructed in a later section).

4.1 Non-existence of a 1 loop 8-point remainder

The n-point remainder function at any loop order must reduce under the collinear limit to

the n− 2-point remainder function plus the 6-point remainder (which is a constant in the

1 + 1 dimensional kinematics). So we can consider

R̃n = Rn −
1

2
(n− 4)R6 (4.4)

which simply reduces as R̃n → R̃n−2 in the collinear limit. In particular R̃6 = 0 and so

R̃8 → 0 in the collinear limit.
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Now at 1 loop one can quickly see that there is no weight-2 symbol (i.e. no 2-tensor)

we can write down which will vanish in all collinear limits. The collinear limit is u4 → 1,

u2 → 0 but with u1 = 1 − u3 left arbitrary. So in order for a tensor involving u’s only to

vanish in this collinear limit, all terms must therefore contain a u4. But cyclic symmetry

ensures that this can never be the case. We therefore immediately rule out a 1-loop 8-point

collinear vanishing remainder.

Similar considerations rule out the 1-loop n-point remainder function.

4.2 Uniqueness of the 2-loop 8-point remainder

Let us now consider therefore the most general possible collinear vanishing 2-loop remainder

function. This will give a nice illustration of the technique we will implement later in more

general cases.

We wish to write down the most general 2-loop (i.e. weight 4) symbol which has

dihedral symmetry (cyclic + parity) and vanishes in any soft/triple collinear limit. In

order for the symbol to vanish in any collinear limit, each term in the symbol must contain

all four cross-ratios u1, u2, u3, u4. Indeed if a term contains just 3 out of the four u’s, then

this will never vanish under the particular collinear limit which has the remaining u → 1.

For example if one chooses a term to be u1 ⊗ u1 ⊗ u2 ⊗ u3 then under the collinear limit

u4 → 1, u2 → 0, this will not vanish (indeed it will diverge). Furthermore this can never

be compensated by a similar non-vanishing term in the symbol. We therefore consider all

4! terms in the symbol which contain all 4 cross-ratios, u1 ⊗ u2 ⊗ u3 ⊗ u4 together with

permutations. Now we impose dihedral symmetry generated by

u1 → u2 → u3 → u4 → u1 and u1 ↔ u4, u2 ↔ u3 . (4.5)

In this way we obtain just three independent symbols

R
(2)
8 = aR

(2)
8;a + bR

(2)
8;b + cR

(2)
8;c + 2R

(2)
6 (4.6)

S
(
R

(2)
8;a

)
= u1 ⊗ u2 ⊗ u3 ⊗ u4 + 7 terms related by dihedral symmetry

S
(
R

(2)
8;b

)
= u1 ⊗ u2 ⊗ u4 ⊗ u3 + 7 terms related by dihedral symmetry

S
(
R

(2)
8;c

)
= u1 ⊗ u3 ⊗ u2 ⊗ u4 + 7 terms related by dihedral symmetry. (4.7)

All three terms separately vanish in the collinear limit, and are symmetric under the full

dihedral symmetry. However they are not necessarily symbols of functions. The integra-

bility constraint, d2R
(2)
8 = 0 imposes constraints on the allowed symbols as described in

section 2.4. We get three equations from the derivatives hitting the first two entries, the

second and third entries or the third and fourth entries respectively in the symbol:

a
du1 ∧ du2

u1u2
u3 ⊗ u4 + b

du1 ∧ du2
u1u2

u4 ⊗ u3 + c
du1 ∧ du3

u1u3
u2 ⊗ u4 + dihedral = 0

a
du2 ∧ du3

u2u3
u1 ⊗ u4 + b

du2 ∧ du4
u2u4

u1 ⊗ u3 + c
du3 ∧ du2

u2u3
u1 ⊗ u4 + dihedral = 0

a
du3 ∧ du4

u3u4
u1 ⊗ u2 + b

du4 ∧ du3
u3u4

u1 ⊗ u2 + c
du2 ∧ du4

u2u4
u1 ⊗ u3 + dihedral = 0 . (4.8)
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Here “+ dihedral” signifies the addition of all terms related by dihedral transformations.

