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ABSTRACT: In this note we study the symmetry-breaking phases of 3D gravity coupled to
matter. In particular, we consider black holes with scalar hair as a model of symmetry-
breaking phases of a strongly coupled 141 dimensional CFT. In the case of a discrete
symmetry, we show that these theories admit phases of broken symmetry and study the
thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell the-
ory shows continuous symmetry breaking at low temperature. The apparent contradiction
with the Coleman-Mermin-Wagner theorem is discussed.
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1 Introduction

In light of recent developments, gauge-gravity dualities [1, 2] have proven to go beyond
the early examples of conformal gauge theories and could potentially be applied to many
strongly coupled condensed matter systems as well as non-conformal gauge theories. Grav-
ity models dual to condensed matter systems close to quantum critical points have been
constructed and extensively studied in the literature. For a review see [4, 5].

Symmetry breaking and phase transitions in strongly coupled media are examples
where one might hope to obtain insight into the system by studying its gravity dual. This
correspondence has also been used in the opposite direction to shed light on gravity by
using the intuition provided to us by the tools of quantum field theories. For instance,
the observation that low temperature order is commonplace in field theories has led to
the discovery of violations of the no-hair theorem in asymptotically AdS space-times [6,
7]. Indeed, it turns out that there is a landscape of gravity-matter theories with a rich
phase space of hairy black holes at low temperature [9]. Phase transitions of this type
in 4D charged black holes coupled to scalars have been analyzed in detail as a valuable
phenomenlogical tool for 2+1 dimensional superconductors [8, 10-12].

The purpose of this work is to generalize the examples of holographic symmetry break-
ing to 3D matter-gravity theories. Working in three dimensions has the benefit that the
dynamics are much simpler and one can hope for better analytic and numerical control on
the physics of these holographic phases.

Three dimensional gravity with a negative cosmological constant admits topological
black hole solutions denoted as BTZ [13]. In the presence of matter however, the theory is



no longer topological and hairy black holes with the standard asymptotically AdSs bound-
ary conditions with a minimally coupled scalar in 3D. Gravity coupled to a U(1) gauge field
has charged black holes solutions that are commonly referred to as charged BTZ’s [15], and
in [17] charged BTZ was used as a holographic dual to Fermi-Luttinger liquids.

In section 2, we start with a review of an analytic example of a hairy three dimensional
black hole. Then, we add an extra interacting scalar field to the model to obtain a phase
transition. We find a tower of symmetry-breaking phases that appears infinite. Surpris-
ingly, we observe that these symmetry breaking phases survive at large temperatures. The
thermodynamic properties of these states are studied in detail.

We briefly discuss the Coleman-Mermin-Wagner theorem in section 3 and give an
example of continuous symmetry breaking in three dimensions. Section 4 is devoted to a
discussion of the implications of our results and other interesting extensions of this work.

As we were in the process of completing this work we learned about the work in [23]
that has some overlap with the material presented here in section 3.

2 Discrete symmetries

2.1 An analytic scalar hair

An analytic solution of scalar gravity with a one parameter family of potentials for the
scalar was obtained in [14]. The thermodynamics of these black holes was studied in [27].
We briefly review these results here.

Consider the action

5= 1rg | #ov=a (R 3002 - v(0). (2.1)

with V(¢) = —l% (cosh®(¢/4) + vsinh®(¢/4)) where v > —1 could be interpreted as a self-
coupling in the conformal frame [14]. This potential has a maximum at ¢ = 0. We are
interested in normalisable solutions where ¢ vanishes only at r — oo. This provides us
with the asymptotically locally AdS space-time we need for holography.

The solution with the scalar hair is

¢(r) = 4 arctanh H?— 5’
ds® = — (HiIB>2F(r)dt2 + (5;%)2 ﬁf; + r2de?,
with
H(r) = é (r+ r2+4B7") )
F(r) = ];2 —(1+v) (3[152 + fﬁj) , (2:2)

and B > 0 is the only integration constant. An important feature of this solution is that
one can not switch off the scalar field without changing the mass of the black hole.
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Figure 1. The thermodynamic properties of hairy black holes: a) the mass of the hairy solution
b) at any temperature, the free energy of BTZ black holes (blue solid line) is less than the black

hole with the scalar condensate (red dashed line).

