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Abstract: We perform a comprehensive study of the impact of new-physics operators

with different Lorentz structures on decays involving the b → sµ+µ− transition. We

examine the effects of new vector-axial vector (VA), scalar-pseudoscalar (SP) “‘ and tensor

(T) interactions on the differential branching ratios and forward-backward asymmetries

(AFB ’s) of B̄0
s → µ+µ−, B̄0

d → Xsµ
+µ−, B̄0

s → µ+µ−γ, B̄0
d → K̄µ+µ−, and B̄0

d →
K̄∗µ+µ−, taking the new-physics couplings to be real. In B̄0

d → K̄∗µ+µ−, we further

explore the polarization fraction fL, the angular asymmetry A
(2)
T , and the longitudinal-

transverse asymmetry ALT . We identify the Lorentz structures that would significantly

impact these observables, providing analytical arguments in terms of the contributions

from the individual operators and their interference terms. In particular, we show that

while the new VA operators can significantly enhance most of the asymmetries beyond

the Standard Model predictions, the SP and T operators can do this only for AFB in

B̄0
d → K̄µ+µ−.
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1 Introduction

In recent years, there have been quite a few measurements of quantities in B decays which

differ from the predictions of the Standard Model (SM) by ∼ 2σ. For example, in B → πK,

the SM has some difficulty in accounting for all the experimental measurements [1]. The

measured indirect (mixing-induced) CP asymmetry in some b→ s penguin decays is found

not to be identical to that in B0
d → J/ψKS [2–4], counter to the expectations of the SM.

While the SM predicts that the indirect CP asymmetry in B̄0
s → J/ψφ should be ≃ 0, the

measurement of this quantity by the CDF and DØ collaborations shows a deviation from

the SM [5]. One naively expects the ratio of transverse and longitudinal polarizations of

the decay products in B → φK∗ to be fT/fL ≪ 1, but it is observed that fT/fL ≃ 1 [6, 7].

It may be possible to explain this value of fT/fL within the SM, but this is not certain.

Finally, the recent observation of the anomalous dimuon charge asymmetry by the DØ

collaboration [8] also points towards some new physics in Bs mixing that affects the lifetime

difference and mixing phase involved therein (for example, see ref. [9]). Though none of

the measurements above show a strong enough deviation from the SM to claim positive

evidence for new physics (NP), they are intriguing since (i) the effects are seen in several

different B decay channels, (ii) use a number of independent observables, and (iii) all

involve b→ s transitions.

A further hint has recently been seen in the leptonic decay channel: in the exclusive

decay B̄0
d → K̄∗µ+µ−, the forward-backward asymmetry (AFB) has been found to deviate

somewhat from the predictions of the SM [10, 11, 13, 14]. This is interesting since it is a

CP-conserving process, whereas most of the other effects involve CP violation. Motivated

by this tantalizing hint of NP in B̄0
d → K̄∗µ+µ−, we explore the consequences of such NP

in related decays. We do not restrict ourselves to any particular model, but work in the

framework of effective operators with different Lorentz structures.

If NP affects B̄0
d → K̄∗µ+µ−, it must be present in the decay b → sµ+µ−, and will

affect the related decays B̄0
s → µ+µ−, B̄0

d → Xsµ
+µ−, B̄0

s → µ+µ−γ, and B̄0
d → K̄µ+µ−.

The analyses of these decays in the context of the SM as well as in some NP models

have been performed in the literature: B̄0
s → µ+µ− [15–25], B̄0

d → Xsµ
+µ− [26–35],

B̄0
s → µ+µ−γ [36–44], B̄0

d → K̄µ+µ− [32, 45–51], B̄0
d → K̄∗µ+µ− [52–67]. Correlations

between some of these modes have been studied in refs. [68–70].

In this paper, we consider the addition of NP vector-axial vector (VA), scalar-

pseudoscalar (SP), and tensor (T) operators that contribute to b → sµ+µ−, and compute

their effects on the above decays. Our aim here is not to obtain precise predictions, but

rather to obtain an understanding of how the NP affects the observables, and to establish

which Lorentz structure(s) can provide large deviations from the SM predictions. Some

of these effects have already been examined by some of us: for example, new VA and

SP operators in B̄0
s → µ+µ− [21], new VA and SP operators in B̄0

s → µ+µ−γ [43], the

correlation between B̄0
s → µ+µ− and B̄0

d → K̄µ+µ− with SP operators [69, 70], large

forward-backward asymmetry in B̄0
d → K̄µ+µ− from T operators [49], and the contribu-

tion of all Lorentz structures to B̄0
d → K̄∗µ+µ−, with a possible explanation of the AFB

anomaly [62]. Here we perform a combined study of all of these decay modes with all the
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Lorentz structures, consolidating and updating some of the earlier conclusions, and adding

many new results and insights. Such a combined analysis, performed here for the first time,

is crucial for obtaining a consistent picture of the bounds on NP and the possible effect of

NP on the observables of interest. While observables like the differential branching ratio

(DBR) and AFB(q2) by themselves are sensitive to NP, we also examine the correlations

between them in the context of NP Lorentz structures.

A full angular distribution of B̄0
d → K̄∗µ+µ− allows us access to many independent

observables, and hence to multiple avenues for probing NP. We present here for the first

time the full angular distribution, including all the NP Lorentz structures, for this decay

mode. This leads to the identification of observables that could be significantly influenced

by specific Lorentz structures of NP. In addition to the DBR and AFB, we also examine the

longitudinal polarization fraction fL and the angular asymmetry A
(2)
T , introduced recently

in ref. [57]. We further analyze the longitudinal-transverse asymmetry ALT , which, as we

will argue, has very small hadronic uncertainties.

Hadronic uncertainties often are the main source of error in the calculation of SM

predictions of a quantity, and make the positive identification of NP rather difficult. In

this paper, for B̄0
d → K̄µ+µ− we use the form factors from light-cone sum rules. For

B̄0
d → K̄∗µ+µ−, we use the form factors obtained from QCD factorization at low q2, and

those from light-cone sum rules at high q2. The latest next-to-leading order (NLO QCD)

corrections [71] have not been included. These corrections would affect the central values

of the SM predictions to a small extent, while also decreasing the renormalization-scale

uncertainty. However, since our primary interest is looking for observables for which the

NP effects are large, a LO analysis is sufficient at this stage. In our figures, we display

bands for the SM predictions that include the form-factor uncertainties as claimed by the

respective authors.

In addition to the form-factor uncertainties, the SM prediction bands also include the

uncertainties due to quark masses, Cabibbo-Kobayashi-Maskawa (CKM) matrix elements

and meson decay constants. In our figures, these bands are overlaid with some examples of

the allowed values of these observables when NP contributions are included. This allows the

scaling of these uncertainties to be easily visualized. It turns out that in many cases, the

results with the NP can be significantly different from those without the NP, even taking

into account inflated values for the hadronic uncertainties. We identify and emphasize such

observables. We also show that the hadronic uncertainties in several of these observables

are under control, especially when the invariant mass of the muon pair is small and one can

use the limit of large-energy effective theory (LEET). This makes such observables excellent

probes of new physics. Also, since all the observables are shown as functions of q2, we have

the information not just about the magnitudes of the observables, but also about their

shape as a function of q2, where some of the uncertainties are expected to cancel out.

In this paper, we restrict ourselves to real values for all the NP couplings, and study

only the CP-conserving observables.1 In section 2, we examine the various SM and NP

1The CP-violating observables, with complex values of the couplings, are treated in the companion

paper [72].
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b→ sµ+µ− operators, and give the current constraints on the NP couplings. The effects of

the NP operators on the observables of the decays are discussed in the following sections:

B̄0
s → µ+µ− (section 3), B̄0

d → Xsµ
+µ− (section 4), B̄0

s → µ+µ−γ (section 5), B̄0
d →

K̄µ+µ− (section 6), and B̄0
d → K̄∗µ+µ− (section 7). Our notation in these sections clearly

distinguishes the contributions from VA, SP and T operators and their interference terms,

which offers many insights into their impact on modifying the observables. We give the

details of the calculations involved in sections 4–7 in the appendices A–D, respectively, for

the sake of completeness and in order to have a clear consistent notation for this combined

analysis. In section 8, we summarize our findings and discuss their implications. In partic-

ular, we point out the measurements which will allow one to distinguish among the different

classes of NP operators, and thus clearly identify which type of new physics is present.

2 b → sµ+µ− operators

2.1 Standard Model and new physics: effective Hamiltonians

Within the SM, the effective Hamiltonian for the quark-level transition b→ sµ+µ− is

HSM
eff = −4GF√

2
V ∗

tsVtb

{ 6
∑

i=1

Ci(µ)Oi(µ) + C7
e

16π2
[s̄σµν(msPL +mbPR)b]Fµν

+C9
αem

4π
(s̄γµPLb) µ̄γµµ+ C10

αem

4π
(s̄γµPLb) µ̄γµγ5µ

}

, (2.1)

where PL,R = (1 ∓ γ5)/2. The operators Oi (i = 1, . . . 6) correspond to the Pi in ref. [31],

and mb = mb(µ) is the running b-quark mass in the MS scheme. We use the SM Wilson

coefficients as given in ref. [61]. In the magnetic dipole operator with the coefficient C7,

we neglect the term proportional to ms.

The operators Oi, i = 1-6, can contribute indirectly to b → sµ+µ− and their effects

can be included in an effective Wilson coeficient as [61]

Ceff
9 =C9(mb) + h(z, m̂c)

(

4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(z, m̂b)

(

7C3 +
4

3
C4 + 76C5 +

64

3
C6

)

(2.2)

− 1

2
h(z, 0)

(

C3 +
4

3
C4 + 16C5 +

64

3
C6

)

+
4

3
C3 +

64

9
C5 +

64

27
C6 .

Here z ≡ q2/m2
b , and m̂q ≡ mq/mb for all quarks q. The function h(z, m̂) represents the

one-loop correction to the four-quark operators O1-O6 and is given by [27, 61]

h(z, m̂) = −8

9
ln
mb

µb
− 8

9
ln m̂+

8

27
+

4

9
x (2.3)

−2

9
(2 + x)|1 − x|1/2







(

ln
∣

∣

∣

√
1−x+1√
1−x−1

∣

∣

∣
− iπ

)

, for x ≤ 1 ,

2 arctan 1√
x−1

, for x > 1 ,
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where x ≡ 4m̂2/z. In the numerical analysis, the renormalization scale µb is varied between

mb/2 and 2mb. Note that in the high-q2 region one can perform an operator product

expansion (OPE) in 1/Q with Q = (mb

√

q2) [73, 74]. Numerically the results of refs. [73,

74] differ little from those in eq. (2.2) and so we use the above expression for the entire

range of q2. An analysis of b → sµ+µ− where the OPE in the high-q2 region is used can

be found in refs. [64, 66].

We now add new physics to the effective Hamiltonian for b → sµ+µ−, so that it

becomes

Heff(b→ sµ+µ−) = HSM
eff + HV A

eff + HSP
eff + HT

eff , (2.4)

where HSM
eff is given by eq. (2.1), while

HV A
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

RV (s̄γµPLb) µ̄γµµ+RA (s̄γµPLb) µ̄γµγ5µ

+ R′
V (s̄γµPRb) µ̄γµµ+R′

A (s̄γµPRb) µ̄γµγ5µ
}

, (2.5)

HSP
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

RS (s̄PRb) µ̄µ+RP (s̄PRb) µ̄γ5µ

+ R′
S (s̄PLb) µ̄µ+R′

P (s̄PLb) µ̄γ5µ
}

, (2.6)

HT
eff = −4GF√

2

αem

4π
V ∗

tsVtb

{

CT (s̄σµνb)µ̄σ
µνµ+ iCTE(s̄σµνb)µ̄σαβµ ǫ

µναβ
}

(2.7)

are the new contributions. Here, RV , RA, R
′
V , R

′
A, RS , RP , R

′
S , R

′
P , CT and CTE are the NP

effective couplings. We do not consider NP in the form of the O7 = s̄σαβPRb Fαβ operator

or its chirally-flipped counterpart O′
7 = s̄σαβPLb Fαβ . This is because there has been no

hint of NP in the radiative decays B̄ → Xsγ, K̄
(∗)γ [45], which imposes strong constraints

on |Ceff
7 |. This by itself does not rule out the possibility of a flipped-sign Ceff

7 scenario.

However this solution can be ruled out at 3σ from the decay rate of B̄ → Xsℓ
+ℓ− if there

are no NP effects in C9 and C10 [75]. Thus, NP effects exclusively in C7 cannot provide

large deviations from the SM. The impact of O′
7 on the forward-backward asymmetry in

B̄0
d → K̄∗µ+µ−, together with other observables, was studied in ref. [60].

Note that the operators with coefficients RV and RA have the same Lorentz structure as

those in the SM involving C9 and C10, respectively [see eq. (2.1)], so that any measurement

will be sensitive only to the combinations (C9 +RV ) or (C10 +RA). For simplicity, in our

numerical analysis of the observables of various decays, these couplings are taken to be

real. As a consequence, the results in this paper would be the same if the corresponding

CP-conjugate decays were considered. However, for completeness, the expressions allow

for a complex-coupling analysis.

When calculating the transition amplitudes, for the leptonic part we use the notation

Lµ ≡ 〈µ+(p+)µ−(p−)|µ̄γµµ|0〉, Lµ5 ≡ 〈µ+(p+)µ−(p−)|µ̄γµγ5µ|0〉,
L ≡ 〈µ+(p+)µ−(p−)|µ̄µ|0〉, L5 ≡ 〈µ+(p+)µ−(p−)|µ̄γ5µ|0〉, (2.8)

Lµν ≡ 〈µ+(p+)µ−(p−)|µ̄σµνµ|0〉.

