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Abstract: We perform a comprehensive study of the impact of new-physics operators with

different Lorentz structures on CP-violating observables involving the b → sµ+µ− tran-

sition. We examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP)

and tensor (T) interactions on the CP asymmetries in the branching ratios and forward-

backward asymmetries of B̄0
s → µ+µ−, B̄0

d → Xsµ
+µ−, B̄0

s → µ+µ−γ, B̄0
d → K̄µ+µ−,

and B̄0
d → K̄∗µ+µ−. In B̄0

d → K̄∗µ+µ−, we also explore the direct CP asymmetries in the

longitudinal polarization fraction fL and the angular asymmetries A
(2)
T and ALT , as well as

the triple-product CP asymmetries A
(im)
T and A

(im)
LT . We find that, in almost all cases, the

CP-violating observables are sensitive only to new physics which involves VA operators.

The VA new physics may therefore be unambiguously identified by a combined analysis of

future measurements of these CP-violating observables.
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1 Introduction

The B factories have taken us to the luminosity frontier with more than a billion B+/Bd

mesons, and the Tevatron experiments have provided us with invaluable data on Bs mesons.

We have now entered the precision era of B physics. The Standard Model (SM) has been

successful in explaining most of the data to date. However, this is now the time to look

forward to precision tests, with the ATLAS and CMS experiments already running, the

LHCb expected to start recording data soon, and the Super-B factories on their way. One

can now be ambitious and not only look for new-physics (NP) effects, but also try to

identify the kind of NP involved.

Though there is no unambiguous signal of NP so far in all of the B decays we have

observed, some possible hints of NP have recently surfaced in modes involving b→ s tran-

sitions. These include measurements of CP-averaged quantities such as the large trans-

verse polarization in B → φK∗ [1, 2], and the anomalous forward-backward asymmetry in

B → K∗µ+µ− [3–5]. There are also measurements of CP-violating quantities such as the

difference between the mixing-induced CP asymmetries seen in b→ s penguin decays and
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in Bd → J/ψKS [6–8], the large CP asymmetry in Bs → J/ψφ [9], and the anomalous CP

asymmetry in like-sign dimuon signals [10].

In the companion paper [11], we performed a general analysis with all possible Lorentz

structures of NP in the transition b → sµ+µ−. We included NP vector-axial vector (VA),

scalar-pseudoscalar (SP), and tensor (T) b → sµ+µ− operators, and explored their pos-

sible effects on the decays B̄0
s → µ+µ−, B̄0

d → Xsµ
+µ−, B̄0

s → µ+µ−γ, B̄0
d → K̄µ+µ−,

and B̄0
d → K̄∗µ+µ−. We focused on CP-conserving observables such as differential branch-

ing ratios, forward-backward asymmetries, polarization fractions, and the asymmetries

A
(2)
T , ALT in B̄0

d → K̄∗µ+µ−. Because we only considered CP-conserving observables, all

the NP couplings were taken to be real. We computed the effects of all NP operators,

individually and in all combinations, on these observables.

The CP-violating observables in various b → sµ+µ− decays in the SM as well as in

some NP models have been studied in refs. [12–27] In this paper, we explore the CP-

violating quantities that may be measured in the same decay modes by allowing the new

couplings to be complex. The introduction of complex couplings has two effects. First,

some quantities which were taken to be CP-conserving above now display CP-violation,

i.e. the quantities take different values in the CP-conjugate decays. The difference between

the value of a measurement in a decay and in its CP-conjugate counterpart is then a CP-

violating observable. Second, new observables appear which vanish in the CP-conserving

limit. (These were not considered in ref. [11] for this reason.) These essentially correspond

to the CP-violating triple-product asymmetries A
(im)
T and A

(im)
LT in B̄0

d → K̄∗µ+µ−, which

may be obtained from the angular distribution in this decay. Our goal is to identify those

quantities for which there may be large effects due to the presence of NP. In such cases,

we try to find salient features of the effects of NP, which may help us identify the Lorentz

structure of the NP involved.

Here we have taken the NP to be present only in the effective b → sµ+µ− operator.

While this can, in principle, contribute to CP violation in Bd-B̄d and Bs-B̄s mixing, it is a

higher-order effect, and hence negligible compared to the SM contribution. We therefore ne-

glect mixing-induced (indirect) CP violation in this work, and focus only on CP violation in

the decay. In the SM, such CP violation is expected to be close to zero in b→ s transitions.

A naive estimate indicates that this asymmetry will be ∼ 10−3 [20, 23], but even if next-

to-leading order (NLO) QCD corrections and hadronic uncertainties are included, it is ob-

served that the CP asymmetry will not exceed 1% [24, 25, 28]. Thus, if a large CP-violating

effect, more than a few percent, is observed in any of the b → sµ+µ− channels, this will

therefore be a clear signature of NP. In this paper, we go further and explore the extent to

which the Lorentz structure of NP can be ascertained from the CP-violating measurements.

The paper is organized as follows. We begin in section 2 by describing the effective

Hamiltonian with NP operators and new couplings. Although the formalism is the same

as that used in ref. [11], the constraints on the NP couplings are now more relaxed since

the couplings are allowed to be complex. We also present an overview of the types of CP-

violating observables which are examined. In section 3 we note that there are essentially no

measurable CP-violating quantities in the mode B̄0
s → µ+µ−. We then consider the decays

B̄0
d → Xsµ

+µ− (section 4), B̄0
s → µ+µ−γ (section 5), and B̄0

d → K̄µ+µ− (section 6). In
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these sections we examine the same observables as in ref. [11], this time looking at the

asymmetries between these processes and their CP-conjugates. In section 7, we study

the CP asymmetries in B̄0
d → K̄∗µ+µ− for the observables considered in ref. [11], and

in addition we explore new observables that vanish in the CP-conserving limit (triple

products). We summarize our findings in section 8 and discuss their implications.

2 b → sµ+µ− operators

2.1 Effective Hamiltonian in the SM and with NP

Our formalism is identical to that used in ref. [11]. We repeat it here briefly for the sake

of completeness. Within the SM, the effective Hamiltonian for the quark-level transition

b→ sµ+µ− is

HSM
eff = −4GF√

2
V ∗

tsVtb

{ 6
∑

i=1

Ci(µ)Oi(µ) + C7
e

16π2
[s̄σµν(msPL +mbPR)b]Fµν

+C9
αem

4π
(s̄γµPLb) µ̄γµµ+ C10

αem

4π
(s̄γµPLb) µ̄γµγ5µ

}

+ h.c., (2.1)

where PL,R = (1 ∓ γ5)/2. The operators Oi (i = 1, . . . 6) correspond to the Pi in ref. [29],

and mb = mb(µ) is the running b-quark mass in the MS scheme. We use the SM Wilson

coefficients (Ci) as given in ref. [25].

