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1 Introduction

The profound finding of the anti-de Sitter/conformal field theory (AdS/CFT) correspon-

dence [1–3] has provided a framework to describe the strongly coupled field theories in a

weakly coupled gravitational system. Recently, this correspondence has been applied to

study the holographic model of superconductors in which a remarkable connection has been

observed between the gravitational physics and the condensed matter physics [4]. It has

been shown that the bulk AdS black hole becomes unstable and scalar hair condenses below

a critical temperature. The instability of the bulk black hole corresponds to a second order

phase transition from normal state to superconducting state which brings the spontaneous

U(1) symmetry breaking. In the boundary dual CFT, these properties exhibit the behavior

of the superconductor [5, 6]. Due to the potential applications to the condensed matter

physics, the condensation in bulk AdS black holes has been investigated extensively, for

reviews, see refs. [7–9] and references therein.

In additional to the bulk AdS black hole spacetime, recently it was found that a holo-

graphic model can be constructed in the bulk AdS soliton background to describe the

insulator and superconductor phase transition [10]. Adding the chemical potential to the

AdS soliton, a second order phase transition can happen when the chemical potential is over

a critical value. This phase transition can be used to describe the transition between the

insulator and superconductor, while it is different from the Hawking-Page phase transition

between the Ricci flat AdS black hole and the AdS soliton [11]. Taking the backreaction

of the matter fields into account, it was argued that the order of the phase transition

can be changed from the second to the first if the backreaction is strong enough [12]. In

the Stückelberg mechanism, rich physics on the phase transition between the holographic
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insulator and superconductor in the AdS soliton background has been observed [13]. Fur-

ther investigations on various insulator and superconductor phase transitions in different

theories of gravity have been carried out [14–18].

In most cases, the holographic superconductors were studied numerically. Ideally, one

would like to have a full analytic description of the phase transition and condensation

phenomena. In addition to back up numerical results, the analytic description can help to

gain more insights, for example it may tell what properties of the action decide the mean-

field behaviors etc. Recently, there appeared two analytic approaches in parallel to the

numerical calculation. One is the analytic matching method which was first proposed in [19]

and later refined in [18, 20]. With this method, we can calculate the critical temperature

analytically within a few percent in the best case. This analytic approach has been extended

to derive the upper critical magnetic field when the holographic superconductor is immersed

in constant external magnetic fields [21, 22]. In higher dimensions, this analytic method

can keep valid only when the matching point is chosen within an appropriate range [18].

However the matching method is not effective to describe the AdS soliton, neither can it be

used to derive the critical exponents for the condensation near the critical temperature. The

mean-field critical exponent 1/2 at the critical temperature comes mostly from numerically

solving the holographic systems and doing data fitting. In [23, 24], the authors extended

the variational method for the Sturm-Liouville (S-L) eigenvalue problem to analytically

calculate the critical exponent near the critical temperature. This method was further

applied to analytically study some properties of holographic superconductors in AdS black

hole backgrounds in Einstein gravity [25] and Einstein-Gauss-Bonnet gravity [26] in the

probe limit, respectively.

An analytic study by using the S-L method on the phase transition between the holo-

graphic insulator and superconductor was done in [17] in the Einstein gravity. It is of in-

terest to further generalize the S-L method to study holographic superconductor developed

in the AdS soliton background in the Gauss-Bonnet gravity. The condensation phenomena

and the phase transition between the s-wave holographic insulator and superconductor in

the Gauss-Bonnet gravity were investigated numerically in [18, 27]. We will also extend the

investigation of the p-wave holographic insulator and superconductor phase transition with

Gauss-Bonnet correction in this work, which has not been constructed as far as we know.

It is not trivial to analytically study the condensation and the phase transition by taking

into account of the influence of the Gauss-Bonnet coupling. Besides to be used to check

numerical computation, the analytic investigation can clearly disclose the critical exponent

of the system at the critical temperature and the influence of the Gauss-Bonnet factor

in the phase transition. In the AdS soliton background, we will compare two available

analytic methods and argue that the S-L method is more effective for the analytic study

of the condensation.

