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1 Introduction

Quarkonia (heavy quark-antiquark bound states) are among the most important probes

of the hot medium created in relativistic heavy ion collisions. Unlike light quarks, heavy

quarks are predominantly created in the primordial hard collisions, and do not reach chem-

ical equilibrium with the medium. Since J/ψ suppression was proposed in 1986 as a sig-

nature of the formation of the quark-gluon plasma [1], the charmonium system has been

investigated intensively, both experimentally [2, 3] and theoretically [4, 5]. With the ad-

vent of the Large Hadron Collider, there has been increasing interest in bottomonium states

as well, since b quarks are now for the first time being produced copiously in heavy ion

collisions. In particular, the recent results from CMS indicate the survival of the Υ(1S)

state, but suppression of the Υ(2S + 3S) states [6] (see ref. [7] for results from STAR).

A number of phenomenological studies have since attempted to explain this suppression

pattern [8, 9]. It is generally expected that bottomonium provides a cleaner probe than

charmonium, since statistical recombination of independent quarks and antiquarks plays a

much less important role, and also since b quarks retain their nature as ‘hard probes’ to a

larger extent. Cold nuclear matter effects are also expected to be simpler for b than for c

quarks.

Theoretically, quarkonium suppression has traditionally been investigated with poten-

tial models (see e.g. refs. [10, 11] and references therein) and with lattice QCD computa-

tions of quarkonium spectral functions [12–19]. Exploiting the strongly-coupled nature of

the quark-gluon plasma, studies using gauge-gravity duality have also been used, see e.g.

refs. [20–22] for recent results. Other studies can be found in refs. [23, 24].
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In the past few years, the theoretical understanding of quarkonium melting and in-

medium modification has been improved substantially by casting the problem in the lan-

guage of effective field theories (EFTs) [25–35]. By relying on scale separation between the

heavy quark mass M and the temperature T of the quark-gluon plasma and on weak cou-

pling to distinguish the inverse system size Mαs, the binding energy Mα2
s and the inverse

Debye screening length mD ∼ √
αsT , a series of EFTs can be written down. One of the

main outcomes of this formulation is the appearance of a complex heavy quark potential,

where the imaginary part is generated by integrating out thermal fluctuations. For com-

plex potential model studies, see e.g. refs. [36, 37] as well as those listed above. Attempts

at extracting the complex potential from lattice QCD can be found in refs. [38, 39].

Various sequences of EFTs can be constructed, depending on the ordering of the scales.

For instance, refs. [25–27] have focused on high temperature, where the bound state is about

to fall apart, employing

M ≫ T > Mαs > mD ≫Mα2
s . (1.1)

The corresponding bound state spectral functions are then considerably affected by the

presence of the quark-gluon plasma. On the other hand, in ref. [31] lower temperatures are

considered, using

M ≫Mαs ≫ T ≫Mα2
s ≫ mD . (1.2)

In this case the ground states are less affected and thermal effects can be cast in terms of

thermal mass shifts and widths.

In all cases, integrating out the heavy quark mass scale M yields nonrelativistic QCD

(NRQCD) as an effective field theory. The appearance of further EFTs depends on the or-

dering of the scales and weak coupling. Since the applicability of weak coupling arguments

is not guaranteed for temperatures up to 2–3Tc, where Tc is the transition temperature

between the hadronic phase and the quark-gluon plasma, it would be desirable to solve

NRQCD in the quark-gluon plasma nonperturbatively, using lattice QCD simulations at

finite temperature. This programme was recently initiated by us.1

In ref. [41] we studied S and P wave bottomonium correlators at four different temper-

atures, T/Tc = 0.42, 1.05, 1.40 and 2.09, using NRQCD for the heavy quark dynamics and

relativistic two-flavour lattice simulations for the quark-gluon system. The main result of

that analysis was the presence of strong temperature dependence in the P wave correlators

(in the χb1,b2,b3 channels), indicating a melting of P wave bound states in the quark-gluon

plasma. At the highest temperature, we found the behaviour of the P wave correlators to

be consistent with nearly-free dynamics of the heavy quarks.

The temperature dependence in the S wave correlators was much less visible. The

goal of this paper is to analyse in detail the S wave correlators, in the vector (Υ) and

pseudoscalar (ηb) channels, and construct the corresponding spectral functions at several

temperatures in the hadronic phase and the quark-gluon plasma. Our main results can be

seen in figure 4, which shows that as the temperature is increased the ground state peaks

of the Υ and ηb remain visible, even though they broaden and reduce in height, while their

excited states become suppressed at higher temperature and are no longer discernible at

1See ref. [40] for an early pioneering study.
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T/Tc ∼ 1.68. The temperature dependence of the position and width of the ground state

peaks is compared to analytical predictions obtained within the EFT formalism [31]. We

note that the survival of the Υ(1S) state and suppression of excited states is consistent

with the recent CMS and STAR results [6, 7].

This paper is organised as follows. In the following section we decribe NRQCD as

an effective field theory for QCD, focusing on finite temperature aspects. We discuss in

particular how the nonrelativistic formulation has several advantages compared to standard

relativistic dynamics at nonzero temperature. Lattice details are collected in section 3. The

main part of the paper starts in section 4, where the high-precision euclidean correlators

in the Υ and ηb channels are presented. The corresponding spectral functions are shown in

section 5. Here we also compare our results with analytical EFT predictions. A discussion

of the maximum entropy method [42], used to construct the spectral functions, and of

systematic uncertainties is given in section 6. We summarise in section 7. The appendix

contains an analysis of lattice artefacts in NRQCD spectral functions in the absence of

interactions. Some preliminary results have previously been presented in ref. [43].