The effective Hamiltonian in the presence of NP is

Heff(b→ sµ+µ−) = HSM
eff + HV A

eff + HSP
eff + HT

eff + h.c., (2.2)

where

HV A
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

RV (s̄γµPLb) µ̄γµµ+RA (s̄γµPLb) µ̄γµγ5µ

+R′
V (s̄γµPRb) µ̄γµµ+R′

A (s̄γµPRb) µ̄γµγ5µ
}

, (2.3)

HSP
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

RS (s̄PRb) µ̄µ+RP (s̄PRb) µ̄γ5µ

+R′
S (s̄PLb) µ̄µ+R′

P (s̄PLb) µ̄γ5µ
}

, (2.4)

HT
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

CT (s̄σµνb)µ̄σ
µνµ+ iCTE(s̄σµνb)µ̄σαβµ ǫ

µναβ
}

(2.5)

are the new contributions. Here, RV , RA, R
′
V , R

′
A, RS , RP , R

′
S , R

′
P , CT and CTE are the NP

effective couplings. In our numerical analysis in this paper, we take all NP couplings to be

complex. As in ref. [11], we do not include NP through the O7 = s̄σαβPRb Fαβ operator or

its chirally-flipped counterpart O′
7 = s̄σαβPLb Fαβ .

2.2 Constraints on NP couplings

The constraints on the NP couplings in b→ sµ+µ− come mainly from the upper bound on

the branching ratio B(B̄0
s → µ+µ−) and the measurements of the total branching ratios
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B(B̄0
d → Xsµ

+µ−) and B(B̄0
d → K̄µ+µ−) [30–32]:

B(B̄0
s → µ+µ−) < 4.70 × 10−8 (90% C.L.) , (2.6)

B(B̄0
d → Xsµ

+µ−) =

{

(1.60 ± 0.50) × 10−6 (low q2)

(0.44 ± 0.12) × 10−6 (high q2)
, (2.7)

B(B̄0
d → K̄µ+µ−) =

(

4.5+1.2
−1.0

)

× 10−7 , (2.8)

where the low-q2 and high-q2 regions correspond to 1 GeV2 ≤ q2 ≤ 6 GeV2 and q2 ≥
14.4 GeV2, respectively. Here q2 is the invariant mass squared of the two muons.

We consider all the NP couplings Ri to be complex and parametrize them as

Ri = |Ri| eiφRi , (2.9)

where i = V,A, S, P, T, TE and −π ≤ φRi
≤ π. The bounds on these couplings will in

general depend on which operators are present. While we take the correlations in these

constraints into account in our numerical calculations, for the sake of simplicity we only

give the bounds when the NP operators (VA, SP, T) are present individually.

If the only NP couplings present are RV,A, we obtain

|Re(RV ) + 2.8|2
(6.3)2

+
|Im(RV )|2

(6.0)2 ∼< 1.0 ,
|Re(RA) − 4.1|2

(6.1)2
+

|Im(RA)|2
(6.0)2 ∼< 1.0 . (2.10)

If the only NP couplings present are R′
V,A, the constraints are

|Re(R′
V )|2

(3.5)2
+

|Im(R′
V )|2

(4.0)2 ∼< 1.0 ,
|Re(R′

A)|2
(3.5)2

+
|Im(R′

A)|2
(4.0)2 ∼< 1.0 . (2.11)

For the SP operators, the present upper bound on B(B̄0
s → µ+µ−) provides the limit

|RS −R′
S |2 + |RP −R′

P |2 ∼< 0.44 . (2.12)

This constitutes a severe constraint on the NP couplings if only RS,P or R′
S,P are present.

However, if both types of operators are present, these bounds can be evaded due to cancel-

lations between the RS,P and R′
S,P . In that case, B(B̄0

d → Xsµ
+µ−) and B(B̄0

d → K̄µ+µ−)

can still bound these couplings. The stronger bound is obtained from the measurement of

the latter quantity, which yields

|RS |2 + |RP |2 ∼< 9 , RS ≈ R′
S , RP ≈ R′

P . (2.13)

Finally, the constraints on the NP tensor operators come entirely from B(B̄0
d → Xsµ

+µ−).

When only the T operators are present,

|CT |2 + 4|CTE |2 ∼< 1.0 . (2.14)

The constraints are not affected significantly if more than one type (VA, SP or T) of NP

operators is present simultabeously.
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2.3 CP-violating effects

All CP-violating effects are due to the interference of (at least) two amplitudes with a

relative weak phase. In principle, there can be three types of interference: SM-SM, SM-

NP, NP-NP. In the SM, all contributions to the b→ sµ+µ− modes are proportional to the

Cabibbo-Kobayashi-Maskawa (CKM) factors V ∗
tbVts, V

∗
cbVcs, or V ∗

ubVus. The term V ∗
cbVcs can

be eliminated in terms of the other two using the unitarity of the CKM matrix. Further-

more, although V ∗
ubVus has a large weak phase, its magnitude is greatly suppressed relative

to that of V ∗
tbVts. Thus, to a good approximation, all nonzero SM contributions have the

same weak phase, and so all CP-violating effects are predicted to be tiny in the SM.

There are two types of CP violation. The first is direct CP-violating asymmetries.

Suppose that a particular B̄ decay has two contributing amplitudes: iM(B̄ decay) =

A1 + A2. Each amplitude has both a weak and a strong phase. The matrix element iM
for the CP-conjugate decay is the same as iM, except that the weak phases change signs.

CP violation is indicated by a nonzero value of |M|2 − |M|2. It is straightforward to show

that this is proportional to sinφw sin δ, where φw and δ are, respectively, the relative weak

and strong phases between A1 and A2. Direct CP-violating asymmetries therefore require

that the interfering amplitudes have both a nonzero relative weak and strong phase.