Now we must consider the wedge terms. Since u1 = 1 − u3, and u2 = 1 − u4, we have

du1 = −du3 and du2 = −du4. The minus sign disappears at the level of the symbol (since

it is blind to multiplication by constants) and so there is only one independent wedge

product, du1 ∧ du2. For example we have:

du1 ∧ du3 = du2 ∧ du4 = 0 du1 ∧ du4 = du1 ∧ du2 du2 ∧ du3 = −du1 ∧ du2 etc. (4.9)

So (4.8a) becomes

(a− b) du1 ∧ du2

(
u3 ⊗ u4 − u4 ⊗ u3

u1u2
+

u1 ⊗ u2 − u2 ⊗ u1
u3u4

)

+(a− c) du1 ∧ du2

(
u1 ⊗ u4 − u4 ⊗ u1

u2u3
+

u3 ⊗ u2 − u2 ⊗ u3
u2u3

)

= 0 (4.10)

and the other two equations are similar. The integrability constraint therefore fixes a =

b = c. This then yields the symbol of the function log u1 log u2 log u3 log u4. So we conclude

that the 2-loop 8-point function (4.6) is fixed to be

R
(2)
8 = a

(
R

(2)
8;a +R

(2)
8;b +R

(2)
8;c

)
+ 2R

(2)
6

= a log(u1) log(u2) log(u3) log(u4) + 2R
(2)
6 , (4.11)

in agreement with the computed result (4.1), with a = −1/2 and R
(2)
6 = −π4/36. We could

thus have derived the 2-loop 8-point result in this case with these reasonable assumptions,

up to two unfixed constants, one of which is simply R
(2)
6 .

4.3 Lifting to n-point functions at two-loops

In the previous subsection we were able to derive the form of the 8-point 2-loop remainder

function using some basic assumptions only (dihedral symmetry, collinear limits, symbol

made out of u’s). We now wish to consider the lift to higher point functions. We find

that the result found in [26] is the unique function satisfying these assumptions. In [26]

we assumed the result consisted of logs of u only, but now we can derive the same result

without this assumption.

Let us then analyse the most general possible 10-point function. This must be sym-

metric under dihedral symmetry and reduce to the 8-point function under collinear limit.

The most general solution of this constraint is a “particular solution” together with the

most general dihedrally symmetric 10-point function which vanishes under the collinear

limit (the “homogeneous solution”). So we have

R
(2)
10 = R10;PS +R

(2)
10;HS (4.12)

R10;PS = −
1

2

(
log(u1) log(u2) log(u3) log(u4) + cyclic

)
−

π4

12
, (4.13)

where we have ui := uii+4. Here R10;PS is a particular solution of the collinear limit

constraint. Indeed is is the known 10-point result from [26]. If we can show that R
(2)
10;HS
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vanishes, then the solution is unique. Now R
(2)
10;HS is a dihedrally symmetric function which

vanishes in any collinear limit. In fact it is quite straightforward to see that no symbol exists

with these properties at 2 loops. All terms in the symbol of R
(2)
10;HS involves four u’s and

so have the form ui1 i2 ⊗ ui3 i4 ⊗ ui5 i6 ⊗ ui7 i8 . Now consider an edge j where j /∈ {i1, . . . i8}

(clearly such an edge exists at 10 or more points, but not at 8-points). Now consider the

collinear limit occurring when pj → 0. This implies that uj j+4 → 1, uj j−4 → 1 and

uj−2 j+2 → 0 with all other u’s unconstrained (apart from via the Y-system.) We can see

that since uj j+4 and uj j−4 are not in our tensor, it will not vanish in this collinear limit.

Furthermore there is no way for different terms to combine to give vanishing contributions

either. We conclude that we can not obtain a collinear vanishing term at 10 points.

So the 2-loop 10 point function found in [26] is the unique function whose symbol has

cross-ratios as entries, satisfying the correct collinear limits and dihedral symmetry.

The same analysis can be performed at all higher points and we thus find that the

solution (4.2) found in [26] is the unique n-point 2-loop result satisfying our assumptions.

5 The 3-loop octagon

In this section we describe our technique for applying constraints on the form of the 8-point

function at 3-loops in special kinematics.

In the following we will write the 8-point remainder as

R
(3)
8 = F

(3)
8 + 2R

(3)
6 (5.1)

where R
(3)
6 is constant in 1 + 1 dimensions. Then according to the analysis in section 2.2

the function F
(3)
8 will vanish in the collinear limit.