2 NRQCD at nonzero temperature

NRQCD is an effective theory of QCD where physics above the scale of the heavy quark

mass is integrated out [44–47]. It differs from heavy quark effective theory (HQET) in that

terms in the NRQCD lagrangian are ordered in powers of v = |p|/M , the typical velocity

of a heavy quark in the heavy quarkonium rest frame. In principle, there are infinitely

many terms in such an expansion and taking into consideration more terms would mean

more accurate relativistic corrections. However, in practice, only a small number of terms

is necessary for a given accuracy, since v2 is small (∼ 0.1 for the bottom quark) and the

series converges quickly. Also, including more terms in an effective theory would normally

mean tuning more coefficients, resulting in a loss of predictive power. In practice, the

coefficients of the NRQCD lagrangian can be calculated using perturbation theory since

M is large (∼ 5 GeV for the bottom quark) and often tree level values are sufficient when

simulation parameters are chosen judiciously.

In this work, we use the following O(v4) euclidean NRQCD lagrangian density for the

bottom quark [46],

L = L0 + δL , (2.1)

with

L0 = ψ†

(

Dτ − D2

2M

)

ψ + χ†

(

Dτ +
D2

2M

)

χ , (2.2)

and

δL = − c1
8M3

[

ψ†(D2)2ψ − χ†(D2)2χ
]

+c2
ig

8M2

[

ψ†(D ·E − E ·D)ψ + χ†(D · E − E · D)χ
]

−c3
g

8M2

[

ψ†σ · (D × E − E× D)ψ + χ†σ · (D × E − E × D)χ
]

−c4
g

2M

[

ψ†σ · Bψ − χ†σ ·Bχ
]

. (2.3)
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Here Dτ and D are gauge covariant temporal and spatial derivatives, ψ is the heavy quark

and χ is the heavy anti-quark. The coefficients ci = 1 at tree level.

In contrast to the relativistic theory, the time evolution for nonrelativistic heavy quarks

is an initial value problem. In particular, the presence of a nonzero temperature is not im-

posed as a boundary condition in the temporal direction of the heavy quark field. Instead,

the effects of temperature enter for the heavy quarks as they propagate through the ther-

mal medium of light quarks and gluons. Since we are considering temperatures T ≪ M ,

we expect that finite temperature can be taken into account without affecting the effective

field theory nature of NRQCD.

The absence of thermal boundary conditions simplifies spectral relations considerably.

In the relativistic formulation, the euclidean correlator and its spectral function are re-

lated via

G(τ) =

∫ ∞

−∞

dω

2π
K(τ, ω)ρ(ω) , (2.4)

with the kernel

K(τ, ω) =
cosh[ω(τ − 1/2T )]

sinh(ω/2T )
. (2.5)

Temperature dependence enters in two ways: kinematically due to the periodic boundary

conditions, reflected in the periodicity of the kernel, and dynamically due to the propagation

through a temperature-dependent medium. It is important to disentangle these two, since

the first one is present even in the absence of interactions and does not reflect the effects

of the thermal medium.

In NRQCD the kinematical temperature dependence is absent. This can be seen in

a number of ways. Following ref. [27], we write ω = 2M + ω′ and drop terms that are

exponentially suppressed when M ≫ T . The spectral relation (2.4) then reduces to

G(τ) =

∫ ∞

−2M

dω′

2π
exp(−ω′τ)ρ(ω′) (NRQCD), (2.6)

even at nonzero temperature. This reflects the fact that the NRQCD propagator is con-

structed from an initial-value problem. Physically it implies that the heavy quarks are not

in thermal equilibrium with the light-quark–gluon system, but instead appear as probes.

This simplification also removes the problems associated with the so-called constant

contribution [48]. In the small energy limit, the product of the relativistic kernel and the

spectral density is independent of euclidean time [49],

lim
ω→0

K(τ, ω)ρ(ω) = 2T
ρ(ω)

ω

∣

∣

∣

∣

ω=0

, (2.7)

where we used that the spectral function ρ(ω) is an odd function in ω and increases linearly

at small ω. This is relevant for transport coefficients [49] and for conserved charges, in the

presence of which spectral functions will have a contribution of the form

ρ(ω) = χ2πωδ(ω) + contribution at larger ω, (2.8)

where χ is a susceptibility. Spectral weight at vanishing energy will therefore yield a

constant, additive contribution to the euclidean correlator. It has been argued [48, 50]
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Ns Nτ T (MeV) T/Tc Ncfg

12 80 90 0.42 250

12 32 230 1.05 1000

12 28 263 1.20 1000

12 24 306 1.40 500

12 20 368 1.68 1000

12 18 408 1.86 1000

12 16 458 2.09 1000

Table 1. Summary of the lattice data set. The lattice spacing is set using the 1P−1S spin-averaged

splitting in charmonium [17], corresponding to as ≃ 0.162 fm, a−1
τ ≃ 7.35GeV. The anisotropy is

as/aτ = 6.

that this constant contribution interferes with the interpretation of charmonium survival

or melting, as seen by lattice QCD simulations [12–19]. It also requires a modification [51]

of Bryan’s algorithm in the implementation of the maximum entropy method [42, 52]. In

NRQCD, the contribution at small energies is absent, since only energies above 2M are

present.2 In summary, in the heavy quark limit the spectral relation simplifies considerably,

removing the problems associated with thermal boundary conditions. All temperature

effects seen in the correlators are thus due to changes in the light-quark–gluon system.