The second type of CP violation is triple-product (TP) asymmetries. Suppose that the

matrix element for the B̄ decay takes the form iM(B̄ decay) = A1 + iA2ǫµνρσp
µ
B̄
vν
1v

ρ
2v

σ
3 ,

where the vi are spins or momenta of the final-state particles. The difference |M|2 − |M|2
is proportional to mB̄~v1 · (~v2 × ~v3) sinφw cos δ. By measuring the TP ~v1 · (~v2 × ~v3) in both

B̄ and B decays, the TP asymmetry can be obtained. Note that the measurement of a

nonzero TP in the B̄ decay alone is not sufficient to establish CP violation, i.e. it does not

necessarily imply a nonzero weak phase. A fake, CP-conserving TP can be produced if A1

and A2 have a relative strong phase. It is only by measuring the difference of TPs in B̄ and

B decays that the fake TP can be eliminated and a true, CP-violating signal produced [33].

Let us first turn to direct CP violation, which requires both a relative weak and strong

phase between two interfering amplitudes. Now, strong phases are generated through

the rescattering of the operators in the effective Hamiltonian. The NP strong phases

involve only the (constrained) NP operators, and are therefore small [34]. Thus, direct CP

asymmetries can never arise from NP-NP interference.

On the other hand, the SM strong phase is not so small. It is generated because the

Wilson coefficient Ceff
9 , which gets a contribution from a cc̄ quark loop, has an imaginary

piece. (Ceff
9 also gets a contribution from a uū quark loop. But this is proportional to

V ∗
ubVus, and hence negligible.) The quantity Ceff

9 can be written as [25]

Ceff
9 =C9(mb) + h(z, m̂c)

(

4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(z, m̂b)

(

7C3 +
4

3
C4 + 76C5 +

64

3
C6

)

(2.15)

− 1

2
h(z, 0)

(

C3 +
4

3
C4 + 16C5 +

64

3
C6

)

+
4

3
C3 +

64

9
C5 +

64

27
C6 .
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Here z ≡ q2/m2
b , and m̂q ≡ mq/mb for all quarks q. The function h(z, m̂) represents

the one-loop correction to the four-quark operators O1-O6 and is given by [23, 25, 35]

h(z, m̂) = −8

9
ln
mb

µb
− 8

9
ln m̂+

8

27
+

4

9
x (2.16)

−2

9
(2 + x)|1 − x|1/2

{

(

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣
− iπ

)

, for x ≤ 1 ,

2 arctan 1√
x−1

, for x > 1 ,

where x ≡ 4m̂2/z. Thus, a nontrivial strong phase is generated when z ≥ 4m̂2. This leads

to the complex nature of Ceff
9 in the SM. For example, typical values of Ceff

9 in the low- and

high-q2 regions are Ceff
9 (mb) = 4.75+0.09i (z = 0.1) , Ceff

9 (mb) = 4.76+0.88i (z = 0.7). Ceff
9

therefore has a nontrivial imaginary component, which implies that direct CP asymmetries

can arise due to SM-NP interference. Since the SM operator (Ceff
9 ) is of VA type, the NP

operator must also be VA in order to generate a significant direct CP asymmetry. Other

NP operators can also interfere with the SM, but the effect is suppressed by mµ/mb, and

hence very small. Note that, although this argument has used the total decay rate for

illustration, we could have used (almost) any observable which is related to the square

of the matrix element. This includes the differential branching ratio, forward-backward

asymmetry, polarization asymmetries, etc.

The TP asymmetries, on the other hand, do not need a difference in strong phases

between two amplitudes. Indeed, they are proportional to cos δ, though they do require

a weak-phase difference. This means that a TP asymmetry can be produced by either

SM-NP or NP-NP interference. Given that all SM operators are of VA type, the NP must

also be VA if SM-NP interference is the reason for the TP. On the other hand, if NP-

NP interference is involved, this can arise due to new SP and T operators (other NP-NP

interference are possible, but the effects are suppressed by mµ/mb).

In this paper, we explore both sources of CP asymmetries, direct CP violation and

TPs. While we have checked the effects of SP and T NP operators on all the observables,

we find them to be insignificant in most places (as expected from the arguments above), and

we will mention them only during the discussion of TP asymmetries, where, in principle,

they may play a significant role.

3 B̄0
s

→ µ+µ−

We begin by considering the direct CP asymmetry in B̄0
s → µ+µ−. Helicity conservation

in the decay of Bs or B̄s implies that the only final states can be µ+
Lµ

−
L or µ+

Rµ
−
R, which

are CP conjugates. The only CP-violating observables that can be constructed are then

ARL
CP (t) ≡ B(B̄0

s (t) → µ+
Rµ

−
R) −B(B0

s (t) → µ+
Lµ

−
L )

B(B̄0
s (t) → µ+

Rµ
−
R) +B(B0

s (t) → µ+
Lµ

−
L )

,

ALR
CP (t) ≡ B(B̄0

s (t) → µ+
Lµ

−
L ) −B(B0

s (t) → µ+
Rµ

−
R)

B(B̄0
s (t) → µ+

Lµ
−
L ) +B(B0

s (t) → µ+
Rµ

−
R)

. (3.1)

The CP asymmetry in the longitudinal polarization fraction ALP may be written in terms

of these two CP asymmetries. The measurement of either of these CP asymmetries requires

– 6 –
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the measurement of muon polarization, which will be an impossible task for the upcoming

experiments [11]. And even if this were doable, the lack of any sources for different strong

phases in the two CP-conjugate final states implies that the direct CP asymmetry would

vanish even with NP. We therefore do not study CP violation in B̄0
s → µ+µ−.

4 B̄0
d

→ Xsµ
+µ−

A model-independent analysis of the CP asymmetry in the differential branching ratio

(DBR) of B̄0
d → Xsµ

+µ− was previously carried out in ref. [14]. There, the CP asymmetry

in the DBR was predicted for some specific values of the NP couplings. However, no

experimental constraints on the parameters were used. In this paper we study the CP

asymmetry in the DBR, taking into account the constraints from the present measurements

of other related observables. Moreover, in addition to the CP asymmetry in the DBR, we

also study the CP asymmetry in the forward-backward asymmetry.

The CP asymmetry in DBR of B̄0
d → Xsµ

+µ− is defined as

ACP(q2) =
(dB/dz) − (dB/dz)

(dB/dz) + (dB/dz)
, (4.1)

where z ≡ q2/m2
b , and dB/dz and dB/dz are the DBRs of B̄0

d → Xsµ
+µ− and its

CP-conjugate B0
d → Xsµ

+µ−, respectively. The expression for (dB/dz) has been given

in ref. [11].

The CP asymmetry in the forward-backward asymmetry AFB is defined as

∆AFB(q2) ≡ AFB(q2) −AFB(q2) , (4.2)

where the definition of AFB is given in ref. [11], and AFB is the analogous quantity for

the CP-conjugate decay. Note that while the relevant angle θ in B̄0
d → Xsµ

+µ− is defined

relative to the direction of µ+, for the CP-conjugate decay one should define θ in relation

to the direction of µ−, and similarly for AFB in other b→ sµ+µ− decay modes below.