The plan of the work is the following. In section 2 we briefly review the AdS soliton

background in the Gauss-Bonnet gravity. In section 3 we explore the s-wave insulator and

superconductor phase transition with Gauss-Bonnet correction. In section 4 we discuss the

p-wave case. We conclude in the last section with our main results.
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2 Gauss-Bonnet AdS soliton

In order to study the superconducting phase dual to the Guass-Bonnet AdS soliton con-

figuration in the probe limit, we start with the five-dimensional AdS soliton in the Gauss-

Bonnet gravity in the form [28]

ds2 = −r2dt2 + dr2

f(r)
+ f(r)dϕ2 + r2(dx2 + dy2), (2.1)

with

f(r) =
r2

2α

[

1−
√

1− 4α

L2

(

1− r4s
r4

)

]

, (2.2)

where rs is the tip of the soliton which is a conical singularity in this solution, α is the

Gauss-Bonnet coupling constant and L is the AdS radius. It should be noted that in the

asymptotic region (r → ∞), we find

f(r) ∼ r2

2α

(

1−
√

1− 4α

L2

)

, (2.3)

so the effective asymptotic AdS scale can be defined by [28, 29]

L2
eff =

2α

1−
√

1− 4α
L2

→
{

L2 , for α→ 0 ,
L2

2 , for α→ L2

4 .
(2.4)

α = L2/4 is the Chern-Simons limit corresponding to the upper bound of the Gauss-Bonnet

factor. When α → 0, (2.1) goes back to the Schwarzschild AdS soliton. For simplicity, in

the following we will consider the Gauss-Bonnet factor in the range 0 < α ≤ L2/5. For

the smoothness at the tip, we impose a period β = 4πL2

(d−1)rs
for the coordinate ϕ to remove

the singularity.

3 Phase transition between the s-wave insulator and superconductor

In the background of the Gauss-Bonnet-AdS soliton, we consider a Maxwell field and a

charged complex scalar field coupled via the action

S =

∫

d5x
√−g

[

−1

4
FµνF

µν − |∇ψ − iAψ|2 −m2|ψ|2
]

. (3.1)

Taking the ansatz of the matter fields as ψ = ψ(r) and A = φ(r)dt, we can get the equations

of motion for the scalar field ψ and gauge field φ in the form

ψ′′ +

(

f ′

f
+

3

r

)

ψ′ +

(

φ2

r2f
− m2

f

)

ψ = 0 , (3.2)

φ′′ +

(

f ′

f
+

1

r

)

φ′ − 2ψ2

f
φ = 0, (3.3)

where the prime denotes the derivative with respect to r.
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In order to solve the above equations, we have to impose the boundary conditions at

the tip r = rs and at r → ∞. At the tip r = rs, the solutions behave as

ψ = ψ̃0 + ψ̃1(r − rs) + ψ̃2(r − rs)
2 + · · · ,

φ = φ̃0 + φ̃1(r − rs) + φ̃2(r − rs)
2 + · · · , (3.4)

where ψ̃i and φ̃i (i = 0, 1, 2, · · · ) are integration constants, and the Neumann-like boundary

condition has been imposed to keep every physical quantity finite [10]. It is worth noticing

that one can find a constant nonzero gauge field φ(rs) at r = rs, in contrary to that of the

AdS black hole where φ(r+) = 0 at the horizon.

Near the boundary r → ∞, we have asymptotic behaviors

ψ =
ψ−

rλ−

+
ψ+

rλ+
, φ = µ− ρ

r2
, (3.5)

where µ and ρ are interpreted as the chemical potential and charge density in the dual field

theory respectively. Here λ± = 2±
√

2 +m2L2
eff . The coefficients ψ− and ψ+ both multiply

normalizable modes of the scalar field equations and they correspond to the vacuum expec-

tation values ψ− =< O− >, ψ+ =< O+ > of operators dual to the scalar field according

to the AdS/CFT correspondence. We can impose boundary conditions that either ψ− or

ψ+ vanish [5, 6]. For simplicity, we will scale L = 1 and rs = 1 in the following just as

in [10, 18].

Before going further, we would like to give a comment. In the AdS soliton back-

ground, since at the tip φ(rs) does not vanish in (6) and (7), which leads that the φ2

terms in the coupled equations cannot be got rid of as did in the AdS black hole case, we

cannot count on the matching method to obtain the analytic result. Here we will apply

the S-L method [23] to analytically investigate the properties of the s-wave holographic

insulator/superconductor phase transition in the Gauss-Bonnet gravity. We will calculate

the critical chemical potential to accommodate the phase transition and analytically de-

rive the critical exponent of condensation operator. In addition, we will derive the relation

between the charge density and the chemical potential near the phase transition point and

examine the effect of the Gauss-Bonnet factor.