3 Lattice formulation

We solve NRQCD nonpertubatively using lattice QCD, and let the bottom quarks prop-

agate through a medium of gluons and two flavours of light quark. Gauge configurations

with Nf = 2 dynamical light Wilson-type quark flavours are produced on highly anisotropic

lattices (ξ ≡ as/aτ = 6) of size N3
s ×Nτ . A summary of the lattice datasets is given in ta-

ble 1, while more details of the lattice action and parameters can be found in refs. [16, 55].

In the light quark sector, mπ/mρ ≃ 0.54, which implies that the light quark masses are

comparable to the strange quark mass.

In ref. [41] we studied the effect of temperature on S and P wave bottomonium cor-

relators. Compared to that study, we have greatly increased the number of configura-

tions and expanded the number of temperature values (in ref. [41] we only considered

T/Tc = 0.42, 1.05, 1.40 and 2.09). We have also improved the nonperturbative tuning of

the bare anisotropy in the action.3

In order for NRQCD to be a consistent effective field theory in a lattice simulation,

the lattice spacing as, acting as a short-distance cutoff, has to be kept finite and satisfy

Mas ∼ 1. Finite lattice spacing errors can then be systematically improved as they appear

at the same order as relativistic effects due to as ∼ 1/M . There are many equivalent

discretizations of the continuum NRQCD lagrangian density discussed above. Following

2Heavy quark diffusion has been studied using heavy quark effective theory [53, 54].
3All data analysed here correspond to Run 7 in the terminology of ref. [16].
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earlier studies of heavy quarkonium spectroscopy at zero temperature [56–58], we calculate

the heavy quark Green function on an anisotropic lattice using

G(x, τ = 0) = S(x) ,

G(x, τ = aτ ) =

(

1 − H0

2n

)n

U †
4(x, 0)

(

1 − H0

2n

)n

G(x, 0) ,

G(x, τ + aτ ) =

(

1 − H0

2n

)n

U †
4(x, τ)

(

1 − H0

2n

)n

(1 − δH)G(x, τ) , (3.1)

where S(x) is the source, the lowest-order hamiltonian reads

H0 = −∆(2)

2M
, (3.2)

and

δH = −(∆(2))2

8M3
+

ig

8M2
(∆ · E − E ·∆) − g

8M2
σ · (∆ × E− E × ∆)

− g

2M
σ ·B +

a2
s∆

(4)

24M
− as(∆

(2))2

16nM2
. (3.3)

The integer n controls the high-momentum behaviour of the evolution equation. Since the

bottom quark is heavy enough, we take n = 1. The last two terms in δH are corrections

to the kinetic energy term at finite lattice spacing [45]. The lattice covariant derivatives

are defined as

∆iψ =
1

2as

[

Ui(x)ψ(x+ ı̂) − U †
i (x− ı̂)ψ(x − ı̂)

]

,

∆(2)ψ =
∑

i

∆
(2)
i ψ =

∑

i

1

a2
s

[

Ui(x)ψ(x+ ı̂) − 2ψ(x) + U †
i (x− ı̂)ψ(x− ı̂)

]

,

∆(4)ψ =
∑

i

(

∆
(2)
i

)2
ψ , (3.4)

and E and B in eq. (3.3) are lattice definitions of the chromoelectric and chromomagnetic

fields. We use tadpole improvement [59]:

Ui(x) →
Ui(x)

us
, U0(x) →

U0(x)

uτ
, (3.5)

where us,τ are the average space-like (s) and time-like (τ) links, determined from the

plaquette expectation values; although in practice, the time-like mean link uτ is set to 1.

The coefficients ci are then set to 1. Note that us 6= uτ , since the lattice is anisotropic.

An accurate determination of bottomonium spectroscopy requires careful tuning of

the bare heavy quark mass M to satisfy NRQCD dispersion relations [56]. To study the

finite-temperature modification of NRQCD propagators, an approximate choice of asM

such that M ≃ 5GeV is sufficient.

There are many sources of systematic error in a lattice NRQCD calculation [58]. The

three usual ones are effects of finite lattice spacing, finite volume and light quark vacuum

– 6 –
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polarization. Two more arise from the effective field theory nature: relativistic effects

and radiative corrections to the couplings in the NRQCD expansion. Among these, finite

volume effects are expected to be small for bottomonium since the physical size of bottomo-

nium is small. Relativistic effects from the neglected higher order terms beyond O(v4) are

expected to be small as well since v2 ∼ 0.1. From experience in heavy quarkonium spec-

troscopy [56, 57], tadpole improvement is expected to reduce radiative corrections. The

light quark masses used in this work are somewhat large but since the effects of the light

quark vacuum polarization in heavy quarkonium physics is small, systematic effects from

this are expected to be minor. The presence of a finite lattice spacing with the condition

Mas ∼ 1 is a well-known issue in lattice NRQCD, ruling out a continuum limit of NRQCD

results, but at finite temperature this problem is no worse than at zero temperature. In

all, the qualitative features of the finite temperature behaviour of bottomonium reported

in this work are expected to remain valid even after the careful consideration of systematic

errors.

4 Correlators

The starting point for the remainder of this paper is the high-precision euclidean correlators

in the vector (Υ) and the pseudoscalar (ηb) channel, obtained by solving the NRQCD

evolution equations. In figure 1 (top) we show these correlators, normalised with the

value at τ = 0 and on a logarithmic scale, for all temperatures available. Due to the use

of NRQCD, there is no periodicity in the temporal direction. Combined with the large

anisotropy, this implies that many temporal lattice points are available for the analysis,

even at the highest temperature.

