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1 Introduction

One of the fundamental principles of the 2-dimensional conformal field theory (CFT) is
the convergence of the operator product expansion [1]. It in particular implies that any
4-point function factorizes in three different ways corresponding to the scattering channels
s, t, u. Equivalence of these decompositions is one of the basic consistency condition of
the theory usually referred to as the crossing symmetry or the bootstrap equation.

Using the factorization and the conformal properties of 3-point functions one can ex-
press any 4-point correlator in terms of structure constants and holomorphic and anti-
holomorphic 4-point conformal blocks [1]. In the rational CFT the crossing symmetry
implies monodromy relations between conformal blocks in different channels [2-5]. Mon-
odromy matrices between s—t, and t—wu channels, are called the fusion and the braiding ma-
trices, respectively. As the spectrum of a rational CFT is finite they are finite-dimensional.

A well known example of the CFT with a continuous spectrum is the Liouville theory.
In this case the fusion and braiding matrices were first calculated by Ponsot and Teschner
using representations of U, (s1(2,R)) [6, 7]. These matrices can be also obtained calculating
the exchange relations for the chiral operators in the scalar field representation [8, 9]. The



explicite form of the integral kernels of the fusion and the braiding matrices was used
in the analytic proof that the Liouville structure constants [10, 11| satisfy the bootstrap
equation [6].

The structure of conformal blocks in the N = 1 superconformal theory is considerably
more complicated. It has been recently analyzed in the context of recursion relations in
a number of papers [12-19]. The form of the fusion matrix for the Neveu-Schwarz (NS)
superconformal blocks was first proposed in [20] on the basis of the properties of super-
symmetric extensions of b-hypergeometric functions. This result has been confirmed in [21]
where the fusion matrix was derived from the exchange relations of the chiral operators in
the super scalar free field representation. As in the case of the bosonic Liouville theory
the explicit form of the fusion matrix was used to check the bootstrap equation in the
NS sector of the N = 1 super-symmetric Liouville theory with the structure constants
proposed in [22, 23].

The main aim of the present paper is to derive the integral kernels of the braiding
matrices in the Ramond (R) sector of N = 1 SCFT by calculating the exchange relation
for chiral vertex operators in the free super field representation. The extension of the
theory by the Ramond sector leads to four types of chiral vertex operators. Their different
compositions correspond to different 4-point blocks of the Neveu-Schwarz and Ramond
fields [19]. We derive all technical ingredients necessary for calculating the braiding matrices
for all types of N = 1 superconformal blocks involving external Ramond weights. Due to
a proliferation of types of superconformal blocks we present detailed calculations only in
a few cases. They were chosen to illustrate all the technicalities involved. The methods
developed are general and can be easily applied to all other blocks.

Our first motivation was to complete the proof of the bootstrap equation in both sectors
of the (GSO projected) N = 1 super Liouville theory. The matrices we are to calculate
are however universal and can be used to check the bootstrap equation and to calculate
4-point correlation functions in any N = 1 SCFT with the central charge ¢ > ;’ The second
interesting problem is to find out if there is a supersymmetric counterpart of the relation
between the fusion and the modular matrices recently found in the standard CFT [24].
Due to the technical complexity both problems are postponed to subsequent papers.

The paper is organized as follows. Following [12, 18, 19] we define in section 2 the
Neveu-Schwarz (NS) and the Ramond (R) chiral vertex operators and analyze some of their
properties. In section 3 the construction of chiral superscalar field space representation of
the NS and the R vertex operators is described. In subsection 3.1 we derive braiding
relations for the chiral fermion fields. Our method is to decompose the chiral fermion Fock
space into Virasoro Verma modules and then use known braiding properties of the Ising
model chiral vertices. In subsection 3.2 we introduce the chiral fields and clarify their
relation to the chiral vertex operators of section 2. In subsection 3.3 the matrix elements
of the chiral fields necessary for their normalization are calculated.

In section 4 we calculate the braiding matrices. In subsection 4.1 we derive the braiding
kernel for the compositions of ordered exponentials and screening charges. This result along
with the results of section 3 are used in subsection 4.2 to calculated the braiding kernel in
several cases including pairs of NS-NS, R-NS and R-R chiral vertex operators.



The paper is supplemented by a number of appendixes. Appendix A collects the
properties of the chiral vertex operators of the Ising model we need in our construction of
the chiral fermion fields. In appendix B we derive in some specific case the Ward identity
for the fermionic current S in the presence of Ramond fields. Appendix C contains some
relevant properties of the Barnes double gamma function. In appendix D we derive the
orthogonality relations we use in subsection 4.1.

The paper is rather technical and some remarks concerning conventions and notations
can be helpful. Let us first emphasize that the choice of chiral vertex operators in the
Ramond sector is determined by the fact that the full theory is based on “small represen-
tations”, i.e. irreducible representations of the left and the right N = 1 Ramond algebras
extended only by the common parity operator [18, 19].

We shall adopt the symmetric form of the OPE of the fermionic current with the
Ramond fields [26]:
iﬁeﬂz

(z — w)

S(2) R} (w, @) ~  RE(w,@) 4., (1.1)

and the standard normalization of the two-point function

0 0
R (wo,w9)RE (wy,w >: Patbr, . 1.2
< ﬁQ( 2, W2) 51( 1, W) |ws _w1|2AB1 (1.2)
Formulae (1.1), (1.2) determine the braiding relations of the fermionic current with the
Ramond fields up to a sign. This is in order related to the normalization of the two-point
function of the RE fields as can be easily verified analyzing analytic properties of the

three-point functions!

<S(Z)R;3t2 (’U)Q, ZEQ)REI (wl, w1)> .
In the present paper we chose
<R_ (wa, W) Ry (w1 w1)> =m0
e e jwy — wy [*20 (1.3)
Vz—w S(z)Rg(w,w) =Fivw— zR?(w,zD)S(z).

The opposite convention
<R_ (wo, W) Ry (w1 1D1)> = - 0810
g jwp — w220 (1.4)
Vz—w S(z)RéE(w,w) =+ivw— zR?(w,zD)S(z),

is also possible. It is used for instance in [18, 19].

For the chiral Ramond fields we assume:

S(2)W5(w) ~ (:ﬁ_ez;lg Wiy (w) + ..., (1.5)

1See appendix B for a similar analysis of chiral correlators.



where f = e, 0 is the parity index and f denotes the parity opposed to f. Our convention
for braiding (1.3) takes the form?

Vi—w S(z)WeiB(w) =—ivw—z Weiﬁ(w)S(z),

\/z—wS(z)WoiB(w) = —i—i\/w—zWOiﬁ(w)S(z). (16)

Choosing the principal argument of a complex number ¢ in the range —m < Argé < m one
can write (1.6) as

S(2)W5(w) = —e W5 (w)S(2) {+1 for Arg(z —w) >0
+ + » €= (1.7)
S(2)Wy5(w) = +e Wi5(w)S(z) -1 for Arg(z—w)<0
while (1.3) reads
N L |41 for Arg(z —w) >0
S(z) Rz (w,w) = Fe Ry (w,w)S(z), €= { 1 for Arg(s —w) <0 (1.8)

Braiding properties (1.6), (1.7) are crucial for most of the calculations in the present paper.
Our notation for the chiral vertex operators and conformal blocks is organized as

follows. In the NS sector the chiral vertex operators are denoted by
Vf[AggJ (Z) : VAl - VAa

where ¢+ = e,0 is the parity index and the weights in the square brackets denote: Ay —
the weight of the vertex itself, A; — the weight of the source and A — the weight of the
target NS Verma module. The “star” vertices are defined by

V[£22](2) = {5,;,%[&31]@)}, Vo[£22](2) = [S,;,Ve[aﬁzl](z)} .

In the other three sectors the rules are similar but the vertices acquire an additional 4
index:

‘/fi[ﬁggl] (Z) : Wﬁl - Wﬁsv ‘/fi[Ag%l] (Z) : Wﬁ1 - VA37 Vfi[ﬁggJ (z) : VA1 - WﬁS'

This is related to the structure of Ward identities in these sectors. In contrast to the NS
sector the 3-point conformal blocks are determined up to four rather then two structure
constants. The + values of the additional index correspond the choice of a basis of 3-point
blocks required by the “small” representation mentioned above. The conformal weights of
the Ramond modules are denoted by parameter 3 which emphasizes the sign dependence
but also encodes information about the sectors. The notation of vertices is consistent with

2The consistency of (1.5) and (1.3) can be easily checked by explicit calculation in the representation we
develop in section 3.



the notation of conformal blocks introduced in [18, 19].3 One has for instance

FA[R%] () = il Wl£a) Vi) () [l
FA[5 55 () = (wf VAL OVEL] ) |wi)
75 [ ] (2) = (al VALLE (V2] ) )
75 [0 5] () = al VAL )VE2] (o) )

Let us note that the 4 in front of 5-s in the symbol of a conformal block is related to the
+ index of the corresponding vertex operator rather then an actual sign of this parameter.
(When there are two (3-s in a column we write the signs in front of the upper one.) According
to these notational rules all braiding relations for the chiral vertex operators can be easily
translated into analytic continuation formulae for corresponding 4-point blocks.

Although very economic for denoting vertices and blocks the A, 3 notation is not well
suited for the analytic expressions for the braiding matrices. For this purposes we use in
both sectors the a parametrization of conformal weights:

o(Q - «) 1 a(Q@—-a
o 0 ART gt T,

The relation « to 3 in the Ramond sector is straightforward o = g —V28.