3.1 Critical chemical potential

Introducing a new variable z = rs/r, we can rewrite eqs. (3.2) and (3.3) into

ψ′′ +

(

f ′

f
− 1

z

)

ψ′ +

(

φ2

z2f
− m2

z4f

)

ψ = 0 , (3.6)

φ′′ +

(

f ′

f
+

1

z

)

φ′ − 2ψ2

z4f
φ = 0 , (3.7)

where the prime here denotes the derivative with respective to z.

It has been shown numerically that the solution is unstable and a hair can be developed

when the chemical potential is bigger than a critical value, i.e., µ > µc. For lower chemical

potential, µ < µc, the gravitational dual is an AdS soliton with a nonvanishing profile for
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the scalar field ψ, which can be viewed as an insulator phase [10, 18]. Thus, there is a phase

transition between the insulator and superconductor phases around the critical chemical

potential µc.

At the critical chemical potential µc, the scalar field ψ = 0. So near the critical point

eq. (3.7) reduces to

φ′′ +

(

f ′

f
+

1

z

)

φ′ = 0. (3.8)

With the Neumann-like boundary condition (3.4) for the gauge field φ at the tip r = rs,

we can obtain the physical solution φ(z) = µ to eq. (3.8) when µ < µc. Considering the

asymptotic behavior in eq. (3.5), close to the critical point this solution indicates that ρ = 0

near the AdS boundary z = 0, which gives fairly good agreement with numerical results in

ref. [18].

As µ→ µc, the scalar field equation (3.6) reduces to

ψ′′ +

(

f ′

f
− 1

z

)

ψ′ +

(

µ2

z2f
− m2

z4f

)

ψ = 0. (3.9)

As in [23], we introduce a trial function F (z) near the boundary z = 0 which satisfies

ψ(z) ∼ 〈Oi〉zλiF (z), (3.10)

with i = + or i = −. Here we will impose the boundary condition F (0) = 1 and F ′(0) = 0.

Then, we can obtain the equation of motion for F (z)

F ′′ +

[

2λi
z

+

(

f ′

f
− 1

z

)]

F ′ +

[

λi(λi − 1)

z2
+
λi
z

(

f ′

f
− 1

z

)

+
1

z4f
(µ2z2 −m2)

]

F = 0.

(3.11)

Defining a new function

T (z) =
z2λi−3

√

1 + 4(z4 − 1)α− 1

2
√
α

, (3.12)

we can rewrite eq. (3.11) as

(TF ′)′ + T

[

λi(λi − 1)

z2
+
λi
z

(

f ′

f
− 1

z

)

+
1

z4f
(µ2z2 −m2)

]

F = 0. (3.13)

According to the Sturm-Liouville eigenvlaue problem [30], we obtain the expression which

can be used to estimate the minimum eigenvalue of µ2

µ2 =

∫ 1
0 T

(

F ′2 − UF 2
)

dz
∫ 1
0 V F

2dz
, (3.14)

with

U =
λi(λi − 1)

z2
+
λi
z

(

f ′

f
− 1

z

)

− m2

z4f
,

V =
T

z2f
. (3.15)
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In the following calculation, we will assume the trial function to be F (z) = 1− az2, where

a is a constant.

In [18] the condensate 〈O+〉 was numerically calculated in 5-dimensional Gauss-Bonnet

AdS soliton background simply by fixing ψ− = 0. It has been shown numerically that the

increase of the Gauss-Bonnet factor α results in the increase of the critical chemical poten-

tial, which means that the higher curvature correction will make it harder for the scalar

hair to be condensated. Now we can use the S-L method to understand the condensa-

tion analytically.