– 5 –
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Figure 1. The constraints on the couplings RV , RA (left panel) and R′

V , R
′

A (right panel) when

only primed or unprimed couplings are present.

2.2 Constraints on NP couplings

The constraints on the NP couplings in b→ sµ+µ− come mainly from the upper bound on

the branching ratio B(B̄0
s → µ+µ−) and the measurements of the total branching ratios

B(B̄0
d → Xsµ

+µ−) and B(B̄0
d → K̄µ+µ−) [76–80]:

B(B̄0
s → µ+µ−) < 3.60 × 10−8 (90% C.L.) , (2.9)

B(B̄0
d → Xsµ

+µ−) =

{

(1.60 ± 0.50) × 10−6 (low q2)

(0.44 ± 0.12) × 10−6 (high q2)
, (2.10)

B(B̄0
d → K̄µ+µ−) =

(

4.5+1.2
−1.0

)

× 10−7 , (2.11)

where the low-q2 and high-q2 regions correspond to 1 GeV2 ≤ q2 ≤ 6 GeV2 and q2 ≥
14.4 GeV2, respectively, where q2 is the invariant mass squared of the two muons. The

constraints from the first two quantities above have been derived in ref. [62]. Here we also

include the additional constraints from B(B̄0
d → K̄µ+µ−). The three decays above provide

complementary information about the NP operators. For the SM predictions here, we use

the latest NNLO calculations. Note that the measurements for B(B̄0
d → K̄∗µ+µ−) are

also available [11, 12]. However, the form-factor uncertainties in B̄0
d → K̄∗µ+µ− are rather

large, and as a result the constraints due to this decay mode are subsumed in those from

the other three modes.

The constraints on the new VA couplings come mainly from B(B̄0
d → Xsµ

+µ−) and

B(B̄0
d → K̄µ+µ−). Their precise values depend on which NP operators are assumed to be

present. For example, if only RV,A or only R′
V,A couplings are present, the constraints on

these couplings take the form shown in figure 1. For RV,A, the allowed parameter space is

the region between two ellipses:

1.0 ∼<
|RV + 3.6|2

(4.7)2
+

|RA − 4.0|2
(4.8)2

,
|RV + 2.8|2

(6.5)2
+

|RA − 4.1|2
(6.6)2 ∼< 1 , (2.12)

– 6 –
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while for R′
V,A, the allowed region is the intersection of an annulus and a circle:

22.2 ∼< |R′
V + 3.6|2 + |R′

A − 4.0|2 ∼< 56.6 , |R′
V |2 + |R′

A|2 ∼< 17 . (2.13)

If both RV,A and R′
V,A are present, the constraints on them get individually weakened to

|RV + 2.8|2
(6.5)2

+
|RA − 4.1|2

(6.6)2 ∼< 1 , (2.14)

and

|R′
V |2 + |R′

A|2 ∼< 40 , (2.15)

respectively.2

For the SP operators, the present upper bound on B(B̄0
s → µ+µ−) provides the limit

|RS −R′
S |2 + |RP −R′

P |2 ∼< 0.44 , (2.16)

where we have used fBs = (238.8 ± 9.5)MeV [81] and |V ∗
tsVtb| = 0.0407 ± 0.0010 [77]. This

constitutes a severe constraint on the NP couplings if only RS,P or R′
S,P are present. How-

ever, if both types of operators are present, these bounds can be evaded due to cancellations

between the RS,P and R′
S,P . In that case, B(B̄0

d → Xsµ
+µ−) and B(B̄0

d → K̄µ+µ−) can

still bound these couplings. The stronger bound is obtained from the measurement of the

latter quantity, which yields

|RS |2 + |RP |2 ∼< 9 , RS ≈ R′
S , RP ≈ R′

P . (2.17)

Finally, the constraints on the NP tensor operators come entirely from B(B̄0
d →

Xsµ
+µ−). When only the T operators are present,

|CT |2 + 4|CTE |2 ∼< 1.0 . (2.18)

Although the bounds presented in this section for VA, SP and T couplings are

obtained by taking one kind of Lorentz structure at a time, in our numerical analysis

for scenarious where we consider combinations of two or more kinds of Lorentz structres,

we use the allowed parameter space obtained by considering the corresponding combined

Lorentz structures.

We now analyze the b→ sµ+µ− modes in detail and present our results. As explained

in the Introduction, the figures have the SM prediction bands overlaid with the predictions

for specific allowed values of NP couplings. The SM band is generated by varying the

form factors within their ranges as predicted by the respective authors, while the CKM

matrix elements, quark masses and meson decay constants are varied within their 1.6σ

allowed values.

2Note: the constraints on RV,A obtained here are milder than those obtained in ref. [43] using B(B̄0
d →

(K̄ , K̄∗) µ+ µ−). This is because ref. [43] had neglected the interference terms between the SM and new

physics VA operators. Their inclusion relaxes the stringent constraints therein.

– 7 –



J
H
E
P
1
1
(
2
0
1
1
)
1
2
1

3 B̄0
s

→ µ+µ−

In this section we examine the NP contributions to B̄0
s → µ+µ−. Within the SM,

B̄0
s → µ+µ− is chirally suppressed. The SM prediction for the branching ratio is

B(B̄0
s → µ+µ−) = (3.35 ± 0.32) × 10−9 [22]. The Tevatron gives an upper bound on

its branching ratio (BR) of 3.6× 10−8 at 90% C.L. [76–78]. This decay can be observed at

the Tevatron only if NP enhances its BR above 10−8. LHCb is the only experiment which

will probe B(B̄0
s → µ+µ−) down to its SM value. It has the potential for a 3σ observation

(5σ discovery) of B̄0
s → µ+µ− with ∼ 2 fb−1 (∼ 6 fb−1) of data [82]. LHCb therefore has

the potential to observe either an enhancement or a suppression of B(B̄0
s → µ+µ−). It can

observe B̄0
s → µ+µ− as long as its BR is above 1.0 × 10−9.

3.1 Branching ratio

The transition amplitude for B̄0
s → µ+µ− is given by

iM(B̄0
s → µ+µ−) = (−i)1

2

[

− 4GF√
2

αem

4π
(V ∗

tsVtb)

]

×
{

〈

0 |s̄γµγ5b| B̄0
s (p)

〉

(−Ceff
10 −RA +R′

A)L5µ

+
〈

0 |s̄γ5b| B̄0
s (p)

〉 [

(RS −R′
S)L+ (RP −R′

P )L5
]

}

, (3.1)

where L5µ, L and L5 are defined in eq. (2.8). Using the matrix elements [15]

〈

0 |s̄γµγ5b| B̄0
s (p)

〉

= i pµ fBs ,
〈

0 |s̄γ5b| B̄0
s (p)

〉

= −i fBs

m2
Bs

mb +ms
, (3.2)

the calculation of the BR gives

B(B̄0
s → µ+ µ−) =

G2
Fα

2
emm

5
Bs
f2

Bs
τBs

64π3
|VtbV

∗
ts|2
√

1 −
4m2

µ

m2
Bs

× (3.3)

{(

1 −
4m2

µ

m2
Bs

)∣

∣

∣

∣

∣

RS −R′
S

mb +ms

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

RP −R′
P

mb +ms
+

2mµ

m2
Bs

(C10 +RA −R′
A)

∣

∣

∣

∣

∣

2}

.

Clearly, NP in the form of tensor operators does not contribute to B̄0
s → µ+µ−. From

eq. (3.3) and the constraints on NP couplings obtained in section 2.2, one can study the

effect of new VA and SP couplings.

Since the NP contribution from VA operators is suppressed by a factor of ∼ mµ/mb

compared to that from the SP operators, the effect of SP operators dominates. Both VA

and SP operators can suppress B(B̄0
s → µ+µ−) significantly below the SM prediction.

However while VA operators can only marginally enhance B(B̄0
s → µ+µ−) above 10−8,

making the decay accessible at the Tevatron in an optimistic scenario, the SP operators

can enhance the branching ratio even up to the present experimental bound. Indeed, the

strongest limit on the SP couplings comes from this decay. This strong limit prevents the

SP operators from expressing themselves in many other observables, as we shall see later

in this paper.
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3.2 Muon polarization asymmetry

The longitudinal polarization asymmetry of muons in B̄0
s → µ+µ− is defined as

ALP =
NR −NL

NR +NL
, (3.4)

where NR (NL) is the number of µ−’s emerging with positive (negative) helicity. ALP is a

clean observable that is not suppressed by mµ/mBs only if the NP contribution is in the

form of SP operators, such as in an extended Higgs sector.

ALP for the most general NP is [70]

ALP =

2

√

1 − 4m2
µ

m2
Bs

Re

[

(

RS−R′

S

mb+ms

)(

RP−R′

P

mb+ms
+

2mµ

m2
Bs

(C10 +RA −R′
A)
)

]

(

1 − 4m2
µ

m2
Bs

)

∣

∣

∣

∣

RS−R′

S

mb+ms

∣

∣

∣

∣

2

+

∣

∣

∣

∣

RP −R′

P

mb+ms
+

2mµ

m2
Bs

(C10 +RA −R′
A)

∣

∣

∣

∣

2 . (3.5)

From the above equation, we see that ALP can be nonzero if and only if RS −R′
S 6= 0, i.e.

there must be a contribution from NP SP operators. (Within the SM, SP couplings are

negligibly small, so that ALP ≃ 0.)

The present upper bound on B(B̄0
s → µ+µ−) puts no constraint on ALP , and it can

be as large as 100% [70]. ALP can be maximal even if B(B̄0
s → µ+µ−) is close to its SM

prediction. Therefore, in principle ALP can serve as an important tool to probe NP of the

SP form. However, in order to measure its polarization, the muon must decay within the

detector. This is not possible due to the long muon lifetime (cτ for the muon is 659 m).

Hence in practice, this quantity is not measurable at current detectors.

4 B̄0
d

→ Xsµ
+µ−

The BR of B̄0
d → Xsµ

+µ− in the low-q2 and high-q2 regions has been measured to be [79, 80]

B(B̄ → Xsℓ
+ℓ−)low q2 =











(

1.49 ± 0.50+0.41
−0.32

)

× 10−6 , (Belle) ,

(1.8 ± 0.7 ± 0.5) × 10−6 , (BaBar) ,

(1.60 ± 0.50) × 10−6 , (Average) .

(4.1)

B(B̄ → Xsℓ
+ℓ−)high q2 =











(

0.42 ± 0.12+0.06
−0.07

)

× 10−6 , (Belle) ,
(

0.50 ± 0.25+0.08
−0.07

)

× 10−6 , (BaBar) ,

(0.44 ± 0.12) × 10−6 , (Average) .

(4.2)

The SM predictions for B(B̄ → Xs µ
+ µ−) in the low-q2 and high-q2 regions are (1.59 ±

0.11) × 10−6 and (0.24 ± 0.07) × 10−6, respectively [33].

Apart from the measurement of the total BR of B̄0
d → Xsµ

+µ−, which has already

been used to restrict the VA and T operators in section 2.2, the differential branching

ratio (DBR) as a function of q2 also contains valuable information that can help us detect

NP. In particular, the SM predicts a positive zero crossing for AFB in B̄0
d → Xsµ

+µ− in

the low-q2 region, i.e. for q2 less than (greater than) the crossing point, the value of AFB

is negative (positive). This zero crossing is sufficiently away from the charm resonances
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so that its value can be determined perturbatively to an accuracy of ∼ 5%. The NNLO

prediction [33] for the zero of AFB(q2) is (taking mb = 4.8 GeV)

(q2)0 = (3.5 ± 0.12)GeV2 . (4.3)

This quantity has not yet been measured. However, estimates show that a precision of

about 5% could be obtained at a Super-B factory [83]. A deviation from the zero crossing

point predicted above will be a clear signal of NP.

4.1 Differential branching ratio and forward-backward asymmetry

After including all the NP interactions, and neglecting terms suppressed by mµ/mb and

ms/mb, the total differential branching ratio dB/dz is given by

(

dB

dz

)

Total

=

(

dB

dz

)

SM

+B0

[

BSM-V A +BV A +BSP +BT

]

, (4.4)

where the quantities B depend on the SM and NP couplings and kinematic variables. The

complete expressions for these quantities are given in appendix A. The subscripts denote

the Lorentz structure(s) contributing to that term.

The forward-backward asymmetry in B̄0
d → Xsµ

+µ− is

AFB(q2) =

∫ 1
0 d cos θµ

d2B
dq2d cos θµ

−
∫ 0
−1 d cos θµ

d2B
dq2d cos θµ

∫ 1
0 d cos θµ

d2B
dq2d cos θµ

+
∫ 0
−1 d cos θµ

d2B
dq2d cos θµ

, (4.5)

where θµ is the angle between the µ+ and the B̄0 in the dimuon center-of-mass frame. We

can write AFB in the form

AFB(q2) =
N(z)

dB/dz
, (4.6)

where the numerator is given by

N(z) = B0

[

NSM +NSM-V A +NV A +NSP -T

]

. (4.7)

The terms suppressed by mµ/mb and ms/mb have been neglected as before. Again for the

detailed expressions, we refer the reader to appendix A.

Figure 2 shows AFB(q2) and the DBR for B̄0
d → Xsµ

+µ− in the presence of NP in

the form of RV,A couplings, which are the ones that can most influence these observables.