Ans =

2 Chiral vertex operators

The relations of N = 1 superconformal algebra extended by the fermion parity operator
(—1)F read
c
Ly, Lp) = (m —n)Lygn + 19
m — 2k
2

1
{Sk, 51} = 2L34 + </<7 - 4> Ok+1,

(=17, L] = {(=D, Sk} =0,

where m,n € Z and k,l € Z + % in the Neveu-Schwarz algebra sector and k,l € Z in the
Ramond algebra one.

m (m2 — 1) Omtn s

[Lma Sk‘] — Sm-f—k;a

(2.1)

The NS supermodule VA of the highest weight A and the central charge ¢ is defined
as a free vector space generated by all vectors of the form

VAMK = L_MS_KVA = L—mj ...L_mls,ki...S,klyA, (2.2)
where K = {k1, ko, ... ,k;} and M = {mq,ma,...,m;} are arbitrary ordered sets of indices
1
ki > ...> ko > kq, k:seN—Q, mj=...=2mo=my, my €N

3The blocks themselves are different as in the present paper our conventions for braiding and hence the
Ward identities are different.



and va is the highest weight state with respect to the extended NS algebra:

Lova = Avp, (—1)FVA =vA, Lgpva=5wa=0, meN, keN- ; (2.3)
In the Ramond sector the highest weight state is defined in a similar way

Low; = Aw;, (—1)waF = w;, me; = Skw; =0, meN, keN (2.4)

A novel property is that the zero level subspace of the R supermodule W3 over w; is
2-dimensional

— c
Sowg =ieT 1 puf for A= i 32 #0. (2.5)
Hermitian forms (.,.)c.a on Va and (., .). g on Wg are uniquely determined by the relations
(L)' =L, (S)T=5_4, (va,va)=1, <w§,w;> =1, (wzg,So wZ{) =0. (2.6)

They are block-diagonal with respect to the Lo- and (—1)-gradings.
Following [19] we introduce 3-point blocks as chiral 3-forms (anti-linear in the left
argument and linear in the central and the right ones):

Vas X Va, X VA, 3 (63,8, &
Wey X Va, x Wga, 3 (13, &2, m
Vas X Wga, X Wg, 3 (§3,m2,m
Wy X Wy X Va, 3 (13,72, 61

(€35 €2, €1]2)
— R(77 2,mlz) € C
— R(ﬁs,nz,m\ yeC
e (135712, §112)

)
)
)
)

satisfying the “bosonic” (with respect to L,) and the “fermionic” (with respect to Si)
Ward identities. The “bosonic” identities are the same for 3-point blocks of all types. We
shall not use them in the present discussion (see [19] for their explicit form).

The “fermionic” Ward identities for the NN type of 3-point block take the form [12]:

k+ )
onn (83, Skéa, G1l2) = ) (%}) (=2)" <QNN(Smfk§37§27§1‘z)
m=0
— (=1l QNN(§37§27Sk7m§1‘Z)>7 k> —;7
QNN(£35 k:é-?aé-l Z < 2+m> ZmQNN(Sk+m£3a£2551|Z) (27)
m=0
— (= D)@l tR mz:o <k§n+m> zikim+éQNN(§37§27Sm—éé.l‘z% k> ;,

oxn(S_k€s, €a,&12) = (—1)IEH&H (&3, &, Ské]2)
1(k—1)

+ Z <m+1> _é_mQNN(£3?Sm+é£2,£1|Z).

m=—1



The form gyy is determined by the Ward identities up to two independent constants

onn(€3,82,€112) = pan(€3, 2, 612) onn (v, 12, 11 (1)
+oan (€35 €2, €112) o (3, #1211 [1)

where *v; = S_1v;. For Lp-eingenstates, Lo & = A;(&)&
2

pNN(§37§27§1‘Z) = ZAS(&S)iAQ(62)7A1(£1)pNN(§3752751‘1)7
p;N(£3’£2’£1|Z) = ZAB(&B)_AQ(62)_A1(§1)p;N(£3’52,£1|1)'

Since the parity of the total number of fermionic excitations is preserved in identities (2.7):

pxn (S1v3, 12, Syv1) = pan (S1v3, %12, Syv1) = if  |I|+]JeN- o

0
p;N(S]V:},V27SJV1) :PNN(S]V;J,,*I/Q,SJVl) =0 if ‘I‘—F’J’ € N.

The chiral vertex operators are defined by their matrix elements

(&3] Ve[ a5, ] (2)[€1) = pun(&3, 12, &1]2),

(&IVo[s33,] (2)[61) = PR (€3, 12, €1]2), 2.4
(E3|Ve[£32,] (2)|€1) = prn (€3, 12, E12),

(&3] Vo[ 232, ] (2)|€1) = prn(E3, %12, &1]2).

By the construction
Ve[a:32,] = {S,%,Vo[Aﬁil]} ;o Volasa] = [Sfé’v'a[ﬁﬁglﬂ :

The “fermionic” Ward identities for the RR 3-point block read [19]:

[71]+|ns|+1

orr(S—nn3,&2,m|2) = (—1) orr (13, &2, Snm|2)

> 1
+ Z <ZI§> 2" Forr(n3, Skéa,ml2),  (2.9)
=

o0 B 1 © 1
> <;> 2277 opn(ns, Sp-kbo,mlz) = ) (22k> (=2)" orn (S, 1713, €2,7m2)

P p=0

e 1_ S
—(=1)imlrimir Y <22k> (—2)2 g (13, €2, Sym|2).
p=0

The 3-form ggrg(n3,&2,11|2) is determined up to four rather then two constants:

onr (13, €2, 2) = pia (03, €2, m12) 0w (w3, v, w (1)
+ pin (13,82, m|2) ore (w3, v2, wi |1)
+ prn (03, €2,1m2) 0rn (w3, v, wi [1)
+ Prr (13,62, |2) ore (w3, vo, w7 [1).



For L eigenstates piy(n3, &2, m|2) = 22808 =A2(&)=210nm) ol (ns €5 11 |1). As before the
parity of the total number of fermionic excitations is preserved and therefore

PRR (SMn3yy2aSN771) — PRR (SMT}35V2,SN771

i AN HM eI+,
P (Smmss #v2, SNL) = prn (Saims, *v2, SN

t (Sums,va, Snm) = prat (Sams, v2, SN

P (Saams, #v2, SN) = prn (Saams, *v2, SN

0
0
0
o if #N+#MEN.

)
)
)
)

Using Ward identities (2.9) one can derive the relations

P (SngaVQaSwa):p R(SM’U)3,7/2,SN 1)5
Prr (Sywd,ve, Sywl) = piid (Smwy v, Snwy), (2.10)
pl—i:_(SngaVQaSN f):P (SM’U)3,7/2,SNUJT),
PR;(Sng aVQaSNwl_) = —PRR (Sng ,VQ,SNU];—),
for the even number of fermionic operators #M + #N € 2N and
P (Svwy ,va, Snwy ) = —ipra (Smwy , va, Sywi),
prr (Smwy v, SNwy) = ipig (Sarwy, va, Sywy), (2.11)
Pt (Svwy ,va, Snw) = —iprn (Spwy , v, Sywy ),
Prn (Syws v, Snwy) = —iptt (Sywy, ve, Sywy ),
for #M + #N € 2N + 1. One also has
Prn (Srws,ve, Sywi) = (= )#JPI{R (Srwy,va, Sywy),
pRR (Slw;’V%SJwi’—) = ( ) pR,R, (wa;_’V%Sle_)’ (2 12)
Prn (Srwy ve, Sywi) = (=1 i (Spwy, ve, Sywy),
P (Srwy,va, Sywi) = i (=1)" it (Srwy, va, Syuwy).
Identical relations hold for v replaced by *v.
An appropriate basis for the 3-point blocks takes the form:
+ + -
Pl(xR)e = pR; + Prr 5 pl(iR)o = pRR + ZpR;?,F .
The corresponding chiral vertex operators are given by
+
(ns Vi3] (=) Im) = s (ms,vim2),
(2.13)

(s ViE[332] (2) Im) = P (s, v, |2).



In the mixed sectors the Ward identities read:

[e.e] oo
1 1 1
> <";2> 2727 onn (€3, Spmzsm|2) = (;) (=2)" oxn(S),_p,—1&3,m2:m|2)
0

p=0 p=

Fi(—1 |£3|+771|+1Z< > P 24P (€3 112, Sapmn|2),

N N (2.14)
1 —n
Z <%}> 22 P QNR(§37Sp—nn27771‘Z) :Z <;p ) (_Z)p QNR(Sp+n_%§377727T]1’Z)
p=0 p=0
( |§3|+\771|+1 Z < ) n+p2,2 QNR(§37 2, Spn1’2)7
00 . oo .
> ( ) 2P onn(ns, Spma, €112) = (;) (=2)P orn(Sntpnz, 12, 6112)
p=0 p=0
HEPH ST (E) 1P 2 s S,y
=0 (2.15)

Orn (113, S -2, &1]2) = <é_n> (=2)" orn(Spnnz, m2,&112)

p
p=0
( 7]3|+§1+1Z< > n+ng n— pQRN(ngﬂnZ’ p— 151’2)

4

where |£],|n| denote parities of states £ € Va,n € Wa.* These relations along with the

“bosonic” Ward identities determine each 3-point block up to four constants:

oxr(€3,m2,m12) = il (€3,m2, m12) oxr (v3, w3, wi 1)
+pin (E35m2,m[2) oxm (v3, w3, wy (1)
o (€3,m2,m12) 0xm (3, Wy, Wi (1)
+oxr (€35 M2, M |2) oxr (v3, wy s w1 [1),

orx (M3, 12, €112) = Pl (n3, 12, &1|2) o (w3, w3, 1 (1)
+pix (13,72, &112) o (w3, w3, 1 [1)
+P§§L(773777275112)9111\1(?/15,11);71/1!1)
+Prx (13,12, 112) orn (w3, Wy, v1|1).

For Lg-eingenstates, Lo & = Ai(&)&, Lonj = Aj(n;)n; one has:

2) = ZAs(és)*Az(nz)*Al(m)

As(n3)—A2(n2)— A1(£1)

] (5377727771’1)
in(m3,m2,61]1), 1,y ==%.

pf\lljR(g?n n2,M
pix (3,12, &1|2) = =

*Ward identities (2.14), (2.15) differ from the corresponding ones in [18, 19] by the sign in front of i.
This comes from the opposite convention (1.4) which was (implicitly) assumed in [18, 19].



Using Ward identities (2.14), (2.15) one can derive the relations
+

pix (Stvwy , Sywi') = i pig (Siv,wy, Sywy),
prn (Stv, wy ,Sle ) = pia (Srv, Wy ,Sle ), (2.16)
prn (Stv, wy ’SJUH )= pNR T (Srv, Wy ’SJUH )
par (Stvywy , Sywi') = pli (Siv,wy, Sywy),
pix (Sywy ,wy , Spv) = pid (Sywy', wy, Spv),
RI;Ii_(SJw?) Wy, STV) =i pry (SJwg ,wy , S1v), (2.17)
pin (Sqwy,wy , Sv) =i py (Sywy , wy, Siv),
prn (Sqwq,wy , Sv) = pid (Sywg, wy, Spv),
and
P (Sv,wi, Sywt) = (=1)* pH (S, wy, Syw),
o (Srv,wy, Sywy) = =i (=1)* po (Sv,w, Sywy),
++ - _ #J - - + (2.18)
prr (S1vswy, Sywy) = =i (=1)" pe (Siv,wy, Sywy),
P (Stv,wy s Sywy) = (1) pH (S, wi s Syw)),
P (Sqwy ,wy, Sv) = =i (=1)#! pr (Sywi,wi, Spv),
prs (Sywg wy, Spv) = (1) it (Sywy ,wi, Sv),
++ — o _ #I —+ + ot (2.19)
Prn (Sqws s wy , Siv) = —i (=1)7" pp (Sywy , wy , Sv),
P (Sywy wy, Spv) = (1) il (Sywy ,wi, Spv).