It is clear from the plots on the top that the temperature dependence is very mild. In

order to make the temperature dependence visible, we show on the bottom the ratio of the

high-temperature correlators with the one in the hadronic phase (T/Tc = 0.42, Nτ = 80).

We observe that the effect of increasing the temperature is monotonic and always below

3%. We remark here that the ratios depend on the sources used in the NRQCD evolution;

the results shown here are obtained with point sources. Since potential model calculations

typically use point (delta function) sources as well, a comparison between potential model

predictions and our NRQCD results should be possible.

In contrast to the relativistic case, the temperature dependence seen here does not

arise from the thermal boundary conditions, but solely from the presence of the medium

of gluons and light quarks at different temperatures. In terms of the spectral relation,

G(τ) =

∫

dω

2π
e−ωτρ(ω) , (4.1)

this is reflected in the temperature-independent kernel e−ωτ . In the relativistic case, the

temperature dependence of the kernel means a direct comparison between correlators at dif-

ferent temperatures is not straightforward. Often the kinematical temperature dependence

is eliminated by using so-called reconstructed correlators, which requires the calculation

of a spectral function at the lowest available temperature [60]. This is not needed here

– 7 –
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(0
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T/Tc=0.42

T/Tc=1.05

T/Tc=1.20

0 8 16 24
τ/aτ

1

1.01

1.02

1.03

G
N

τ(τ
) /

 G
80

(τ
)

0 16 32 48 64 80

T/Tc=1.40

T/Tc=1.68

T/Tc=1.86

T/Tc=2.09

0 8 16 24 32
 τ/aτ

3
S1(vector)
Upsilon

3
S1(vector)
Upsilon

1
S0(pseudoscalar)

ηb

1
S0(pseudoscalar)
ηb

Figure 1. Euclidean correlation functions G(τ) as a function of the euclidean time in the vector

(Υ) channel (left) and the pseudoscalar (ηb) channel (right), for all temperatures available, using

point sources. At the top the correlators are normalised with the value at τ = 0 and shown on a

logarithmic scale, while on the bottom the high-temperature correlators are normalised with the

correlator at the lowest temperature, T/Tc = 0.42 (Nτ = 80). The errors are smaller than the

symbols.

and therefore the ratios in figure 1 (below) are a proper reflection of the presence of the

temperature-dependent medium.

The statistical errors are small and not visible in the plots discussed above. To illustrate

this, we show the statistical relative error, i.e., err[G(τ)]/G(τ), as a function of euclidean

time in figure 2. At all but two temperatures, there are 1000 configurations available. To

take this into account, we rescaled the Nτ = 80 data by a factor 2 (250 configurations) and

the Nτ = 24 data by a factor
√

2 (500 configurations). We then observe that the relative

error is of the order of 10−4 and that it increases as the temperature of the quark-gluon

plasma is increased, indicating larger thermal fluctuations in the hot phase.

From the data at the lowest temperature, we extract the masses of the ground states

and the first excited states using standard exponential fits. The results are summarised in

table 2 and were already presented in ref. [41].4 In NRQCD, all energies are determined

only up to an additive constant, E = E0 + ∆E. Taking the Υ(1S) mass from the Particle

Data Book [61] to set the scale, we find E0 = 8.57 GeV.

4In ref. [41] a temporal lattice spacing of a
−1

τ
= 7.23 GeV rather than 7.35 GeV was used, correcting this

results in a small change in the mass predictions in the third column.
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0
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-4
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-4
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r[

G
(τ

)]
/G

(τ
)

Nτ=80 (250 cfgs) rescaled by 2

Nτ=32 (1000 cfgs)

Nτ=28 (1000 cfgs)

0 8 16 24 32 40
τ/aτ

Nτ=24 (500 cfgs) rescaled by √2
Nτ=20 (1000 cfgs)

Nτ=18 (1000 cfgs)

Nτ=16 (1000 cfgs)

3
S1(vector)
Upsilon

1
S0(pseudoscalar)
ηb

Figure 2. Relative error err[G(τ)]/G(τ) as a function of euclidean time in the vector (left) and

the pseudoscalar (right) channels. The data at Nτ = 80 and 24 are rescaled to take into account

the lower number of configurations.

state aτ∆E Mass (MeV) Exp. (MeV) [61]

11S0(ηb) 0.118(1) 9438(8) 9390.9(2.8)

21S0(ηb(2S)) 0.197(2) 10019(15) −
13S1(Υ) 0.121(1) 9460∗ 9460.30(26)

23S1(Υ
′) 0.198(2) 10026(15) 10023.26(31)

11P1(hb) 0.178(2) 9879(15) 9898.3±1.1+1.0
−1.1 [62]

13P0(χb0) 0.175(4) 9857(29) 9859.44(42)(31)

13P1(χb1) 0.176(3) 9864(22) 9892.78(26)(31)

13P2(χb2) 0.182(3) 9908(22) 9912.21(26)(31)

Table 2. Zero temperature bottomonium spectroscopy. The 13S1(Υ) state is used to set the scale.

Here we concentrate on the Υ and ηb states.

5 Spectral functions

We extract spectral functions from the euclidean correlators presented above using the

Maximum Entropy Method (MEM) [42]. A straightforward inversion of eq. (4.1) is not

possible, since euclidean correlators are determined numerically at a finite number of

points, whereas spectral functions are in principle continuous functions of the energy

ω. Using the ideas of Bayesian probability theory, one can construct the most proba-

ble spectral function by maximizing the conditional probability P [ρ|DH], where D in-

dicates the data and H some additional prior knowledge, encoded in a default model.