Using eq. (3.14) to compute the minimum eigenvalue of µ2 for i = +, we can obtain

the critical chemical potential µc for different strength of the curvature correction and the

mass of the scalar field. As an example, we calculate the case of m2L2
eff = 0 in detail. From

eq. (3.14), we obtain

µ2 =
Σ(a, α)

Ξ(a, α)
, (3.16)

with

Σ(a, α) =
1−6α+

√
1−4α(−1+4α)

3α3/2
+

1

16α2

[

2
√
α(−3+20α)+3(1−4α)2 log

√
α+2α

√

α(1−4α)

]

a

+
3[−1 + 10α− 30α2 +

√
1− 4α(1− 8α+ 16α2)]

40α5/2
a2,

Ξ(a, α) =
(−10 + 15a− 6a2)

√
α

60
. (3.17)

For different values of the Gauss-Bonnet factor, we can get the minimum eigenvalues of µ2

and the corresponding values of a, for example, µ2min = 11.607 and a = 0.440 for α = 0.0001,

µ2min = 12.667 and a = 0.386 for α = 0.1 and µ2min = 14.365 and a = 0.257 for α = 0.2.

Then, we have the critical chemical potential µc = µmin [17]. In table 1, we present the

critical chemical potential µc for chosen values of the Gauss-Bonnet coupling α and various

masses of the scalar field determined by fixing m2L2
eff . Comparing with numerical results,

we find that the analytic results derived from S-L method are in good agreement with the

numerical calculation.

From table 1, we observe that for the same mass of the scalar field, the critical chemical

potential increases when the Gauss-Bonnet factor α becomes bigger. Our analytic result

supports the observation obtained numerically that the higher curvature correction can

make the scalar hair more difficult to be developed [18–22, 27, 31–36]. It is interesting to

note that the analytical S-L method can give consistent critical chemical potential with

the numerical result even when the mass of the scalar field is zero. This shows that

the S-L method is more effective than the matching method. It was realized that the

matching method cannot deal with the scalar field with zero mass [18], since for this case

the Gauss-Bonnet term does not contribute to the analytic approximation in the matching

method [18, 19].

For the same strength of the curvature correction, with the increase of the mass of

scalar field, the critical chemical potential µc becomes larger. This property also agrees

well with the numerical result [18].
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α 0.0001 0.1 0.2

m2L2
eff = 0 3.407 3.404 3.559 3.556 3.790 3.789

m2L2
eff = −1 3.137 3.135 3.275 3.272 3.477 3.475

m2L2
eff = −2 2.817 2.815 2.937 2.935 3.106 3.105

m2L2
eff = −3 2.399 2.396 2.497 2.494 2.624 2.622

m2L2
eff = −15/4 1.897 1.888 1.963 1.960 2.042 2.039

Table 1. The critical chemical potential µc obtained by the analytical S-L method (left column)

and from numerical calculation (right column) with chosen Gauss-Bonnet coupling and various

masses of the scalar field for the s-wave holographic insulator and superconductor model. In order

to compare with the results in refs. [10, 18], we also present the critical chemical potential for

m2L2

eff
= −15/4.

In the AdS black hole in Gauss-Bonnet gravity [26], the S-L method was applied by

choosing specific mass of the scalar field by fixing m2L2
eff = −3. For choosing other nonzero

values of the mass of scalar field, (4.16) there cannot be integrated analytically so that their

(4.17), (4.18) and further steps cannot be derived. In the AdS soliton background, we found

a much better situation. (3.14) above can be integrated analytically when the mass of the

scalar field satisfying the Breitenlohner-Freedman bound [37], so that analytically we can

observe the condensation with the change of the mass of the scalar field.

If we fix the scalar field mass by choosing values of m2L2 instead of m2L2
eff , the S-L

method can give the same qualitative dependence of the critical chemical potential on the

Gauss-Bonnet factor as described above when we study the scalar operator 〈O+〉. This

supports the numerical computation in the AdS black hole background [18, 19].

Now we concentrate on the scalar operator 〈O−〉 by imposing the condition ψ+ =

0. Fixing the mass of the scalar field by choosing values of m2L2
eff , the scalar operator

〈O−〉 presents us qualitatively the same behavior of the condensation when we change

the strength of the curvature correction as we observed above. With the increase of the

Gauss-Bonnet coupling, the critical chemical potential will increase, which shows that

the condensation will be harder to develop. But if we fix the mass of the scalar field

by choosing values of m2L2, analytically we observed completely different condensation

behavior as the Gauss-Bonnet coupling changes, see table 2. Our analytical result got

by using S-L method presents the same abnormal behavior as found numerically in [18].

