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1 Introduction

In the Standard Model (SM) of particle physics an explanation of the origin of the fermionic
mass and mixing patterns is missing. The mass spectrum is highly hierarchical, spreading
over several orders of magnitude. The quark mixing matrix VCKM is close to the unity
matrix and the deviations from unity are usually parametrised in powers of the (sin of the)
Cabibbo angle λ:

VCKM =

 1− λ2/2 λ Aλ3(ρ̄− iη̄)
−λ 1− λ2/2 Aλ2

Aλ3(1− ρ̄− iη̄) −Aλ2 1

 . (1.1)
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Recent global fits on the VCKM elements [2] give the following values (at 1σ):

λ = 0.2253± 0.0007 , A = 0.808+0.022
−0.015 ,

ρ̄ = 0.132+0.022
−0.014 , η̄ = 0.341± 0.013 .

(1.2)

A fundamental theory that explains all the SM flavour parameters is missing and its search
constitutes the so-called SM flavour problem.

While already present in the original version of the SM, the flavour problem has wors-
ened even more after the discovery that neutrinos oscillate and consequently have both a
non-vanishing mass and a non-vanishing leptonic flavour mixings. The global fit in neutrino
oscillation experiments presented in ref. [2] gives the following bounds at 99.73% of C.L.:

7.05× 10−5 eV2 ≤ ∆m2
sol ≤ 8.34× 10−5 eV2

2.07× 10−3 eV2 ≤ ∆m2
atm ≤ 2.75× 10−3 eV2

(1.3)

with the electron neutrino mass mνe ≤ 2 eV from Tritium experiments [2]. Moreover the
leptonic mixing matrix, UPMNS has a completely different structure than the VCKM, with
two very large angles and the third very small. The solar, atmospheric and reactor angle
(namely θ12, θ24 and θ13) bounds read (at 99.73% of C.L.):

0.25 ≤ sin2 θ12 ≤ 0.37

0.36 ≤ sin2 θ23 ≤ 0.67

sin2 θ13 ≤ 0.056 .

(1.4)

Recently new data from T2K collaboration [3] and corresponding fits [4, 5] indicate a 3σ
evidence of a non-vanishing θ13 with a relatively “large” central value.

A very good approximation for the lepton mixing matrix is provided by the so-called
Tri-Bimaximal (TB) pattern [6–8], which corresponds to the mixing angles sin2 θTB12 = 1/3,
sin2 θTB23 = 1/2, sin θTB13 = 0, and agrees at about the 1σ level with the data. The appeal
of the TB scheme is also due to the independence of the mixing angles from any mass pa-
rameter: indeed they are defined only by simple numerical factors. Other mixing schemes,
like the Bimaximal [9–13] and the Golden Ratio [14, 15] ones, exhibit analogous features,
but the agreement with the experimental data is less promising compared to the TB one.1

The Supersymmetric extension of the Standard Model in its most straightforward
(Minimal) description (MSSM), while stabilizing the Higgs scale, severely worsens the
flavour problem as order of one hundred extra parameters in the flavour sector are intro-
duced. Most of these parameters are already highly constrained (“fine-tuned”) by present
experimental data. A fundamental theory that explains the flavour mass patterns is missing
in the MSSM too.

Following the idea that the fermion mass structures could arise from a symmetry
principle, flavour symmetries have been introduced, both in the context of the SM and
its supersymmetric (SUSY) extensions. However a commonly accepted approach is still
missing and many different examples have been proposed in the literature based on a large
variety of symmetries: either abelian on non-abelian, local or global, continuous or discrete.

1Typical TB models predict sin2 θ13 ≈ 0.003 with a tension with the present T2K central value:

sin2 θ13 = 0.029.
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The largest flavour symmetry allowed in the SM in the limit of vanishing Yukawas
couplings is U(3)5, i.e. the symmetry of the kinetic terms. Such a symmetry is implemented
in the so-called Minimal Flavour Violation (MFV) ansatz [16–19]: a very concise and
predictive framework built on the assumption that, at low energy, the Yukawa couplings are
the only sources of flavour and CP violation both in the SM and in any possible extension
beyond it. The technical realisation of the MFV ansatz promotes the Yukawa matrices
to spurion fields, thus making the Lagrangian manifestly invariant under the full flavour
symmetry. Any model beyond the SM, implemented with the MFV ansatz, is successful
in suppressing flavour changing neutral current (FCNC) contributions with a typical new
physics flavour scale in the TeV region. When the symmetry is gauged [20–22], new effects
could arise as it has been recently pointed out in [23].