In this section we present the results, while a discussion of the systematic uncertain-

ties is given in the next section. We only consider spectral functions at zero spatial

momentum.
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Figure 3. Spectral functions ρ(ω), normalised with the heavy quark mass, as a function of energy

at the lowest temperature in the vector (Υ) and the pseudoscalar (ηb) channels. The vertical lines

indicate the positions of the ground and first excited state obtained via standard exponential fits.

The insets show a close-up.

The results for the spectral functions at the lowest temperature are given in figure 3.

The vertical lines indicate the position of the ground state and first excited state from

table 2. We observe that the ground state appears as a very narrow peak in the spectral

function, while the first excited state is broader and overlaps with structure at larger energy.

The third feature, visible in the inset, is presumably a combination of higher excited states

and lattice artefacts (see appendix A).5 We note that quadruple precision is required for

the MEM inversion, due to the large number of points (Nτ = 80) and the exponential

fall-off.

The main result of this paper is the spectral functions at the various temperatures,

shown in figure 4 for the vector (Υ) channel (upper panel) and the pseudoscalar (ηb)

channel (lower panel). Every panel contains two adjacent temperatures, from the coldest

(T/Tc = 0.42) in the top left to the hottest (T/Tc = 2.09) in the bottom right. In each

panel, the lower temperature is depicted with a dashed line and the higher one with a

solid line. As the temperature is increased, we observe that the ground state peak remains

visible, even though it broadens and reduces in height. The excited states become less

pronounced as the temperature increases and are no longer discernible as a separate peak

between 1.4 . T/Tc . 1.68.6 This can be interpreted as the survival of the 1S states, but

a melting or suppression of the excited states. From the analysis in section 6, we note here

that we consider the results for the spectral functions to be robust for all temperatures,

with the exception of the two highest temperatures where uncertainties due to the limited

statistics and euclidean time range remain.

We note that the area under the curve is determined by the source7 at τ = 0 and the

5Note in particular that it cannot be identified with the second excited state Υ(3S), with a mass of

10.3552 GeV [61].
6We also note that the second peak immediately above Tc is presumably a combination of the first

excited state and other features.
7The point source is defined to be unity for each of the upper two-component spinor indices as well as

for each of the colour indices.
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Figure 4. Spectral functions ρ(ω), normalised with the heavy quark mass, in the vector (Υ) channel

(upper panel) and in the pseudoscalar (ηb) channel (lower panel) for all temperature available. The

subpanels are ordered from cold (top left) to hot (bottom right). Every subpanel contains two

adjacent temperatures to facilitate the comparison.

spectral relation,
∫

dω

2π
ρ(ω,p = 0) =

∫

d3xG(τ = 0,x) =

∫

d3xS(x) , (5.1)

and is independent of the temperature.

The peak position E and width Γ of the ground states can be extracted by fitting the

peaks to a Gaussian function. We fit to the left side of the peak, to avoid contamination
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Figure 5. Position of the ground state peak ∆E, normalised with the heavy quark mass (upper

panels), and the upper limit on the width of the ground state peak, normalised with the temperature

(lower panels), as a function of T/Tc in the vector (Υ) and the pseudoscalar (ηb) channels. The

error bars denote the systematic uncertainty with the left error bars representing the error from the

finiteness of the last time in the fitting window, τ2, and the right error bar representing the error

from the finite statistics (see section 6). The lines in the upper plots indicate expected analytical

behaviour assuming weak coupling above Tc.

from the features at larger ω. In figure 5 (top panel) we show the temperature dependence

of the mass shift ∆E, normalised with the heavy quark mass. Recall that in NRQCD

only energy differences can be determined, and that the total energy is E = E0 + ∆E,

where E0 = 8.57 GeV in our case. The temperature dependence of the width is shown in

figure 5 (bottom panel). Note that the width is normalised with the temperature. The

error bars indicate systematic uncertainties in extracting the peak position and width from

the peaked structure. In section 6 these uncertainties are discussed in detail. Based on this

discussion we conclude conservatively that the width shown in figure 5 is better interpreted

as an upper bound, rather than the width itself.

To see whether these results are reasonable, we now take them at face value and con-

trast them with analytic predictions derived assuming a weakly coupled plasma. According

to ref. [31], the thermal contribution to the width is given, at leading order in the weak

coupling and large mass expansion, by

Γ

T
=

1156

81
α3

s ≃ 14.27α3
s , (5.2)
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i.e., the width increases linearly with the temperature.8 If we take as an estimate from

our results that Γ/T ∼ 1, we find that this corresponds to αs ∼ 0.4, which is a reasonable

result. In the same spirit the thermal mass shift is given in ref. [31] by

δEthermal =
17π

9
αs
T 2

M
≃ 5.93αs

T 2

M
. (5.3)

In these simulations we have Tc ∼ 220 MeV, M ∼ 5GeV. Taking these values together

with αs ∼ 0.4 as determined above, eq. (5.3) becomes

δEthermal

M
= 5.93αs

(

Tc

M

)2( T

Tc

)2

∼ 0.0046

(

T

Tc

)2

. (5.4)

In order to contrast our results with this analytical prediction, we have compared the

temperature dependence of the peak positions to the simple expression

∆E

M
= c+ 0.0046

(

T

Tc

)2

, (5.5)

where c is a free paramater. This is shown by the dashed lines in figure 5 (top panel). While

we are not in a position to confirm or rule out the quadratic temperature dependence due

to the systematic uncertainties in the MEM analysis and the fitting of the ground state

peaks, we note that our results are not inconsistent with this. In particular, the absolute

scale of temperature variation seems to be of the correct order. We also note that the mass

just above Tc is reduced with respect to the low temperature one.