For states with definite parities some forms identically vanish:
pNR (SIV w2’SJw1)_pRN(SJw:S’w2’SIV)_O if (2| +#J)€2N+1,
pNR (SIV w27SJw1)_pRN (Sng,MQ,S]V)—O if (2’I’+#J)€2N'

The decomposition of the 4-point functions of Ramond fields into conformal blocks
suggests the following convenient choice of a basis of the 3-point blocks [18, 19]

+
pl(\IR)e = PN+ + pxr s pf{N)e = pR+ + pRN ) (2 20)
n .
pl(\IR),o = PNR ==/ ZPNR ) Pl(xN)o pRN + ZP
The chiral vertex operators are then defined by their matrix elements as follows
+
&IV ()lm) = AR wf ml2).
(2.21)

<773’V [53 ]( &) = Pl(m)f(n?nwg 61lz), f=e,o0.
3 Chiral superscalar

3.1 Chiral fermion

In the NS sector the chiral fermion field decomposes into half-integer modes:

Z 1/}7" Z_r_é7 {¢r,1/15} = 57’—1—57 {(_1)F7ws} = 07 %t = 1/}—7’- (3'1)

rEZ-f—é

,10,



The algebra of modes is realized in the Fock space Fyg generated out of the vacuum |Qp)
satisfying ¢,|Qp) = 0, 7> 0, (=1)"|Qr) = ), (Ww|Qr) = 1.

In the R sector 1(z) has the integer mode decomposition:

¢(Z) = Z Tzz)m Z_m_é’ {T/Jmﬂ/)n} = 5m+n, {(_1)F’wWL} = Oa Tzz);[n = qbfm, (32)

meZ

and the vacuum state of the Fock space Fg is doubly degenerated
YolF) o< [QF), (~1)F|QF) = £|0F), (QFI0F) =1, (QFQ7F) = 0.

Both Fock spaces carry the ¢ = % Virasoro algebra representation

1 0 NS sector
Lo = k _
0 kz>0< +2>1’Z) k¢k+{116 R sector
1
Lm = 4 Z(2k - m) ¢m—k¢k P

k

where k € Z + é in the NS sector and k£ € Z in the R sector. Each Fock space can be
decomposed into Virasoro Verma modules which leads to the decomposition of the total

Hilbert space of the chiral fermion into Virasoro Verma modules with conformal weights

1 1 1.
0’ 27167 16°

HF:]:NSEB]:R:UQ@UéEBUJ{ eu; . (3.3)

1
16 16

In this decomposition Uy ®UT and U1 GUT, are the positive and the negative eigenspaces
16 2 16

of the partity operator (—1)F, respectively.

We introduce new chiral fields 0% (2) satisfying:

= e
Qe |oF (2)o* ()| ) = (2 —w) "5,

Y(2)oF (w) = Feo™ (w)h(2), €= {

(2)0 (w) (3.4)

+1 for Arg(z —w) >0
—1 for Arg(z —w) <0

+

The operators o= are uniquely determined by the relations above. One could in principle

calculate them in terms of modes. It is however more convenient to use decomposition (3.3)

— 11 —



and to express all the fields in terms of the (Virasoro) chiral vertex operators:

0 0 V%) 0
e AT g
ot (2) = 0 0 0, V()
V.2 (2) 0 0 0
0 ejz Vo(z) 0 0
0 0 0 V% (2)
B 0 0 elr Va(z) 0
o (Z) — efﬁfr i V2
0 <, Voi(z) 0 0
V.o (2) 0 0 0
0 V() 0 0
Vaz) 0 0 0
vE =10 o 0 e;;ve (2)
0 0o ¢ /; VE (2) 0

(3.5)

where we have applied the standard notation 1,e,0 for the Ising chiral fields with the

weights 0,

known properties of the Ising chiral vertices summarized in appendix A.

)2 16’ respectively. The representation above can be easily verified using well

In a similar way one can calculate the braiding relation we shall need in the following:

ime _ 3ime

e 8 (§ 8

)t w) = L ot met () +° o) (2)

o (2)0 (w) = /o o (w)o™ (z) + V2 ot (w)o™(2),
ot (2)0™ (w) = /o ot (w)o™ (2) +i V2 o (w)o™(2),

e s

V2

o (2)ot(w) =

It follows from (3.5) that

(whlot(2)1€) =(w™ |07 (2)€), (&lo™(2)|wh) = (&[0 (2

for even € € V and

0_(w)a+(z)—ie ’ ot (w)o™ (2).

) [w™),

i(wH|o(2)]€) = (w]o*(2)|€), (€0 () |wh) =i(E]o* () |w),

for odd £ € V. One also has

(wr o) [w™) = i(w[¥() [w").

- 12 —
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It is probably worth to mention that in the chiral fermion theory described above the
algebra of chiral fields 1,1,0", 0~ does not close with respect to OPE. For instance the
OPE of o with itself contains a new local operator which is neither a conformal primary
nor a descendent of a primary field. In this respect the chiral fermion with a partity
operator in both sectors is not a complete chiral CFT. In consequence the corresponding
superscalar model we shall describe in the next subsection is not a complete chiral N =1
superconformal field theory. Nevertheless, it provides an appropriate representation of the
chiral vertex operators in the N = 1 superconformal theory.

3.2 Chiral fields

The chiral boson field with periodic boundary conditions can be defined in terms of the

decomposition

o(2) = q—iln(z) p+ p<(2) + ¢=(2),
-1

[e.e]
— an __n _ an __p
pc(e) =i Y MET ps(2) =ay A
n=1
where the modes satisfy

[q, P] = ’i, [ama an] = m5m+na er =p, qu =q, aIL = a—_n- (310)

They are realized on the Hilbert space Hp = L?(R) ® F, where Fp is the Fock space with
the vacuum state |Qp) defined by the conditions a,|Qg) = 0, n > 0, (Qp|Qp) = 1. The
superscalar Hilbert space is defined as a tensor product

H=Hp® Hp = (Lz(R) RIFB® st) ® (L2(R) ® Fp ®-7:R)

and carries the representation of the N = 1 superconformal algebra with the central charge

c:§’+3Q2:

1 5 15 1 0 NS sector
L0:8Q +2p +Zamam+z<kz—|—2>ﬂ)_k¢k+{l )

m>1 k>0 16 Resector
2 b
m;ﬁO n
Sk = (p+iQk)Yk + > amtr—m,

m#0

where k,l € Z + % in the NS sector and k,[ € Z in the R sector.
The superscalar Hilbert space H can be seen as a direct integral over the specturm of

the operator p:

H= /HS@H”

where HYg = [p) ® Fg @ Fns , Hi = |p) ® F @ Fus, and p|p) = p|p). The representa-
tion (3.11) defines on Hyg the structure of the NS Verma module VA with the conformal

,13,



weight A = éQQ + ; p?, and the structure of the R Verma module Wa with the conformal
weight A = éQQ + 116 + %pQ on Hy.

For our purposes it is convenient to work with the boson and the fermion fields on the
unit circle, transformed back to the zero time slice of the infinite cylinder:

—1 [e’s)
<o) =i T (o) = Y e (o) = Y ke, 0¥ (o).
n=1 k

n=—oo

In terms of these fields we construct the ordered exponential
E%(0) = e2%9<(0) gaoP qa0>(0) o300, (3.12)

and the screening charge operators in both sectors:

o271

Qo) = / dr p(@)E(x), Q=b+ 1,
satisfying
L E0)) = e (i 400 ) EX0). Ba = ja(@-a)
[6pt] [Sk, E*(0)] = —ic e 4 (o) E%(0), (3.13)

[Ln, Q0)] = {5k, Q(0)} = 0,

where k € Z+ ; in the NS sector and k € Z in the R sector. For real b the screening charge
Q(o) is hermitian, its square is positive and [Q(O’)2]t may be uniquely defined for complex
t. Following [21] we define the “even” and the “odd” complex powers of the screening charge

Qi(0) = (@@)* . Q3(0) =Ql0) (@%() *' (3.14)
and the compositions
8r5(0) = E%(0)Qz (o). (3.15)
The chiral NS fields are diagonal with respect to the sector decomposition
V.9 (o) = g:%0) 0
I 0 glo)
Vii(o) = 18-, B lQ() ! ] = (3.16)
I [S0, E*(0)]Q5 (o)
B [ —ia efigqb(a)g?g‘(a) 0
1l 0 —iaw(a)gf‘é‘(a)]

where f = e, 0 and for f = e (resp. f = 0) we have f = o (resp. f = e). The chiral R fields
are off-diagonal:

Wi(0) = ot (g o), (317
W2 (o) = o (0)ed V(o)

— 14 —



The fields can be extended to Euclidean fields on the whole cylinder by the analytic con-

tinuation to the imaginary time
Ve (w) = erto V5 (o) e T,
Vig(w) = o™ Vg (o) e T, (3.18)
Wff(w) = ¢"lo Wff(a) e w=1+i0.
They are related to the fields on the complex plane z = e¥ via
Ve (w) = 2B Ve 5(2),
* 1 * 1
Vig(w) = ZBets Vis(2), Aq= QQ(Q —a), (3.19)
c
Wel(w) = 2o Wel(s), Ag=, — 67
The chiral fields satisfy a simple braiding relation with functions of p:

V,S(w)f(p) = f(p—i(a+bs)) Ve§(w),
Vis(w)f(p) = f(p—i(a+bs)) Vig(w),

W (w)f(p) = 1 (p—i (‘j - \/26+bs>> W2 (w),

An important feature of the fields V,%(z), Vi ¢(2) is that for the conformal weights

Q2+12 1 Q?

1 . 9
1 ] 2p B 2 Oé(Q a)7 3 8 + 9 (p (3 [CV + bS]) s

2

there exists a unique form oxx(€3,&2,&1|2) : VA, X Va, X VA, — C, satisfying the Ward
identities (2.7) such that

oxx (€8, 6112) = (G| VeS(2) 1)

onn (&3, 10, &1 |2) = (&3| VES(2) [&1) or |&3] + |&1] even,
oxn(3,v26112) = (&I Vos(2) &) dd
onn (&3, %10, &1 |2) = (&3] VES(2) [&1) or |n3| + |m| odd.