Enhancement or suppression of the DBR by a factor of 2 is possible. The NP couplings

can enhance AFB up to 30% at low q2, make it have either sign, and even make the zero

crossing disappear altogether. At high q2, however, AFB can only be suppressed. The R′
V,A

couplings can only affect these observables mildly: a 50% enhancement in DBR is possible

(no suppression), but AFB can only be marginally enhanced and a positive zero crossing in

the q2 = 2-4 GeV2 region is maintained. The mild effect of R′
V,A couplings as compared to

the RV,A couplings is a generic feature for almost all observables. This may be attributed

to the bounds on the magnitudes of these couplings: from section 2.2, while |RV,A| < 10,

the values of |R′
V,A| < 5.
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Figure 2. The left (right) panels of the figure show AFB and DBR for B̄0
d → Xsµ

+µ− in the low-q2

(high-q2) region, in the scenario where only (RV , RA) terms are present. The band corresponds to

the SM prediction and its uncertainties; the lines show predictions for some representative values of

NP parameters (RV , RA). For example, the blue curves in the low-q2 and high-q2 regions correspond

to (−6.85, 8.64) and (−9.34, 8.85), respectively.

Eq. (4.7) shows that if SP or T couplings are individually present, their contribution

to AFB is either absent or suppressed by mµ/mb. In such a case, though they can en-

hance the DBR (marginally for SP, by up to a factor of 2 for T), AFB is suppressed in

general (marginally for SP, significantly for T). However if both SP and T operators are

present, their interference term is not suppressed and some enhancement of AFB is possible.

This still is not significant, since the magnitude of the SP couplings is highly constrained

from B̄0
s → µ+µ− measurements. A positive zero crossing in the low-q2 region is always

maintained. This may be seen in figure 3.

4.2 Polarization fractions fL and fT

In ref. [34] it was pointed out that, besides the dilepton invariant mass spectrum and the

forward-backward asymmetry, a third observable can be obtained from B̄0
d → Xsµ

+µ−,

namely the double differential decay width:

d2B

dz d cos θµ
=

3

8

[

(1 + cos2 θµ)HT (z) + 2 cos θµHA(z) + 2(1 − cos2 θµ)HL(z)
]

. (4.8)

The functions Hi(z) do not depend on cos θµ. The sum HL(z) + HT (z) gives the dif-

ferential branching ratio dB/dz, while the forward-backward asymmetry is given by

3HA/4(HL + HT ). Splitting dB/dz into longitudinal and transverse parts separates the

contributions with different q2 dependences, providing a third independent observable.
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Figure 3. The left (right) panels of the figure show AFB and DBR for B̄0
d → Xsµ

+µ− in the

low-q2 (high-q2) region, in the scenario where both SP and T terms are present. The band

corresponds to the SM prediction and its uncertainties; the lines show predictions for some

representative values of NP parameters (RS , RP , R
′

S , R
′

P , CT , CTE). For example, the magenta

curves in the low-q2 and high-q2 regions correspond to (−1.23,−1.79,−0.86,−1.85, 0.27,−0.36)

and (−1.23,−0.23,−1.35, 0.08, 1.37, 0.01), respectively.

This does not require measuring any additional kinematical variable — q2 and cos θµ are

sufficient. Including all the NP interactions, and neglecting terms suppressed by mµ/mb

and ms/mb, HL(z) and HT (z) are given by

HL(z) = HSM
L (z) +HSM−V A

L (z) +HV A
L (z) +HSP

L (z) +HT
L (z) , (4.9)

HT (z) = HSM
T (z) +HSM−V A

T (z) +HV A
T (z) +HSP

T (z) +HT
T (z) , (4.10)

where the H functions are given in appendix A. The superscripts indicate the Lorentz

structures contributing to the term. The polarization fractions fL and fT can be defined

as

fL =
HL(z)

HL(z) +HT (z)
, fT =

HT (z)

HL(z) +HT (z)
. (4.11)

In the SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high q2.

Figure 4 shows that when only RV,A couplings are present, in the low-q2 region fL

can be suppressed substantially, or even enhanced up to 1. A similar effect — small

enhancement or a factor of two suppression — is possible at high q2. The suppression at

low-q2 is typically correlated with an enhancement at high-q2. The effect of R′
V,A couplings

is similar, but much milder, as expected. SP and T operators, individually or together,

can only have an marginal effect on fL.
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Figure 4. The left (right) panels of the figure show fL for B̄0
d → Xsµ

+µ− in the low-q2 (high-q2)

region, in the scenario where only (RV , RA) terms are present. The band corresponds to the SM

prediction and its uncertainties; the lines show predictions for some representative values of NP

parameters (RV , RA). For example, the blue curves in the low-q2 and high-q2 regions correspond

to (−8.14, 5.75) and (1.87, 4.85), respectively.

5 B̄0
s

→ µ+µ−γ

In this section we examine the NP contributions to the radiative leptonic decay B̄0
s →

µ+µ−γ. This decay has not been detected as yet. The SM prediction for the BR in the

range q2 ≤ 9.5 GeV2 and q2 ≥ 15.9 GeV2 is ≈ 18.9 × 10−9 [41]. Although this decay needs

the emission of an additional photon as compared to B̄0
s → µ+µ−, which would suppress

the BR by a factor of αem, the photon emission also frees it from helicity suppression,

making its BR much larger than B̄0
s → µ+µ−.

This decay has contributions from many channels [36–39, 41, 42]: (i) direct emis-

sion of real or virtual photons from valence quarks of the B̄0
s , (ii) real photon emitted

from an internal line of the b → s loop, (iii) weak annihilation due to the axial anomaly,

and (iv) bremsstrahlung from leptons in the final state. The photon emission from the

b→ s loop is suppressed by m2
b/m

2
W [37], and the weak annihilation is further suppressed

by ΛQCD/mb [41]. These two contributions can then be neglected. The bremsstrahlung

contribution is suppressed by mµ/mb, and dominates only at extremely low photon ener-

gies due to the infrared divergence. The virtual photon emission dominates in the low-q2

region around the φ resonance. If we choose the regions 2 GeV2 ≤ q2 ≤ 6 GeV2 and

14.4 GeV2 ≤ q2 ≤ 25 GeV2 as the low-q2 and high-q2 regions, respectively, then the dom-

inating contribution comes from the diagrams in which the final-state photon is emitted

either from the b or the s quark. Then the B̄0
s → µ+µ−γ decay is governed by the effective

Hamiltonian describing the b→ sµ+µ− transition, as given in eq. (2.1), and our formalism

is applicable. Here we consider the the DBR and AFB in B̄0
s → µ+µ−γ.

5.1 Differential branching ratio and forward-backward asymmetry

We begin with the differential branching ratio. The SP operators do not contribute to the

amplitude of B̄0
s → µ+µ−γ and hence do not play any role in the decay.

In terms of the dimensionless parameter xγ = 2Eγ/mBs , where Eγ is the photon energy
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in the B̄0
s rest frame, one can calculate the double differential decay rate to be

d2Γ

dxγd(cos θµ)
=

1

2mBs

2v m2
Bs
xγ

(8π)3
M†M , (5.1)

where v ≡
√

1 − 4m2
µ/[m

2
Bs

(1 − xγ)]. From eq. (5.1) we get the DBR to be

dB

dxγ
= τBs

∫ 1

−1

d2Γ

dxγd(cos θµ)
d cos θµ

= τBs

[

1

2mBs

2vm2
Bs

(8π)3

][

1

4

16G2
F

2

α2
em

16π2
|VtbV

∗
ts|2e2

]

Θ . (5.2)

Here the quantity Θ has the form

Θ =
2

3
m4

Bs
x3

γ

[

XV A +XT +XV A-T

]

, (5.3)

where the X terms are given in appendix B. The subscripts of the X terms denote the

Lorentz structure(s) contributing to that term. For the sake of brevity, we have included

the SM contributions in XV A.

The normalized forward-backward asymmetry of muons in B̄0
s → µ+µ−γ is defined as

AFB(q2) =

∫ 1

0
d cos θµ

d2B

dq2d cos θµ
−
∫ 0

−1
d cos θµ

d2B

dq2d cos θµ
∫ 1

0
d cos θµ

d2B

dq2d cos θµ
+

∫ 0

−1
d cos θµ

d2B

dq2d cos θµ

, (5.4)

where θµ is the angle between the three-momentum vectors of the B̄0
s and the µ+ in the

dimuon center-of-mass frame. The calculation of AFB gives

AFB(q2) =
1

Θ

(

2m4
Bs
v x3

γ

)[

YV A + YV A-T

]

, (5.5)

with the Y terms are defined in appendix B.

The details of the calculation are given in appendix B. For the numerical calculations,

we use the matrix elements given in ref. [40]. The parameters involved in the form factor

calculations are chosen in such a way that the LEET relations between form factors are

satisfied to a 10% accuracy [40]. In our numerical analysis we take the errors in these form

factors to be ±10%.

Within the SM, AFB(q2) is predicted to vanish around q2 ≈ 4.3 GeV2 (i.e. xγ ≈
0.85) [40], and the crossing is predicted to be negative. It is therefore interesting to see

the effects of various NP operators and their combinations on AFB. In the extreme LEET

limit, using the form-factor relations given in ref. [40], one can easily see that the AFB

is independent of the form factors. In figure 5 we see large bands in the SM predictions

of AFB in the low q2 region. One may tend to interpret these as large corrections to the

LEET limit, however this would be somewhat misleading, as we take the errors in the form

factors, due to corrections from the LEET limit, to be uncorrelated. In realistic models,
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Figure 5. The left (right) panels of the figure show AFB and DBR for B̄0
s → µ+µ−γ in the

low-q2 (high-q2) region, in the scenario where only (RV , RA) terms are present. Note that here

q2 = m2
B(1− xγ). The band corresponds to the SM prediction and its uncertainties; the lines show

predictions for some representative values of NP parameters (RV , RA). For example, the magenta

curves in the low-q2 and high-q2 regions correspond to (2.47, 7.08) and (−7.14,−0.42), respectively.

LEET corrections to the form factors will be correlated, leading to a smaller uncertainty

band for AFB in the SM.

Figure 5 also shows AFB and DBR in the presence of NP in the form of RV,A couplings.

With the large allowed values of |RV,A| and the absence of any helicity suppression, we

expect VA operators to have a significant impact on the observables. As can be seen

from the figure, the maximum allowed value of DBR can be 2-3 times larger than the SM

prediction. The BR can also be suppressed below the SM prediction due to destructive

interference. In the low-q2 region, the suppression can be large. The features of the zero-

crossing predicted by the SM can be affected: it can be positive or negative, can take place

at any value of q2, and can disappear altogether. As expected, the impact of R′
V,A couplings

is much milder. In particular, the zero-crossing is always positive and in the low-q2 region.

With new tensor couplings, an enhancement of the DBR by up to a factor of 3 in

comparison to the SM prediction is possible. Moreover, in the limit of neglecting the muon

mass, T operators do not contribute to the Y -terms in eq. (5.5); their contribution is only

to Θ. As a result, they can only suppress AFB from its SM value.

When all NP operators are allowed, we find thatB(B̄0
s → µ+µ−γ) can be enhanced by a

factor of 4, or it can be suppressed significantly. The shape of AFB(q2) is determined by the

new VA couplings, while its magnitude can be suppressed if the T couplings are significant.
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6 B̄0
d

→ K̄µ+µ−

The decay mode B̄0
d → K̄µ+µ− is interesting primarily because the forward-backward

asymmetry of muons is predicted to vanish in the SM. This is due to the fact that the

hadronic matrix element for the B̄0
d → K̄ transition does not have any axial-vector contri-

bution. AFB can have a nonzero value only if it receives a contribution from new physics

in the form of SP or T operators. Thus, the information from this decay is complementary

to that from the other decays considered earlier, which were more sensitive to new physics

VA operators.

The total branching ratio of B̄0
d → K̄µ+µ− has been measured to be [78]

B(B̄0
d → K̄µ+µ−) =

(

4.5+1.2
−1.0

)

× 10−7 , (6.1)

which is consistent with the SM prediction [32]

B(B̄0
d → K̄µ+µ−)SM = (3.5 ± 1.2) × 10−7 . (6.2)

The integrated asymmetry, 〈AFB〉, has been measured by BaBar [84] and Belle [10, 85] to

be

〈AFB〉 = (0.15+0.21
−0.23 ± 0.08) (BaBar) , (6.3)

〈AFB〉 = (0.10 ± 0.14 ± 0.01) (Belle). (6.4)

These measurements are consistent with zero. However, within 2σ they can be as large

as ∼ 40%. Experiments such as the LHC or a future Super-B factory will increase the

statistics by more than two orders of magnitude. For example, at ATLAS at the LHC, after

analysis cuts the number of B̄0
d → K̄µ+µ− events is expected to be ∼ 4000 with 30 fb−1 of

data [86]. Thus, 〈AFB〉 can soon be probed to values as low as 5%. With higher statistics,

one will even be able to measure AFB as a function of the invariant dimuon mass squared

q2. This can provide a stronger handle on this quantity than just its average value 〈AFB〉.
The effect of NP on 〈AFB〉 and the AFB(q2) distribution in B̄0

d → K̄µ+µ− was studied

in refs. [48] and [49] respectively. In the latter, it was shown that simultaneous new-physics

SP and T operators can lead to a large enhancement of AFB(q2) in the high-q2 region.

However, NP effects due to other operators were not studied. Here we present a complete

analysis of the effect of NP on the AFB(q2) distribution in B̄0
d → K̄µ+µ− by taking

into account all possible NP operators and their combinations. In addition, we study the

possible zero crossing of AFB(q2) and the correlations between the DBR and AFB features.