On the other hand, a natural mechanism to explain fermions masses and mixings in the
MFV framework is still missing [24, 25]. Some improvements in this direction are possible
when considering smaller symmetry groups. However, any deviation from the MFV scheme,
usually allows the appearance of dangerous flavour violating contributions. Interesting
attempts, in which FCNC processes are under control and the fermion mass origin is
discussed, are the one adopting as continuous symmetries U(2) [26–28], U(2)3 [29, 30],
SU(3) and SO(3) [31–35]. Notice that only in refs. [31–35] both the fermion sectors are
fully discussed; however, in such papers, an ad hoc dynamics is adopted to achieve the
Yukawa textures.

Discrete symmetries represent an alternative solution to the flavour problem, exhibit-
ing their power especially in the leptonic sector. In [36–40] it has been pointed out that
a (spontaneously broken) flavour symmetry based on the discrete group A4 appears to be
particularly suitable to reproduce the TB lepton mixing pattern as a first approximation.
Many other solutions have also been considered to generate the TB scheme, based on larger
discrete flavour groups,2 such as S4, T ′ and ∆(27). Discrete symmetries have been success-
fully used to describe also the Bimaximal [42, 43] and the Golden Ratio [44, 45] schemes.

Models based on discrete symmetries, however, usually highly deviate from the MFV
framework and potentially large flavour violating contributions are expected. In spite of
the large effort devoted in describing flavour models predicting mass patterns in agreement
with the data, only few studies analysed possible contributions to lepton flavour violating
(LFV) and FCNC observables [46–55]. In particular, the phenomenology of the Altarelli-
Feruglio (AF) lepton model [38–40], based on A4, has been studied in details both in
the SM [56, 57] and in the SUSY [58–61] scenario. The main result of these analyses
is that the flavour symmetry not only governs the structure of the fermion masses and
mixings, but also constrains the relative contribution to flavour violating observables, such
as for example the `i → `jγ decays. In this context, in fact, the predicted rates of FCNC
processes are more suppressed than in a general effective operator approach [62], due to
peculiar cancellations, allowing for a new physics scale close to the TeV range, without
conflicting with the present bounds. This type of analysis is therefore essential for testing
a specific model and for providing predictions which could allow to discriminate among all
the available proposals.

2As a review on the possible discrete groups see for example [41].
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` ec µc τ c Dq Dc
u Dc

d q3 tc bc Hu,d

T ′ 3 1 1′′ 1′ 2′′ 2′′ 2′′ 1 1 1 1
Z3 ω ω2 ω2 ω2 ω ω2 ω2 ω ω2 ω2 1

U(1)FN 0 2 1 0 0 1 1 0 0 1 0
U(1)R 1 1 1 1 1 1 1 1 1 1 0

Table 1. The transformation properties of matter fields and Higgses under the flavour group Gf .

In ref. [1] a SUSY model based on the discrete group T ′ has been constructed. This
model accounts both for leptons, predicting the TB mixing pattern, and for quarks, pro-
viding a realistic CKM matrix. In particular, the lepton sector corresponds to that of the
AF model and therefore this T ′ model can be considered as an extension of the SUSY
AF model to the quark sector. However in ref. [1] no phenomenological analysis of the
hadronic sector has been presented. Consequently, the main goal of the present paper is to
fill this gap and to present a complete description of FCNC observables both for leptons
and hadrons.

The paper is organized has follows: in section 2 the general features of the T ′ model
are briefly reminded. In section 3 the kinetic terms and the mass matrices for fermions and
sfermions are derived in a particularly convenient basis, and then in section 4 the results
are presented in a more “physical” basis. Most of the details regarding the derivation
of the soft mass matrices and the connection between the two basis are deferred to the
appendices. The main phenomenological results of the T ′ model are described in section 5.
Finally we conclude in section 6.