All the 8-point remainder functions we have found can be written in the ‘sum of

products’ form

F
(3)
8 (u1, u2, u3, u4) =

∑

i

consti
[
fi(u1, u3)gi(u2, u4) + gi(u1, u3)fi(u2, u4)

]
. (5.2)

Cyclic symmetry implies that f and g are symmetric functions

fi(u1, u3) = fi(u3, u1) gi(u1, u3) = gi(u3, u1) (5.3)

and collinear limits imply that

fi(0, 1) = 0 gi(0, 1) = 0 . (5.4)

Since in the octagon case u3 = 1−u1 and u4 = 1−u2, the functions f and g are really

functions of a single argument. We thus will use a dual notation: when discussing symbols

of f and g, we will talk of f(u, v) and g(u, v), where u and v are cross-ratios which satisfy

u+ v = 1. On the other hand, when we reconstruct the actual functions we can choose to

use the more appropriate single-argument definition:

fi(u) := fi(u, 1− u) , gi(u) := gi(u, 1− u) (5.5)
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with (from (5.3) fi(u) = fi(1−u) and gi(u) = gi(1−u), and (from the collinear limits (5.4))

fi(0) = 0 = fi(1) and gi(0) = 0 = gi(1).

The characteristic feature of the expression on the r.h.s. of (5.2) is that for each term

in the sum the u+ cross ratios, u1, u3 factorise from the u− cross ratios, u2, u4.

To arrive at (5.2) we have started by writing down a general symbol which by con-

struction is a linear combination of weight-6 tensor products of the cross-ratios u1, u2, u3
and u4 (and not functions thereof as explained in section 3):

S
[
F

(3)
8 (u1, u2, u3, u4)

]
=

∑

i1...i6

consti1...i6 · ui1 ⊗ ui2 ⊗ ui3 ⊗ ui4 ⊗ ui5 ⊗ ui6 . (5.6)

Next we imposed the requirement that the corresponding function should not explode (and

in fact must vanish) in any of the collinear limits, i.e. where ui → 0 and ui+2 → 1. This

automatically requires that each tensor product must contain all four cross-ratios u1, u2, u3
and u4. Indeed, to survive the collinear limit, u1 → 0 and u3 → 1 for example, whenever u1
is present, there should also be a u3 to regulate it, and the same applies for u2 and u4 for the

limit u2 → 0 and u4 → 1 or vice versa. The second requirement is that the symbol in (5.6)

should respect cyclic symmetry and parity, generated by (4.5) which are the symmetries

of the amplitude/Wilson loop. With these requirements the number of different constants

consti1...i6 in (5.6) reduced to 195. The final requirement we have imposed on (5.6) is that

it must be a symbol of a local function. This is known as the d2 = 0 or integrability

constraint, and described in section 2.4. It implies that:

∑

i1...i6

consti1...i6 d log(uik) ∧ d log(uik+1
)ui1 . . .⊗ uik−1

⊗ uik+2
. . .⊗ ui6 = 0 . (5.7)

for each k. We found that implementing this constraint reduces the number of independent

constants down to 13, and at the same time imposes the ‘sum of products’ functional form

given by (5.2).

We now come back to our starting point (5.2) in order to describe the 13 functions

explicitly. The functions f and g must have transcendental weight 2 or more (since it must

contain both u1 and u3 in its symbol in order not to vanish in the collinear limit) and

the product fg sum must have weight 6. So we either have g with weight 2 and f with

weight 4 or both f, g have weight 3 each. Notice that in the case when g has weight 2, the

symmetry in (5.3) implies that the only possibility is g(u, v) = log(u) log(v).

Type a. This type has g with weight 2 and f(u, v) of weight 4, consisting of 3 u’s and 1

v in the symbol or vice versa. There are four different possibilities, given by

g(u, v) = log(u) log(v)

S[f(u, v)] =







S[fa1(u, v)] := u⊗ u⊗ u⊗ v + v ⊗ v ⊗ v ⊗ u

S[fa2(u, v)] := u⊗ u⊗ v ⊗ u+ v ⊗ v ⊗ u⊗ v

S[fa3(u, v)] := u⊗ v ⊗ u⊗ u+ v ⊗ u⊗ v ⊗ v

S[fa4(u, v)] := v ⊗ u⊗ u⊗ u+ u⊗ v ⊗ v ⊗ v

(5.8)
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Type b. This type has g with weight 2 again and f(u, v) of weight 4, but this time

consisting of 2 u’s and 2 v′s in the symbol. There are only three different possibilities this

time, given by

g(u, v) = log(u) log(v)