6.1 Differential branching ratio and forward-backward asymmetry

The differential branching ratio for this mode is given by

dB

dz
= B′

0 φ
1/2 βµ

[

X ′
V A +X ′

SP +X ′
T +X ′

V A-SP +X ′
V A-T

]

, (6.5)

where the normalization factor B′
0, the phase factor φ and the X ′ terms are given in

appendix C. The subscripts for the X ′ terms denote the Lorentz structure(s) contributing

to that term.
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The normalized forward-backward asymmetry for the muons in B̄0
d → K̄µ+µ− is de-

fined as

AFB(q2) =

∫ 1

0
d cos θµ

d2B

dq2d cos θµ
−
∫ 0

−1
d cos θµ

d2B

dq2d cos θµ
∫ 1

0
d cos θµ

d2B

dq2d cos θµ
+

∫ 0

−1
d cos θµ

d2B

dq2d cos θµ

, (6.6)

where θµ is the angle between the three-momenta of the B̄0
d and the µ+ in the dimuon

center-of-mass frame. The calculation of AFB(q2) gives

AFB(q2) =
2B′

0 βµ φ

dB/dz

[

Y ′
V A-SP + Y ′

V A-T + Y ′
SP -T

]

(6.7)

where the Y terms are given in appendix C.

The largest source of uncertainty in the calculations are the B̄ → K̄ form factors. As

these cannot be calculated from first principles within QCD, one has to rely on models.

In the numerical calculations, we use the form factors as calculated in ref. [45] in the

framework of QCD light-cone sum rules; the details are given in appendix C. There are,

however, certain limits in which relations between form factors can be rigorously obtained.

In the large energy (LEET) limit, these relations are valid up to αs, 1/EK and 1/mb

corrections [50, 51].

In the LEET limit, using the form-factor relations in eq. (C.10), one can verify that

AFB is independent of the form factors. This is quite useful as it implies that the measure-

ment of AFB can be used to extract the parameters of the new-physics operators without

form-factor uncertainties in this limit.

In the low-energy, large q2, region one can also derive relations between form factors

in the heavy-quark limit [73, 74]. However, these relations do not completely eliminate the

form-factor dependence of the calculated quantities, and hence we do not consider these

relations. An analysis where these relations have been used in the context of b → sµ+µ−

can be found in refs. [64, 66].

From eq. (6.7), clearly new VA couplings alone cannot give rise to AFB , which vanishes

in the SM in any case. Note that this is one of the few cases where the VA couplings fail to

influence an asymmetry significantly, in spite of the large allowed values of the couplings.

This is because the argument about the hadronic matrix element B̄0
d → K̄ not having any

axial-vector contribution stays valid even in the presence of NP. The DBR can, however,

be enhanced by up to a factor of 2, or marginally suppressed.

The contribution of SP operators through the Y ′
V A-SP terms can give rise to AFB,

where the VA contribution comes from the SM operators. The effect is rather small when

only RS,P or only R′
S,P couplings are present, due to the strong constraints on their values.

The peak value of AFB in the low-q2 region stays below the percent level, while in the the

high-q2 region it can be enhanced up to 2% at the extreme end point (q2 >∼ 22 GeV2), which

is virtually impossible to observe. However if both the primed and unprimed SP couplings

are present simultaneously, the constraints on them are weakened. In such a situation, the

peak value of AFB in the low-q2 (high-q2) can become ∼ 5% (∼ 3%). This may be seen in

figure 6. It is also observed that AFB is always positive or always negative, i.e. there is no
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Figure 6. The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ− in the low-q2

(high-q2) region, in the scenario where all NP SP couplings are present. The band corresponds to

the SM prediction and its uncertainties; the lines show predictions for some representative values of

NP parameters (RS , RP , R
′

S , R
′

P ) . For example, the blue curves in the low-q2 and high-q2 regions

correspond to (−2.50, 6.18,−2.84,−5.64) and (−2.41, 1.86,−2.07, 1.42), respectively.

zero crossing. The DBR also is significantly affected only if both the primed and unprimed

SP couplings are present: it can be enhanced by up to a factor of 3.

New T couplings are also expected to give rise to AFB through the Y ′
V A-T terms in

eq. (C.12). It is observed from figure 7 that AFB(q2) can be enhanced up to 5-6% in almost

the entire q2 region. Moreover, at q2 ∼> 21 GeV2, the peak value of AFB(q2) reaches a larger

value ( ∼ 30%). The value of AFB(q2) is always positive or always negative, i.e. there is no

zero crossing point. The DBR values do not go significantly outside the SM-allowed range.

When VA and T couplings are present simultaneously, a DBR enhancement of up to a

factor of 2 is possible, while AFB can be large only at extremely high q2. On the other hand,

when SP and T couplings are present simultaneously, their interference can have a large

impact on AFB. The interference term Y ′
SP -T that contributes to AFB is not suppressed

by mµ/mb, and therefore a large AFB is possible, as can be seen from figure 8. This is

also the only combination of NP couplings where a zero crossing may occur. Among the

asymmetries considered in this paper, this is the one where the SP and T operators can

have the largest impact. The DBR can also be enhanced by up to a factor of 2-3 at large

q2 due to the simultaneous presence of primed and unprimed SP operators.

7 B̄0
d

→ K̄∗µ+µ−

The measurement of the forward-backward asymmetry in B̄0
d → K̄∗µ+µ− by the Belle

collaboration [10, 11], which showed a deviation from the SM prediction, indicates the
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Figure 7. The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ− in the low-q2

(high-q2) region, in the scenario where only T terms are present. The band corresponds to the SM

prediction and its uncertainties; the lines show predictions for some representative values of NP

parameters (CT , CTE). For example, the blue curves in the low-q2 and high-q2 regions correspond

to (0.30, 0.37) and (0.49, 0.57), respectively.

possibility of the presence of new physics. According to the SM, AFB is ≤ 20% and

negative at low q2, has a zero crossing at q2 ≈ 4GeV2, and is positive but ≤ 40% for larger

q2 values. The experiment showed the asymmetry to be positive throughout the range

of q2 — consequently no zero crossing — and AFB ≈ 60% at large q2 values. This has

generated a special interest in this decay.

There have already been a number of theoretical studies, both within the SM [52,

53, 60] and in specific NP scenarios [57, 58, 61, 62], focusing on the branching fraction

and AFB of B̄0
d → K̄∗µ+µ−. For example, ref. [59] has pointed out that AFB(q2) is a

sensitive probe of NP that affects the SM Wilson coefficients. Other observables based on

the K∗ spin amplitudes of this decay are at present under active theoretical and experi-

mental analysis [57, 58, 60]. Finally, more challenging observables, such as the polarized

lepton forward-backward asymmetry [46, 47, 55, 56], have also been considered, though

the measurement of this quantity is still lacking.

In the coming years, the LHCb experiment will collect around 3000 events of B̄0
d →

K̄∗µ+µ− per fb−1 in the full range of q2. An integrated luminosity of 2 fb−1 already would

allow the extraction of the SM zero of AFB (if it is there) with a precision of ±0.5 GeV2 [87].

Indeed, a dataset of 100 pb−1 would already improve the world precision obtained by Babar,

Belle and CDF. These measurements would also permit many of the additional tests for

NP mentioned above.

The decay B̄0
d → K̄∗µ+µ−, with K̄∗ decaying to K̄π, has four particles in the final state.
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Figure 8. The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄µ+µ− in the

low-q2 (high-q2) region, in the scenario where both SP and T terms are present. The band

corresponds to the SM prediction and its uncertainties; the lines show predictions for some

representative values of NP parameters (RS , RP , R
′

S , R
′

P , CT , CTE). For example, the magenta

curves in the low-q2 and high-q2 regions correspond to (−0.09,−2.24, 0.16,−2.14,−0.33,−0.40)

and (−0.40, 1.87,−0.59, 1.88,−0.34, 0.66), respectively.

This implies that there are three physical angles that can specify the relative directions

of these four final-state particles. The differential decay rate as a function of these three

angles has much more information than just the forward-backward asymmetry. Indeed,

AFB is just one of the observables that can be derived from the complete angular analysis

of this decay. In this section we also consider other CP-conserving observables.

7.1 Angular analysis

The complete angular distribution in B̄0
d → K̄∗µ+µ− has been calculated in refs. [88, 89]

within the SM. In this section, we calculate the angular distribution in the presence of NP,

which is a new result. The full transition amplitude for B̄(pB) → K̄∗(pK∗, ǫ∗)µ+(p+
µ )µ−(p−µ )

is

iM(B̄0
d → K̄∗µ+µ−) = (−i)1

2

[

4 GF√
2

αem

4π
(V ∗

tsVtb)

]

× (7.1)

[

MV µL
µ+MAµL

µ5+MSL+MPL
5+MTµνL

µν +iMEµνLαβǫ
µναβ

]

,

where the L’s are defined in eq. (2.8). The M ’s are given in appendix D.

The complete three-angle distribution for the decay B̄ → K̄∗(→ K̄π)µ+µ− can be

expressed in terms of q2, two polar angles θµ, θK , and the angle between the planes of
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Figure 9. The description of the angles θµ,K and φ in the angular distribution of B̄ → K̄∗(→
K̄π)µ+µ− decay.

the dimuon and Kπ decays, φ. These angles are described in figure 9. We choose the

momentum and polarization four-vectors of the K∗ meson in the dimuon rest frame as

pK∗ = (EK∗ , 0, 0, |~pK∗ |) ,

ε(0) =
1

mK∗

(|~pK∗ |, 0, 0, EK∗) , ε(λ = ±1) = ∓ 1√
2
(0, 1,±i, 0) , (7.2)

with

EK∗ =
m2

B −m2
K∗ − q2

2
√

q2
, |~pK∗| =

√

E2
K∗ −m2

K∗ . (7.3)

The three-angle distribution can be obtained using the helicity formalism:

d4Γ

dq2d cos θµd cos θKdφ
= NF

{

cos2 θK

(

I0
1 + I0

2 cos 2θµ + I0
3 cos θµ

)

+ sin2 θK

(

IT
1 + IT

2 cos 2θµ + IT
3 cos θµ

+IT
4 sin2 θµ cos 2φ+ IT

5 sin2 θµ sin 2φ
)

+sin 2θK

(

ILT
1 sin 2θµ cosφ

+ILT
2 sin 2θµ sinφ+ ILT

3 sin θµ cosφ+ ILT
4 sin θµ sinφ

)}

, (7.4)

where the normalization factor NF is

NF =
3α2

emG
2
F |V ∗

tsVtb|2|~pB
K∗|βµ

214π6m2
B

Br(K∗ → Kπ) . (7.5)

Here βµ =
√

1 − 4m2
µ/q

2, and |~pB
K∗ | is the magnitude of the K∗ momentum in the B-meson

rest frame:

|~pB
K∗| =

1

2mB

√

m4
B +m4

K∗ + q4 − 2[q2m2
B +m2

K∗(m2
B + q2)] . (7.6)

The twelve angular coefficients I depend on the couplings, kinematic variables and form

factors, and are given in appendix D. In this paper we concentrate on the CP-conserving
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observables: the DBR, the forward-backward asymmetry AFB, the polarization fraction

fL, and the asymmetries A
(2)
T and ALT .

The theoretical predictions for the relevant B → K∗ form factors are rather uncertain

in the region (7GeV2 ≤ q2 ≤ 12 GeV2) due to nearby charmed resonances. The predictions

are relatively more robust in the lower and higher q2 regions. We therefore concentrate on

calculating the angular distribution in the low-q2 (1 GeV2 ≤ q2 ≤ 6 GeV2) and the high-q2

(q2 ≥ 14.4 GeV2) regions. For numerical calculations, we follow ref. [62] for the form factors:

in the low-q2 region, we use the form factors obtained using QCD factorization, while in

the high-q2 region, we use the form factors calculated in the light-cone sum-rule approach.

7.2 Differential branching ratio and forward-backward asymmetry

The forward-backward asymmetry for the muons is defined by

AFB(q2) =

∫ 1
0 d cos θµ

d2Γ
dq2d cos θµ

−
∫ 0
−1 d cos θµ

d2Γ
dq2d cos θµ

∫ 1
0 d cos θµ

d2Γ
dq2d cos θµ

+
∫ 0
−1 d cos θµ

d2Γ
dq2d cos θµ

. (7.7)

It can be obtained by integrating over the two angles θK and φ in eq. (7.4). We obtain the

double differential decay rate as

d2Γ

dq2d cos θµ
=

8πNF

3

[1

2

(

I0
1 + I0

2 cos 2θµ + I0
3 cos θµ

)

+
(

IT
1 + IT

2 cos 2θµ + IT
3 cos θµ

)]

.(7.8)

Further integration over the angle θµ gives the differential decay rate. The contribution

of the NP operators to the differential branching ratio and forward-backward asymmetry

of B̄0
d → K̄∗µ+µ− was examined in detail in ref. [62]. We do not reproduce the analysis

here, but only give the results below.

If only RV,A couplings are present, AFB can be enhanced at low q2, while keeping it

positive, so that there is no zero crossing as indicated by the recent data [10, 11, 13, 14].

However, an enhancement at high q2, also indicated by the same data, is not possible. On

the other hand, if only R′
V,A couplings are present, AFB can become large and positive at

high q2, but then it has to be large and negative at low q2. These couplings are therefore

unable to explain the positive values of AFB at low q2. Thus, in order to reproduce the

current B̄0
d → K̄∗µ+µ− experimental data, one needs both unprimed and primed NP VA

operators. The NP coupling values that come closest to the data typically correspond

to suppressed DBR at low q2. (See figure 10.) But it is also possible to have a large

AFB (up to 60%) in the entire q2 region while being consistent with the SM prediction

for the DBR. At present, the errors on the measurements are quite large. However, if

future experiments reproduce the current central values with greater precision, this will

put important constraints on any NP proposed to explain the data.