6 Systematics and uncertainties

In order to assess the robustness of the results presented above, in this section we discuss

the main systematic uncertainties, namely the dependence on the default model, the choice

of ωmin, the number of configurations and the euclidean time window, and explain the error

estimates of the previous section. We only show results for the vector channel; the ones in

the pseudoscalar channel are similar.

Default model. The MEM procedure includes a “default model” m(ω) which is used to

define the entropy term,

S =

∫ ωmax

ωmin

dω

2π

[

ρ(ω) −m(ω) − ρ(ω) ln
ρ(ω)

m(ω)

]

, (6.1)

in the MEM approach. It is expected that with poor data the spectral function will

resemble the default model, since this minimises the entropy, but that with precise data

the choice of default model becomes irrelevant. The usual procedure is to choose a default

model which has the same functional form as the (continuum) free spectral function in the

channel under consideration. For the nonrelativistic S wave, this is m(ω) = m0
√
ω, see

eq. (A.4). An alternative is to use a constant default model, m(ω) = m0. The constants

8A linearly rising width with temperature was also predicted in ref. [25].

– 13 –



J
H
E
P
1
1
(
2
0
1
1
)
1
0
3

0 0.2 0.4 0.6 0.8 1
aτω

0

0.5

1

1.5
a τ2 ρ(

ω
)

m(ω) = 0.014
m(ω) = 0.14 *
m(ω) = 1.4
m(ω) = 0.018 

m(ω) = 0.18 √ω−ωmin *

m(ω) = 1.8 √ω−ωmin

3
S1(vector)

Nτ=32

Upsilon

0 0.25 0.5 0.75 1
aτω

0

0.5

1

a τ2 ρ(
ω

)

m(ω) = 0.011
m(ω) = 0.11 *
m(ω) = 1.1

m(ω) = 0.013 √ω−ωmin

m(ω) = 0.13 √ω−ωmin *

m(ω) = 1.3 √ω−ωmin

3
S1(vector)

Nτ=16

Upsilon

Figure 6. Dependence of the spectral function on the default model chosen in the MEM analysis

for Nτ = 32 (left) and 16 (right), in the vector channel. The default models favoured by the χ2

minimization are denoted with a ∗.

m0 can be set by minimising the χ2 between the data and the correlation function defined

from the default model,

Gdef(τ) =

∫ ωmax

ωmin

dω

2π
e−ωτm(ω) .

To illustrate the absence of default model dependence in our analysis, we show here results

for the following six default models:

• m(ω) = m0
√
ω, with m0/m

∗
0 = 0.1, 1, 10,

• m(ω) = m0, with m0/m
∗
0 = 0.1, 1, 10,

where in both cases m∗
0 is determined by minimizing χ2 as described above.

In figure 6 we show the resulting six spectral functions, as well as the six default models

used, at T/Tc = 1.05 and 2.09. We observe that the spectral functions do not resemble

the default models and that there is almost no variation in the spectral functions, even

with default models varying over two orders of magnitude. We conclude that there is no

significant default model dependence in this analysis, even at the highest temperature.

Energy window. Since in NRQCD the heavy quark mass scale is removed, the additive

normalization of the energy scale has to be determined by comparing to a physical state.

For this reason, setting the lower boundary ωmin = 0 in the spectral relation (4.1) is not

a priori justified and it might be necessary to allow for the possibility of negative energies

(ωmin < 0) in the energy integral. Indeed, in the high temperature cases we noticed that

when ωmin ∼ 0, the MEM spectral functions have a spike in the lowest-energy bin, which we

interpret as an unphysical effect. Reducing ωmin to negative values reduces this spike until

it is essentially absent when aτωmin ∼ −0.10. At the lower temperatures (Nτ = 80, 32),

no spikes were observed with ωmin = 0. In table 3 we list the parameters used in the

MEM analysis. Nω denotes the number of points in which the energy interval ωmax–ωmin

is divided.

Number of configurations. In figure 7 we illustrate how the position and width of the

ground state peak depend on the number of configurations used in the MEM analysis. For

– 14 –



J
H
E
P
1
1
(
2
0
1
1
)
1
0
3

Υ (vector channel) ηb (pseudoscalar channel)
Nτ Nω aτωmin aτωmax aτωmin aτωmax

80 4000 0.00 2.00 0.00 2.00

32 1000 0.00 1.50 0.00 2.00

28 1000 −0.04 1.46 −0.08 1.92

24 1000 −0.10 1.40 −0.10 1.90

20 1000 −0.10 1.40 −0.10 1.90

18 1000 −0.10 1.40 −0.10 1.90

16 1000 −0.12 0.88 −0.12 1.88

Table 3. Details of the parameters used in the MEM analysis. Note that ∆ω = (ωmax−ωmin)/Nω,

and that aτω = 0 and 2 correspond to 8.57GeV and 23.3GeV respectively.
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Figure 7. Dependence of the position (∆E) and width (Γ) of the ground state peak extracted

from the spectral function on the number Ncfgs of configurations used, in the vector channel.

clarity, we only show results for a selection of Nτ values. At each temperature, we divide

the total number of configurations (1000) into 20 groups of 50, 10 groups of 100, 5 groups

of 200, 3 groups of 333, and 2 groups of 500, and compute the spectral function for each of

them. The resulting peak position and width are shown as a function of 1/
√

Ncfgs. At the

lower temperatures (Nτ = 32, 28, 24) we observe that both are essentially independent of

the number of configurations used and the results are stable. At the higher temperature

(Nτ = 20) there is a larger spread for the low-statistics results, but the average results

are again quite stable, with at most only a slight decrease in the width and mass as the

statistics are increased. It is only at the highest temperatures (Nτ = 18, 16) that there is

a clear decrease in the position and width with increased statistics. We conclude that the

statistical error due to the finiteness of the ensemble does not prevent us from determining

the ground state mass and width, at all but the highest two temperatures.