S[f(u, v)] =







S[fb1(u, v)] := u⊗ u⊗ v ⊗ v + v ⊗ v ⊗ u⊗ u

S[fb2(u, v)] := u⊗ v ⊗ u⊗ v + v ⊗ u⊗ v ⊗ u

S[fb3(u, v)] := u⊗ v ⊗ v ⊗ u+ v ⊗ u⊗ u⊗ v

(5.9)

Type c. Finally we have type c functions in which both f and g have weight 3. There

are three possibilities for both f and g, given by

S[f(u, v)] or S[g(u, v)] =







S[fc1(u, v)] := u⊗ u⊗ v + v ⊗ v ⊗ u

S[fc2(u, v)] := u⊗ v ⊗ u+ v ⊗ u⊗ v

S[fc3(u, v)] := u⊗ v ⊗ v + v ⊗ u⊗ u

(5.10)

yielding 6 possible functions

fc1(u1, u3)fc1(u2, u4) ;

fc1(u1, u3)fc2(u2, u4) + fc2(u1, u3)fc1(u2, u4) ;

fc1(u1, u3)fc3(u2, u4) + fc3(u1, u3)fc1(u2, u4) ;

fc2(u1, u3)fc2(u2, u4) ;

fc2(u1, u3)fc3(u2, u4) + fc3(u1, u3)fc2(u2, u4) ;

fc3(u1, u3)fc3(u2, u4) . (5.11)

At this point we have in total 13 combinations: 4 from type-a, 3 from type-b and 6

from type-c above. We have already imposed the dihedral symmetry on the answer and

have built into it the requirement that our 8-point expression must vanish in the collinear

limit as required in the special kinematics and these are of course the 13 functions we found

using the computer based method described around (5.7).

However, we have not yet checked that all the functions we have constructed so far

vanish sufficiently slowly in the collinear limit. We will show now that three of our struc-

tures, fa1, fa2 and fb1 , are actually more singular in the collinear limit than allowed, and

will have to be discarded, reducing the number of allowed combinations by 3. In fact,

using the near-collinear OPE, the authors [32] have deduced the leading behaviour of the

three-loop result,

lim
u1→0

F
(3)
8 (u1, u2, u3, u4) = log2(u1) log(u3) · F3(u2, u4) +O

(
log(u1)

)
. (5.12)

where F3(u2, u4) is known and was written in [32] in the form

F3(u2, u4) = −2Li3(1− 1/u4) + log(u2/u4)Li2(1− 1/u4) +
4

3
log3(u4)

+2 log(u2/u4) log
2(u4) +

1

2
log2(u2/u4) log(u4) +

π2

6
log(u4) . (5.13)
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We will return to the function F3(u2, u4) below, but first we concentrate on the u1-, u3-

dependence in (5.12). This equation implies that the answer ∝ log2(u1) log(u3) in the limit

u1 → 0, u3 := 1− u1 → 1. This functional form rules out fa1 and fa2 since

lim
u1→0

S−1(u1 ⊗ u1 ⊗ u1 ⊗ u3) ∼ log3(u1) log(u3) ,

lim
u1→0

S−1(u1 ⊗ u1 ⊗ u3 ⊗ u1) ∼ − log2(u1)Li2(u1) ,

giving functions with the wrong asymptotic properties. The function fb1 is ruled out for

the same reason.