Considering that choosing the mass of the scalar field by selecting the value of m2L2
eff

contains directly the signature of Gauss-Bonnet factor in the scalar mass, we believe that

this way of choosing the scalar field mass can disclose the correct consistent influence due

to the Gauss-Bonnet coupling in various condensates.

3.2 Critical phenomena

We will use the S-L method to analytically discuss the critical phenomena for the phase

transition between the s-wave holographic insulator and superconductor in the Gauss-

Bonnet gravity. We will concentrate on studying the critical exponent for condensation

operator and the relations between the charge density and the chemical potential.
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α 0.0001 0.01 0.05 0.1

m2L2
eff = −15/4 0.837 0.839 0.849 0.862

m2L2 = −15/4 0.836 0.798 0.648 0.463

Table 2. The critical chemical potential µc obtained by using the analytical S-L method for the

s-wave holographic insulator and superconductor model. The mass of scalar field is chosen by fixing

m2L2

eff
= −15/4 and m2L2 = −15/4, respectively.

The scalar field ψ can be given by eq. (3.10) when µ → µc, so we can rewrite the

equations of motion (3.7) as

φ′′ +

(

f ′

f
+

1

z

)

φ′ − 2〈Oi〉2z2λi−4F 2

f
φ = 0. (3.18)

Since the condensation for the scalar operator 〈Oi〉 is so small, we can expand φ(z) in small

〈Oi〉 as

φ(z) ∼ µc + 〈Oi〉χ(z) + · · · . (3.19)

Considering the boundary condition at the tip, we can get χ(1) = 0 and χ′(1) = constant.

After defining a function

P (z) =

√

1 + 4(z4 − 1)α− 1

2
√
αz

, (3.20)

we can obtain the equation of motion for χ(z)

(Pχ′)′ − 2〈Oi〉µc
z2λi−4PF 2

f
= 0. (3.21)

According to the asymptotic behavior in eq. (3.5), we can expand φ when z → 0 as

φ(z) ≃ µ− ρz2 ≃ µc + 〈Oi〉[χ(0) + χ′(0)z +
1

2
χ′′(0)z2 + · · · ]. (3.22)

From the coefficients of the z0 term, we can easily get

µ− µc ≃ 〈Oi〉χ(0). (3.23)

If we set

χ(z) = 2〈Oi〉µcξ(z), (3.24)

where the function ξ(z) is the solution to the following equation

ξ′′ +

(

f ′

f
+

1

z

)

ξ′ − z2λi−4F 2

f
= 0, (3.25)

we will know that

〈Oi〉 =
1

[2µcξ(0)]1/2
(µ− µc)

1/2, (3.26)

– 8 –
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where ξ(0) = c1 −
∫ 1
0 [c2 +

∫ z
1 F (x)

2x2λi−3dx] dz
zf(z) with the integration constants c1 and c2

determined by the boundary condition χ(z). For example, fixing m2L2
eff = −15/4 and α =

0.0001, we can get ξ(0) = 0.0815 when a = 0.330 which results in 〈O+〉 ≈ 1.801(µ−µc)1/2.
This agrees well with the result given in [17].

Note that our expression (3.26) is valid for all cases considered here, thus near the

critical point, both of the scalar operators 〈O+〉 and 〈O−〉 satisfy 〈Oi〉 ∼ (µ− µc)
1/2. This

behavior holds for various values of Gauss-Bonnet couplings and masses of the scalar field.

The analytic result supports the numerical computation [18, 27] that the phase transition

between the s-wave holographic insulator and superconductor belongs to the second order

and the critical exponent of the system takes the mean-field value 1/2. The Gauss-Bonnet

coupling will not influence the result.

Considering the coefficients of z1 terms in eq. (3.22), we find that χ′(0) → 0 if z → 0,

which is consistent with the following relation by integrating both sides of eq. (3.21)

[

χ′(z)

z

] ∣

∣

∣

∣

z→0

= − 4
√
α〈Oi〉µc√

1− 4α− 1

∫ 1

0

z2λi−4PF 2

f
dz. (3.27)

Comparing the coefficients of the z2 term in eq. (3.22), we can express ρ as

ρ = −1

2
〈Oi〉χ′′(0). (3.28)

From eqs. (3.21) and (3.27), we arrive at

χ′′(0) =

[

P ′(z)

P (z)
χ′(z)