To translate the dependence on the number of configurations into an uncertainty in

the position and width of the ground state, we proceed as follows. The central value is

taken from the analysis with 1000 configurations. The statistical error due to the finite

number of configurations is defined by taking the difference between the central value and

the value obtained with 500 configurations which is furthest from the central value. This

statistical error is shown as the right-hand error bar in figure 5.
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Figure 8. Dependence of spectral functions on the euclidean time window aτ = τ1 ≤ τ ≤ τ2, for

several values of τ2 for Nτ = 20 (left) and 16 (right), in the vector channel.
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Figure 9. Dependence of the position (∆E, left) and width (Γ, right) of the ground state peak

extracted from the spectral function on the euclidean time window aτ = τ1 ≤ τ ≤ τ2 used in the

MEM analysis, in the vector channel.

Euclidean time window. The euclidean time window included in the MEM analysis is

τ1 ≤ τ ≤ τ2, with the initial time equal to the first time slice, i.e. τ1 = aτ .9 In figure 8

we show the dependence of the constructed spectral functions on τ2 for Nτ = 20 (left)

and Nτ = 16 (right), varying τ2 from a small value up to Nτ − 1. Both cases are at high

temperature, T/Tc = 1.68 and 2.09 respectively. We observe that at Nτ = 20 the result is

stable and the limitation of having only a finite number of points in the temporal direction

does not appear to be a problem. At the highest temperature, on the other hand, we note

that the results have not yet stabilised, so that the uncertainty in constructing the spectral

function is larger.

In order to quantify this, we have determined the τ2 dependence of the position and

peak of the ground state at all temperatures. The result is shown in figure 9 for a selection

of Nτ values. For the lowest temperature (Nτ = 80), we observe that ∆E is stable and con-

sistent with the result from the standard fits directly to the euclidean correlator. Moreover,

there is evidence that the width Γ decreases towards zero as τ2 increases. The position and

9Varying τ1 within reason did not have a significant effect.
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Figure 10. The probability P (α) used in Bryan’s approach for Nτ = 32 (left) and 16 (right). The

horizontal lines indicate the interval used in the integral in eq. (6.3).

width at Nτ = 32, 28, or T/Tc = 1.05, 1.20, appear to behave as in the hadronic phase,

except for a possible flattening out of the width for Nτ = 28 at large τ2. A similar behaviour

is found for Nτ = 24, with a clearer tendency for both the position and width to flatten

out at large τ2. On the other hand, at Nτ = 20 both position and width are consistently

above their low-temperature values, and may reach a plateau for large τ2, consistent with

figure 8. For Nτ = 18 and 16, no stability is seen. For Nτ = 16, it follows from figure 8 that

when τ2 is too small, the ground state and features at larger energies overlap and therefore

the ground state peak cannot be resolved. At τ2/aτ & 13, two structures become visible,

which explains the rapid drop of the position and peak. We conclude therefore that at most

temperatures above Tc the position and width of the groundstate peak appear to be stable,

except at the highest two temperatures where substantial dependence on τ2 remains.

To translate the finiteness of τ2 into a systematic uncertainty on the position and width

of the ground state, we adopt the following procedure. The central value is taken from

the analysis with τ2 = Nτ − 1. The systematic error due to a finite τ2 is defined by taking

the difference between the central value and the value obtained with τ2 = Nτ − 2. This

systematic error is shown as the left-hand error bar in figure 5.

Bryan’s approach. In the MEM approach, Bayes’ theorem implies that the entropy

term S is balanced against the usual maximum likelihood χ2. The function Q to be

maximized is

Q = αS − χ2, (6.2)

where S is defined in eq. (6.1) and α is a normalisation constant which is to be determined.

In Bryan’s approach [52] the spectral function ρα(ω) is calculated for each value of α and

the final spectral function is obtained by performing the convolution integral,

ρfinal(ω) =

∫

dαP (α)ρα(ω) . (6.3)

Here P (α) is the probability that α is chosen correctly.

In figure 10, the probability P (α) is plotted for the Υ channel for Nτ = 32 and 16.

In practice, the limits in the integral in eq. (6.3) are taken such that P (α) is greater than
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some fraction of its maximum value Pmax. In this case, we use the interval defined as

P (α)/Pmax > 0.1 and the resulting interval is shown in figure 10 by the horizontal lines.

In all cases we find that the probability is well defined with a clear maximum.

7 Conclusion

In this paper we analysed lattice QCD results for S wave bottomonium correlators (in the

Υ and ηb channels). The heavy quarks are treated with NRQCD and propagate through a

two-flavour quark-gluon medium at seven temperatures between 0.4Tc and 2.1Tc. Highly

anisotropic lattices, with as/aτ = 6, are used to maximise the number of time slices avail-

able for the analysis. Spectral functions are constructed with the help of the maximum

entropy method.