Explicit expressions for the remaining seven functions

fai, fbi, fci(u) := fai, fbi, fci(u, v ≡ 1− u) (5.14)

can now be straightforwardly reconstructed from their symbols (5.8)–(5.10) by taking into

account the constraint on the variables v = 1−u, and the properties of the symbol. We find

fa3(u, v) = 3Li4(u)− Li3(u) log(u) + 3Li4(v)− Li3(v) log(v)−
π4

30
,

fa4(u, v) = −Li4(u)− Li4(v) +
π4

90
,

fb2(u, v) =
(
Li3(u)− ζ3

)
log(v)− Li2(u)Li2(v) + log2(u) log2(v) +

(
Li3(v)− ζ3

)
log(u) ,

fb3(u, v) = −
(
Li3(u)−ζ3

)
log(v) + Li2(u)Li2(v)−

1

2
log2(u) log2(v)−

(
Li3(v)−ζ3

)
log(u) ,

fc1(u, v) = −Li3(u)−

(

Li2(v)−
π2

6

)

log(u)−
1

2
log(v) log2(u)

−Li3(v)−

(

Li2(u)−
π2

6

)

log(v)−
1

2
log(u) log2(v) + ζ3 ,

fc2(u, v) = 2Li3(u) +

(

Li2(v)−
π2

6

)

log(u) + log(v) log2(u)

+2Li3(v) +

(

Li2(u)−
π2

6

)

log(v) + log(u) log2(v)− 2ζ3 ,

fc3(u, v) = −Li3(v)− Li3(u) + ζ3 , (5.15)

where the constants on the r.h.s. are determined from the requirement that all functions

must vanish in the collinear limit.

We can now further constrain 3 more coefficients of our general expression by making

use of the function F3(u2, u4). First we find another equivalent form for the function

in (5.13) so that its arguments on the r.h.s. are just the cross-ratios u2 and u4:

F3(u2, u4) = 2Li3(u2) +

(

Li2(u4)−
π2

6

)

log(u2) +
3

2
log(u4) log

2(u2)

+ 2Li3(u4) +

(

Li2(u2)−
π2

6

)

log(u4) +
3

2
log(u2) log

2(u4)− 2ζ3 (5.16)

This function has the same symbol as (5.13) (note that as always u2 + u4 = 1 at 8-points)

and moreover we checked that the two functions agree numerically. Now we notice that
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F3(u2, u4) in (5.16) is just a linear combination of our functions fc1, fc2 and fc3. In other

words, the GMSV condition takes the form

lim
u1→0

F
(3)
8 (u1, u2, u3, u4) =

log2(u1) log(u3)
[
fc1(u2, u4) + 2fc2(u2, u4) + fc3(u2, u4)

]
+O

(
log(u1)

)
. (5.17)

We conclude that the coefficients in front of 3 of the 6 c-type functions listed in (5.11)

are fixed. We note that the fact that the r.h.s. of eq. (5.16) can be presented entirely in

terms of simple functions of of cross-ratios (u2, u4), and more specifically that the symbol

of F3(u2, u4) is the tensor product of u variables, gives a self-consistency check on our

fundamental assumption that the symbol of the full answer is made out of u’s.

We can now write the most general function consistent with all available conditions:

F
(3)
8 (u1, u2, u3, u4) =

log u1 log u3
[
α1 fa3(u2, u4) + α2 fa4(u2, u4) + α3 fb2(u2, u4) + α4 fb3(u2, u4)

]

+ α5 fc2(u1, u3)fc2(u2, u4) + α6 fc2(u1, u3)fc3(u2, u4) + α7 fc3(u1, u3)fc3(u2, u4)

+ fc1(u1, u3)

[
1

2
fc1(u2, u4) + 2fc2(u2, u4) + fc3(u2, u4)

]

+ (u1 ↔ u2, u3 ↔ u4) (5.18)

Thus we have obtained an analytic expression for the 3-loop contribution to the 8-point

amplitude which contains 7 free constants αi. It is remarkable that the 3-loop octagon in

special 2d kinematics can be written in such a compact form and involving only classical

polylogarithms of degree ≤ 4 and logarithms. It is clearly important to further constrain

at least some of the yet undetermined 7 coefficients in the expression above. It would

be interesting to investigate whether one can fix some of the α’s by going to the BFKL

limit of the 8-point amplitude in the special kinematics — for the lower hexagon case, this

procedure has reduced the number of free constants at 3-loops in general kinematics, as

was shown very recently in [28]. We have not attempted to generalise their approach to

the octagon case considered here.

In the following section we will outline the procedure of finding the general uplift to 10-

points. This approach is general and conceptually there are no restrictions for continuing

to an arbitrary high number of 2n-points.

Finally, the fact that not just the symbol, but the functional form of the 3-loop 8-point

result is now known, one would be able to determine the coefficients and check the validity

of the above approach against numerical results at a few fixed values of the cross-ratios,

whenever these results become available.