According to AdS/CFT, the radial profile of the scalar field in the bulk is dual to the
renormalization group running of an operator Oy in the field theory. Here, the constant B
controls the scale where the relevant deformation A, becomes important in the dual field
theory. This scale can be read from the near infinity expansion of the field ¢. Setting Ay =1
amounts to B = 1/16. In these units, the horizon is at rg = 0,/16 with 0, defined by

z—Z

2/3 _ =2/3
@V:ﬂaﬁm<zz>, =14V (2.3)

At any given temperature, the action admits two solutions, one with scalar hair in (2.2) and
the other one the non-rotating BTZ black holes with ¢ = 0 everywhere in the bulk. The
hairy phase in (2.2) breaks the Zo symmetry of ¢ — —¢ in the action. The thermodynamic
quantities are found from the smoothness of the euclidean geometry on the horizon and
the near infinity expansion of fields. In units where 8G = 1 and | = 1 one finds

3(1+v) S_i_ﬂ'@y
3270, ’ 4G 4
3(1+v)

256

T:

F=-M=- (2.4)

It turns out that BTZ black holes of the same temperature have lower free energy than
hairy solutions and win the thermodynamic competition , see figure 1. The hairy solutions
describe Zy broken phases with (Og) = —1/24. In the zero temperature limit of (2.2), the
horizon area vanishes, joining the BTZ branch at the zero mass black holes. This was phys-
ically expected since a finite area at zero temperature corresponds to a highly degenerate
ground state in the dual field theory [24].

2.2 High temperature order

The example of the hairy black hole discussed in the previous section has the benefit of
being analytic. However, due to the simplicity of the model, the value of the condensate
is independent of temperature. In other words, there is no phase transition between the
BTZ and the scalar condensate at finite temperature. In order to obtain a temperature



dependent order parameter, one needs to add more ingredients to the model. A five-
dimensional theory with two interacting scalars was introduced in [8] which exhibits a
phase transition between a symmetry-breaking phase and the symmetric phase. A four-
dimensional analogue of this system has been studied in [25]. In this section, we will discuss
a three-dimensional model of this kind in detail.

Let us start with two massive scalar fields in three-dimensional gravity coupled accord-
ing to:

S = tor [ oy (R 5002 - 500° - V(.).

Vg, x) = _2z + 1m2 ¢* + 1m2 S A—2¢2X2 (2.5)
’ 227 2 X 2 ’

where [ is the length scale of the AdSs; vacuum. Scalar masses are chosen to be —1 <
(mgl)?> < 0 and 0 < (m,l)®. The mass of the scalar ¢ is in the range that allows two
different quantizations according to the AdS/CFT dictionary [3]. We follow the standard
quantization for the field ¢ by fixing the dominant mode at infinity. The idea is that we
turn off x and solve for hairy black holes with scalar ¢. As we make the condesate of ¢
larger near the horizon, the field x becomes turned on through the interaction term ¢?x?
breaking the x — —x symmetry of the theory. The aim is to study these symmetry-
breaking solutions.

2.2.1 Probe limit

It is heuristic to take a probe limit where matter fields propagate on a rotating BTZ
geometry. Scaling ¢ — ¢/A and x — x/A, the matter stress tensor transforms as 7}, —
T/ A2. By sending A — oo one can make sure that the back-reaction of scalars on the
geometry is negligible. In this limit, the solutions of the Einstein equation are BTZ black
holes. The relevant equations for the propagation of scalars on a BTZ geometry are

06 = ¢(mj —x*),  Ox=x(m; —¢°). (2.6)

In the absence of the y field, there are two independent solutions to the equation of motion

of ¢:

1
ot (u) = u P2 F [Ai /2,A4/2, AL, u} , (2.7)
where
T2 o T2
U= —5—>, Ay =1+4/1+4 (Imy)2. (2.8)
ry—r

For scalars with mass —1 < (m¢l)2 < 0 both of the modes <Z>i are normalizable. This
solution is a monotonically decreasing function of r with its maximum value on the horizon
bo-

In (2.6) the field x has an effective mass term mi — ¢2. When ¢ becomes comparable
to 14 (myl)? in (2.8), Ay becomes imaginary and the field x violates the BF bound near
the horizon and condenses, breaking the initial Zo symmetry, x — —x. Note that as it



is clear from (2.7) for imaginary AL, the solution has an oscillatory behavior. It turns
out that as we increase ¢g there is a discrete set of solutions for x with zeros at finite u.
These symmetry-breaking solutions with higher number of nodes and their thermodynamic
properties are the focus of this section.

2.2.2 Holographic renormalization
Now we turn to the fully back-reacted equations of motion. We consider the following
ansatz for the metric

2

ds? = — f(r)dt® + :(:) +r2(d6 + g(r)dt)2. (2.9)

There are two equations for the dynamics of scalar fields:

1t f! 18V_
¢+¢< TR >_h&ﬁ_0
i 1oV

and four Einstein’s equations out of which only three are independent:

-3 / h "
S AL A A
r 2f 2h ¢
2f// f/2 47’29,2 2h/ flh/
[ A A A
2 ’ / h! 2 12
(25 )+";+Th+r]f’ = 0. (2.11)

Here primes denote derivatives with respect to r. The first two equations in (2.11) could

ymzﬁ£,

rﬁf/—zﬂ—zcg =\ (2.12)

be integrated once to give respectively

where ¢ and \ are constants of integration. We will see later that ¢ is the angular momentum
of the black hole. Notice that due to the reparametrizations, f and g are determined only
up to the multiplication and addition of a constant, respectively. From the periodicity in
the Euclidean time, the temperature of this geometry could be read off to be

1 h
w( ff>

where 7y is the location of the outer horizon. The expansion of fields near the boundary

r=rg

; (2.13)

depends on the value of mé. For —1 < (mgl)> < —3/4 and 0 < (myl)?, solving the



equations of motion order by order in 1/r gives

¢(r) = r(;bo%) + ﬂ +O (PR x(r) = % +O (P78
fr) = for® — \/JTO)\JrO(rKO),
h(r) =r*+ %(2;A¢) 2B 4 (¢0¢1A¢>(2 —Ag) - 2}) +0 (=),

where we have suppressed indices by using the notation Ay = Ay 4. The function g(r) is
found from (2.12).
The Euclidean action could be written as

Igp = — /deHdr\/TQ (R— M — M — V> — 1/ drdf/—vK + I.4.
167TG 87TG OM
(2.14)
The second term is the boundary Gibbons-Hawking term;  is the induced metric on the
boundary and K is the extrinsic curvature on r = const. hypersurface. Using Einstein’s
equations the bulk action is evaluated on-shell to be

B [le \/7 1/e
e — 2 g Ly JTIh ‘
wik = =3 ), YRV OX) 4G
where we have used the third equation in (2.11). The integral is regulated by introducing
the IR cut-off at r = 1/e. The Gibbons-Hawking term is

o |V ry \/;] (2.16)

Then, the full Euclidean action is found to be

+rf\[)/e

The infinities in the on-shell action could be removed by adding the local counter term

l/e] , (2.15)

Igg =

8G + 1.4 (2.17)

1

It = o G/deHN/ 1

1+ W] (2.18)

Note that the scalar field y falls so fast that the bulk integral of its on-shell action is
convergent.

According to the AdS/CFT correspondence Iy = BF where F' is the free energy of the
dual field theory and ( is the inverse black hole temperature. In units 8G = 1, the free
energy reads

2 =00
F = [%[ (1+ 2o ) rf’ l}] — —cg(ro)
= 2+ VTobor(2 — Ag)(1— Ag) —eg(ro). (2.19)

Holographic renormalization and this counter-term were first introduced in [31].