New SP couplings by themselves cannot significantly affect either the DBR or the AFB

predictions of the SM. New T couplings in general tend to enhance DBR significantly, by up

to a factor of 2, while not contributing any additional terms to the asymmetry. As a result,

the magnitude of AFB is suppressed. The zero crossing can be anywhere in the entire q2

range, or it may disappear altogether. However, whenever it is present, it is always a SM-

like (positive) crossing. When SP and T couplings are present simultaneously, additional
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Figure 10. The left (right) panels of the figure show AFB and DBR for B̄0
d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′

V , R
′

A) terms are

present. The band corresponds to the SM prediction and its uncertainties; the lines show pre-

dictions for some representative values of NP parameters (RV , RA, R
′

V , R
′

A). For example, the

red curves for AFB in the low and high q2 regions correspond to (−1.55, 1.75, 6.16, 1.73) and

(−5.79, 1.10, 0.47,−3.34), respectively. The pink curves for DBR in the low-q2 and high-q2 regions

correspond to (1.96,−4.09, 4.61, 0.13). For comparison, the experimental data are also displayed in

blue cross lines.

contributions to AFB that are not suppressed by mµ/mB are possible. As a result, AFB

obtained with this combination can be marginally enhanced as compared to the case with

only T operators. It is then possible to have no zero crossing. However, the magnitude of

AFB cannot be large in the high-q2 region.

7.3 Polarization fraction fL

The differential decay rate and K∗ polarization fractions can be found by integrating over

the three angles in eq. (7.4) to get

dΓ

dq2
=

8πNF

3
(AL +AT ) , (7.9)

where the longitudinal and transverse polarization amplitudes AL and AT are obtained

from eq. (7.8):

AL =

(

I0
1 − 1

3
I0
2

)

, AT = 2

(

IT
1 − 1

3
IT
2

)

. (7.10)

It can be seen from the expressions for the I’s in appendix D [see eq. (D.15)] that SP

couplings cannot affect AT . The longitudinal and transverse polarization fractions, fL and
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Figure 11. The left (right) panel of the figure shows fL for B̄0
d → K̄∗µ+µ− in the low-q2 (high-

q2) region, in the scenario where both (RV , RA) and (R′

V , R
′

A) terms are present. For exam-

ple, the blue curves in the low-q2 and high-q2 regions correspond to (1.64,−0.90, 4.27,−0.91) and

(1.96,−4.09, 4.61, 0.13), respectively. For comparison, the experimental data are also displayed in

blue cross lines.

0 1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

1.0

q 2 HGev2 L

f L

Only CT and CTE present

14 15 16 17 18 19 20
0.0

0.2

0.4

0.6

0.8

1.0

q2HGev2L

f L
Only CT and CTE present

Figure 12. The left (right) panel of the figure shows fL for B̄0
d → K̄∗µ+µ− in the low-q2 (high-q2)

region, in the scenario where only new T couplings are present. The band corresponds to the SM

prediction and its uncertainties; the lines show predictions for some representative values of NP

parameters (CT , CTE). For example, the red curves in the low-q2 and high-q2 regions correspond

to (0.66,−0.14) and (0.3,−0.46), respectively.

fT , respectively, are defined as

fL =
AL

AL +AT
, fT =

AT

AL +AT
. (7.11)

In the SM, fL can be as large as 0.9 at low q2, and it decreases to about 0.3 at high q2. As

can be seen from figure 11, new VA couplings can suppress fL substantially: it can almost

vanish in some allowed parameter range.

New SP couplings cannot change the value of fL outside the range allowed by the SM.

This may be attributed to the strong constraints on the values of these couplings. New

T couplings tend to suppress fL, except at q2 ≈ 1-2 GeV2, where the value of fL cannot

be less than 0.5 as may be seen from figure 12. Since both VA and T couplings tend to

suppress fL, their combined effect results in a similar behavior.
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7.4 Angular asymmetries A
(2)
T and ALT

In this subsection we consider the two angular asymmetries A
(2)
T and ALT . The first

quantity was discussed before in ref. [57], while ALT is introduced here for the first time.

The CP-conserving transverse asymmetry A
(2)
T can be defined through the double

differential decay rate

d2Γ

dq2dφ
=

1

2π

dΓ

dq2

[

1 + fT

(

A
(2)
T cos 2φ+A

(im)
T sin 2φ

) ]

. (7.12)

Here A
(im)
T depends on the imaginary part of a certain combination of amplitudes and can

be used to construct CP-violating observables. We will not consider it any further in this

work. The asymmetry A
(2)
T can be obtained by integrating over the two polar angles θµ

and θK in eq. (7.4). It can be expressed as

A
(2)
T =

4IT
4

3AT
. (7.13)

We observe that A
(2)
T cannot be affected by SP couplings.

In the SM,

A
(2)
T ≈

4β2
µ

(

|AV
⊥|2 − |AV

‖ |2 + |AA
⊥|2 − |AA

‖ |2
)

3AT
. (7.14)

The transversity amplitudes A‖,⊥ are defined through eqs. (D.11) and (D.12) given in

appendix D. At leading order in ΛQCD/EK∗ , ΛQCD/mb and αs (the LEET limit), one can

use the form-factor relations of refs. [50, 51] and neglect terms of O(m2
K∗/m2

B) to obtain

A+
V ≈ 0 , A+

A ≈ 0 . (7.15)

Thus, in the low-q2 region,

Ai
‖ ≈

A−
i√
2
, Ai

⊥ ≈ −A
−
i√
2

for i = V,A , (7.16)

which corresponds to the LEET limit. A
(2)
T ≈ 0 in the SM and is independent of form factors

up to corrections of order ΛQCD/EK∗ , ΛQCD/mb and αs, i.e. the hadronic uncertainty is

small. This can be seen in figures 13 and 14. This indicates that corrections to the LEET

limit are small, and makes A
(2)
T an excellent observable to look for new-physics effects [57].

We now examine the longitudinal-transverse asymmetry ALT , defined by

ALT =

∫ π/2
−π/2 dφ(

∫ 1
0 d cos θK

d3Γ
dq2dφd cos θK

−
∫ 0
−1 d cos θK

d3Γ
dq2dφd cos θK

)
∫ π/2
−π/2 dφ(

∫ 1
0 d cos θK

d3Γ
dq2dφd cos θK

+
∫ 0
−1 d cos θK

d3Γ
dq2dφd cos θK

)
. (7.17)

One can compare ALT to AFB. In AFB the angle φ is integrated over its entire range, while

in ALT φ is only integrated over the range (−π/2, π/2). This choice of integration range

eliminates all terms which depend on the imaginary part of combinations of amplitudes in
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the angular distribution. (These eliminated terms can be used to construct CP-violating

observables and will not be discussed here.) In ALT only the CP-conserving parts of the

angular distribution survive. Note that, in the CP-conserving limit, ALT is the same as

the observable S5 defined in ref. [61], apart from a normalization constant. The quantity

ALT can also be expressed in terms of the observables A
(3)
T and A

(4)
T defined in ref. [60].

However, ALT is easily extracted from the angular distribution and has different properties

in the LEET limit than A
(3)
T and A

(4)
T .

Using eq. (7.4), the asymmetry ALT can be expressed as

ALT =
ILT
3

2(AL +AT )
. (7.18)

We observe from eq. (D.16) that ALT depends on the VA couplings, as well as on V-S,

S-TE, and P-T interference terms. In the SM,

ALT =
βµRe[AL

0,V A(AV ∗
⊥ −AA∗

⊥ ) −AR
0,V A(AV ∗

⊥ +AA∗
⊥ )]

√
2(AL +AT )

. (7.19)

Now, in the LEET limit, A+
V,A ≈ 0. Hence, in this limit,

ALEET
LT ∝ Re[A0

VA
−∗
A +A0

AA
−∗
V ]

AL +AT
. (7.20)

From this it can be shown that the SM predicts ALT = 0 at

q2 ≈ − Ceff
7 mbm

2
B

Ceff
7 mb + Ceff

9 mB
≈ 1.96 GeV2 . (7.21)

Thus, just like AFB, the quantity ALT also has a zero crossing which is independent of

form factors in the LEET limit. Note that the zero crossing of ALT is different from that

of AFB. Figures 13 and 14 also demonstrate that the zero crossing of ALT has a very

small hadronic uncertainty. This indicates small corrections to the LEET limit, making

the position of the zero crossing of ALT a robust prediction of the SM. This quantity would

therefore be very useful in searching for new-physics effects.

New VA couplings can affect A
(2)
T significantly: they can enhance its magnitude by a

large amount, change its sign, and change its q2-dependence. The zero-crossing point may

be at a value of q2 different from that predicted by the SM.

Since ALT here is identical to the observable S5 in refs. [61, 67] in the CP-conserving

limit (apart from a normalization factor), the zero-crossing in both of these observables is

expected to take place at the same q2. Indeed, the results agree at LO, while the NLO cor-

rections can shift the q2 at the zero-crossing to q2 = 2.24+0.06
−0.08 [61]. Note that the deviation

due to new VA couplings can be much larger than the effects due to NLO corrections.

Except at very low q2, the magnitude of ALT is generally suppressed by new VA

couplings. The primed VA couplings can be constrained by ALT better than the unprimed

VA couplings. In both cases, the value of ALT can be anywhere in the q2 range, and can be

positive or negative. In particular, there may or may not be a zero crossing, and if there

is, its position can be different from that of the SM.
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Figure 13. The left (right) panels of the figure show A
(2)
T and ALT for B̄0

d → K̄∗µ+µ−

in the low-q2 (high-q2) region, in the scenario where both (RV , RA) and (R′

V , R
′

A) terms are

present. The band corresponds to the SM prediction and its uncertainties; the lines show pre-

dictions for some representative values of NP parameters (RV , RA, R
′

V , R
′

A). For example, the

pink curves for A
(2)
T in the low-q2 and high-q2 regions correspond to (1.96,−4.09, 4.61, 0.13) and

(1.64,−0.90, 4.27,−0.91), respectively. The red curves for ALT in the low-q2 and high-q2 regions

correspond to (−1.55, 1.75, 6.16, 1.73) and (−5.79, 1.10, 0.47,−3.33), respectively.

New SP couplings do not affect A
(2)
T , and ALT qualitatively behaves similarly to the

SM. New T couplings in general tend to suppress the magnitudes of both asymmetries

(see figure 14).

8 Discussion and summary

Flavor-changing neutral current (FCNC) processes are expected to be incisive probes of

new physics. In the SM, they occur only at loop level, and hence are suppressed. This may

allow the new-physics (NP) effects to be identifiable. Of course, since we have no clue about

what form the NP takes, the observations from a variety of processes are necessary. In this

paper, we have focussed on the processes that involve the effective transition b→ sµ+µ−.

The transition b → sµ+µ− is responsible for many decay modes such as B̄0
s → µ+µ−,

B̄0
d → Xsµ

+µ−, B̄0
s → µ+µ−γ, B̄0

d → K̄µ+µ−, B̄0
d → K̄∗µ+µ−. While some of these pro-

cesses (e.g. B̄0
s → µ+µ−) have not yet been observed, the upper bounds on their branching

ratios have already yielded strong constraints on NP. Some of these processes have been

observed and the measurements of their branching fractions, as well as of additional ob-

servables such as the forward-backward asymmetries, are available. Indeed, the recently-

observed muon forward-backward asymmetry in B̄0
d → K̄∗µ+µ− has been found to deviate

slightly from the SM predictions. If this is in fact due to the presence of NP, such NP
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Figure 14. The left (right) panels of the figure show A
(2)
T and ALT for B̄0

d → K̄∗µ+µ− in the low-q2

(high-q2) region, in the scenario where only new T couplings are present. The band corresponds to

the SM prediction and its uncertainties; the lines show predictions for some representative values of

NP parameters (CT , CTE). For example, the blue curves for A
(2)
T in the low-q2 and high-q2 regions

correspond to (0.3,−0.46) and (−0.005, 0.014), respectively. The red curves for ALT in the low-q2

and high-q2 regions correspond to (0.3,−0.46) and (0.66,−0.14), respectively.

should contribute to all the other decays involving the effective transition b → sµ+µ−.

The effects of this NP on these decay modes would be correlated, and hence a combined

analysis of all these decay modes would be invaluable in discerning the type of NP present.

While specific models of NP may be used and their effect on the relevant observables

studied, we have chosen to explore the NP in a model-independent way, in terms of the

Lorentz structures of the NP operators that contribute to the effective b→ sµ+µ− Hamil-

tonian. We have performed a general analysis that includes NP vector-axial vector (VA),

scalar-pseudoscalar (SP), and/or tensor (T) operators. We have computed the effects of

such NP operators, individually and in all combinations, on these decays. We have taken

the couplings to be real and have considered the CP-conserving observables in this paper;

the CP-violating observables are discussed in ref. [72]. The aim is to find NP signals, and

using them, to identify the Lorentz structure of the NP. As the first step towards this goal,

we calculate the constraints on the NP couplings, and, keeping the couplings within these

bounds, we look for the observables where the NP signal can potentially stand out above

the SM background.

It is crucial to understand this SM background, which makes it imperative to use

observables whose values are predicted reasonably accurately within the SM. The main

source of the SM uncertainties is the hadronic matrix elements, whose theoretical calcula-

tions often have errors of the order of tens of percent. We have handled this on many levels.
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First, we have tried to identify observables that will not be very sensitive to the hadronic

uncertainties. For example in B̄0
d → K̄µ+µ−, the SM prediction for the forward-backward

asymmetry is simply zero, independent of any hadronic elements. Also, while the differ-

ential branching ratios may be strongly dependent on the hadronic matrix elements, the

forward-backward asymmetries are less so. Furthermore, the large-energy effective theory

(LEET) limits can be used to control the uncertainties in the low-q2 region for observables

like AFB and A
(2)
T . For example, certain observables, such as the zero-crossing of AFB in

B̄0
d → K̄∗µ+µ−, can be shown to be robust under form-factor uncertainties in the LEET

limit. The longitudinal-transverse asymmetry ALT in B̄0
d → K̄∗µ+µ− also has a zero cross-

ing in the SM with small hadronic uncertainties. These measurements can even be used to

extract the parameters of the NP operators, to a very good approximation.