6 Lifting the 3-loop octagon to higher polygons

6.1 Constructing the decagon: part 1

We will now show how to uplift the 8-point function to 10 points guided by the collinear

limits. Here we will construct a ‘particular solution’ for the 10-point polygon remainder,

– 15 –



J
H
E
P
1
1
(
2
0
1
1
)
1
5
2

which is just consistent with the collinear limits. In the following subsection we will obtain

the general solution by determining all 10-point structures which vanish in the collinear

limit. Similarly to 8-points, we will write

R
(3)
10 = F

(3)
10 + 3R

(3)
6 (6.1)

so that under the collinear limits described in section 2.2 we have simply F
(3)
10 → F

(3)
8 . We

will then consider the various contributions to F
(3)
10 .

To begin with we consider the 8-point type-a and type-b functions. As explained in

section 5, they are of the form,

Fab 8 = log(u1) log(u3) fab(u2, u4) + log(u2) log(u4) fab(u1, u3) , (6.2)

where

fab(u2, u4) := α1 fa3(u2, u4) + α2 fa4(u2, u4) + α3 fb2(u2, u4) + α4 fb3(u2, u4) , (6.3)

as can be seen from the first line on the r.h.s. of (5.18). We now find the lift of this

expression to 10-points, it turns out that this is quite straightforward.

The 10-point function is supposed to reduce under the collinear limit u5 → 1, u7 → 0,

u9 → 1 to the corresponding 8-point function with u4 replaced by u4u10. So in this case

we are supposed to get

log(u1) log(u3) fab(u2, u4u10) + log(u2) log(u4u10) fab(u1, u3) (6.4)

in the collinear limit.

To achieve an uplift consider the function

log(u1) log(u3) fab(u2, u4u10) + cyclic. (6.5)

One can easily check, using (5.3) and (5.4) that this function reduces under the collinear

limit correctly to (6.4). Indeed, the three terms, corresponding to i = 1, i = 2 and i = 10 of

Fab 10 =
10∑

i=1

log(ui) log(ui+2) fab(ui+1, ui+3ui−1) , (6.6)

combine to the two terms in (6.4). All the remaining terms in the sum in (6.6) vanish in

this limit.

Note that in the octagon case, the functions fab(u2, u4) in (6.3) were in fact functions

of a single variable u2, since for the octagon u4 = 1 − u2 (and u3 = 1 − u1). Hence

it would have been more appropriate to define fab(u2) := fab(u2, 1 − u2). The question

arises as what is the meaning of the function fab(u2, u4u10) appearing in the decagon case

in (6.5) and (6.6)? In fact it is the same function of a single variable u2 just as for n = 8.

The Y-system for the decagon (3.5) allows us to rewrite the products as u4u10 = 1 − u2,

and since

fab(u2, u4u10) = fab(u2, 1− u2) := fab(u2) . (6.7)
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Furthermore, since the symbol for each fab(u) in (5.8)–(5.10) involves only u and 1 − u

(which can be rewritten as a product of u’s) then making use of the product rule for

symbols (2.14), we see that the symbols of these functions are indeed made out of tensor

products of the u’s alone, with no functions of u appearing, as required by our fundamental

assumption in special kinematics. We can write

Fab 10 = log(u1) log(u3) fab(u2) + cyclic. (6.8)

So in this way we can immediately uplift the type-a and type-b 8-point functions to 10

points. To find the general solution to the 10-point structure one would need to add to

eq. (6.8) (and to eq. (6.10) below) also the general set of functions which vanish in the

collinear limit (this is a new possibility at 3 loops which couldn’t occur at 2 loops as

detailed in section 4.3). This will be done in the following subsection.

Now consider the type-c 8-point functions. These are of the form

Fc 8 =
∑

fc(u1, u3)gc(u2, u4) + gc(u1, u3)fc(u2, u4) , (6.9)

with f and g each of weight-3. Equation (6.9) corresponds to the second-through-last lines

on the r.h.s. of (5.18).

The corresponding 10-point function we are trying to obtain is therefore supposed to

reduce under the collinear limit, u5 → 1, u7 → 0, u9 → 1 to fc(u1, u3)gc(u2, u4u10) +

gc(u1, u3)fc(u2, u4u10).