2 General features of the supersymmetric T ′ model

The T ′ model, we are interested in, has been proposed in ref. [1]. We summarise here
the notation and the main results, pointing out, when necessary, the few slight differences
introduced here.

The full flavour group, Gf , is a product of various terms,

Gf = T ′ × Z3 ×U(1)FN ×U(1)R , (2.1)

each of them playing a different role. The spontaneous breaking of the T ′ group (see
appendix A and ref. [1]) is mainly responsible for the fermion mixings, while the correct
fermion mass hierarchies mainly originate from a combined effect of the Z3 and U(1)FN

groups. Indeed the Z3 symmetry is used to forbid unwanted couplings between the SM
fields and the extra fields added in the model that will be specified in the following; the
continuous U(1)FN provides, according to the original Froggatt-Nielsen mechanism [63], the
suppressions necessary to reproduce the mass hierarchies. Finally, the U(1)R is a common
ingredient of SUSY constructions, containing the usual R-parity as a subgroup.

The matter fields of the model, together with their transformation properties under
the flavour group, are listed in table 1 adopting, both for fields and their superpartners,
the following notation: ` = (`1, `2, `3), where `1 = (νe, e), `2 = (νµ, µ) and `3 = (ντ , τ),
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θ ϕT ϕS ξ, ξ̃ η ξ′′

T ′ 1 3 3 1 2′ 1′′

Z3 1 1 ω ω 1 1
U(1)FN −1 0 0 0 0 0
U(1)R 0 0 0 0 0 0

Table 2. The transformation properties of flavon fields under the flavour group Gf .

are the SU(2)L-doublet (s)leptons; ec, µc and τ c are the SU(2)L-singlet (s)leptons; Dq =
(q1, q2), where q1 = (u, d) and q2 = (c, s), are the SU(2)L-doublet (s)quarks of the first two
generations; Dc

u = (uc, cc) and Dc
d = (dc, sc) are the SU(2)L-singlet (s)quarks of the first

two generations; q3 = (t, b) is the SU(2)L-doublet (s)quark of the third generation while
tc and bc are the SU(2)-singlet (s)quarks of the third generation. Hu,d are the two usual
SUSY Higgs doublets. Under the discrete symmetry group T ′, ` transforms as a triplet,
Dq, Dc

u and Dc
d as doublets, ec, µc, τ c, q3, tc, bc and Hu,d are singlets.

Apart from matter superfields the spectrum of the model accounts for several scalar
fields that are neutral under the SM gauge group. Their transformation properties under
the flavour group Gf are shown in table 2. This new set of scalar fields is responsible
for the spontaneous breaking of the flavour symmetry and are usually called flavons. As
described in details in [1], it is possible to construct a scalar potential in such a way that
flavons develop vacuum expectation values (vevs) along the following (flavour) directions:

〈ϕT 〉
Λf

= (u, 0, 0) + (cT1 u
2, cT2 t u

2, cT3 u
2) ,

〈ϕS〉
Λf

= cb(u, u, u) +O(u2) ,

〈η〉
Λf

= c′(u, 0) + (cη1 u2, cη2 u
2) ,

〈ξ〉
Λf

= ca u +O(u2) ,

〈
ξ̃
〉

Λf
= cc u

2 ,
〈ξ′′〉
Λf

= c′′ u2 ,
〈θFN〉

Λf
= t .

(2.2)

All the coefficients ci, appearing in eqs. (2.2), are complex numbers with absolute value of
order one, while u and t are two, small, T ′ symmetry breaking parameters. In eqs. (2.2)
we explicitly considered all contributions up to second order in u, when relevant. Notice
that both u and t can, in general, be complex, but one can show that, through fields
redefinitions, they can be taken real and positive. The cutoff scale Λf is associated to the
flavour dynamics and it is expected close to the grand unification scale, Λf . 1016 GeV.