Also, we focus only on the situations where the NP contribution can be so significant

that it will stand out even if the SM errors were magnified. Our figures show bands for SM

predictions that include the form-factor uncertainties as quoted in the form-factor calcula-

tions, and these are overlaid with some examples of the allowed values of these observables

when NP contributions are included. This allows the scaling of these uncertainties to be

easily visualized. We identify and emphasize only those situations where the results with

the NP can be significantly different from those without the NP, even if the hadronic

uncertainties were actually much larger. Note that further inclusion of the NLO QCD

corrections would affect the central values of the SM predictions to a small extent, while

also decreasing the renormalization scale uncertainty. However, since our primary interest

is looking for observables where the NP effects are large, a LO analysis is sufficient.

Our results are summarized in table 1, for the cases where the NP has only one type

of Lorentz structure: VA, SP or T. We note certain generic features of the influence of

different NP Lorentz structures.

New VA operators are the ones that influence the observables strongly in most cases.

They typically can interfere with the SM terms constructively or destructively, thus en-

hancing or suppressing the differential branching ratios by up to factors of 2 or 3. They

also are able to enhance almost all the asymmetries, the notable exception being AFB in

B̄0
d → K̄µ+µ−, where the VA operators cannot contribute. But for most other observables,

this kind of NP can potentially be observed. This can be traced to the large magnitudes of

the NP couplings still allowed by data, which in turn can be traced to the possibility of in-

terference between the new VA operators with the SM operators that allows more freedom

for the new VA couplings. Typically, the RV,A couplings are constrained more weakly than

the R′
V,A couplings, since the corresponding operators have the same structure as those of

the SM, allowing strong destructive interferences. Consequently, the operators with RV,A

couplings are more likely to show themselves over and above the SM background. We point

out that the exception to this rule is the AFB in B̄0
d → K̄∗µ+µ− at large q2, where the

R′
V,A couplings can cause a larger enhancement.

The SP operators, on the other hand, are handicapped by the stringent constraints

from the upper bound on B(B̄0
s → µ+µ−). If only RS,P or R′

S,P couplings are present,

the constraints become even more severe. It is for this reason that, even when the SP

contributions are unsuppressed by mµ/mb, they are not often large enough to stand apart

from the SM background.
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Observable SM Only new VA Only new SP Only new T

B̄0
s → µ+µ−

BR (3.35 ± 0.32) ×

10−9

• Marginal E

• Significant S

• Large E

• Maximal S

No effect

B̄0
d → Xsµ

+µ−

DBR • E (×2)

• S (÷2)

• Marginal E • E (×2)

AF B ZC≈ 3.5 GeV2 • E(30%) low q2

• ZC shift /

disappearence

• Marginal S • Marginal S

fL • 0.9 → 0.3

(low→high q2)

• Large S at low q2 • Marginal S • Marginal E

B̄0
s → µ+µ−γ

DBR • E (×2 −×3)

• S (low q2)

No effect • E (×3)

AF B ZC≈ 4.3 GeV2 • ZC shift /

disappearence

No effect • Large S

B̄0
d → K̄µ+µ−

DBR • E (×2)

• Marginal S

• E at high q2 • Small effect

AF B Vanishes • No effect • E at low q2

• No ZC

• E at high q2

• No ZC

B̄0
d → K̄∗µ+µ−

DBR • E (×2)

• S (÷2)

No effect • E (×2)

AF B ZC≈ 3.9 GeV2 • E at low q2

• ZC shift /

disappearence

No effect • Significant S

• ZC shift

fL • 0.9 → 0.3

(low→high q2)

• Large S No effect • Significant S

A
(2)
T • ↑ with q2

• No ZC

• E (×2)

• ZC possible

No effect • Significant S

ALT • ZC at low q2

• more -ve

at large q2

• Significant S

• ZC shift /

disappearence

No effect • Significant S

Table 1. The effect of NP couplings on observables. E(×n): enhancement by up to a factor of n,

S(÷n): suppression by up to a factor of n, ZC: zero crossing.

The couplings of the T operators, viz. CT and CTE, are not as suppressed as those of

the SP operators. Therefore, they typically contribute significantly to the DBRs. However,

the interference terms of these operators with the SM operators often suffer from themµ/mb

helicity suppression, and hence they tend to suppress the magnitudes of the asymmetries.

The combination of multiple Lorentz structures in general gives rise to the combination

of features of the individual Lorentz structures involved. In particular, if the VA operators

appear in conjunction with another Lorentz structure, the effects of the VA operators

typically dominate. The T operators can interfere with the SP operators without the
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mµ/mb helicity suppression, but the strong constraints on the SP operators hold them

back. A remarkable exception is the combination of SP and T operators in the forward-

backward asymmetry in B̄0
d → K̄µ+µ−. This asymmetry, which vanishes in the SM, can

be enhanced to ∼ 5% at low q2 with only SP operators, and can be enhanced to ∼ 30%

with T operators but only at q2 ≈ m2
B. However, the presence of both SP and T operators

allows the asymmetry to be ∼ 40% in the whole high-q2 region. A similar feature, though

to a less-spectacular extent, is observed in AFB of B̄0
d → K̄∗µ+µ− [62].

With the large amount of data expected from the LHC experiments and B-factories in

the coming years, we may be able to detect confirmed NP signals in the above processes. In

that case, a combined analysis of all these decay modes, as carried out in this paper, would

enable us to identify the Lorentz structure of the NP operators. This will be important in

establishing precisely what type of NP is present.
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Notes added. After this paper was submitted, the CDF Collaboration reported [90] the

measurement of

B(B̄0
s → µ+µ−) = (1.8+1.1

−0.9) × 10−8 . (8.1)

On the other hand, the recent LHCb update does not confirm this result [91]. They improve

the present upper bound on B(B̄0
s → µ+µ−) to

B(B̄0
s → µ+µ−) ≤ 1.3 × 10−8 (90% C.L.) (8.2)

In addition, LHCb has measured various observables in B̄0
d → K̄∗µ+µ− [92]. Their mea-

surement of the AFB distribution is consistent with the SM prediction, except in the high-q2

region, where we now see a slight suppression. This is contrary to the measurement of Belle.

That is, LHCb does not confirm the Belle result of a large FB asymmetry in the low-q2 re-

gion. Thus, the jury is still out on whether NP has already been seen in these measurements.

A Details of the B̄0
d

→ Xsµ
+µ− analysis

The differential branching ratio for B̄0
d → Xsµ

+µ− in SM can be written as

(

dB

dz

)

SM

= B0
8

3
(1 − z)2

√

1 − 4t2

z
×

[

(2z + 1)

(

2t2

z
+ 1

)

|Ceff
9 |2 +

(

2(1 − 4z)t2

z
+ (2z + 1)

)

|Ceff
10 |2

+ 4

(

2

z
+ 1

)(

2t2

z
+ 1

)

|Ceff
7 |2 + 12

(

2t2

z
+ 1

)

Re(Ceff
7 Ceff∗

9 )

]

, (A.1)
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Here t ≡ mµ/m
pole
b and z ≡ q2/(mpole

b )2. The normalization constant B0 is [28]

B0 =
3α2

emB(B̄ → Xceν̄)

32π2 f(m̂c)κ(m̂c)

|VtbV
∗
ts|2

|Vcb|2
, (A.2)

where m̂c ≡ mpole
c /mpole

b . We use m̂c = 0.29 ± 0.02 [32], B(B̄ → Xceν̄) = 0.1061 ±
0.0017 [77] and |VtbV

∗
ts|/|Vcb| = 0.967 ± 0.009 [93]. Here f(m̂c) is the lowest-order (i.e.

parton-model) phase-space factor in B(B̄ → Xceν̄):

f(m̂c) = 1 − 8m̂2
c + 8m̂6

c − m̂8
c − 24m̂4

c ln m̂c , (A.3)

and the function κ(m̂c) includes both the O(αs) QCD corrections and the leading-order

(1/m2
b ) power correction to B(B̄ → Xceν̄):

κ(m̂c) = 1 − 2αs(mb)

3π
g(m̂c) +

h(m̂c)

2m2
b

. (A.4)

Here the two functions are

g(m̂c) =

(

π2 − 31

4

)

(1 − m̂c)
2 +

3

2
,

h(m̂c) = λ1 +
λ2

f(m̂c)

[

−9 + 24m̂2
c − 72m̂4

c + 72m̂6
c − 15m̂8

c − 72m̂4
c ln m̂c

]

. (A.5)

After including all the NP interactions, and neglecting terms suppressed by mµ/mb and

ms/mb, the total differential branching ratio dB/dz can be written in the form
(

dB

dz

)

Total

=

(

dB

dz

)

SM

+B0

[

BSM-VA +BV A +BSP +BT

]

, (A.6)

where

BSM-V A =
16

3
(1−z)2(1+2z)

[

Re(Ceff
9 R∗

V ) + Re(C10R
∗
A)
]

+32b(1−z)2Re(Ceff
7 R∗

V ) , (A.7)

BV A =
8

3
(1 − z)2(1 + 2z)

[

|RV |2 + |RA|2 + |R′
V |2 + |R′

A|2
]

, (A.8)

BSP = 4 (1 − z)2 z
[

|RS |2 + |RP |2 + |R′
S |2 + |R′

P |2
]

, (A.9)

BT =
128

3
(1 − z)2(1 + 2z)

[

|CT |2 + 4|CTE |2
]

. (A.10)

Note that here we have separated the contribution of the SM VA operators (subscript

SM -V A) from that of the NP VA operators (subscript V A), for clarity.

The forward-backward asymmetry in B̄0
d → Xsµ

+µ− is

AFB(q2) =

∫ 1
0 d cos θµ

d2B
dq2d cos θµ

−
∫ 0
−1 d cos θµ

d2B
dq2d cos θµ

∫ 1
0 d cos θµ

d2B
dq2d cos θµ

+
∫ 0
−1 d cos θµ

d2B
dq2d cos θµ

, (A.11)

where θµ is the angle between the µ+ and the B̄0 in the dimuon center-of-mass frame. We

can write AFB in the form

AFB(q2) =
N(z)

dB/dz
, (A.12)
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where the numerator is given by

N(z) = B0

[

NSM +NSM-VA +NV A +NSP -T

]

, (A.13)

with

NSM = −8C10 (1 − z)2
[

2Ceff
7 + zRe(Ceff

9 )
]

, (A.14)

NSM-V A = −8 (1 − z)2
[

zRe
(

C10R
∗
V + Ceff

9 R∗
A

)

+ 2Ceff
7 Re(R∗

A)
]

, (A.15)

NV A = −8 z (1 − z)2
[

Re(RVR
∗
A) − Re(R′

VR
′
A
∗
)
]

, (A.16)

NSP -T = −8 z (1 − z)2
[

Re
{

(RS +RP ) (C∗
T − 2C∗

TE)
}

+ Re
{

(R′
S −R′

P ) (C∗
T + 2C∗

TE)
}]

. (A.17)

The expressions of eqs. (A.7)–(A.17) are in agreement with ref. [30].

The polarization fractions fL and fT are defined as

fL =
HL(z)

HL(z) +HT (z)
, fT =

HT (z)

HL(z) +HT (z)
, (A.18)

where

HL(z) = HSM
L (z) +HSM−V A

L (z) +HV A
L (z) +HSP

L (z) +HT
L (z) , (A.19)

HT (z) = HSM
T (z) +HSM−V A

T (z) +HV A
T (z) +HSP

T (z) +HT
T (z) . (A.20)

The components of HL and HT functions are

HSM
L (z) =

8B0

3
(1 − z)2

[
∣

∣

∣
Ceff

9 + 2Ceff
7

∣

∣

∣

2
+ |C10|2

]

, (A.21)

HSM
T (z) =

16B0

3
z(1 − z)2

[

∣

∣

∣

∣

Ceff
9 +

2

z
Ceff

7

∣

∣

∣

∣

2

+ |C10|2
]

, (A.22)

HSM-V A
L (z) =

16B0

3
(1 − z)2

[

Re
(

Ceff
9 R∗

V + C10R
∗
A

)

+ 2Re(Ceff
7 R∗

V )
]

, (A.23)

HSM-V A
T (z) =

32B0

3
(1 − z)2

[

zRe
(

Ceff
9 R∗

V + C10R
∗
A

)

+ 2Re(Ceff
7 R∗

V )
]

, (A.24)

HV A
L (z) =

8B0

3
(1 − z)2

[

|RV |2 + |RA|2 + |R′
V |2 + |R′

A|2
]

, (A.25)

HV A
T (z) =

16B0

3
z(1 − z)2

[

|RV |2 + |RA|2 + |R′
V |2 + |R′

A|2
]

, (A.26)

HSP
L (z) =

4B0

3
z(1 − z)2

[

|RS |2 + |RP |2 + |R′
S |2 + |R′

P |2
]

, (A.27)

HSP
T (z) =

8B0

3
z(1 − z)2

[

|RS |2 + |RP |2 + |R′
S |2 + |R′

P |2
]

, (A.28)

HT
L (z) =

64B0

3
(2 − z)(1 − z)2

[

|CT |2 + 4|CTE |2
]

, (A.29)

HT
T (z) =

128B0

3
z(1 − z)2

[

|CT |2 + 4|CTE |2
]

. (A.30)
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B Details of the B̄0
s

→ µ+µ−γ analysis

The transition amplitude for B̄0
s → µ+µ−γ is

iM(B̄0
s → µ+µ−γ) = (−i)1

2

[

− 4GF√
2

αem

4π
(V ∗

tsVtb)

]

×
{

〈γ(k)|s̄γµb|B̄0
s (pB)〉

[

(Ceff
9 +RV +R′

V )Lµ + (C10 +RA +R′
A)Lµ5

]

+
〈

γ(k)|s̄γµγ5b|B̄0
s (pB)

〉

[

−(Ceff
9 +RV −R′

V )Lµ − (C10 +RA −R′
A)Lµ5

]

+
〈

γ(k)|s̄iσµνq
νb|B̄0

s (pB)
〉

[

− 2mb
Ceff

7

q2
Lµ

]

+
〈

γ(k)|s̄iσµνγ5q
νb|B̄0

s (pB)
〉

[

− 2mb
Ceff

7

q2
Lµ

]

+
〈

γ(k)|s̄σµνb|B̄0
s (pB)

〉

[2CTL
µν + 2iCTEǫ

µναβLαβ]

}

, (B.1)

where the L’s are defined in eq. (2.8).