Again this is fairly straightforward to achieve, we simply take

Fc 10 =
1

2
fc(u1)

(
gc(u2)− gc(u4) + gc(u6)− gc(u8) + gc(u10)

)
+ cyclic. (6.10)

where we have once again defined the single-argument functions,

fc(u) := fc(u, 1− u) , gc(u) := gc(u, 1− u) , (6.11)

so that fc(u) = fc(1− u) and gc(u) = gc(1− u).

To see that the r.h.s. of (6.10) reduces to the desired expression in the collinear limit,

we note that when we take u5 → 1, u7 → 0, u9 → 1 we also have automatically u3 = 1−u1,

as must be the case for the octagon. Thus in the collinear limit, fc(u1) = fc(u3) so that

the first and the third terms in the cyclic permutation have gc(u4), gc(u6), gc(u8) and

gc(u10) cancelled and amount to fc(u1)gc(u2), while the second term produces the other

required factor, fc(u2)gc(u1). The remaining cyclic permutations in (6.10) vanish in the

limit. Furthermore, as before, the functions fc(u) and gc(u) are made out of tensor products

of u’s alone.

6.2 Constructing the decagon: part 2. Collinear-vanishing 10-point functions

We have uplifted the 8-point function to 10 points, but to what extent is this unique? There

exist collinear-vanishing 3-loop functions at 10-points and these can never be detected by

this uplift. The most general possible 10-point function is the function uplifted from 8

points plus the most general collinear vanishing 10-point function.
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We approach the problem of finding the most general collinear vanishing 10-point

function in two independent ways. Firstly we work systematically: using a computer, we

write down the most general cyclic and parity symmetric, collinear vanishing symbol made

of tensor products of u’s. Then we impose the integrability constraint (2.22). This gives

888 constraints thus leaving just 12 collinear vanishing functions.

The second method starts with the assumption that the collinear vanishing function

has the form

f(u+i )g(u
−
i ) + cyclic + parity. (6.12)

Now we analyse the possible functions f, g. These functions must themselves vanish in any

collinear limit. To do this they must have weight 3 or more and each term must contain

3 consecutive u±i e.g. u+1 , u
+
2 , u

+
3 = u1, u3, u5. So since the same conditions are true for

both functions f, g, and the total weight is 6, they must both have weight 3. Now writing

out the most general such symbol for f (or equivalently g) and imposing the integrability

constraint we find there are just 11 possibilities which come in 3 types. These are not too

hard to find analytically:

f1(u
±
1 , u

±
2 , u

±
3 ) = log(u±1 ) log(u

±
2 ) log(u

±
3 )

f2(u
±
1 , u

±
2 , u

±
3 ) = log(u±2 )

(
Li2(u

±
1 )− Li2(1− u±2 ) + Li2(u

±
3 )− π2/6

)

f3(u
±
i ) =

5∑

i=1

(
Li3(u

±
i )− Li3(1− u±i )

)
− ζ3 . (6.13)

Here f1 and f2 give 5 independent functions via cyclic permutations of the arguments,

whereas f3 is cyclically symmetric giving only 1 independent function, thus we have 11

functions in total. We can now combine these together to obtain a total of 12 independent

weight 6 collinear vanishing 10 point function as follows:

f1(u1, u3, u5)f1(u2, u4, u6) + cyclic + parity

f1(u1, u3, u5)f1(u4, u6, u8) + cyclic + parity

f1(u1, u3, u5)f1(u6, u8, u10) + cyclic + parity

f1(u1, u3, u5)f2(u2, u4, u6) + cyclic + parity

f1(u1, u3, u5)f2(u4, u6, u8) + cyclic + parity

f1(u1, u3, u5)f2(u6, u8, u10) + cyclic + parity

f2(u1, u3, u5)f2(u2, u4, u6) + cyclic + parity

f2(u1, u3, u5)f2(u4, u6, u8) + cyclic + parity

f2(u1, u3, u5)f2(u6, u8, u10) + cyclic + parity

f1(u1, u3, u5)f3(u
−
i ) + cyclic + parity

f2(u1, u3, u5)f3(u
−
i ) + cyclic + parity

f3(u
+
i )f3(u

−
i ) + cyclic + parity (6.14)

Our expression for the decagon remainder function is obtained by adding together equa-

tions (6.8), (6.10) (with constants α1, . . . , α7) and 12 contributions from (6.14). We have

– 18 –
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thus constructed the general analytic expression for the decagon which contains 19 as yet

undetermined constant coefficients.