Figure 1 shows ACP(q2) and ∆AFB(q2) for B̄0
d → Xsµ

+µ− in the presence of new VA

couplings. We make the following observations:

• When only RV,A couplings are present, ACP(q2) can be enhanced up to 6% at low

q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q2) can have

either sign at both low and high q2. At high q2, the magnitude of ACP(q2) is almost

independent of q2.

• When only R′
V,A couplings are present, ACP(q2) cannot be enhanced above the SM

value. This is because R′
V,A couplings do not contribute to the numerator of ACP(q2)

in eq. (4.1). They can only affect the DBR, which may be enhanced by up to 50%,

thus decreasing ACP(q2).

• In the presence of RV,A couplings, ∆AFB can be enhanced up to 3% at low q2. At high

q2, the enhancement can be up to 12%. The impact of R′
V,A couplings is negligible

(< 1%).
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Figure 1. The left (right) panels of the figure show ACP(q2) and ∆AFB for B̄0
d → Xsµ

+µ− in

the low-q2 (high-q2) region, in the scenario where only (RV , RA) couplings are present. The green

line corresponds to the SM prediction. The other lines show predictions for some representative

values of the NP parameters (RV , RA). For example, the blue curve in the low-q2 and high-q2

regions for the ACP plot corresponds to (5.68ei2.13, 2.64e−i0.04) and (4.29ei1.68, 4.15e−i0.26), respec-

tively, whereas the blue curve in the low-q2 and high-q2 regions for the ∆AFB plot corresponds to

(1.80ei2.91, 5.45ei0.90) and (1.69e−i3.08, 6.83e−i0.91), respectively.

5 B̄0
s

→ µ+µ−γ

Although B̄0
s → µ+µ−γ requires the emission of an additional photon as compared to B̄0

s →
µ+µ−, which suppresses the branching ratio (BR) by a factor of αem, the photon emission

also frees it from helicity suppression, making its BR much larger than B̄0
s → µ+µ−. The

SM prediction for the BR in the range q2 ≤ 9.5 GeV2 and q2 ≥ 15.9 GeV2 is ≈ 18.9 ×
10−9 [36]. As argued in ref. [11], if we choose 2 GeV2 ≤ q2 ≤ 6GeV2 and 14.4 GeV2 ≤ q2 ≤
25 GeV2 as the low-q2 and high-q2 regions, respectively, then the dominating contribution

comes from the diagrams in which the final-state photon is emitted either from the b or

the s quark, and the B̄0
s → µ+µ−γ decay is governed by the same b → sµ+µ− effective

Hamiltonian as the other decays considered in this paper.

The CP asymmetry in B̄0
s → µ+µ−γ is given in eq. (4.1), where dB/dxγ and dB/dxγ

are the DBRs of B̄0
s → µ+µ−γ and its CP-conjugate B0

s → µ+µ−γ, respectively. The

expression for (dB/dxγ) has been given in ref. [11]. The CP asymmetry in AFB is given

in eq. (4.2), where the definition of AFB is given in ref. [11], and AFB is the analogous

quantity for the CP-conjugate decay.

The CP asymmetry in the DBR of Bs → µµγ was studied in refs. [17, 18], albeit only

for the new-physics cases where C7 = −CSM
7 , C9 = −CSM

9 and C10 = −CSM
10 , and naturally
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only for VA operators. Here, we include a complete discussion of the possible enhancement

of the asymmetry for all allowed values of C9 and C10, and in the presence of SP and T

operators. In addition, we study the CP-violating asymmetry in AFB, which also turns

out to give possibly significant NP signals.

Figure 2 shows ACP(q2) and ∆AFB(q2) for B̄0
s → µ+µ−γ in the presence of new VA

couplings. We make the following observations:

• When only RV,A couplings are present, at low q2 the magnitude of ACP(q2) can be

enhanced up to 30% at certain q2 values. At high q2, the magnitude of ACP(q2) is

almost independent of q2, and can be enhanced to about 13%. The asymmetry can

have either sign at both low and high q2.

• When only R′
V,A couplings are present, ACP(q2) cannot be enhanced in magnitude

to more than 1.5% at low q2, or more than 3% at high q2. The detection of NP of

this kind is therefore expected to be very difficult in this channel. When both primed

and unprimed VA couplings are present, the results are the same as those obtained

with only RV,A couplings.

• The behaviour of ∆AFB(q2) is similar to that of ACP (q2). This quantity can be

enhanced up to 40% for some values in the low-q2 region. It can be as high as 18%

throughout the high-q2 region. The impact of R′
V,A couplings is negligible (< 1%).

The new VA operators can therefore enhance the asymmetries ACP(q2) and ∆AFB(q2)

in B̄0
s → µ+µ−γ to ∼ 10% throughout the q2 region. For a branching ratio of O(2× 10−8),

a measurement of a CP asymmetry of 10% at the 3σ level would require ∼ 1010 B mesons.

It should therefore be possible to measure a CP asymmetry at the level of a few per cent

at future colliders such as the Super-B factories [37–39].

6 B̄0
d

→ K̄µ+µ−

The CP asymmetry in B̄0
d → K̄µ+µ− is defined in a manner similar to that in eq. (4.1),

where dB/dz and dB/dz are the DBRs of B̄0
d → K̄µ+µ− and its CP-conjugate B0

d →
Kµ+µ−, respectively. The expression for (dB/dz) has been given in ref. [11]. A model-

independent analysis of the CP asymmetry in the DBR, with specific chosen values of

VA operators, was carried out in ref. [19]. However, the constraints on the NP operators,

coming from the measured branching ratio of B̄0
d → Xsµ

+µ−, were not taken into account.

Here, in addition to taking these constraints into account, we also consider new SP and T

operators, and extend the analysis to study the CP asymmetry in AFB .