Using the definition of the stress tensor in [16], the mass and the angular momentum of
this black hole can be found to be

A, ¢? r=co )
M =2\/f r<1+4>—\/ﬁi ‘ :§+\/%¢0¢1(2—A¢)(1—A¢)

J =c, (2.20)

while the entropy and the angular velocity of the black hole are
S = 4mry, Q= —g(ro). (2.21)

Evaluating the second equation in (2.12) on the outer horizon and at infinity one finds

(ryf = 2v7m) [ =5 - 2t 222

f B
Then, it is straightforward to check that the first law of thermodynamics holds,
F:M—Z—QJ (2.23)

2.2.3 Numerical results

In this section we present numerical solutions to the equations of motion in (2.10) and (2.11)
that describe phases with broken Zs symmetry. Boundary conditions are set by choosing
the value of ¢g = ¢(rg) on the black hole horizon and the angular momentum at infinity.
We note that using symmetries, the AdSs3 radius and the location of horizon could be
scaled away, [ = r9 = 1. The equations of motion could be integrated as a boundary value
problem using the shooting method. In the range numerically explored, the scalar ¢(r)
is monotically decreasing as a function of radius, whereas x(r) can acquire an arbitrary
number of zeros at finite radii as we saw in the probe limit. For ¢g less than a critical
value ¢., the x field is zero everywhere in the bulk. At ¢g = ¢. a new branch of solutions
is found with y(7) monotically decreasing from the horizon to the boundary. Increasing ¢g
further, at ¢/ another branch appears with one node in the wave function of x. As can be

seen in figure 2, the system admits higher node solutions for x at higher ¢g. For numerical
2 _
5 =
features of the phase transition do not change as one varies ¢ and A.

purposes, we have chosen ¢ = 0.2, A =8 and m —mi = 0.84. However, the qualitative

At finite temperature, there is a competition between the symmetric phase and broken
phases with n nodes. The numerical results suggest that the symmetric phase always
wins the competition by minimizing the free energy; see figure 3. At sufficiently large
temperature, on top of the symmetric ground state there is a tower of excited phases. Low
n phases are statistically more significant than high node ones. Decreasing the temperature
gradually, at a critical temperature 71 the n = 1 phase joins the ground state and disappears
from the spectrum. Higher n phases join the ground state at lower temperatures. This is
a remarkable phenomenon, since intuitively one expects the order to be destroyed by high
temperature fluctuations whereas these phases exist only in T larger than some critical

tempemture.2

2This phenomenon was observed in a similar system in four dimensions in [25]. It was recently shown
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Figure 2. a) Appearance of symmetry breaking phases with different nodes: from left to right
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Figure 3. The thermodynamic properties of symmetry breaking phases. Colors represent same
phases as in figure 2. Higher n have larger mass and free energy: a) the free energy b) the mass of
the black holes.

3 Continuous symmetries

3.1 The Coleman-Mermin-Wagner theorem

It was shown by Mermin-Wagner and Coleman independently that in 141 and 2+1 space-
time dimensions at finite temperature, spontaneous continuous symmetry breaking is im-
possible [18-20]. This seems to be a no-go theorem for holographic superconductors in
these dimensions. However, as was pointed out by Witten [21], in the large N limit, sys-
tems can have another phase in which the symmetry is almost spontaneously broken and
the fall off of correlation functions is power law. If this is the case, for finite N one expects
the 1/N corrections in AdS/CFT to wash out the ordered phase and restore the symmetry
in low temperature. In [22], by a one-loop calculation in AdS4 black holes, it was shown
that this is indeed the case. There is no reason to believe that three dimensional gravity

that the 4D high temperature ordered phases are perturbatively unstable [29]. We thank Alex Buchel for
bringing our attention to this reference.



is different. In this section we will indeed see that there exist analogues of holographic
superconductors in asymptotically AdSs5 space-times.