One obvious question is if the current understanding of the near-collinear OPE at 10-

points could restrict the function further. Unfortunately this is not the case. None of the

collinear vanishing terms found here contribute to the OPE (at the order at which this

is currently understood) and nor does the function Fab 10. Indeed only those functions in

Fc 10 whose coefficients have already been fixed by the 8-point OPE are detectable by the

10-point OPE, thus providing a consistency check, but no new information.

7 Conclusions

The main results of this paper are derived from a single fundamental assumption of what

are the correct variables of the Wilson loop symbol in the special kinematics. We have

postulated that these variables are given by the conformal cross-ratios uij so that the

symbol is a sum of tensor products of uij .

Based on this constraint on the symbol, and using the symmetries of the system to-

gether with collinear limits, we have re-derived the 2-loop n-point analytic expressions for

general (even) n in agreement with the previously known results of [25, 26]. Our purpose

was to achieve this without performing the direct perturbative computation (which was

carried out in [25] for n = 8), whilst making a weaker assumption than was made in [26]

that only log(u) can appear in the two-loop answer.

We then applied this strategy at 3-loops in section 5 where we have determined the

functional form of the 8-point Wilson loop answer. Our analytic result has a very compact

form and is expressed in terms of logarithms and classical polylogarithms of cross-ratios

only. After imposing the constraint arising from the near-collinear OPE of [32] we ended

up with 7 so far undetermined constant coefficients α1, . . . , α7. Our final result for the

octagon at 3-loops is given by

F
(3)
8 = log u1 log(1− u1)

[
α1 fa3(u2) + α2 fa4(u2) + α3 fb2(u2) + α4 fb3(u2)

]

+ α5 fc2(u1)fc2(u2) + α6 fc2(u1)fc3(u2) + α7 fc3(u1)fc3(u2)

+ fc1(u1)

[
1

2
fc1(u2) + 2fc2(u2) + fc3(u2)

]

+ (u1 ↔ u2) (7.1)

with the fa, fb and fc functions defined in (5.15).

Our strategy also works for higher polygons. Following the uplift of the 8-point answer,

we have constructed the general analytic expression for the 3-loop decagon. Our result for

the 3-loop decagon is given by

F
(3)
10 =

12∑

k=1

βk φk + log(u1) log(u3) f̃ab(u2) (7.2)

+
1

2

3∑

i=1

fci(u1)
(
f̃ci(u2)− f̃ci(u4) + f̃ci(u6)− f̃ci(u8) + f̃ci(u10)

)
+ cyclic
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where φk are the 12 combinations on the r.h.s. of (6.14) and

f̃ab(u) = α1 fa3(u) + α2 fa4(u) + α3 fb2(u) + α4 fb3(u) ,

f̃c1(u) =
1

2
fc1(u) + 2 fc2(u) + fc3(u) ,

f̃c2(u) = α5 fc2(u) + α6 fc3(u) ,

f̃c3(u) = α7 fc3(u) , (7.3)

with the fa, fb and fc functions collected in (5.15). The 19 free constants are β1, . . . , β12
and α1, . . . , α7.

One should also bear in mind that one can always add to any 3-loop remainder π2 times

the 2-loop remainder (which as has been seen is uniquely fixed by our considerations). Such

a possibility can never be ruled out from our considerations, since we know that this satisfies

all the requirements we are insisting upon. so in other words we can always add

R(3)
n → R(3)

n + k π2R(2)
n . (7.4)

But this is the only possible lower transcendental function we can add.

In principle, there are no obstacles in continuing to uplift these 3-loop results to higher

points. An important point here is that there are no collinear vanishing functions beyond

12 points within our ansatz (and more generally at l loops beyond 4l points). This can

be seen easily from the point of view of the symbol, there are too many edges (compared

with the rank of the symbol-tensor) for one to ensure that each term in the tensor always

contains a cross-ratio approaching unity in the limit, which is the only way to kill this

term. We conclude that once the 12 point 3-loop remainder is known, and more generally

the 4l point l-loop remainder, the uplift to all higher points is unique.

It will be also interesting to continue this programme to higher loops.
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