In order to calculate the DBR, one needs the B̄0
s → γ matrix elements and form factors.

The matrix elements are given in ref. [40]:3

〈

γ(k)|s̄γµb|B̄0
s (pB)

〉

= −e ǫµνρσε
∗νqρkσ fV (q2)

mBs

,

〈

γ(k)|s̄γµγ5b|B̄0
s (pB)

〉

= ie
[

ε∗µk · q − ε∗ · qkµ

]fA(q2)

mBs

,

〈

γ(k)|s̄iσµνq
νb|B̄0

s (pB)
〉

= e ǫµνρσε
∗νqρkσfTV (q2) ,

〈

γ(k)|s̄iσµνγ5q
νb|B̄0

s (pB)
〉

= ie
[

ε∗µk · q − ε∗ · qkµ

]

fTA(q2) ,

〈

γ(k)|s̄σµνb|B̄0
s (pB)

〉

= −ie ǫµνρσ

[

{

fTV (q2)−fTA(q2)
}

q2

{

(q · k) ε∗ρ qσ+(ε∗ · q) qρ kσ
}

− fTV (q2) ε∗ρ kσ

]

. (B.2)

Here εµ is the four-vector polarization of the photon and q = pB −k. For the B̄0
s → µ+µ−γ

form factors fi (i = V,A, TA, TV ), we use the parameterization [40]

fi(q
2) = βi

fBsmBs

∆i + 0.5mBs

(

1 − q2/m2
Bs

) , (B.3)

where the parameters βi and ∆i are given in table 2. These values of parameters ensure

that the large energy effective theory (LEET) relations between form factors are satisfied

to a 10% accuracy [40]. In our numerical analysis we take the errors in these form factors

to be ±10%.

3We use the convention ǫ0123 = +1.
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Parameter fV fTV fA fTA

β(GeV−1) 0.28 0.30 0.26 0.33

∆(GeV) 0.04 0.04 0.30 0.30

Table 2. The parameters for B̄0
s → γ form factors, as defined in eq. (B.3).

In terms of the dimensionless parameter xγ = 2Eγ/mBs , where Eγ is the photon energy

in the B̄0
s rest frame, one can calculate the double differential decay rate to be

d2Γ

dxγd(cos θµ)
=

1

2mBs

2v m2
Bs
xγ

(8π)3
M†M , (B.4)

where v ≡
√

1 − 4m2
µ/[m

2
Bs

(1 − xγ)]. From eq. (B.4) we get the DBR to be

dB

dxγ
= τBs

∫ 1

−1

d2Γ

dxγd(cos θµ)
d cos θµ

= τBs

[

1

2mBs

2vm2
Bs

(8π)3

][

1

4

16G2
F

2

α2
em

16π2
|VtbV

∗
ts|2e2

]

Θ . (B.5)

Here the quantity Θ has the form

Θ =
2

3
m4

Bs
x3

γ

[

XV A +XT +XV A-T

]

, (B.6)

where the X terms are

XV A =
(

|A|2 + |B|2
)

m2
Bs

(

3 − v2
)

(1 − xγ) +
(

|C|2 + |D|2
)

2m2
Bs
v2(1 − xγ) ,

XT = 4|E|2(3 − v2) + 4|F |2m4
Bs
v2(1 − xγ)2

+16|G|2
(

3 − v2
)

+ 16|H|2m4
Bs

(

3 − 2v2
)

(1 − xγ)2

+8m2
Bs
v2(1 − xγ)Re (E∗F ) + 32m2

Bs
(3 − 2v2)(1 − xγ)Re (G∗H) ,

XV A-T = −24mµRe (A∗E) − 48mµRe (B∗G) − 48mµm
2
Bs

(1 − xγ)Re (B∗H) . (B.7)

Note that here, the V A subscript includes the SM operators. The parameters A–H are

combinations of the Wilson coefficients, form factors and NP parameters, and are given by

A = (Ceff
9 +RV +R′

V )
fV (q2)

mBs

+
2mbC

eff
7

q2
fTV (q2) ,

B = (Ceff
9 +RV −R′

V )
fA(q2)

mBs

+
2mbC

eff
7

q2
fTA(q2) ,

C = (Ceff
10 +RA +R′

A)
fV (q2)

mBs

,

D = (Ceff
10 +RA −R′

A)
fA(q2)

mBs

,
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E = −2CT fTV (q2) ,

F = 2CT
fTV (q2) − fTA(q2)

q2
,

G = −2CTEfTV (q2) ,

H = 2CTE
fTV (q2) − fTA(q2)

q2
. (B.8)

The normalized forward-backward asymmetry of muons in B̄0
s → µ+µ−γ is defined as

AFB(q2) =

∫ 1

0
d cos θµ

d2B

dq2d cos θµ
−
∫ 0

−1
d cos θµ

d2B

dq2d cos θµ
∫ 1

0
d cos θµ

d2B

dq2d cos θµ
+

∫ 0

−1
d cos θµ

d2B

dq2d cos θµ

, (B.9)

where θµ is the angle between the three-momentum vectors of the B̄0
s and the µ+ in the

dimuon center-of-mass frame. The calculation of AFB gives

AFB(q2) =
1

Θ

(

2m4
Bs
v x3

γ

)[

YV A + YV A-T

]

, (B.10)

with the Y terms given by

YV A =
(

Re (A∗D) + Re (B∗C)
)

m2
Bs

(1 − xγ) ,

YV A-T = −4mµ

(

2Re (C∗G) + 2m2
Bs

(1 − xγ)Re (C∗H) + Re (D∗E)
)

. (B.11)

C Details of the B̄0
d

→ K̄µ+µ− analysis

The transition matrix element for B̄0
d → K̄µ+µ− is given by

iM (B̄0
d → K̄µ+µ−) = (−i) 1

2

[

− 4 GF√
2

αem

4π
(V ∗

tsVtb)

]

×
{

〈K(p2) |s̄γµb|B(p1)〉 [(Ceff
9 +RV +R′

V )Lµ+(C10 +RA +R′
A)Lµ5]

+ 〈K(p2) |s̄b|B(p1)〉 [(RS +R′
S)L+ (RP +R′

P )L5]

+ 〈K(p2) |s̄iσµνq
νb|B(p1)〉 [−2Ceff

7 (mb/q
2)Lµ]

+ 〈K(p2) |s̄σµνb|B(p1)〉 [2CTL
µν + 2iCTEǫ

µναβLαβ ]
}

, (C.1)

where the L’s are defined in eq. (2.8).
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The B̄0
d → K̄ matrix elements needed to calculate the decay rate and asymmetry in

B̄0
d → K̄µ+µ− are [45]

〈

K̄(p2) |s̄γµb| B̄0
d(p1)

〉

= (2p1 − q)µf+(z) +

(

1 − k2

z

)

qµ[f0(z) − f+(z)] ,

〈

K̄(p2) |s̄iσµνq
νb| B̄0

d(p1)
〉

= −
[

(2p1 − q)µq
2 − (m2

B −m2
K)qµ

] fT (z)

mB +mK
,

〈

K̄(p2) |s̄b| B̄0
d(p1)

〉

=
mB(1 − k2)

m̂b
f0(z) ,

〈

K̄(p2) |s̄σµνb| B̄0
d(p1)

〉

= i
[

(2p1 − q)µqν − (2p1 − q)νqµ

] fT (z)

mB +mK
, (C.2)

where k ≡ mK/mB , m̂b ≡ mb/mB , qµ = (p1 − p2)µ = (p+ + p−)µ, and z ≡ q2/m2
B .

The form factors f+, 0, T were calculated in the framework of QCD light-cone sum rules in

ref. [45]. The z dependence of these is parametrized by

f(z) = f(0) exp(c1z + c2z
2 + c3z

3) , (C.3)

where the parameters f(0), c1, c2 and c3 for each form factor are taken from tables III, IV

and V of ref. [45]. Using these, the differential branching ratio is given by

dB

dz
= B′

0 φ
1/2 βµ

[

X ′
V A +X ′

SP +X ′
T +X ′

V A-SP +X ′
V A-T

]

, (C.4)

where B′
0 is the normalization factor:

B′
0 =

G2
Fα

2τB
212π5

|VtbV
∗
ts|2m5

B , (C.5)

the phase factor φ is

φ ≡ 1 + k4 + z2 − 2(k2 + k2z + z) , (C.6)

and the X ′ terms are given by

X ′
V A = φ

(

1 − 1

3
β2

µ

)

(|A′|2 + |B′|2) + 4 m̂2
µ |B′|2 (2 + 2k2 − z)

+ 4 m̂2
µ z |C ′|2 + 8 m̂2

µ (1 − k2)Re(B′C ′∗) ,

X ′
SP =

z

m2
B

(|E′|2 + β2
µ |D′|2) ,

X ′
T =

4

3
φ z m2

B

[

3|F ′|2 + 2β2
µ (2|G′|2 − |F ′|2)

]

,

X ′
V A-SP =

4m̂µ

mB
(1 − k2)Re(B′E′∗) +

4m̂µ

mB
zRe(C ′E′∗) ,

X ′
V A-T = 8m̂µmBφRe(A′F ′∗) . (C.7)

Here m̂µ ≡ mµ/mB and βµ ≡
√

1 − 4m̂2
µ/z. The parameters A′–G′ are combinations of
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the Wilson coefficients, form factors and NP parameters, and are given by

A′ ≡ 2(Ceff
9 +RV +R′

V ) f+(z) + 4Ceff
7 m̂b

fT (z)

1 + k
,

B′ ≡ 2(C10 +RA +R′
A) f+(z) ,

C ′ ≡ 2(C10 +RA +R′
A)

1 − k2

z

[

f0(z) − f+(z)
]

,

D′ ≡ 2(RS +R′
S)
mB(1 − k2)

m̂b
f0(z) ,

E′ ≡ 2(RP +R′
P )
mB(1 − k2)

m̂b
f0(z) ,

F ′ ≡ 4CT
fT (z)

mB(1 + k)
,

G′ ≡ −4CTE
fT (z)

mB(1 + k)
. (C.8)

The limits on the kinematical variables z and cos θµ are

− 1 ≤ cos θµ ≤ 1 , 4m̂2
µ ≤ z ≤ (1 − k)2 . (C.9)

Note that in the large energy (LEET) limit, there are relations between form factors that

are valid up to αs, 1/EK and 1/mb corrections [50, 51]. These are

f+(z) = ζ(mB, EP ),

f0(z) =

(

1 − q2

m2
B −m2

P

)

ζ(mB , EP ),

fT (z) =

(

1 +
mP

mB

)

ζ(mB, EP ) . (C.10)

Thus, all form factors can be expressed in terms of a single universal soft form factor

ζ(mB , EP ) in this limit.