The CP asymmetry in AFB is given in eq. (4.2), where the definition of AFB is as

given in ref. [11], while AFB is the analogous quantity for the CP-conjugate decay. Now,

the decay mode B̄0
d → K̄µ+µ− is unique because the forward-backward asymmetry of

muons is predicted to vanish exactly in the SM. This is due to the fact that the B̄0
d → K̄

hadronic matrix element does not have any axial-vector contribution. AFB can therefore

have a nonzero value only if it receives a contribution from new physics. However, even in

the presence of NP, the expressions in ref. [11] indicate that the only term contributing to

– 9 –
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Figure 2. The left (right) panels of the figure showACP(q2) and ∆AFB for B̄0
s → µ+µ−γ in the low-

q2 (high-q2) region, in the scenario where only (RV , RA) couplings are present. For example, the blue

curve in the low-q2 and high-q2 regions for the ACP plot corresponds to (2.95e−i0.38, 4.56e−i0.04),

whereas the blue curve in the low-q2 and high-q2 regions for the ∆AFB plot corresponds to

(1.60e−i0.08, 4.14e−i0.12).

∆AFB(q2) is that with VA+SP NP operators, and this is suppressed by the factor mµ/mb.

As a result, one does not expect a significant enhancement in ∆AFB from any Lorentz

structure of NP.

Figure 3 shows ACP(q2) for B̄0
d → K̄µ+µ− in the presence of new VA couplings. We

make the following observations:

• When only RV,A couplings are present, ACP(q2) can be enhanced up to 7% at low

q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q2) can have

either sign at both low and high q2, and its magnitude is almost independent of q2

in these regions.

• When only R′
V,A couplings are present, ACP(q2) can be enhanced up to 4% at low

q2. On the other hand, its value at high q2 can be as high as 12%. ACP(q2) can have

either sign at both low and high q2, and its magnitude is almost independent of q2

in these regions.

• When both primed and unprimed VA couplings are present, the results are the same

as those obtained with only RV,A couplings.

For a B̄0
d → K̄µ+µ− branching ratio of O(0.5 × 10−6), a measurement of a CP asym-

metry of 1% at the 3σ level would require ∼ 1011 B mesons. It should therefore be possible

– 10 –
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Figure 3. The left (right) panel of the figure shows ACP(q2) for B̄0
d → K̄µ+µ− in the low-q2 (high-

q2) region, in the scenario where only (RV , RA) terms are present. The green line corresponds

to the SM prediction. The other lines show predictions for some representative values of the NP

parameters (RV , RA). For example, the blue curve in the low-q2 and high-q2 regions corresponds

to (5.97ei2.23, 3.08e−i0.05) and (6.47ei2.30, 3.11ei0.48), respectively.

to measure a CP asymmetry at the level of a few per cent at future colliders such as the

Super-B factories [37–39].

7 B̄0
d

→ K̄∗µ+µ−

The complete three-angle distribution for the decay B̄0 → K̄∗0(→ K−π+)µ+µ− in the

presence of NP can be expressed in terms of q2, two polar angles θµ and θK , and the

azimuthal angle φ between the planes of the dimuon and Kπ decays:

d4ΓB̄

dq2d cos θµd cos θKdφ
=NF

{

cos2 θK

(

I0
1 + I0

2 cos 2θµ + I0
3 cos θµ

)

+ sin2 θK

(

IT
1 + IT

2 cos 2θµ + IT
3 cos θµ

+IT
4 sin2 θµ cos 2φ+ IT

5 sin2 θµ sin 2φ
)

+ sin 2θK

(

ILT
1 sin 2θµ cosφ

+ILT
2 sin 2θµ sinφ+ ILT

3 sin θµ cosφ+ ILT
4 sin θµ sinφ

)

}

. (7.1)

The expressions for the normalization NF and the I’s are given in ref. [11]. The I’s are

functions of the couplings, kinematic variables and form factors. The definitions of the

angles in B̄0
d → K̄∗µ+µ− involve the directions of the µ+ and K

∗
. For the CP-conjugate

decay B0 → K∗0(→ K+π−)µ+µ−, one defines these angles relative to the directions of the

µ− and K∗. The Ī’s can be obtained from the I’s by replacing θµ → θµ − π and φ→ −φ,

and changing the signs of the weak phases.

The CP asymmetries in the branching ratio and forward-backward asymmetry were

analyzed in ref. [23] with the measurement of B → Xsγ and the limit on the B̄0
d → K̄∗µ+µ−

branching ratio available then. An analysis of CP asymmetries in B̄0
d → K̄∗µ+µ− in the

low-q2 region was also performed earlier in ref. [25]. We extend this analysis by including

T operators, and present our results for all asymmetries, in both the low-q2 and high-

q2 regions.
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A detailed discussion of the CP-conserving observables in this decay distribution can

be found in ref. [11]. In this section we consider the direct CP asymmetries in the dif-

ferential branching ratio (DBR), the forward-backward asymmetry AFB, the longitudinal

polarization fraction fL, and the angular asymmetries A
(2)
T and ALT . We also examine the

triple-product CP asymmetries A
(im)
T and A

(im)
LT , which were not considered in ref. [11] since

they identically vanish in the CP-conserving limit (no strong or weak phases), regardless

of the presence of NP.

7.1 Direct CP asymmetries in the DBR and AFB

The direct CP asymmetry in the differential branching ratio is defined as

ACP (q2) =
(dΓB̄/dq2) − (dΓB/dq2)

(dΓB̄/dq2) + (dΓB/dq2)
, (7.2)

where

dΓB̄

dq2
=

8πNF

3
(AB̄

L +AB̄
T ) . (7.3)

Here the longitudinal and transverse polarization amplitudes AB̄
L and AB̄

T are obtained from

eq. (7.1):

AB̄
L =

(

I0
1 − 1

3
I0
2

)

, AB̄
T = 2

(

IT
1 − 1

3
IT
2

)

. (7.4)

The expressions for AB
L and AB

T of the CP-conjugate mode can be obtained by replacing

the I’s with Ī’s.

The forward-backward asymmetry in B̄0
d → K̄∗µ+µ− has recently been measured,

and shows features that may indicate a deviation from the SM. This measured quantity

is actually the CP-averaged forward-backward asymmetry AFB. However, the difference

between the measurement of this quantity in B̄0
d → K̄∗µ+µ− and its CP-conjugate mode

may also reveal the presence of NP. This CP asymmetry is quantified as

∆AFB(q2) = AB̄
FB(q2) +AB

FB(q2) , (7.5)

where

A
B̄(B)
FB (q2) =

∫ 1
0 d cos θµ

d2ΓB̄(B)

dq2d cos θµ
−

∫ 0
−1 d cos θµ

d2ΓB̄(B)

dq2d cos θµ

∫ 1
0 d cos θµ

d2ΓB̄(B)

dq2d cos θµ
+

∫ 0
−1 d cos θµ

d2ΓB̄(B)

dq2d cos θµ

. (7.6)

It can be obtained by integrating over the two angles θK and φ in eq. (7.1).