It thus follows from definition (2.8) that one can use V,¢(z) and V;%(z) to represent the
chiral vertex operators in the NS sector:

(@lVlss )@l = o0 e

(€3Vo|a33,] (2)[61) =
(3.20)

(
@Vlsz)@la) = o) vl
&Ivilszz) e = ¢ |
(v3] Ve 3(1) [v1)
A similar property holds in the R sector. For the conformal weights
c 14 1 c

P, Ay = _a@—-a), Az = 94

1 . 2
5 +2(p—z(a+bs)),

,15,



there exists a unique form ggg (93,82, M%) : Wa, X Va, X Wa, — C, satisfying the Ward
identities (2.9) such that

) <n3’Ves(Z)‘771
) = (3| Ve s (z) Im
orr (13, v2,m2) = (N3] Vo5(2) Im
orr (M3, %02, m[2) = (3| V55 (2) Im
From definitions (3.16), (3.18), (3.19)

<w+‘ves (2) {w+> = <w_{Ve‘;‘(2)‘w_>,

orr (N3, V2,112

for |ns| + [m| even,
Orr (N3, *¥12, M1 |2

)
)
>> for n3| + [m1| odd.

and relation (3.9) one gets

3.21
<w+‘V00;(z)|w7> :i<w7‘Voas(z)‘w+>. ( )
Chiral vertices (2.13) can then be represented as follows
A _ <?73\Ve‘§(2) 1)
<n3|‘/;+[ﬁ3§1] (Z)|771> - < ;{V a {wf,
_ra <51w ‘Vos(z) |SJw >
<S[?U§—’V; [5351] (Z)\SJWW ( 1)#1 <wz |V (1)| >1
— (—1)#/ (Srwy | Vo&i(2) [Sywr)
VSO
(S Vi8] (S sup) = (—uy# (s [Ves (@) St 2
3 1Vo (8351 JW <w3_|Ve )| >
_ i(—l)#‘] <waf—5’—‘ Ves Z |SJw1 >
wy [Ves () [wi)
RN <773|Vos( )|771>
\%
<773‘ o [5351]( )’77 > < ;‘V )‘w1_>
and
Aea <?73\V*a( ) Im)
<773‘Vo [53%]( )’771> < ;‘V )|w1|_>7
s o (S [ Vas ) [Spu)
S WGl ISu) = (0% <w§\Vo°§(1) \w1+>1
_ (_1)#J <wa§—| Vé?(z) ‘SJw1_>
(wi Vo (@) |wy) 593
(S 1V 538) (S u) = (-aypt (T8 | VEE S mi) 2
T e A (g [ V.2 (1) o)

— (= 1)#J<51w3\V $(2)[Syuwy)
(wg [Ves () [wi)
iV )y =

One can repeat the above considerations for the R chiral fields. For the conformal weights

_ ¢ L _ ¢ 2 _Q2 1 @ ?
Av=, + 0% D= =F Ay = T+ (poily —V28+bs| ),
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there exists a unique form oyg(€3,72, M%) : Vas X Wa, X Wa, — C, satisfying the Ward
identities (2.14) such that

+ _ W+5
QNR(§37w2_7n1’Z) <§3’ E;(Z)‘n1> for ’53‘ + ‘771‘ even,
one(€s,wy ,ml2) = (§3|We's(2) |m)
Jwl,mlz) = WJS{Z z
QNR(£3 2_ 771| ) <£3| —ﬁ( )|771> for |£3|_|_|771| odd.
one(€s,wy ,ml2) = (§3|Wols(2) |m)

In a similar way, for the conformal weights

Q1 _ e 1 [Q ’
A1— ] +2p’ AQ_ 24_6’ A3_ 24+2 p—1 2_\/2B+b5 )

the relations

orx (3,05, &1|2) = (773|vvg{j(z)|£> .

orx (M3, w5, €1(2) = sl W22 (2) |&1) or |n3| + [&1] even,
QRN(77 Wo, 751’2) = <77 ’W (Z) ’§1> ] »
or (13, w5, €112) = (13| W35 (2) 161) or [n3| + (1| odd,

uniquely define the form pgx (73,72, v1]2) : Was X Wa, X Va, — C satisfying the Ward
identities (2.15). From definitions (3.17), (3.18), (3.19) and relations (3.7), (3.8) one gets

(v IWEL(2) [wh) = (v |[W(2) [w),
(W) ) = WD ),

3.24
(W) ) = (w7 WL o) .
(o [ W) ) =t [ W) ).

Using identities (2.16), (2.17) and (3.21) one can express universal forms p™*, p*F and
then the matrix elements of chiral vertex operators (2.21) in terms of matrix elements of
operators Wff(z) The result is:

(€| W (2) )
(3| We 2 (2) [wi )’
(€| WE2(2) )
(s WE2 (2) |wy)
(13| We 2 (2) 1)
(w |Wed(2) )

(sl WE(2) [€n)
< 3|W¢62 (2) 1)

(& Ve s, ] (2)Im) =

(€ IVo k] (2)Im) =
(3.25)

(3| V52, ] () 161) =

(131Vs [ssR,] (2)161) =

3.3 Matrix elements

In this subsection we shall calculate the matrix elements

wsWl(Dwr),  (wsWFEW))  and  (w|V 5 (1)),
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using a suitable modification of the procedure proposed in [9] and adapted to the NS
sector of the N = 1 superconformal theory in [21]. The idea is to find an explicit form
of an appropriate four-point, chiral correlator containing a degenerate Ramond field and
then, by studying its different limits, to express the matrix elements we are after through
the matrix elements of the chiral NS field computed in [21].

For 6 = 34 = 2\1/2 (b_1 —i—2b) the Ramond supermodule Wj, is degenerate (with
respect to scalar product (2.6)). The vector

X+ = (k4L-1 —S_150) wg,, ke = V278,

is orthogonal to all vectors in Wg, . Using (2.5) we can rewrite the condition that x, is

null in the form of a pair of operator equations

V2 0 \/28

6+ =1 T +/8+
b 0z b a (2) =ies SHWTL L H(2), (3.26)

W (2) = ie™ T8 W0 (2),

which should hold in arbitrary correlation function. Introducing

F+(2) = (ra WEZ (MWL (2) 1)
f-(2) = (V4!Wof§( WS (2) ),
9(2) = e T (| WEBMWEP (2)|S_ym), (327
0-() = ¢ T nWEE W (IS 1),
we get in particular
V20 304 B __ 9-(®)
< b 0z ,22— 1>f+(z) * z—glff(z) B _\/Z(l —2)
1
<\?)2 (;9,2 B 22€+1>f(z) + zﬁ_gler(Z) - \/za(z_) z)’ (3.28)
V20 3By 3 1 A 0
< b 9z ,22— 1>g+(z) * 2_3197(27) N _\/Z(l - 2) [ st (== 1)32]f )
1
<\22 ;Z - ;fﬁ)g('z) + Zﬁ_3lg+(z) = \/2(11_ ) [AZI + Aoz g+ (2 — 1);27])‘;(27).
For the new function h(z):
fee) +f ()= (1= 2 h(a), A="o0— O

we obtain from (3.28)

O?h(z) 1 [/1—=b> 2%\ Oh(z) b? Aq
= Agig 4+ A 2
072 +2< z +z—1> 0z 22(z—1) | = T et A NRG) - (329)
where 2 = bag — 5b2.
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The solution of (3.29) corresponding to the sum of correlators fi(z) + f_(z) can be
singled out by its leading behavior at z — 0. It follows from the momentum conservation
that all the states obtained by the action of ijE P+ (z) on the vector v; have momenta equal

to b
]
q=p1+ 9" (3.30)

The small z behavior of fi(z) can thus be calculated by inserting a projection on the
highest weight states of W, with an appropriately chosen parity. This gives

e s3 e s3

i WS W (2) ) = Gl WEE D) 22 (14 0(2)),

i W B (W5 (2) ) = (| W B (D) 22 (14 0(2)), o
where we have used the identities
(wh W (D)[11) = (g€ 2 (1)|p1) (0" [0 (1)]0) =1,
(wg WS (D)[vr) = (€2 ()|p1) (0™ |0~ (1)[0) = 1.
It follows from (3.21) that the asymptotics in (3.31) are identical, hence
Fr(2) + Fo(2) =  WEBD)jwf) 23 (1-2)% s (3.32)

b b 1
X oy (4(2a1+2a3—2a4—b), 4(2(11 +2a3—2a4—b); 2(1—b2—|—2ba1); z>,

where 9 F; denotes the hypergeometric function.

In a similar way one can deduce from (3.28) the differential equation satisfied by the
difference fi(z) — f_(z). Extracting a suitable power of (1 — z) from f,(2) — f_(z) we
obtain (3.29) with different values of the parameters A,2(. Equations (3.31) and (3.21)
then give

f+(z) = f-(2) =0

and consequently

(al WEB WL (2) 1) = (vl W B (W (2) 1)

e s3 0 83

ba3_1

= (| WER (D) 2 (1-2)% 7 (3.33)

e s3

b b
x o F} <4(2a1 + 23 — 204 — b),

1
4 (200 + 205 = 264 = b); (1 - v+ 2ba1);z> .

We shall now determine (v4| W fg(l)]w;r> by comparing the leading behavior of the left
and the right hand side of (3.33) for z — 1. We start by calculating the leading term of

the OPE of W% (23) = 0+ (23)E® (23)Q%% (23) and W ¢ P (23) = 0 (22)E ™3 (25). Since
Q2 (23)0" (22)E 72 (22) = Q2 (22)0t (22)E ™2 (22) + (Q(23) — Q2 (22)) 0 (22)E ™2 (22)

we have for z3 — 25 :

b

Q2 (23)0 " (22)E ™2 (22) ~ Q23 (22)0t (22)E 2 (22) = 0 (22)Q (22)E ™2 (22)
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where the equality follows form the definition of the screening charge Q, its even
power (3.14) and braiding property (3.4). Further, from the definition of the screening
charge and braiding properties of the normal ordered exponentials (see the next section for
details) one has,
Qi (z2)E 2 () = 07" E73 (2) Q2 (22),
hence
WED WP () ~ o750 0 (za)o ™ (22)E™ (2)E 2 (22) Q2% (22):

e s3

Finally, from (3.5) and (3.12):

ba
0" (23)07 (22) ~ (25— 22)75, E%%(23)E 2 (22) ~ (23— 22) 2 E®72(2)
and we get
+63 +6+ [ b283 bag _1 043—3
W (z3)W 7 (22) ~e2” % (23 —29) 2 78 Vegy *(22),
so that
(% ba _b
WEB WP (2) ~ o3V (1-2) 2 75 Ve 2 (2) (3.34)
imp2g baz 1 b