3.2 The abelian Higgs model

The basic ingredients we need for a gravity dual to continuous symmetry breaking at finite
temperature are black hole solutions charged under a gauge field and a charged scalar
field dual to the order operator in the field theory. The simplest theory of this form is
the Abelian Higgs model. We will work in the probe limit where the back-reaction of the
scalar and the gauge field on the geometry could be neglected. In an analogous way to
previous sections, symmetry breaking occurs with the appearance of a hairy solution that
breaks the U(1) gauge symmetry. The ansatz for the gauge field is A = ¢(r) and A” and
A? have been set to zero using the gauge transformations.

The equations of motion of this system are

2
¢//+1¢/_%¢:0
T
1" 1 n' / m? ¢2 o
w+(r+h>¢—<h _h2>¢_0’ (3.1)

where m and ¢ are the charge and the mass of the scalar field ¢ and h(r) = ¢g"" = r2 — M.

Although the gauge potential grows as A ~ A; + Aglog(r) near the boundary, the
field strength goes to zero and asymptotically one recovers the AdS solution. A thorough
analysis of the boundary conditions in asymptotically AdSs spaces shows that the right
boundary condition to impose is to set F! = r¢/(r) = const. on the boundary [17, 28]. An-
other way to understand this is through Hodge duality. In the Hodge dual frame d¢ = *F
this is equivalent to fixing the slower falloff of the dual scalar field [28]. The fixed logarith-
mic term on the boundary will be interpreted as the chemical potential and the fluctuation
Aj represents the expectation value of the boundary current dual to the gauge field.

At high temperature and fixed charge density, the only allowed solution is the charged
BTZ discussed in the previous section. As we lower the temperature, a branch of solutions
appears with the scalar hair condensing near the horizon of the black hole and as we
lower the temperature further, more and more solutions of this type appear with p = (J?)
acquiring more nodes at finite radii outside of the black hole horizon.

2

Taking the value m* = —3/4 one can expand the equations of motion near the bound-

ary. The fall-off of the fields near the boundary is given by

¢(r) = ¢1 + palog(r) + ...
W) = —5 + 4. (3:2)

Hence, the chemical potential is 1 = —¢2 log(e) with 1/e representing the cut-off scale.
One numerical observation is that in the limit 7'/T, — 0 the condensate seems to go away.
However for a complete zero temperature analysis it is essential to take into account the
back-reaction of the condensate on the geometry [24].
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Figure 4. The order parameter of this transition is the value of the condensate at fixed charged
density. The above plot shows the temperature dependence of the order parameter on solutions
with different number of nodes. From right to left red, green and blue respectively represent the
zero, one and two node solutions.

4 Discussion

In this paper we discussed examples of symmetry breaking in 3D gravity that could be
thought of as phases of some strongly coupled 2D conformal field theories with large central
charges. In the case of a discrete broken symmetry, we observed a rich phase space of
solutions with high temperature order. In condensed matter, there are known systems
with similar exotic thermodynamics [26]. It would be extremely interesting to investigate
this connection explicitly.

If there exist theories of quantum gravity with small values of AdS radius in planck
units, one expects them to be dual to 2D field theories with small central charge. An inter-
esting implication of the Coleman-Mermin-Wagner theorem is that it seems such theories
of gravity can never admit continuous phase transitions at zero or any finite temperature.

There are other remaining interesting issues one can investigate. Firstly, it would
be a natural step to try to embed these models in string theory. Holographic symmetry
breaking in 141D in the context of D1-D5 CFT was previously studied in [30]. Secondly, the
behavior we observe in the zero temperature limit of holographic superconductors in three
dimensions seems curious. As was mentioned in the previous section, the numerical results
in the probe regime suggest that at 7' — 0 the continuous symmetry is again restored. For
low enough temperatures the value of the condensate increases with temperature.

We would like to especially thank Alejandra Castro and Omid Saremi for extremely
valuable discussions without which this work would not have been completed. We are also
indebted to Alexander Maloney and Aaron C. Vincent for a critical reading of the draft.
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