The normalized forward-backward asymmetry for the muons in B̄0
d → K̄µ+µ− is de-

fined as

AFB(q2) =

∫ 1

0
d cos θµ

d2B

dq2d cos θµ
−
∫ 0

−1
d cos θµ

d2B

dq2d cos θµ
∫ 1

0
d cos θµ

d2B

dq2d cos θµ
+

∫ 0

−1
d cos θµ

d2B

dq2d cos θµ

, (C.11)

where θµ is the angle between the three-momenta of the B̄0
d and the µ+ in the dimuon

center-of-mass frame. The calculation of AFB(q2) gives

AFB(q2) =
2B′

0 βµ φ

dB/dz

[

Y ′
V A-SP + Y ′

V A-T + Y ′
SP -T

]

(C.12)

where

Y ′
V A-SP = − m̂µ

mB
Re(A′D′∗)

Y ′
V A-T = −4mµ(1 − k2)Re(B′G′∗) − 4zmµRe(C ′G′∗)

Y ′
SP -T = −z

4
Re(D′F ′∗) − 2zRe(E′G′∗) . (C.13)

Note that only Y ′
SP -T term is unsuppressed by the muon mass.
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D Details of the B̄0
d

→ K̄∗µ+µ− angular analysis

D.1 Matrix elements

The full transition amplitude for B̄(pB) → K̄∗(pK∗, ǫ∗)µ+(p+
µ )µ−(p−µ ) is

iM (B̄0
d → K̄∗µ+µ−) = (−i) 1

2

[

− 4 GF√
2

αem

4π
(V ∗

tsVtb)

]

×
{

〈K∗(pK∗ , ǫ)|s̄γµb|B(pB)〉 [(Ceff
9 +RV +R′

V )Lµ + (C10 +RA +R′
A)Lµ5]

+〈K∗(pK∗, ǫ)|s̄γµγ5b|B(pB)〉[−(Ceff
9 +RV −R′

V )Lµ − (C10 +RA −R′
A)Lµ5]

+〈K∗(pK∗, ǫ)|s̄iσµνq
ν(1 + γ5)b|B(pB)〉 [−2Ceff

7 (mb/q
2)Lµ]

+〈K∗(pK∗, ǫ)|s̄b|B(pB)〉 [(RS +R′
S)L+ (RP +R′

P )L5]

+〈K∗(pK∗, ǫ)|s̄γ5b|B(pB)〉 [(RS −R′
S)L+ (RP −R′

P )L5]

+〈K∗(pK∗, ǫ)|s̄σµνb|B(pB)〉 [2CTL
µν + 2iCTEǫ

µναβLαβ]

}

, (D.1)

where the L’s are defined in eq. (2.8). Here q = pB − pK∗ = p+
µ + p−µ . This can be written

in the form

iM(B̄0
d → K̄∗µ+µ−) = (−i)1

2

[

4 GF√
2

αem

4π
(V ∗

tsVtb)

]

×

[MV µL
µ +MAµL

µ5 +MSL+MPL
5 +MTµνL

µν + iMEµνLαβǫ
µναβ] , (D.2)

with

MV µ = −A′′ǫµναβε
∗νpα

K∗qβ + iB′′ε∗µ + iC ′′ε∗.q(pB + pK∗)µ + iD′′ε∗.qqµ,

MAµ = −E′′ǫµναβε
∗νpα

K∗qβ + iF ′′ε∗µ + iG′′ε∗.q(pB + pK∗)µ + iH ′′ε∗.qqµ,

MS = iS′′ε∗.q,

MP = iP ′′ε∗.q,

MTµν = CT (iT ′′
1 ǫµναβε

∗α(pB + pK∗)β + iT ′′
2 ǫµναβε

∗αqβ − iT ′′
3 ǫµναβε

∗.qpα
K∗qβ),

MEµν = CTE(iT ′′
1 ǫµναβε

∗α(pB + pK∗)β + iT ′′
2 ǫµναβε

∗αqβ − iT ′′
3 ǫµναβε

∗.qpα
K∗qβ) . (D.3)

The quantities A′′, B′′, C ′′, D′′,E′′, F ′′, G′′, S′′, P ′′, and T ′′
i (1=1,2,3) are related to

the B̄ → K̄∗ form factors which are given below. The contribution to the transition

amplitudes from the quantity D′′(q2) vanishes and that from H ′′(q2) is suppressed because

of the equation of motion of the muons.

D.2 Form factors

The form factors for the decay amplitude for B̄0
d → K̄∗µ+µ− [eq. (D.1)] in terms of matrix

elements of the quark operators are given by [45]

〈K∗(pK∗, ǫ)|s̄γµ(1 ± γ5)b|B(pB)〉 = ∓ iqµ
2mK∗

q2
ǫ∗ · q

[

A3(q
2) −A0(q

2)
]

± iǫ∗µ(mB +mK∗)A1(q
2) ∓ i(pB + pK∗)µ ǫ

∗ · q A2(q
2)

(mB +mK∗)

− ǫµνλσǫ
∗νpλ

K∗qσ 2V (q2)

(mB +mK∗)
, (D.4)
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where

A3(q
2) =

mB +mK∗

2mK∗

A1(q
2) − mB −mK∗

2mK∗

A2(q
2) . (D.5)

〈K∗(pK∗ , ǫ)|s̄σµνb|B(pB)〉 = iǫµνλσ

{

− T1(q
2)ǫ∗λ(pB + pK∗)σ

+
(m2

B −m2
K∗)

q2
(

T1(q
2) − T2(q

2)
)

ǫ∗λqσ (D.6)

− 2

q2

(

T1(q
2)−T2(q

2) − q2

(m2
B−m2

K∗)
T3(q

2)

)

ǫ∗ · q pλ
K∗qσ

}

.

〈K∗(pK∗, ǫ)|s̄iσµνq
ν(1 ± γ5)b|B(pB)〉 = 2ǫµνλσǫ

∗νpλ
K∗qσ T1(q

2)

± i
{

ǫ∗µ(m2
B −m2

K∗) − (pB + pK∗)µǫ
∗ · q
}

T2(q
2)

± i ǫ∗ · q
{

qµ − (pB + pK∗)µq
2

(m2
B −m2

K∗)

}

T3(q
2) . (D.7)

〈K∗(pK∗, ǫ)|s̄(1 ± γ5)b|B(pB)〉 = ∓ 2i
mK∗

mb
ǫ∗ · q A0(q

2) . (D.8)

Here we have neglected the strange-quark mass. The matrix elements are functions of 7

unknown form factors: A0,1,2(q
2), V (q2), T1,2,3(q

2).

The matrix elements MV,A,S,P,T,E appearing in eq. (D.3) can be written in terms of

these 7 form factors, coupling constants and kinematic variables as

A′′ =

[

2V (q2)(Ceff
9 +RV +R′

V )

mB +mK∗

+
4mb

q2
Ceff

7 T1(q
2)

]

,

B′′ = −
[

(mB +mK∗)A1(q
2)(Ceff

9 +RV −R′
V ) +

2mb

q2
Ceff

7 T2(q
2)(m2

B −m2
K∗)

]

,

C ′′ =

[

A2(q
2)

mB +mK∗

(Ceff
9 +RV −R′

V ) +
2mb

q2
Ceff

7

(

T2(q
2) +

q2T3(q
2)

(m2
B −m2

K∗)

)]

,

D′′ =

[

2mK∗

q2
(Ceff

9 +RV −R′
V )(A3(q

2) −A0(q
2)) − 2mb

q2
Ceff

7 T3(q
2)

]

,

E′′ =

[

2V (q2)(C10 +RA +R′
A)

mB +mK∗

]

,

F ′′ = −
[

(mB +mK∗)A1(q
2)(C10 +RA −R′

A)
]

,

G′′ =

[

A2(q
2)

mB +mK∗

(C10 +RA −R′
A)

]

,

H ′′ =

[

2mK∗

q2
(C10 +RA −R′

A)(A3(q
2) −A0(q

2))

]

,

S′′ =

[

− 2(RS −R′
S)
mK∗

mb
A0(q

2)

]

,

P ′′ =

[

− 2(RP −R′
P )
mK∗

mb
A0(q

2)

]

,

T ′′
1 = −2T1(q

2),
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T ′′
2 =

[

2(m2
B −m2

K∗)

q2
(T1(q

2) − T2(q
2))

]

,

T ′′
3 =

[

4

q2

(

T1(q
2) − T2(q

2) − q2T3(q
2)

m2
B −m2

K∗

)]

. (D.9)

Also, we define

T0 =
1

mK∗

(

√

q2(EK∗

√

q2 + 2m2
K∗)T ′′

1 + q2(EK∗T ′′
2 − |~pK∗ |2

√

q2T ′′
3 )
)

,

T+ = (q2 + 2EK∗

√

q2)T ′′
1 + q2T ′′

2 , T− = 2|~pK∗ |
√

q2T ′′
1 . (D.10)

D.3 Transversity amplitudes

We summarize the various transversity amplitudes that appear in the B̄0
d → K̄∗µ+µ−

angular distribution. The decay amplitude of B̄0
d → K̄∗µ+µ− depends on the K∗ polariza-

tion vector ε(λ) with helicity λ (0,±1). Hence, the decay amplitude can be decomposed

into three components. Below we define the helicity amplitudes of various operators with

different Lorentz structures (V, A, S, P, T, TE) in eq. (D.1).

A0
V =

√

q2
(

EK∗

mK∗

B′′ +
2|~pK∗ |2

√

q2

mK∗

C ′′
)

, A±
V =

√

q2(±|~pK∗|
√

q2A′′ +B′′) ,

A0
A =

√

q2
(

EK∗

mK∗

F ′′ +
2|~pK∗ |2

√

q2

mK∗

G′′
)

, A±
A =

√

q2(±|~pK∗|
√

q2E′′ + F ′′) ,

AS =
2|~pK∗|q2
mK∗

S′′ , AP =
2|~pK∗|q2
mK∗

P ′′ ,

A0
T = T0CT , A±

T = T±CT ,

A0
TE = 2T0CTE , A±

TE = 2T±CTE ,

Avt = −2|~pK∗|
√

q2(C10 +RA −RA′)A0 , (D.11)

where the amplitude Avt is related to the time-like component of the virtual K∗. In

the transversity basis, the positive and negative helicity amplitudes are replaced by the

transversity amplitudes as

Ai
‖ =

1

2
(A+

i +A−
i ) , Ai

⊥ =
1

2
(A+

i −A−
i ) , i = V,A,T,TE. (D.12)

The left and right component of the transversity amplitudes of vector and axial-vector

currents in [61] can be written as

AL,R
0,V A = A0

V ∓A0
A , A

L,R
‖,V A = (AV

‖ ∓AA
‖ ) , AL,R

⊥,V A = (AV
⊥ ∓AA

⊥) . (D.13)

Note that in the notation of ref. [61], we have the correspondence AL,R
(0,‖,⊥),V A =

(
√

q2/N)AL,R
(0,‖,⊥). The amplitudes AS,P,vt remain the same, while AS = −(

√

q2/N)AL,R
S .
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D.4 Angular coefficients

The expressions for the twelve angular coefficients (I’s) in the B̄0
d → K̄∗µ+µ− angular

distribution are summarized here according to K∗ helicity combinations λ1λ2. The longi-

tudinal I0’s (λ1λ2 = 00) are given by

I0
1 = 2

[

1

2
(|AL

0,V A|2 + |AR
0,V A|2) +

1

2
(β2

µ|AS |2 + |AP |2) + 4β2
µ(|A0

T |2 + |A0
TE |2)

+
4m2

µ

q2

(

Re[AL
0,V AA

R∗
0,V A] + 2|Avt|2 + 8|A0

TE |2
)

+
4mµ
√

q2

(

2Re[(AL
0,V A +AR

0,V A)A0∗
TE ] − Re[AvtA

∗
P ]
)

]

, (D.14)

I0
2 = β2

µ

[

− (|AL
0,V A|2 + |AR

0,V A|2) + 8(|A0
T |2 + |A0

TE |2)
]

,

I0
3 = 2βµ

[

4(−Re[A0
TEA

∗
S ]+Re[A0

TA
∗
P ]) − 4mµ

√

q2

(

1

2
Re[(AL

0,V A +AR
0,V A)A∗

S ]+4Re[AvtA
0∗
T ]

)]

.

The transverse IT ’s (λ1λ2 = ++,−−,+−,−+) are given by

IT
1 =

[

2 + β2
µ

2

(

|AV
‖ |2 + |AV

⊥|2 + |AA
‖ |2 + |AA

⊥|2
)

− 4(−2 + β2
µ)
(

|AT
‖ |2 + |AT

⊥|2 + |ATE
‖ |2

+|ATE
⊥ |2

)

+
4m2

µ

q2

(

|AV
‖ |2 + |AV

⊥|2 − |AA
‖ |2 − |AA

⊥|2 − 16(AT
‖ A

T∗
⊥ −ATE

‖ ATE∗
⊥ )

)

+16
mµ
√

q2

(

Re[AV
⊥(AT∗

‖ −AT∗
⊥ )] + Re[AV

‖ (ATE∗
‖ +ATE∗

⊥ )]
)

]

,

IT
2 = β2

µ

[

1

2

(

|AV
‖ |2 + |AV

⊥|2 + |AA
‖ |2 + |AA

⊥|2
)

− 4
(

|AT
‖ |2 + |AT

⊥|2 + |ATE
‖ |2 + |ATE

⊥ |2
)

]

,

IT
3 = −4βµ

[

Re[AV
⊥A

A∗
‖ +AV

‖ A
A∗
⊥ ] + 4

mµ
√

q2
Re[AA

‖ (AT∗
‖ −AT∗

⊥ ) +AA
⊥(ATE∗

‖ +ATE∗
⊥ )]

]

,

IT
4 = β2

µ

[(

|AV
⊥|2 − |AV

‖ |2 + |AA
⊥|2 − |AA

‖ |2
)

+ 16
(

AT
‖ A

T∗
⊥ +ATE

‖ ATE∗
⊥

)]

,

IT
5 = 2β2

µIm[AV ∗
‖ AV

⊥ +AA∗
‖ AA

⊥] . (D.15)

The mixed ILT ’s (λ1λ2 = 0±,±0) are given by

ILT
1 = β2

µ

[

1√
2
Re[AR

0,V A(AV ∗
‖ +AA∗

‖ ) +AL
0,V A(AV ∗

‖ −AA∗
‖ )]

−4
√

2
(

A0
T (AT∗

‖ +AT∗
⊥ ) +A0

TE(ATE∗
‖ +ATE∗

⊥ )
)

]

,

ILT
2 =

1√
2
β2

µIm[AR
0,V A(AV ∗

⊥ +AA∗
⊥ ) +AL

0,V A(AV ∗
⊥ −AA∗

⊥ )] ,

ILT
3 =

√
2βµ

[

Re[AL
0,V A(AV ∗

⊥ −AA∗
⊥ ) −AR

0,V A(AV ∗
⊥ +AA∗

⊥ )] + 2Re[(ATE
‖ +ATE

⊥ )A∗
S ]

−2Re[(AT
‖ +AT

⊥)A∗
P ] + 2

mµ
√

q2
Re[AV

‖ A
∗
S ]

]

,
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ILT
4 =

√
2βµ

[

Im[AL
0,V A(AV ∗

‖ −AA∗
‖ ) −AR

0,V A(AV ∗
‖ +AA∗

‖ )]

+2Im[(AT
‖ −AT

⊥)A∗
S ] + 2Im[(ATE

‖ −ATE
⊥ )A∗

P ] − 2
mµ
√

q2
Im[AV

⊥A
∗
S ]

]

. (D.16)
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