] ∣

∣

∣

∣

z→0

= − 4
√
α〈Oi〉µc√

1− 4α− 1

∫ 1

0

z2λi−4PF 2

f
dz. (3.29)

Using the above formula and eq. (3.26), we can deduce

ρ = Γ(α,m)(µ− µc), (3.30)

where Γ(α,m) is a function of the Gauss-Bonnet coupling and the scalar field mass

Γ(α,m) =

√
α

(
√
1− 4α− 1)ξ(0)

∫ 1

0

z2λi−4PF 2

f
dz. (3.31)

Fixing m2L2
eff = −15/4 and α = 0.0001, for example, we can get Γ(α,m) = 1.330 when

a = 0.330, so that ρ = 1.330(µ − µc) for considering the scalar operator 〈O+〉. This is

consistent with the result given in [17]. Here we observed that the Gauss-Bonnet coupling

will not alter the result. Our analytic finding of a linear relation between the charge density

and the chemical potential ρ ∼ (µ− µc) supports the numerical result reported in [18].

4 Phase transition between the p-wave insulator and superconductor

Since the S-L method is effective to obtain the s-wave holographic insulator and supercon-

ductor phase transition, we will use it to investigate analytically the p-wave holographic

insulator and superconductor phase transition in the Gauss-Bonnet gravity which has not

been constructed as far as we know.
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Considering an SU(2) Yang-Mills action in the bulk theory [38]

S =

∫

d5x
√−g

(

−1

4
F a
µνF

aµν

)

, (4.1)

where F a
µν = ∂µA

a
ν −∂νAa

µ+ ǫ
abcAb

µA
c
ν is the SU(2) Yang-Mills field strength and ǫabc is the

totally antisymmetric tensor with ǫ123 = +1. The Aa
µ are the components of the mixed-

valued gauge fields A = Aa
µτ

adxµ, where τa are the three generators of the SU(2) algebra

satisfy [τa, τ b] = ǫabcτ c.

In order to construct a p-wave holographic insulator and superconductor in the Gauss-

Bonnet gravity, we adopt the ansatz of the gauge fields as [16, 17, 39–41],

A(r) = φ(r)τ3dt+ ψ(r)τ1dx. (4.2)

Here we regard the U(1) symmetry generated by τ3 as the U(1) subgroup of SU(2). The

gauge boson with nonzero component ψ(r) along x-direction is charged under A3
t = φ(r).

According to AdS/CFT correspondence, φ(r) and ψ(r) are dual to the chemical poten-

tial and the x-component of some charged vector operator O in the boundary field theory

respectively. The condensation of ψ(r) will spontaneously break the U(1) gauge symme-

try and lead to a phase transition, which can be interpreted as a p-wave insulator and

superconductor phase transition on the boundary.

From the Yang-Mills action (4.1), we can derive the following equations of motion

ψ′′ +

(

f ′

f
+

1

r

)

ψ′ +
φ2

r2f
ψ = 0, (4.3)

φ′′ +

(

f ′

f
+

1

r

)

φ′ − ψ2

r2f
φ = 0, (4.4)

where the prime denotes the derivative with respect to r.

In order to solve the above equations of motion, we have to impose the boundary

conditions for the φ(r) and ψ(r) fields at the tip r = rs and at r → ∞. At the tip r = rs,

the solutions have the same form just as eq. (3.4) for the s-wave holographic insulator

and superconductor model. But near the boundary r → ∞, we have different asymptotic

behaviors

ψ = ψ0 +
ψ2

r2
, φ = µ− ρ

r2
, (4.5)

where µ and ρ are interpreted as the chemical potential and charge density in the dual

field theory, while ψ0 and ψ2 may be identified as a source and the expectation value of the

dual operator, respectively. Since we are interested in the case where the dual operator is

not sourced, we will set ψ0 = 0 and have a normalizable solution.

4.1 Critical chemical potential

Define the variable z = rs/r, the equations of motion (4.3) and (4.4) can be expressed in

the z coordinate as

ψ′′ +

(

f ′

f
+

1

z

)

ψ′ +
φ2

z2f
ψ = 0 , (4.6)
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Figure 1. (color online) The condensates of the operator 〈O〉 = ψ2 and charge density ρ with

respect to the chemical potential µ for different Gauss-Bonnet couplings α for the p-wave holographic

insulator and superconductor model. The three lines from left to right correspond to increasing α,

i.e., α = 0.0001 (red), 0.1 (blue and dashed) and 0.2 (black) respectively.