~e2VI (1) 2 T Ve 2(1).
In conclusion, for z — 1 :

i e o _b
(ral WEBWEH (2) i) ~ T80 (1—2)"5' 74 (| Ve 2 (1) ) (3.35)

e s3

where the matrix element on the r.h.s. was calculated in [21] and reads:

(w3 Vo 32 (1) 1) = MRS (3.36)

az,02,017

I'ns(Q + ai1—2-3)I'ns(143-2)'ns (@ + a3—1-2)I'ns(2Q — avi4243)
I'ns(@Q)'ns (201 )T'ns (202)T'ns (2Q — 2ai3) ’

with ag = a1 + as + bs, a1_2_3 = a1 — s — a3 ete. and

NNN  _
M = Nasasan

as,02,q

agz—ag—aq

1 b i
Nosasar = [zr (bg > a Q} N C X )

On the other hand, we can analyze the z — 1 behavior of the r.h.s. of (3.33). Using
the analytic continuation formula for the hypergeometric function,
IF'(e)l'(c—a—10)
I'(c—a)l(c—0b)
I(e)l(a+b—c)
INOINQ

oFi(a,b;c;z) = oF1(a,b;1+a+b—c1—2) (3.38)

(1—2) % F(c—a,c—b;l+c—a—b1—2).

ba
we obtain a coefficient in front of (1 — z) 2’ 5. Tt has the form
F(—b; + by + ;)r(f’; —ba3+1)

v + 83 wt ‘
T(5+5Qarpas—0)T (1+5(2a1_4-3+0)) {va] W' (D]wy ), (3.39)

e s3
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with ¢ given by (3.30). Comparing (3.39) with the corresponding coefficient in (3.35) we

arrive at the identity

(va] WES(1)|w])

ei;bSS T (% + Z (20[1+4,3 — b)) T (1 + Z (20[1,4,3 + b))
F(—b; +bay + ;)F(bj —ba3+1)

ANASRIC DRI

Using (3.36) and the “shift identities” for the Barnes functions (see appendix C) we finally
get

(vl WEE D) = (vl WoZM)|wy) = Mg, (3.41)

3,022,717

I'r(Q + a1—2-3)TR(143-2)I'ns (@ + a3—1-2)T'ns (2Q — a1 4243)
I'ns(Q)IR(200)TR(Q — 202)'ns (2Q — 2ai3)

where the first relation of (3.24) has been added for completeness.

RRN
M = Nasasan

asz,02,x]1

The same procedure can be applied to other matrix elements. For instance, in order
to compute (vs] WH22(1)|w;) we start from the function (vg| W52 (1 )W (2)|11). The
correlators

(val WEH ()W (1)) and (vl W (2)WEZ (D)),

0 s2

give the formulae for (w3 |W§ 32(1) |v1) and (wz | W 32(1) |1) , respectively, and the matrix
elements (w3 | V,22(1)|w;") and (wy | V,22(1)|w]) can be obtained from the correlators

(wi VS (WL (2) ) and (Wi [ Vo @ (WL (2) ).

The result reads

(vs] WEL(D)wr) = —i (vs] We Z2(1)|w]) = MYNR

ag,q2,q1 )

(i [WEEQ) ) = (wg [Wo (1) Jor) = MENN
(wy [WEE(1) ) = —i(wd [We (1) ) = MERE | (3.42)
(wi V2wl = (wy |V 2Mwy) = MERE
(w3 Vo2 Mwi) = —i{w] |V, 2wy ) = MENE .,
where
_ 3im
MNNR + Nagasar I'ns(Q+a1-2-3)I'ns(a143-2)'r(Q+as—1-2)'R(2Q —14+2+3)

a3,a27a1_ \/2 FNs(Q)FR(2a1)FR(Q 2&2)FNS(2Q 2043) ’

I'r(Q+a1—2-3)I'ns(143-2)ns(Q+3-1-2)TR(2Q —14243)
I'ns(@Q)ns (2000 )TR(Q —202) TR (2Q —2013) ’
MNBR Jz/\/agagal I'ns(Q+ai—o-3)'r(143-2)TR(Q+0a3-1-2)'ns(2Q —14243)
e/ I'ns(@)Ins(200)TR(Q—202)'R(2Q —2013) ’

MNRN I'ns(Q+a1-2 3)TR(143-2)Tns(Q@+a3-1-2)'R(2Q—a14243)
o3,02,00 7 430200 Ins(Q)Pr(201)I'ns (Q —202) 'R (2Q —2a3) ’

RNN
M =Mazasan

asz,02,x1
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e 4 Nagasay TR(Q4+a1-2-3)Tns(@113-2)TR(Q+0a3_1-2)ns(2Q — 061+2+3)

Mgz =
e V2 Ins(@)T'r(2a1)Ins(Q —202)T'r (2Q —203)
(3.43)
Matrix elements (3.36), (3.41), (3.43), supplemented by the matrix element
(3| Ve (1) [11) = Maias (3.44)

I'r(Q + a1—2—3)'r(143-2)TR(Q + a3_1-2)'R(2Q — @1 4243)

= 2Nagasa I'ns(@)I'ns(201)Ins (@ — 2a2)I'ns(2Q — 2a3)

calculated in [21] form a complete set of eight independent normalizations required for
representation of all chiral vertices in both sectors.

4 Braiding relations

4.1 Braiding of normal ordered exponentials and screening charges

In this subsection we shall calculate the braiding matrix for operators (3.15). We follow
the procedure proposed in [9] and extended to the NS sector of the N=1 superconformal
theory in [21]. Let us assume the existence of a braiding relation of the form

-

2,72 (03)8,, 2 (02) = EZ[mﬂBwigﬂm>mg@m%M@> (4.1)

where € = sgn(o3 — 02), f = (f2,f3), § = (s2,53) etc. The sum over the indices g is
restricted by the parity conservation which holds in the chiral superscalar model and the
integration measure du(f) is proportional (by the momentum conservation) to the Dirac
delta §(to + t3 — s2 — s3). The additional subscript f = R, NS denotes the sector in which
relation (4.1) is considered.

It follows from commutation relations (3.10) that the ordered exponentials satisfy the
braiding relation:

E()E%(y) = o~ 0TV EP (y)E (2). (4.2)

Let, for o3 > 09, I = [09,03], I. = 03,02+ 27|, I' = [03 + 27,03 + 27| and define:

= [ e, a= [ wBeue. Q= [

I
so that

Q(o2) = Q7 + Qu, Q(o3) = Q7 + Q.
Using (4.2) we thus get

Q(Ug)Ea2 (02) _ e—iwbag Eo2 (0_2) <QIc + e—2i7rba2 Q;) ’

Q(O’Q)Ea3 (0.3) — e—iwbag Eos (0,3) <QIc + eQinba3Q1> 7
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and consequently

. . . S
e, (73)80, 3 (72) = E*2(02)E () e oo —imeaben (Qf 4+ o= 2m02 )™ (Qf + Q)32

f3
B 1 (72)8, () = E™ (02 (o)™ (Qf +e¥™0Q,) " (Qf + Q). (43)
Braiding relation (4.1) is then equivalent to the equation
(@ +e72m2q]) " (QF + Qo =
) /d,u(ﬂ BH@5 w8 (5 + e%baaQI): (Q+Q)~, 4
g

where

B;r(d»’ §: f_‘; t. g) _ emozgozg—l—mongsg—mragbtz Bqu (0—27 5»7 F; t. g)

If the product of fields in (4.3) act on the NS state, the fermion field ¢ (x) appearing in the
definition of the screening charges is anti-periodic, ¢ (x + 27) = —(x), and

/ imb? 27h
Q =—€e""e"PQL

On the other hand, while acting on the Ramond state the fermion field is periodic, ¥ (x +
27) = 1 (x). In this case
Q; _ ez'7rb2 e27pr QI-

It follows from the definition of the screening charges and from braiding relation (4.2)
that the operators Q;, Q¢ and e™P satisfy the Weyl-type algebra

S p2 ;12 P p2
QI QIC — _emrb Qf QIa Qfeﬂbp — emb e7rbp Qf, QI e7rbp — elﬂ'b e7rbp QI- (45)

Formula (4.4) can be seen as a relation in the algebra generated by the elements
Q1, Qf and p, satisfying (4.5). To compute the braiding matrix BEL we shall choose a
convenient representation of this algebra. Let us introduce an auxiliary Hilbert space
Howe = C? @ L? (RQ) and consider operators p,x,t € End(H.,.,) satisfying commutation

relations
p,x] = —i, p,t] = [x,t] =0, (4.6)

together with conjugation properties pf = pf, x' = x! and t' = —t. One easily checks that
the operators QIC, QI € End(H,.), defined by

~ 1,
G = e, = (00), an
~ 1 1 1. . .
QI _ 7_262bxe—7rbp62bx6227rbt, Ty = (70Z 6)’
form a representation of (4.5). In this representation
~/ Yox wbp Lbx  Limbt
Q) =myme2"e™Pe2e2"" nng =1, nr = +1.
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Representation (4.7) allows to transform the powers of sums of Q—s into the normal
ordered form, with x operator to the left of p and t operators. Using the shift property of
the Barnes functions:

Crs(y+b) = (1+¢™) Grly).  Grly+b) = (1-¢™) Grs(y).

and
e f(p) = f(p + i) e™,
one has

1, 1 1 1, 1, 1 e 131 1
ebx e—227rbt + ieQbX e—7rbp62bx62mbt _ e—2mbt62bx (1 + elwb(2p+t+2b )) ebe

X

, 11
—;inbte;bxGNS(ZertJrzb +b) 1,
Gr (ip+t+ 501

= €

1

1. 1
_ e—2z7rth S (ip_i_t_i_ Q) ebx
N 2 Gr (ip+t+ 1Q)

with @ = b+ b~! and similarly

bx — yimbt _

1 _ 1 1, 1 1 (s 11 1
e ze2bxe ﬂbpe2bx6227rbt = e 2z7rbt62bx <1 _ezwb(zp-‘rt-l—Qb )) e2bx

X

: 17—1
—;mbte;bxGR(ZertJrzb +b) 1,
Gns (ip+t+ 5b71)
1

1, 1
=e 2™t Gy <z’p +t+ Q) ™ , .
2 Gns (ip+t+ 1Q)

Introducing a matrix notation

one can present the result of the calculations above in the compact form
~ ~ . 1 1
Q +Q = e_élﬂthNS<iP+t—|- 2@) rlebXGN§<z'p+t+ 2@) :
In a similar way one obtains
- L 4 1 1
G+, = o2+ 10) e (o 52+ ).
Ac 1 A —imbt v —1 : 1 bx . 1
Q4+ Q= e 2" Gy —zp+t+2Q 11 €™ Gy —zp+t+2Q ,
Ac 4 o—2mibas &/ —Limbt v —1 . 1 bx ; 1
Qr +e Q =e2 Gh —zp+t—2a2—i—2Q e Gy —zp—|—t—2a2—|—2Q .