Figure 4 shows ACP (q2) and ∆AFB(q2) for B̄0
d → K̄∗µ+µ− in the presence of new VA

couplings. We make the following observations:

• If only RV,A couplings are present, ACP (q2) can be enhanced up to 5% at low q2,

and up to 14 % at high q2. ∆AFB(q2) can be enhanced up to 3% at low q2, and up

to 11 % at high q2. Both ACP (q2), and ∆AFB(q2) can have either sign at both low

and high q2.
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Figure 4. The left (right) panels of the figure show ACP (q2) and ∆AFB(q2) for B̄0
d →

K̄∗µ+µ− in the low-q2 (high-q2) region, in the scenario where (RV , RA, R
′

V , R
′

A) terms are

all present. The green line corresponds to the SM prediction. The other lines show predic-

tions for some representative values of the NP parameters. For example, the blue curve for

ACP (q2) in the low-q2 and high-q2 regions corresponds to (2.77ei1.83, 2.08ei0.5, 3.8ei0.08, 1.23e−i2.74)

and (5.88ei2.29, 1.66ei0.82, 3.49ei0.36, 1.02ei0.98), respectively. The blue curve for ∆AFB(q2) in

the low-q2 and high-q2 regions corresponds to (1.56e−i2.59, 1.80e−i0.35, 4.23ei0.67, 1.29ei1.43) and

(3.21ei2.61, 1.38ei2.26, 5.55ei0.69, 3.03ei1.92), respectively.

• If only R′
V,A couplings are present, ACP (q2) can be enhanced up to 3% at low q2, and

up to 7% at high q2. ∆AFB(q2) can be enhanced up to 1% at low q2, and up to 4 %

at high q2. Both ACP (q2), and ∆AFB(q2) can have either sign at both low and high

q2.

• When both primed and unprimed VA couplings are present, ACP (q2) can be enhanced

up to 9% at low q2, and up to 14 % at high q2. ∆AFB(q2) can be enhanced up to 6%

at low q2, and up to 19 % at high q2. Both ACP (q2), and ∆AFB(q2) can have either

sign at both low and high q2 (see figure 4).

These observations are consistent with the rough expectations in ref. [23] about the

effect of VA operators.

7.2 Direct CP asymmetry in the polarization fraction fL

The CP asymmetry in the longitudinal polarization fraction fL is defined as

∆fL = f B̄
L − fB

L , (7.7)
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Figure 5. The left (right) panel of the figure shows ∆fL(q2) for B̄0
d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where (RV , RA, R
′

V , R
′

A) terms are all

present. For example, the blue curve in the low-q2 and high-q2 regions corresponds to

(2.78ei2.98, 2.19e−i0.77, 6.91e−i0.29, 3.34e−i0.56).

where

f
B̄(B)
L =

A
B̄(B)
L

A
B̄(B)
L +A

B̄(B)
T

. (7.8)

figure 5 shows ∆fL(q2) for B̄0
d → K̄∗µ+µ− in the presence of new VA couplings. We make

the following observations:

• If only RV,A couplings are present, ∆fL(q2) can be enhanced up to 2% at very low

q2. On the other hand, ∆fL(q2) is almost the same as the SM at high q2. It can have

either sign at both low and high q2.

• If only R′
V,A couplings are present, ∆fL(q2) can be enhanced up to 2% at both low

and high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, ∆fL(q2) can be enhanced

up to 9% at low q2, and up to 6% at high q2. It can have either sign at both low and

high q2 (see figure 5).

7.3 Direct CP asymmetries in the angular asymmetries A
(2)
T

and ALT

The transverse asymmetry A
(2)B̄(B)
T is defined [40] through the double differential decay

rate as

d2ΓB̄(B)

dq2dφ
=

1

2π

dΓB̄(B)

dq2

[

1 + f
B̄(B)
T

(

A
(2)B̄(B)
T cos 2φ+A

(im)B̄(B)
T sin 2φ

) ]

. (7.9)

It can be obtained by integrating eq. (7.1) over the two polar angles θµ and θK . Here

A
(im)B̄(B)
T is a triple product, and is discussed separately below. In terms of the coupling

constants and matrix elements defined in ref. [11], A
(2)B̄(B)
T can be expressed as

A
(2)B̄
T =

4IT
4

3AB̄
T

, A
(2)B
T =

4ĪT
4

3AB
T

. (7.10)
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Figure 6. The left (right) panel of the figure shows ∆A
(2)
T (q2) for B̄0

d → K̄∗µ+µ− in the low-q2

(high-q2) region, in the scenario where (RV , RA, R
′

V , R
′

A) terms are all present. The green line

corresponds to the SM prediction. The other lines show predictions for some representative values

of the NP parameters. For example, the blue curve in the low-q2 and high-q2 regions corresponds

to (0.11ei2.18, 2.66e−i1.31, 4.3ei0.03, 0.23e−i2.27) and (2.32ei2.51, 4.89ei1.27, 3.12ei0.42, 0.14e−i1.55), re-

spectively.

While A
(2)B̄
T ( A

(2)B
T ) is finite even in the CP-conserving limit (and was discussed in

ref. [11]), a CP asymmetry may be defined through the difference

∆A
(2)
T ≡ A

(2)B̄
T −A

(2)B
T . (7.11)

figure 6 shows ∆A
(2)
T for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings. We make

the following observations:

• If only RV,A couplings are present, ∆A
(2)
T cannot be enhanced more than 1% at both

low and high q2. It can have either sign at both low and high q2.

• If only R′
V,A couplings are present, ∆A

(2)
T can be enhanced up to 4% at low q2, and

up to 6% high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, ∆A
(2)
T can be enhanced

up to 11% at low q2, and up to 12% at high q2. It can have either sign at both low

and high q2 (see figure 6).

The longitudinal-transverse asymmetry A
B̄(B)
LT is defined through

d2Γ
B̄(B)
LT

dq2dφ
=
dΓB̄(B)

dq2

(

A
(re)B̄(B)
LT cosφ+A

(im)B̄(B)
LT sinφ

)

, (7.12)

where

d2Γ
B̄(B)
LT

dq2dφ
=

∫ 1

0
d cos θK

d3ΓB̄(B)

dq2d cos θKdφ
−

∫ 0

−1
d cos θK

d3ΓB̄(B)

dq2d cos θKdφ
. (7.13)

Here A
(im)B̄(B)
LT is a triple product, and is discussed separately below. In terms of the

coupling constants and matrix elements defined in ref. [11], A
(re)B̄(B)
LT can be expressed as

A
(re)B̄
LT =

ILT
3

4(AB̄
L +AB̄

T )
, A

(re)B
LT = − ĪLT

3

4(AB
L +AB

T )
. (7.14)
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Note that A
(re)B
LT = −A(re)B̄

LT in the CP-conserving limit. Thus, a CP asymmetry may be

defined through the sum

∆ALT (q2) ≡ A
(re)B̄
LT (q2) +A

(re)B
LT (q2) . (7.15)

We now assume the presence of new VA couplings. However, we find that these cou-

plings cannot enhance ∆ALT (q2) to more than 3% at both low and high q2.