φ′′ +

(

f ′

f
+

1

z

)

φ′ − ψ2

z2f
φ = 0, (4.7)

where the prime denotes the derivative with respective to z.

Similar to the analysis in the previous section, if µ ≤ µc, the field ψ is nearly zero,

i.e., ψ ≃ 0. Thus, we can obtain the physical solution φ(z) = µ to eq. (4.7) when µ < µc.

This is consistent with the numerical results in figure 1 which plot the condensates of

the operator 〈O〉 = ψ2 and charge density ρ with respect to the chemical potential µ for

different Gauss-Bonnet couplings α.

As µ→ µc, eq. (4.6) will become

ψ′′ +

(

f ′

f
+

1

z

)

ψ′ +
µ2

z2f
ψ = 0. (4.8)

We can also define a trial function F (z) near the boundary z = 0 just as in the last section

ψ(z) ∼ 〈O〉z2F (z), (4.9)

with the boundary condition F (0) = 1 and F ′(0) = 0. Therefore, the equation of motion

for F (z) is given by

F ′′ +

(

5

z
+
f ′

f

)

F ′ +

(

4

z2
+

2f ′

zf
+

µ2

z2f

)

F = 0. (4.10)

Introducing a new function

T (z) =
z3(
√

1 + 4(z4 − 1)α− 1)

2
√
α

, (4.11)

we can rewrite eq. (4.10) as

(TF ′)′ + T

(

4

z2
+

2f ′

zf
+

µ2

z2f

)

F = 0. (4.12)
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α 0.0001 0.1 0.2

µc 2.267 2.265 2.387 2.385 2.587 2.585

Table 3. The critical chemical potential µc obtained by the analytical S-L method (left column)

and from numerical calculation (right column) with fixed Gauss-Bonnet coupling for the p-wave

holographic insulator and superconductor model. Note that our result reduces to the result in

ref. [16] if α→ 0.

Defining the following parameters

U =
4

z2
+

2f ′

zf
, V =

T

z2f
, (4.13)

we find that, following the Sturm-Liouville eigenvlaue problem [30], the minimum eigen-

value of µ2 can be obtained from variation of the following functional

µ2 =

∫ 1
0 T

(

F ′2 − UF 2
)

dz
∫ 1
0 V F

2dz

=
1

4[6 + (3a− 8)a]α5/2

{

4
√
α
[

12α(1− 4a) + a(8− 3a+ 20aα)− 8a(1− 4α)3/2
]

+3(1− 4α)[4α+ a2(4α− 1)] log

[

(1− 4α)α

(2α+
√
α)2

]}

, (4.14)

where we have assumed the trial function to be F (z) = 1− az2 with a constant a.

We can easily obtain the minimum eigenvalues of µ2 and the corresponding values of

a for different Gauss-Bonnet couplings α, for example, µ2min = 5.140 and a = 0.338 for

α = 0.0001, µ2min = 5.697 and a = 0.305 for α = 0.1 and µ2min = 6.691 and a = 0.223

for α = 0.2. Thus, we get the critical chemical potential µc = µmin [17] which has been

shown in table 3 for fixed value of the Gauss-Bonnet factor α. In order to compare with

numerical results, we also give the critical chemical potential obtained by using the shooting

method. Obviously, the agreement of the analytic results derived from S-L method with

the numerical calculation is quite impressive.

From table 3, we also find that the critical chemical potential increases when the Gauss-

Bonnet factor α becomes bigger, which shows that the higher order curvature corrections in

general make the condensation harder to form, just as observed for the s-wave holographic

insulator and superconductor model. This property agrees well with the numerical result

shown in figure 1.