In ref. [1] the most general superpotential invariant under the SM gauge group and
under Gf has been constructed, according to the transformation properties listed in ta-
bles 1 and 2. Considering only the leading-order (LO) terms in the u expansion of such
a superpotential and the corresponding LO approximation of the expressions in eq. (2.2),
the charged leptons mass matrix reads:

M` ∝

 ye t
2 0 0

0 yµ t 0
0 0 yτ

u , (2.3)
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with ye, yµ and yτ being complex numbers with absolute values of order one. The parameter
t governs the relative hierarchy among the charged lepton masses. Through a comparison
with the experimental data one infers t ≈ 0.05. A lower bound on u can be obtained
from the relation that connects the T ′ breaking parameter to the SM electroweak vev (v),
the τ Yukawa coupling and pole mass (yτ and mτ ) and the MSSM neutral Higgs vevs.
ratio (tanβ = vu/vd):

u =
1
|yτ |

√
2mτ

v cosβ
≈ 0.01

tanβ
|yτ |

. (2.4)

By requiring a τ -Yukawa coupling consistent with the perturbative regime, |yτ | < 3, one
gets u ≥ 0.05 (0.007) for tanβ = 15 (2) respectively.

Following ref. [1], at the LO the light neutrino mass matrix is given by

Mν ∝

 3a+ 2b −b −b
−b 2b 3a− b
−b 3a− b 2b

u , (2.5)

and it can be diagonalised by the TB mixing matrix, defined, up to phases, by

UTB =


√

2/3 1/
√

3 0
−1/
√

6 1/
√

3 −1/
√

2
−1/
√

6 1/
√

3 +1/
√

2

 . (2.6)

When considering the sub-leading contributions to the matter superpotential in the
u expansion (see ref. [1] for details) and the corresponding sub-leading terms in eq. (2.2),
the mass matrices in eqs. (2.3) and (2.5) get modified and consequently the diagonalisation
matrix in eq. (2.6) slightly deviates from the TB pattern. An upper bound on u of about
0.05 is obtained by the requirement that these corrections do not perturb excessively the
TB values of the neutrino mixing angles: the strongest constraint provided by the solar
mixing angle. As a consequence, for tanβ = 2 only values for u in the range

0.007 . u . 0.05 (2.7)

are allowed, while for tanβ = 15 only u = 0.05 is permitted.
Considering the quark sector, the particular choice of the transformation properties

for the quark fields and the specific alignment of the flavon vevs. determine the char-
acteristic “shell” filling of the mass matrices. In terms of the T ′ breaking parameters u
and t, they read:

Mu ∼

 t2 u2 t u2 t u2

t u2 t u t u

u2 u 1

 , Md ∼

 t2 u2
√
t u2 t u2

√
t u2 t u t u

t u2 t u t

 . (2.8)

In the previous mass matrices we didn’t explicitly write the unknown, order one, coefficients
entering in each of the entries. In the largest part of the allowed range for u, realistic quark
masses and CKM mixings follow from eqs. (2.8). Only when very small values for u are

– 6 –
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Field ϕ0
T ϕ0

S η0 ξ0 ξ′0

T ′ 3 3 2′′ 1 1′

Z3 1 ω 1 ω 1
U(1)FN 0 0 0 0 0
U(1)R 2 2 2 2 2

Table 3. The transformation properties of the driving fields under the flavour group Gf .

considered, it is necessary to compensate with coefficients slightly larger than one. We will
discuss this issue more in detail in the following sections.

In order to break the flavour group along the required directions and to allow the
flavons to get vevs. as in eqs. (2.2),a new set of fields, called driving superfields, has to
be introduced. These fields transform only under the flavour group Gf and couple only
to the flavons. The driving fields, together with their transformation properties under Gf ,
are listed in table 3.

As it has been discussed in [58, 60], in the context of the A4 model, the driving
fields develop non-vanishing vevs. only once soft SUSY breaking terms are introduced.
Extending such an analysis to the case of the T ′ model, the following vevs. for the driving
superfields are obtained: to first order in u they are given by〈

ϕ0
T

〉
m0

= c0T (1, 0, 0) + (c0T1 u, c
0
T2u, c

0
T3 u) ,〈

ϕ0
S

〉
m0

= c0b(1, 1, 1) + (c0S1 u, c
0
S2 u, c

0
S3 u) ,〈

η0
〉

m0
= (0, c0η) + (c0η1 u, c

0
η2 u) ,〈

ξ0
〉

m0
= c0a + c0c u ,

〈
ξ′0
〉

m0
= c0ξ′ u .