Note that ∆ALT (q2) is related to the observable AD
5 in ref. [24]: ∆ALT (q2) ≈ AD

5 /4.

Our limit of 3% on the maximum value of ∆ALT (q2) is then consistent with the limit of

0.07 on the average value 〈AD
5 〉 over the low-q2 region, as calculated in ref. [24].

7.4 CP-violating triple-product asymmetries

In this subsection, we consider the triple products (TPs) in the decays B̄0 → K̄∗0(→
K−π+)µ+µ− and B0 → K∗0(→ K+π−)µ+µ−. For the decaying B̄ meson, the TP is

proportional to (n̂K × n̂µ) · n̂z in its rest frame, where the unit vectors are given in terms

of the momenta of the final-state particles as

n̂K =
p̂K− × p̂π+

|p̂K− × p̂π+| , n̂z =
p̂K− + p̂π+

|p̂K− + p̂π+| , n̂µ =
p̂µ− × p̂µ+

|p̂µ− × p̂µ+ | . (7.16)

In terms of the azimuthal angle φ, one gets

cosφ = n̂K · n̂µ , sinφ = (n̂K × n̂µ) · n̂z , (7.17)

and hence the quantities that are coefficients of sinφ (or of sin 2φ = 2 sinφ cosφ) are

the TPs.

As noted above, while the angular distribution for the B̄ decay involves φ, for B it

involves −φ. Thus, the CP-violating triple-product asymmetry is proportional to the sum

of B̄ and B TPs.

The first TP is A
(im)B̄(B)
T , introduced above in eq. (7.9). In terms of the coupling

constants and matrix elements defined in ref. [11], A
(im)B̄(B)
T can be written as

A
(im)B̄
T =

4IT
5

3AB̄
T

, A
(im)B
T = − 4ĪT

5

3AB
T

. (7.18)

We observe that A
(im)
T depends only on the VA couplings. The CP-violating triple-product

asymmetry is

A
(im)
T =

1

2
(A

(im)B̄
T +A

(im)B
T ) . (7.19)

figure 7 shows A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings. We make

the following observations:

• If only RV,A couplings are present, A
(im)
T (q2) can be enhanced up to 5% at low q2

and can have either sign. On the other hand, A
(im)
T (q2) is almost same as the SM

prediction (≃ 0) at high q2.

– 16 –



J
H
E
P
1
1
(
2
0
1
1
)
1
2
2

1 2 3 4 5 6

-0.5

0.0

0.5

q 2
HGev2

L

A
TH

im
L

Only RV , A and RV , A
, present

15 16 17 18 19

-0.5

0.0

0.5

q 2
HGev2

L

A
TH

im
L

Only RV , A and RV , A
, present

Figure 7. The left (right) panel of the figure shows A
(im)
T (q2) for B̄0

d → K̄∗µ+µ− in the low-q2

(high-q2) region, in the scenario where (RV , RA, R
′

V , R
′

A) terms are all present. The green line

corresponds to the SM prediction. The other lines show predictions for some representative values

of the NP parameters. For example, the blue curve in the low-q2 and high-q2 regions corresponds

to (1.33e−i2.96, 0.78ei2.47, 0.83e−i0.27, 3.15ei1.75) and (2.15e−i2.77, 0.7e−i2.43, 8.20e−i0.16, 4.8e−i1.62),

respectively.

• If only R′
V,A couplings are present, A

(im)
T (q2) can be enhanced up to 49% at low q2,

and up to 46% at high q2. It can have either sign at both low and high q2.

• When both primed and unprimed VA couplings are present, the results for A
(im)
T (q2)

are almost the same as those obtained with only R′
V,A couplings (see figure 7).

The second TP is A
(im)B̄(B)
LT , introduced above in eq. (7.12). In terms of the coupling

constants and matrix elements defined in ref. [11], A
(im)B̄(B)
LT can be written as

A
(im)B̄
LT =

ILT
4

4(AB̄
L +AB̄

T )
, A

(im)B
LT =

ĪLT
4

4(AB
L +AB

T )
. (7.20)

We observe that ALT depends on the VA couplings, as well as on V-S and SP-T interference

terms. The CP-violating triple-product asymmetry is

A
(im)
LT =

1

2
(A

(im)B̄
LT −A

(im)B
LT ) . (7.21)

figure 8 shows A
(im)
LT (q2) for B̄0

d → K̄∗µ+µ− in the presence of new VA couplings. We make

the following observations:

• If only RV,A couplings are present, A
(im)
LT (q2) can be enhanced up to 6% at very low

q2, and is almost same as the SM prediction (≈ 0) at high q2. It can have either sign

at both low and high q2.

• If only R′
V,A couplings are present, A

(im)
LT (q2) can be enhanced up to 8% at low q2

and is almost same as the SM prediction (≈ 0) at high q2. It can have either sign at

both low and high q2.

• When both primed and unprimed VA couplings are present, A
(im)
LT (q2) can be en-

hanced up to 10% at low q2 and up to 0.5% at high q2. It can have either sign at

both low and high q2 (see figure 8).
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Figure 8. The figure shows A
(im)
LT (q2) for B̄0

d → K̄∗µ+µ− in the low-q2 region, in the scenario

where (RV , RA, R
′

V , R
′

A) terms are all present. The green line corresponds to the SM prediction.

The other lines show predictions for some representative values of the NP parameters. For example,

the blue curve corresponds to (1.68ei1.92, 2.27ei0.53, 4.22ei0.28, 0.14e−i1.91).

Note that A
(im)
LT (q2) is related to the observable AD

7 in ref. [24]: A
(im)
LT (q2) ≈ AD

7 /8.

Our limit of 10% on the maximum value of A
(im)
LT (q2) is then consistent with the limit of

0.76 on the average value 〈AD
7 〉 over the low-q2 region, as calculated in ref. [24]. However,

in addition we present the full q2-dependence of this quantity.