The use of NRQCD has a number of advantages compared to relativistic quark dy-

namics. Since the presence of a nonzero temperature is not imposed as a thermal boundary

condition, twice as many euclidean time points are available for the analysis compared to

the relativistic case (at the same temperature and lattice spacing). More importantly, the

spectral relation simplifies considerably, removing the problem with the so-called constant

contribution in the correlator. Physically, it implies that all temperature dependence is

due to the presence of the light-quark–gluon system.

Our main results are spectral functions for the S waves, in the vector (Υ) and pseu-

doscalar (ηb) channels. Our results suggest that the ground state survives up to the highest

temperature we consider, whereas the excited states are suppressed and no longer visible at

temperatures above 1.4Tc. We have extracted the position and width of the ground state

peaks and found them to be consistent with analytical results obtained within the EFT

framework, at leading order in the large mass expansion.

Systematic uncertainties have been studied in some detail. For all temperatures, we

found no dependence on the default model used in the MEM analysis. The position

and width of the ground state peaks were shown to be stable as the number of config-

urations is increased, for all except the highest temperatures. Perhaps the biggest un-

certainty comes from the finite number of euclidean time points, but our analysis sug-

gests that the peak position and width can still be reliably determined for temperatures

up to 1.7Tc.

We hope that our results will be useful for further EFT and potential model stud-

ies. After constructing a temperature-dependent potential, one usually computes spectral

functions and the corresponding euclidean correlators. It would be interesting to com-

pare the outcome of such an exercise with our nonperturbatively determined correlators.

This would in particular be applicable to ratios of finite-temperature correlators with the

zero-temperature one, as in figure 1, to cancel normalization factors and focus on the

temperature dependence.

Finally, we hope that our results will contribute to a further understanding of the

recent experimental results for bottomonium in heavy ion collisions at the LHC and RHIC.
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A Noninteracting lattice spectral functions

In order to understand the effect of lattice artefacts, it is useful to construct lattice spectral

functions in the absence of interactions, adapting the approach of refs. [63, 64] to lattice

NRQCD.

Let us start with free quarks in continuum NRQCD with energy Ep = p2/2M . The

correlators for the S and P waves at zero spatial momentum are then of the form [27]

GS(τ) = 2Nc

∫

d3p

(2π)3
e−2Epτ =

Nc

4π3/2

(

M

τ

)3/2

, (A.1)

GP (τ) = 2Nc

∫

d3p

(2π)3
p2e−2Epτ =

3Nc

8π3/2

(

M

τ

)5/2

, (A.2)

where in the explicit evaluation we did not include an ultraviolet cutoff, since the integrals

are finite for nonzero τ .

This is easily expressed in terms of spectral densities, using

G(τ) =

∫ ωmax

ωmin

dω

2π
e−ωτρ(ω) , (A.3)

yielding

ρS(ω) = 4πNc

∫

d3p

(2π)3
δ(ω − 2Ep) =

Nc

π
M3/2ω1/2Θ(ω) , (A.4)

ρP (ω) = 4πNc

∫

d3p

(2π)3
p2δ(ω − 2Ep) =

Nc

π
M5/2ω3/2Θ(ω) . (A.5)

Note that the minimal energy ωmin = 0 corresponds to twice the heavy quark mass, due to

the nonrelativistic approximation,
√

p2 +M2 ≈M +Ep. In the presence of a momentum
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Figure 11. Lattice spectral functions, in units of the temporal lattice spacing aτ , as a function of

aτω, for S waves (left) and P waves (right) in anisotropic lattice NRQCD at lowest order, ignoring

interactions, using ξ ≡ as/aτ = 6 and aτM = 0.75. The dashed lines indicate the continuum

spectral functions in the absence of a cutoff.

cutoff |p| < Λ, the maximum energy is finite and given by ωmax = Λ2/M . Note also that

there is no temperature dependence in the absence of interactions. All temperature effects

enter via the propagation through the quark-gluon system.

These results can easily be adapted to the lattice [63, 64], taking into account the

lattice dispersion relation and the finite momentum integration over the first Brillouin

zone. At lowest order in (unimproved) NRQCD, the dispersion relation is

aτEp = − log

(

1 − p̂2

2ξM̂

)

, (A.6)

where M̂ = asM , ξ = as/aτ , and

p̂2 = 4

3
∑

i=1

sin2

(

pi

2

)

, pi =
2πni

Ns
, ni = −Ns

2
+ 1, . . . ,

Ns

2
, (A.7)

with Ns the number of sites in a spatial direction. The lattice spectral functions then take

the form

ρS(ω) =
4πNc

N3
s

∑

p

δ(ω − 2Ep) , (A.8)

ρP (ω) =
4πNc

N3
s

∑

p

p̂2δ(ω − 2Ep) , (A.9)

where the sums go over all momenta in the first Brillouin zone. Evaluating these numeri-

cally, as in refs. [63, 64], yields the spectral functions shown in figure 11. Here Ns is taken

large enough to be in the spatial thermodynamic limit, while there is no dependence on

Nτ . Improving the dispersion relation will give better agreement between lattice and con-

tinuum results at small ω. The cusps result from reaching the edge of the Brillouin zone

in the (1,0,0) or (1,1,0) direction (+ permutations). The maximal energy is determined

by the maximal lattice momentum in the (1,1,1) direction, namely p̂2 = 12, and equals

aτω
lat
max = 0.503 for the parameters used here. Comparing these results with those for free

relativistic quarks [63, 64], we conclude that the main difference is the temperature (or Nτ )

independence.
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