Defining an even and an odd complex power of 7

1? = b
(7'1)251,,:{ p_e
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we get:

~ . ~ ~ ~ 1.
(Qlc + e—227rba2 Qi)fé’ (Qlc + Ql)ig — eb(sg-‘,—sg)x 6—227rb(82+53)t

1 1
X Gtrl(—ip-i-t—QOéz — bsg — bsg + 2Q> 1, Gu(—ip—i—t—QOéz — bsa + 2Q>

1 1
X GNS<ip—|—t—|—b82—|— 2@) 1, GNé<ip—i—t—i— 2Q> ,
(4.8)

~ . ~ ~ ~ 1-
(QIC + e2z7rba3 QI)?2 (QIC + Q;)tgg;x _ eb(t2+t3)x ef2l7rb(t2+t3)t

) 1 (. 1
X GN5<Zp+t+2043+bt2+bt3+ 2@) 1., GNé<Zp+t+2a3+bt3+ 2Q>

1 1
X Gh1<—ip+t—bt3 + 2Q> 1,, Gy <—z’p+t+ 2@) .
Evaluated on a common eigenstate of operators p and t,

plp,T) =plp,7), tlp,7) =7lp,7), TE€IR,

the right hand sides of formulae (4.8) take the form of analytic functions of p and T,

multiplied by the operator

e(81+82)x — e(tl +t2)x.

Stripping off this factor from both sides of formula (4.4) one gets a relation between analytic

functions of p and 7. In terms of the Barnes S functions®

Pl (SNE(Z)SS(ZD o e (SRO(Z)SNZ(z) S Sl

this relation takes the form
; . T~ . . _ . . .
e'XSy ((”22 + ZAQ*T)(FES) Sh HQ —iCy + ’Lps—T)SNé(Q —iCy — ZpS—T)FgS Sns (? + ZBng)

=2 / du(ts) €= 5 (M) TS B 5 Fos — b, 1y, ) (4.9)
g

. _ . . _ . . T .
X Sns (g + ZA3+T)F;2$SN§(Q —iC3 +ipy+7)S, YQ —iCs — zpu+T)(thS) S, (? +iBs +T),

where iy = WZbQ (83 — %) + whpy sy — imag(asz + 2bs3), 5 = s + 53,

10 0 e T
NS NS R NS
Fe = <01>7 Fo = <ezlr 0 )7 Ff = (Ff ) ’

Ap = p1 — 2iqg — ibs, By = —p1, Co = i(az — Q/2), ps = p1 —i(aa + bsz),
Ag =p1 — 21'043 — z'bs, Bg = —P1, Cg = i(ag — Q/Q), Pu = P1 — i(Oég + btg). (4.10)

and

5See appendix C for the relation between the Barnes G and S functions.
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The Barnes functions in the integrand of (4.9) depend on the integration variable t3 only
—1
via the parameter p,. Multiplying both sides of equation (4.9) by SNS(% + (A3 +7-) =

-1
SNS< — A3 —T ) (from the left) and by Sh(? +iBs+71) = Sh(g —z’Bg—T) (from the
right) and choosing the integration measure to be du(ts) = 0(p,) dp, one gets

(4.11)

(§]

ix Sh(§+iA2_T> ( u)T Sns(ips + 7 +1iC2) FNSSNS<§+iB2_T)
Sws (§ +ids +7) Sy(@F by =7 =iC2) 5, (9 iy + 1)

(o]
—ir - Sy(ipy — T +1iC3) T
=> [d (bts)*t7pibls p(5: 8 Frs — tg, ty,8) FNS S0P (Fﬂ>
H /pue 2 U(a787 ) 3 378) g SNS(Q+ZPU+T—103) €3

Sh( g +iA2 —T)
SNs( 2 +iAz+T
In order to calculate the braiding kernel from (4.11) one can then use the orthogonality
6

where

) stands for Sh( +iAs — 7'> Sy < +iAsz + 7') etc.

relation:

dr Sy(ipy—7 +iC3) T Sy(ip!, —T1 +iCs3) Tt
NS ; o FNS g\ Py £
/ i {[ "2 Sns(Q + ipy+7 — iCs) ( hg) ][ &2 Sns(Q + ipl,+7 — iCs) ( g3> ]
iR

= N (pu)05 2 0(pu — 1), pu:P, € Ry, (4.12)

where

Nns(py) = sinh wbp,, sinh Wé)u, Ng(pu) = cosh wbp,, cosh Wé)u. (4.13)
This yields

B;'(d'; §” f—:’ s — t3, 13, g) _ /\/u(pu)ez‘x-f—i;r (bt3)%—mp1bts

Su Q/2+2A2—T) b T SNS(fL’ps‘{‘T‘FZ'CQ) NS
F, F, 4.14
{ {SNS (Q/2+iAs+T1) < fs) SH(Q—l—zps—T—ng) ( )

Si(Q/2—iB3—7) [,.ns  Sylipu—T +iC3) T T}
Sns(Q/2 Bz +7) i Sns(Q + ipu+7 —iC3) (72) |-

For further applications it is convenient to regard the braiding kernel as a function of new

variables:

Qy = 22 +ip, 1=1,5u, a4 = a3 +az +ay +bs. (415)

In order to make it more readable we introduce the notation

By % |:O‘3 a2:|g2g3 = BE(&7 g’ f_‘: s — t3,t3)§) (416)

QsQulQq A1 ] £g fo

5A derivation of (4.12) is presented in appendix D.
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so that

1
B [a302]928s — 4e5 Sy(20,)95(2Q — 20, (4.17)

QsQy 04 1 | £5 fo

X/dT T Sh(a4—a3+a2—7) ( h)TSNs(Ozs—Oéz—i-T) NS
7 SNs(Oé4+043—042+T) f3 Sh(as—i-OéQ—T) f2
iR
Sy(ar =7) [ns Splaw —az—7) :\I1
|5 V(F) ] g

Sns(ag 4+ 7) L #2 Syg(oy +az +7) \ =
where

§=ix+ Z;T(bts)z — mp1bts
= Z;T [%(Q —as) + a1(Q — a1) — ay(Q — aw) — as(Q — o)

+ 203 (0 — ) — 209(ag — 045)].
Repeating the steps above for € = sgn(o3 — 02) < 0 one gets

B—yh [aa 042]8283 — 166(—) SH(QOZu)Su(QQ — 20@) (4‘18)

QsQy L0 1 ] £5 fo 4

/dT Tr {SNs(a4 — Q3+ g — T)FNS Su(as — 9 —i—T) <F” >T

] Syloy +az —az +7) 5 Sng(as + g —7)
iR

SNs(Ocl — T) h T SNs(au — Qg — T) NS T
F F
Sh(al—i-T) |:( g2) Sh(au—i-ag—i-T) &3 ] ’

where
8 =6— iw(a4(Q —ay) +a1(Q —a1) — au(Q — ay) — as(Q — ozs)).

The explicit form of the braiding matrix B can be read off directly from formula (4.14).

For instance

ee 1
Blavlatai]ee = 4 Sns(20u)5ns(2Q — 204) (4.19)
» /dT [SNs(T + Oél)SNs(T + 5&1)51\15(7' + a4 —asz+ OéQ)SNS(T +ay —asg+ 042)
7 SNs(T + as + OCQ)SNs(T + as + OéQ)SNS(T + o, + 073)51\13(7' + a, + 073)
iR
SR(T + a1)SR(T + a1)SR(T + a4 — as + a9)SR(T + ay — az + ag)]
SR(T + as + ag)Sr(T + as + a2) SR(T + ay + a3)SR(T + v, + @3) |’
00 1 _am
Bllawlatadloe = 4 7 ¢ Ss(200)Sns(2Q — 20u) (4.20)

/dT [SNs(T —+ Ocl)SNs(T + 071)51\13(7' + oy —as+ QQ)SNs(T + a4 —as+ 042)
7 SNs(T + as + Ozz)SNs(T + as + OéQ)SR(T + oy + 5&3)SR(T + a, + 643)
iR
~ SR(T+ 1) Sr(T + @1)SR(T + a4 — a3 + 2) Sr(T + du — a3 + az) ]
SR(T + a5 + @2) SR (T + s + a2)Sns (T + ay, + @3)Sns (T + ay, + @)
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or

BB [as22]0° — Loz Sr(20) SR (2Q — 20v,) (4.21)

sy o o 4

/dT [SNs(T + al)SR(T + 071)SR(T + a4 —asz+ Ozz)SNs(T +ay —as+ 042)
i [ SR(T + as + a2)Sns(T + s + a2) Sns (T + o + a3) SR(T + @y + a3)

iR
B SR(T + Oél)SNs(T + 071)SN5(T + a4 —as + ag)SR(T +ay —asz+ 042)
SNs(T + as + ag)SR(T + @s + a2)SR(T + iy + @3)Sns(T + a, + a3)

The other cases differ from the expressions above only by constant phases and NS/R indices
of the Barnes functions.

4.2 Braiding of chiral vertex operators

In this subsection we shall derive the braiding properties of the chiral vertex operators.
Rather than presenting the general formula (which would be quite clumsy due to a plethora
of indices) we will discuss several examples choosing vertex operators from different sectors.
All other cases can be easily obtained in a similar way.