In principle, A
(im)B̄(B)
LT can be generated due to NP SP-T interference. However, we

find that the effect is tiny: A
(im)
LT (q2) can be enhanced up to 0.4% at low q2 and can have

either sign; A
(im)
LT (q2) is same as the SM (≃ 0) at high q2.

8 Discussion and summary

Even after the successful start of the LHC that will search for new physics (NP) at the TeV

scale and beyond, B decays still remain one of the best avenues of detecting indirect NP

signals. The copious amount of data on B decays, expected from future experiments like

the LHC and super-B factories, will allow us to explore in detail many decay modes that

are currently considered to be rare. The combined analysis of many such decay modes will

allow us to look for NP in a model-independent manner.

We consider all possible Lorentz structures of new physics (NP) in the b → sµ+µ−

transition, and analyze their effects on the CP-violating observables in (i) B̄0
s → µ+µ−,

(ii) B̄0
d → Xsµ

+µ−, (iii) B̄0
s → µ+µ−γ, (iv) B̄0

d → K̄µ+µ−, (v) B̄0
d → K̄∗µ+µ−, and their

CP-conjugate modes. These are the same modes we explored in the companion paper [11],

where we considered only CP-conserving quantities. We find that for B̄0
s → µ+µ−, the only

CP-violating quantities that can be constructed even in principle require the measurement

of muon polarization, a task not possible in foreseeable detectors. Therefore, we do not

dwell on this mode further. For the rest of the modes, we focus on

• CP violation in the differential branching ratio (ACP ), and

• CP violation in the forward-backward asymmetry (∆AFB).

In addition, for B̄0
d → K̄∗µ+µ−, we analyze
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• the CP asymmetry in the longitudinal polarization fraction (∆fL),

• the CP asymmetries ∆A
(2)
T and ∆ALT arising in the angular distributions, and

• the triple-product (TP) CP asymmetries ∆A
(im)
T and ∆A

(im)
LT .

We determine the constraints on the coupling constants in the effective NP operators

by using the currently available data. On the basis of these limits and general arguments,

we expect that the CP-violating quantities in most of the modes can only be sensitive to

the vector-axial vector (VA) couplings, while the scalar-pseudoscalar (SP) and the tensor

(T) NP operators can only contribute, if at all, to certain TP asymmetries. Our later

detailed exploration of the allowed parameter space for all the NP couplings vindicates

this argument. The effects of SP and T NP operators are therefore discussed only briefly

in this paper.

On the other hand, the VA operators can have a significant impact on the CP-violating

observables. (See table 1). The SM predicts ACP (q2) ∼< 10−3 for all the modes, while VA

NP operators allow this quantity to be as large as ∼ 10% (for B̄0
d → Xsµ

+µ−, B̄0
d → K̄µ+µ−

and B̄0
d → K̄∗µ+µ−) and even up to ∼ 30% for B̄0

s → µ+µ−γ. Even ∆AFB, expected to

be ∼< 10−4 in the SM, can be enhanced up to ∼ 10% (for B̄0
d → Xsµ

+µ−) and up to ∼ 40%

(for B̄0
s → µ+µ−γ). While ∆AFB in B̄0

d → K̄µ+µ− stays zero even with VA NP, its value

in B̄0
d → K̄∗µ+µ− may be enhanced to ∼ 10% from its SM expectation of ∼< 10−4.

In B̄0
d → K̄∗µ+µ− the SM predicts ∆fL ∼< 10−4, while VA NP operators allow this

quantity to be enhanced up to ∼ 10%. ∆A
(2)
T , ∆ALT , A

(im)
T and A

(im)
LT are all zero in the

SM. VA NP operators can enhance ∆A
(2)
T up to ∼ 12%, A

(im)
T even up to ∼ 50%, and A

(im)
LT

up to ∼ 10%. ∆ALT can not be enhanced more than ∼ 3% even in the presence of VA

NP operators. Note that while in almost all the cases the impact of the left-handed VA

NP couplings RV,A is dominant, for the TP asymmetry ∆A
(im)
T , the R′

V,A couplings play a

dominating role.

TP’s can also be generated by NP-NP interference. However, we do not find large

effects. The interference of SP-T operators can increase A
(im)
LT (q2) up to only 0.4% at low q2.

It is quite possible that if the NP is of the VA type, its presence would first be indicated

through the CP-conserving/CP-averaged quantities considered in ref. [11]. However, the

CP-violating signals considered in this paper are so robust (orders of magnitude more than

the SM predictions) that these may be the ones that will unambiguously establish the pres-

ence of NP of the VA kind. Moreover, hadronic uncertainties play a very minor role in the

CP-violating asymmetries considered in this paper. A combined analysis of CP-violating

and CP-conserving signals may allow even the determination of the magnitudes and phases

of the NP coupling constants, in addition to confirming the NP Lorentz structure.
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Observable SM Only new VA Only new SP Only new T

B̄0
d → Xsµ

+µ−

ACP • 10−3 → 10−4

(low→high q2)

• (6 → 12)%

(low→high q2)

• Marginal S • Marginal S/E

∆AFB 10−4 → 10−5

(low→high q2)

• (3 → 12)%

(low→high q2)

• < 1% No effect

B̄0
s → µ+µ−γ

ACP • 10−3 → 10−4

(low→high q2)

• (30 → 13)%

(low→high q2)

No effect • < 1%

∆AFB 10−4 → 10−5

(low→high q2)

• (40 → 18)%

(low→high q2)

No effect • < 1%

B̄0
d → K̄µ+µ−

ACP • 10−3 → 10−4

(low→high q2)

• (7 → 12)%

(low→high q2)

• Marginal S • Marginal S/E

∆AFB Zero No effect • < 1% No effect

B̄0
d → K̄∗µ+µ−

ACP • 10−3 → 10−4

(low→high q2)

• (9 → 14)%

(low→high q2)

No effect • < 1%

∆AFB • 10−4 → 10−6

(low→high q2)

• (6 → 19)%

(low→high q2)

No effect • < 1%

∆fL • 10−4 → 10−7

(low→high q2)

• (9 → 16)%

(low→high q2)

No effect • < 1%

∆A
(2)
T Zero • ∼ 12% No effect No effect

∆ALT Zero • < 3% No effect No effect

A
(im)
T Zero • ∼ 50% No effect No effect

A
(im)
LT Zero • ∼ 10% No effect No effect

Table 1. The effect of NP couplings on observables. E: enhancement, S: suppression. The numbers

given are optimistic estimates.
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