4.2 Critical phenomena

With eq. (4.9), when µ→ µc the equation of motion (4.7) can be rewrited as

φ′′ +

(

f ′

f
+

1

z

)

φ′ − 〈O〉2z2F 2

f
φ = 0. (4.15)

Note that the condensation value of ψ(z) is so small, we will expand φ(z) in small 〈O〉 as

φ(z) ∼ µc + 〈O〉χ(z) + · · · , (4.16)
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with the boundary condition χ(1) = 0 at the tip. Using the function defined in eq. (3.20),

we can get the equation of motion for χ(z)

(Pχ′)′ − 〈O〉µc
z2PF 2

f
= 0. (4.17)

Near z → 0, we can also expand φ as

φ(z) ≃ µ− ρz2 ≃ µc + 〈O〉[χ(0) + χ′(0)z +
1

2
χ′′(0)z2 + · · · ]. (4.18)

Comparing the coefficients of the z0 term in both sides of the above formula, we can obtain

µ− µc ≃ 〈O〉χ(0). (4.19)

Considering the following equation for ξ(z)

ξ′′ +

(

f ′

f
+

1

z

)

ξ′ − z2F 2

f
= 0, (4.20)

with

χ(z) = 〈O〉µcξ(z), (4.21)

we will have

〈O〉 = 1

[µcξ(0)]1/2
(µ− µc)

1/2, (4.22)

where ξ(0) = c1 −
∫ 1
0 [c2 +

∫ z
1 F (x)

2x3dx] dz
zf(z) with the integration constants c1 and c2

determined by the boundary condition χ(z). For example, for the case of α = 0.0001, we

can get ξ(0) = 0.0673 when a = 0.338 which results in 〈O〉 ≈ 2.560(µ − µc)
1/2. This is in

good agreement with the result given in [16, 17].

It should be noted that the relation (4.22) is valid for all cases considered here, so the

condensation 〈O〉 ∼ (µ− µc)
1/2 near the critical point for various values of Gauss-Bonnet

couplings, which agrees well the numerical results in figure 1 that the phase transition

between the p-wave holographic insulator and superconductor belongs to the second order

and the critical exponent of the system takes the mean-field value 1/2.

From the coefficients of the z1 term in eq. (4.18), we obtain that χ′(0) → 0 which is

consistent with the following relation by making integration of both sides of eq. (4.17)

[

χ′(z)

z

]
∣

∣

∣

∣

z→0

= − 2
√
α〈O〉µc√

1− 4α− 1

∫ 1

0

z2PF 2

f
dz. (4.23)

For the coefficients of the z2 term in eq. (4.18), we have

ρ = −1

2
〈O〉χ′′(0) = Γ(α)(µ− µc), (4.24)

where Γ(α) is only the function of the Gauss-Bonnet couplings which can be given by

Γ(α) =

√
α

(
√
1− 4α− 1)ξ(0)

∫ 1

0

z2PF 2

f
dz. (4.25)
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For example, we can obtain Γ(α) = 1.126 when a = 0.338 for α = 0.0001, i.e., the linear

relation ρ = 1.126(µ − µc), which agrees well with the result given in [17]. Still we notice

that the Gauss-Bonnet coupling will not change the result. The analytic finding of a linear

relation between the charge density and the chemical potential ρ ∼ (µ − µc) is consistent

with the numerical result presented in figure 1.

5 Conclusions

We have applied the S-L method to investigate analytically the condensation and critical

phenomena of the phase transition between the holographic insulator and superconductor

in the Gauss-Bonnet gravity. We found that unlike the analytic matching method, the

S-L method is effective to obtain the analytic results in the AdS soliton background both

for s-wave (the scalar field) and p-wave (the vector field) models. Different from the AdS

black hole in the Gauss-Bonnet gravity, in the AdS soliton spacetime we observed that

the S-L method can bring us results of condensation for different values of the scalar

field mass satisfying the Breitenlohner-Freedman bound. For the massless scalar field, the

information of the Gauss-Bonnet coupling can still be kept in the S-L method. With this

analytic method, we also found that it is more appropriate to choose the mass of the scalar

field by selecting the value of m2L2
eff . The analytic results derived from the S-L method

for the s-wave and p-wave holographic insulator/superconductor phase transitions support

the numerical computations and show that the higher curvature corrections make it harder

for the condensation to form.

Furthermore, comparing with the matching method, we found that in the AdS soliton

in the Gauss-Bonnet gravity the S-L method can present us analytic results on critical

exponent of condensation operator and the relation between the charge density and the

chemical potential near the phase transition point. We observed that effect of the Gauss-

Bonnet factor cannot modify the critical phenomena. The analytic results can be used

to back up the numerical findings in both s-wave and p-wave insulator/superconductor

models of the Gauss-Bonnet gravity.
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