4.2.1 NS-NS braiding

The braiding properties of the Neveu-Schwarz vertex operators in the NS sector were
already discussed in [21]. In this subsection we shall calculate two examples of braiding
matrices for the NS operators in the Ramond sector. Let us first consider the composition

V:j[ﬁigs] (23)‘/:—[5?51] (22) : Wﬁl - W54 )
which in representation (3.22) takes the form

Ve 53 (23)Ve 32 ‘R
(wi [ VeS3 (1) |wi") (ws |Vesz 1) Jw")

The notation |R indicates that the product of chiral fields V %3 (z3)V,%2(22) acts on the

e s3 e 82

Verlsan] (za) Vo608 ] (22) =

states from the Ramond sector. It follows from (3.16) that for this product one can apply

braiding relation (4.1) derived in the previous subsection. In notation (4.16) we get

do
Ve s3 (Z3)Ve 32 / ¢ asau [gi gﬂ B2Es ngog (ZQ)Vgg,Og (Z3) ‘R'

Q +l]R

Using (3.22) one can express the r.h.s. in terms of chiral vertex operators

Ve to (ZQ)Ve t3 (Z3) ‘R = < ‘ Ve tz ‘w > <w+‘ Ve t3 ) {wIL> V::_[ﬁfgu] (ZQ)‘/e—’—[ﬁﬁgJ (Z3)’

Vo to (Z2)Voog (Z3) ‘R = < ‘ Vo to ) {wu > <w+{ Vo t3 ) ‘wf> Voi[ﬁ?gu] (22)‘/07[5351] (23)'

Thus, if we define the braiding matrix by the relation

VTRV 28] = [ (B [ 3 50] Ve TRR) Ve ) )

Q .
5 +iR

+ Boa, [ 3 5] Vel (Va8 (2s))
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then

NRN NRN
€ |: As Ag]ee _ Ma’4ya2704u Q03,01 R [ag ag]ee
QsQu |+ +F1 - NRN NRN QsQulag o )
ST Pa+h ee Ma4,a3,as Mas,ag,a1 o e (4 22)
oo MRNR A RNR -
€ |: As A2:| — Qg,002,Q0q, Qo , (03,01 &R [ag ag]oo
R Y N

The braiding of all other pairs of the NS chiral vertex operators can be calculated in an

essentially the same way. For instance, for the composition

1V, 3 (Zg)V 2 (ZQ)‘R

Vo] (23) Ve [408,] (22) = L 4.23
o [ﬁ4 ]( ) e [ﬁ 1]( ) <wZ|Ve%§(1) |w;|_> <ws_|voas%(1) ‘wﬁ ( )
the relevant braiding relation (4.1) reads
do
VRGVEEl = [ BRI VRV Rl (420
$+iR

As before, one can express the r.h.s. of (4.23) in terms of chiral vertex operators:

Vo't (22)Vo' 53 (23) | = =i (wi | Vo5 (1) [wi) (g [ Vo5 (1) [w] ) VF s8] (22) Ve [udi] (25),

Vo (22)Ve%s (23)| g = i (wy [ Vo (1) [wif) (wy | Vo (1) [wi ) VT [608.]) (22) Vot [t ] (23)-
(4.25)

Equations (4.23), (4.24) and (4.25) suggest the following definition of the braiding matrix

VTal Ve [a] o) = [ o (B [ 3 50] v TA] Go)Ve [28] o)

21 oe
S +iR
+ Boa, |3 5] Vel (Ve ) ()

Then the results above yield

NRN RNR
|:A3 Ag:|oe _ Ma4ya270éu Mﬂéuya’Bval €,R [ag ag]eo

B¢ -
sy | +B4 — 61 NRN RNR OsQulOg o1 ’
sOly ﬁ 6 oe Ma4,a3,as Mas,amal o ° (4 26)
co MRNR NRN ‘
asow |[+Bs—f1| . T NRN RNR GsQuledatleo”
sQu |+B4 —f3 oe 'M01470370£s Masﬂ%al o v

4.2.2 NS-R braiding
As an example of the braiding between the NS and the R fields consider the composition

Voi[ﬁﬁgs] (23)Ve7[ﬁsﬁi1] (22) : VOél - Wﬁ4 )

which can be represented, (3.22), (3.25), as:

B ) V% (23)We o2 (22)|
Vv A Vv B _ 083 NS )
o L] (z)Ve Lo} (=2) (wi | Vo2 (1) |ws) (wi | We 52(1) |1)
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By definitions (3.16), (3.17)

Vo s3 (03)Wg 522 (02) |NS g033(03) (UQ)g 00;22(02) |NS’

where ap = § — v/20,. From (3.4) one gets the braiding of g ,%3(c3) and o~ (03)

gox(0)0™ (02) = e TV o™ (02)g0n).
Then using braiding relation (4.1) and notation (4.16) we obtain

i (5_1)

g083(03) (UQ)gooéz(UQ)‘NS = e2 U_(Uz)goig(aff)goié(o'Q)‘NS

da NS -
= [ eI BS ] 0 (0 o) 80 s
Q+2R
and
V@ dau (e—1) B¢ NS a3 an]8283 W B2 vV @
o 5y (23)W, 52 (22 ‘NS asau[omozl] 2t2(z2) g3t3(23)‘NS‘
Q—HR

By formulae (3.20) and (3.25) the r.h.s. can be expressed in terms of chiral vertex operators
Wo 22 (22)Ve 53 (28) g = (i WG 5 (1) va) (al Ve 53 (1) o) VT[] (22) Vel a2, ] (23),
We 2 (22)Vo 8 (23) s = (wf [ WP (22) o) (vl VER2 (1) i) Ve [2] (22) Vol a2, ] (23)-

This leads to the braiding relation

d u € 3 —pP2 oe A
VolanlGa Ve la e = [ (B [ 8) VliR o) Ula2a) o)

S +iR
+ Bl [ 5K VbR (Vels2,] (20))
where
BE [ Az *ﬁQ] ¢ = —z'e”2r6 ngjjaliau gul\jal\;al €, NS [(13 ag]ee
Qsou | =1 A1 | MRBNR  A(NRR asaulasarloo?

Qg,03,0s Q5,002,001

(4.27)
NRR RRR
BE [ A3 —[5’2] o e “2'6 Moz47oz2,au Mau7oz3,a1 e, NS [ag az]oo
Qs A - RNR NRR Qs Loy :
fu tloe Ma4,03,0!s MCVSyOanl o0

4.2.3 R-R braiding

We shall start from the composition of Ramond vertex operators in the NS sector

V+[A23ﬁs] (23)‘/0—’—[55’8&1] (ZQ) : Val - Va4'

e

In representation (3.22):
W3 (20)Wo (3 (22) g

Vi[5, (28) Vi[5 . '
)GVl () = e 1) |wi) (wi | Wo %(1) [11)
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From definition (3.17) and braiding properties (3.4), (3.6) one gets

W+ﬁ3( )W*ﬁQ( —

e s3 o S2 0-2)‘1\13 +(

03)82(03)0 (02)8.2202) |y

= O‘+(O'3) (0'2)gesg(03)g682 02 |NS

1 i _ _
= (07 (02)0™ (03) + 01 (02)07 (03)) 825H(03)822(02) | xs-
It the present case the braiding relation of g fields we need reads
do g
8c5:(03)8:53(02) | xg = / U OBL[al 0] g A(02)8 b 03 s

Q +iR

Using braiding relations (3.4) and representation (3.22) one gets:

o (02)0 (03)g 3 A02)g 53(03) [yg = W, 22 (02)W] 1 (03)] s

= (| WE 2 (1) [y (wd | WP (1) 1) Vi [a23,]) (22) Vit 524, ] (23),
ot (02)0 7 (03)g. 3 A02)g 53(03) | yg = W 2(02)W, 2 (03)] yg

= (v WE2(1) [wd) (wl | WP (1) 1) Var[a2,] (22) Vo558, ] (25),

o (02)0 " (03)g,,74(02)8,07(03) |y = €72 FED WP ()W (73)| xs

SN | W, 2 (1) ) (o | W B (1) 1) Ve [a23,] (22) Vi 628, ] (25),

’L€2

0 (02)07 (03)8,32(02)85(03) | g = €2 VWP (0a)W, 2 (03) | g

= —ie T T by W2 (1) ) Qg W22 (1) o) Vi [ (22) Ve[, (25).

We are thus lead to following form of the braiding relation

‘/eJr[Ai?:@s] (23)V0+[Bsﬁg1] (22) =

day [, ++
- [ [B ] (Ve o) Vol adt] () + Vo [a] (o) Ve [l ] 25))
g +iR
— B, [T (Ve o) Vo [af] () — Vi [a] (zo) Vi [l)] <Z3>)] ,

where

RRN RNN
B¢ [+ﬁ3 +52} ++ _ O M0f47042,au Mau7a37al e, NS [aa a2] ee

es
aso | Ay Ay RRN RNN asaylog o
€o \/2 Ma4,a3,as Masﬂz,m '

ee’

o NNR NRR
B¢ [+ﬁ3 +52} _ 1 ”r-l-”; M0t4,0f2704u Mau,a&al Be NS [043 042]00
o A A = N NN QgOQy [ ig (1
sQu 4 2l]leo \/2 ng,{ozg,ozs Mgs,a%al o
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As our last example we present the result for a composition of two Ramond vertex operators

in the Ramond sector,

Voloik,) (23)Vy [a23,] (22) =

= [ Bt [ ) (Vb oV i) o) - Vo) Ve )

eo

3,1t _ _
Bl |5 5] (VTR o) Va ] (20) + Vi [aiR,] (o) Ve [] <23>)] ,

where
_ . . RNN NNR
B¢ [-1—53 —52}4_ _ ! es Ma4,a2704u au,a3,01 pe, R [ag az]eo
Qsow | B4 Br| o \/2 M&ljlalias Mgﬁ&im asaylag arleo?
_ ) ) NRR RRN

€ [+ﬁ3 *52} + _ 1 elg—”; Ma4,a2,au Mau,as,m &R [ag a2]0e

Qs | B4 B1| o \/2 Mggal\sl,as Mgsljlagi,m asaylag arleo
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A Properties of Ising chiral vertex operators

Properties of the chiral vertex operators in the Ising model can be easily derived from well
known analytic properties of the 4-point conformal blocks [1, 25]. The fusion matrix yields
the coefficients of the chiral OPE:

1
Vi%(23) V.5 (22) ~ Vig(z2),  VA(23)Vi%(22) ~ (22),

V732
1
Vi (23)V, o (29) ~ —
(23) V5% (22) Sz

1
Ve
2\/232 ca

1
Voos(ZQ)’ VUEU(Z?))VUUI(Z?) ~ \/232 VUUI(ZQ)’

3 3
V5 (23) V7 (22) ~ 235 V.5 (22), Vi (23)V, o (22) ~ 255 V1%(22),
_1 1
V1% (23) V3 (22) ~ 255° Vi (22), V. (23)V, 7 (22) ~ 223 V. L(22),
1 -1 1 3
V()% (22) ~ |, 25 VL (20) + 25 V.5 (22),
1(23)V15(22) V23 (22) 9y/2 72 (22)

o 5 (A1)
VUUE(Z?))V;:%(ZQ) ~ \/2Z328 VJJ(ZQ) - \/2 Z382 VUEO'(Z2)'
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The braiding matrix gives the braiding relations:

V(o) Vi (22) = VI () Vi (s, Vi )V (22) = 3™V, () Vi (25),
V2 (23)V, o (22) = 2027V, (20) Vi (28), Visy(28)Vi (22) = 7 2™V, (20) Va5 (23),
v1<3<z3>v:1<22>:e-é“m<22> %(z3), Vi(z)V,h(z) = ¢ 8™ V() Ve (z3),
V9 (53)VA (22) = €57 V5 () VA (23),  Vi%(as)Vih(z2) = €5 Vi (22)ViSh (23).
VA () Vi (22) = jQ 1 (22) Vi (28) + ng V.2 (22)Ve5 (23), -

1
V2
B Conformal Ward Identities for the fermionic current S(&)

Correlation functions of the fermionic current S(&) in the presence of the Ramond fields
are no longer single-valued and derivation of their form, even if standard, is subtle. As as
example we shall discuss the correlator

(ra| WS (1)S(EWE (2) [1m) -
Due to OPE (1.1) it has square root branch cuts at £ = 1 and £ = z. The function

= V1= &V/E =2 (s WL (D) SEWE T (2) ) (B.1)

should then be single-valued and analytic on the complex £ plane save the simple poles at
& =0, 2z, 1. With the principal argument of a complex number £ in the range —w < Argé <7

one has:
V1o f e TEAMED e 1 e, JwmAna) /¢ (B2

Braiding relations (1.7) yield

= Z\/f_l\/f_z V4‘S( ) 053( )W+6+( )‘V1> (B 3)
= —iv/1—&/z = €l W B (W (2)S(€) 1) - '

Note that in (B.3) the multi-valuednes of braiding relation (1.7) is compensated by the
signs coming from (B.2). It then follows from OPE-s (1.1) and S(§) |v1) ~ ésfé |v1) that

W BOWES S k) for €0,
V1-z 5

8(5) ~ £— 2 6464‘(”4’\/\/083( )Wo +(Z)’V1> for §— 2,
—*21__12 eT B3 (va WESB (WS (2) 1) for € — 1.
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This, together with the condition s(§) — 0 for £ — oo, completely determines the form of
the function s(&) and yields

5 N , 1 z\/z »
<4‘W053( )S(g)wt ()’ 1> \/1_5\/5 ¢ < ’W
\/1 Z in

ZeThy W >vv;ﬁ+<z>ru1>—”‘zefﬁs Al WEB (WS (2) ) |

LWL (2)S_ 1 )

0 83

é- 0 83 5_1 €83
(B.4)
Expanding both sides of this equation around & = z and equating the coefficients at
(= z)_é we get
WGBS WS @) = Tl WIEOWERES ) (B
eT _
+,_ ﬁ+ (val WO B (WP (2) [v1) + B3 (va WEE (DHWE 7 (2) 1) | -

Formula (B.5) is used in a derivation of differential equation (3.28).

C Some properties of special functions related to the Barnes double
gamma

For Rz > 0 the Barnes double function I';(x) has an integral representation of the form:

0 et —Qt) - ) -

t | (1—et)(1—et?) 2e! t
0

With a help of relations

V2 b= >
I'(bx)

T T3
Ty(z),  Ty(e+b)= ﬂr?i;;) Ty(z),  (C.1)

Ly(z +0) =

one can continue I'y(z) analytically to a meromorphic function of z € C with no zeroes
and with simple poles located at = —mb — nb~!, m,n € N.
Borrowing the notation from [14] we define

Fb(.%')

Sile) =1, O ) Gy(z) = e 22Q=D) G, (2), (C.2)
and
Tas(@) =Ty (§) T (759). Pa(x) =Ty (7370 (47,
Sxs(z) = S, (2) S, (“2@), Se(x) = S, (1) S, (H;fl), (C.3)
Grns(@) = G (5) G (59). Gl = o () 6 (7).

Using relations (C.1) and definitions (C.2), (C.3) one can easily establish some basic prop-
erties of these functions.
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Relations between S and G functions:

Gns(2) = (oo™ 1@ 5yg(2), Gr(z) =e 1 ¢e 17Q@ 2 Gp(z), (C.4)

T 2

where (s = e~ 5
Shift relations:

Gns(z4+b%L) = <1+e”bﬂl‘) Gr(z), Grlz+b*l) = (1—eiﬂbﬂx) Gus(z). (C.5)

Reflection properties:

Sns(z)Sns(Q — x) = Sr(2)Sr(Q — ) = 1. (C.6)

Locations of zeroes and poles:

Sns(x) = & 2=Q+mb+nbl, m,n€Zso, m+nc2Z,
Sp(z) =0 & z=Q+mb+nb ! m,n € Z>g, m+n € 2Z + 1,
Sxs(z)™t=0 o z=-mb—nb1, m,n € Z>o, m+n € 27,
Sg(z)™t = & r=-mb—nbt, m,n € Zsg, m+n € 2Z+ 1.
e Basic residue:
1
lim xSns(z) = . (C.7)
z—0 ™

D Orthogonality relations

For ¢ € iR, we define

(rINl€) = ! _ Sns(€—7)
N Sns(Q+7+E&E—01)Sns(Q +7—&—01) Sxs(Q + 7+ € — 0F)
(rI&|€) = ! _ Sr(E—7)
) Sns(Q +7+E—0F)SR(Q +7 — &) Sns(Q + €+ 7 — 0F)’

etc.
The orthogonality relations

dr ok . e . _
/Z. (7 [Xip2)™ (7[R 1) + (7 [&] ip2)™ (7 [] ip1)] = Nys (92) 8(p2 — p1),
iR (D.1)
dT N| - * R - R - * N| -
[T Rlip2)™ (7 [Rlip1) — (7[Rl ip2)™ (7 K] ip1)] = 0,
iR
where p1,p2 € Ry, were derived in [20]. They followed from the “Saalschutz summation

formulae”

70(17' oiTQ [ Gns(T + a)Gns(T + b) Gr(T + a)GRr(T +b)

)i Gns(T+d)Grs(T+Q) - Gr(T +d)GR(T + Q)

0-a) Gns(a)Grs(0)Grs (Q + a — d)Gns(Q + b — d)

:2_3 ZTrd(
Goe Gns(Q +a+b—d) ’
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and

70dT eiﬂTQ [GNS (T + a)GNS (T + b) GR(T + a)GR(T + b)

)i Gr(T+d)Gns(T+Q)  Grs(T +d)Gr(T + Q)

3,7 d(@-d) ONs(a)Grs (D)GR(Q +a —d)GR(Q +b—d)
Gr(Q+a+b—d) ’

which were also derived in that paper. For our present purposes we need another two

= 2y (D.3)

Saalschutz summation formulae, which may be derived following the steps that lead
to (D.2), (D.3). They read
/ dr STTQ [ Gns(T 4+ a)Gr(T +b) Gr(T+a)Gns(T +b) }

1 Gr(T+d)Gns(T+ Q) Gns(T+ d)Gr(T+ Q)

—100

3 ei;r d(Q—d) GNs(a)GR(b)GNs(Q +a— d)GR(Q +b-— d)

= 2i6. Gxs(Q+a+b—d) ’ (D-4)
7‘% 0 [ Gr(r + a)Gxs(r +b) | Gns(r +a)Gr(r +b) }
o Gr(T+d)Gns(T+ Q)  Gus(T+d)Gr(T+ Q)
_ 2i¢; e T Q) Gr(a)Gns(0)Grs(@ +a —d)Gr(Q +b—d) (D.5)

Gns(Q+a+b—d)
Using the relations between the Sy(z) and Gy(x) functions and substituting in (D.4)

a=2+8&— &, b=2—-8& &, d=0Q—25

we get

dT R * R N * N

p (T —elR[&)" (T — e 71 &) + (T —e[7| &)™ (T —€e[R] &)] =
R

_ 9i¢g et (6-83)~2ime Gns(2e + € )Gns (26 — £-)Gr(2e — 4 )Gr(2e + €+),
Gs (4e)

where £_ =& — &, &4 =& + &

For x — 0 we have from (C.4) and (C.7):

Co
= 1
Gns(2) e T O(1)
so that
. GNs(2¢ +ip2 —ip1)GNs(2¢ —ip2 +ip1) o . 4e
1 = 1 = 2(y0(py — .
Py Gns (4e) I (202 4 (pp—pry2 2002 = P1)
This finally gives
dr ey . e .
/ o LT IRlap2)™ (7 [§lip1) + (7[Rl ip2)” (7 [k ip1)] (D.6)
iR

= 4i§5262iﬂp%GR(—Qipl)GR(Qip1)5(p2 — pl) == ./\/’g1 5(p2 — pl).
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Similarly, with a help of formula (D.5), on gets

[T = eRla) (- cBle) + - el &) (r— el )] =

iR
_ 22{5361’; (e2-€3)—2ine3 GNs (2€ + §4)Gns (26 — £ )GR(2€ — £ )Gr(2€ + 5—).
Gs(4e€)
Now, since &4 = i(p1 + p2) does not vanish for p; € R4, we do not have a singular

contribution from

GNS(2€ + §+)GNS(2€ — §+)

in the limit € — 0. Moreover, Gg(z) is regular in the vicinity of the imaginary = axis and
lir% GR(2€ + & )Gr(2¢ — &)
€e—

is finite. This gives
dT N| - ES R - R - * N| -
o LT IRlap2)™ (7 Rlip1) + (7 Kl ip2)™ (7 [zl dp1)] = 0. (D.7)
iR

Using the reflection formula for the Barnes S—functions, eq. (C.6), the fact that Sy(x) are
real analytic and that p; € R, 7 € iR, we can rewrite (D.1), (D.6) and (D.7) in the form

/dT { Sns(ip2 +7) Sns(ip1 —7) Sr(ipz + ) Sr(ip1 — ) }
i [ Sns(Q +ip2 —7) Sns(Q +ip1 +7)  SrR(Q +ip2 — 7) SR(Q +ip1 +7)

iR
= Nys 0(p2 — p1), (D.8)
/dT { SR(ipg + T) SNs(ipl — T) SNs(ipg + T) SR(ipl — T) }
J 7 SNs(Q+ip2—T) SR(Q+ip1+T) SR(Q+ip2—T) SNs(Q+ip1+T)
= Ny'o(p2 —p1),
and
/dT { Sns(ipz+7)  Se(ipr—7)  Sr(p2+7)  Sns(ipr —7) } _o
J i | Sns(Q+ip2 —7) Sr(Q +ip1 +7)  Sr(Q +ip2 — 7) Sns(Q +ip1 + 7) ’
/dT { Sr(ip2 + ) Sr(ip1 — ) Sns(ipa +7)  Sns(ipt —7) } _ 0
J i USns(Q +ip2 —7) Sns(Q +ip1 +7)  Sr(Q +ip2 — 7) Sr(Q +ip1 +7) 7
(D.9)

were for brevity we have not written the “—0%" prescription explicitly. It is now easy
to check that for every choice of the parity indices ho,hg, and g, g3, the orthogonality
formula (4.12) reduces to one of the equations (D.8), (D.9).
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