(2.9)

All the coefficients c0i , appearing in the previous equations, are complex numbers with
absolute value of order one. Here, m0 represents the common soft SUSY breaking scalar
mass. Starting from eqs. (2.2) and (2.9), the vevs. of the flavon F -terms which non-trivially
contribute to the sfermion mass matrices can be derived:

1
Λf

〈
∂w

∂ϕT

〉
= m0

[
cF (u, 0, 0) + (cFT1 u

2, cFT2 u
2, cFT3 u

2)
]
,

1
Λf

〈
∂w

∂ϕS

〉
= m0

[
cFb (u, u, u) + (cFS1 u

2, cFS2 u
2, cFS3 u

2)
]
,

1
Λf

〈
∂w

∂η

〉
= m0

[
cF ′(u, 0) + (cFη1 u

2, cFη2 u
2)
]
,

1
Λf

〈
∂w

∂ξ

〉
= m0c

F
a u ,

1
Λf

〈
∂w

∂ξ̃

〉
= m0c

F
c u

2 ,
1

Λf

〈
∂w

∂ξ′′

〉
= m0 c

F ′′ u2 .

(2.10)

Again all the coefficients cFi are complex numbers with absolute value of order one. It is
interesting to note that the LO terms in eq. (2.10) are proportional to those in eq. (2.2),
confirming what found in [1, 58, 64].

– 7 –
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3 Kinetic terms and mass matrices

The Lagrangian of the SUSY T ′ model from which both fermion and sfermion masses are
obtained, is given by

L =
∫
d2θd2θK(z, e2V z) +

[∫
d2θ w(z) + h.c.

]
+

1
4

[∫
d2θ f(z)WW + h.c.

]
, (3.1)

where K(z, z) is the Kähler potential, w(z) is the superpotential and f(z) is the gauge
kinetic function. V is the Lie-algebra valued vector supermultiplet, describing the gauge
fields and their superpartners whileW is the chiral superfield describing, together with the
function f(z), the kinetic terms of gauge bosons and their superpartners. Notice that the
fermion sector has already been discussed in ref. [1], but assuming canonical kinetic terms.

It is assumed that the breaking of SUSY occurs at a scale higher than or comparable to
the flavour scale, so that at energies close to the cutoff scale we have non-universal boundary
conditions for the soft SUSY breaking terms, dictated by the flavour symmetry. The soft
SUSY breaking terms are generated from the SUSY Lagrangian by promoting all coupling
constants (such as the Yukawa couplings, the couplings in the flavon superpotential and the
couplings in the Kähler potential) to superfields with constant θ2 and θ2θ

2 components [65].
The analysis of the lepton sector is going to be the same as the one presented in ref. [60]
for the AF model, but for the presence in the T ′ case of two additional flavons: η and ξ′′.

3.1 Kähler potential

For non-vanishing values of the T ′ breaking parameters u and t, the Kähler potential devi-
ates from the canonical form, K(z, z) = zz, due to the contributions of non-renormalizable
terms, invariant under both the gauge and the flavour symmetries, containing the flavon
fields. Such terms are suitably suppressed by the flavour scale Λf , but cannot be neglected
as they affect the fermionic mass matrices, through redefinitions needed to move into the
basis of canonically normalised kinetic terms. In the following we are going to include
all the terms up to the second order in the expansion in u and additional contributions
proportional to t, when needed in order not to have vanishing elements in the sfermion
mass matrices.

The Kähler potential can be written as K = K` + Kq + Kr where the three terms
correspond to lepton, quark and remaining field contributions, respectively. Let us start
considering the leptonic contribution:

K` = K(0)
` +K(1)

` +K(2)
` + . . . (3.2)

where K(i)
` represents the ith term in the u expansion. The LO term reads:

K(0)
` = k`0

3∑
i=1

`i`i +
3∑
i=1

[
(ke0)i + (k̂e0)i

|θFN|2

Λ2
f

]
`
c
i`
c
i (3.3)

– 8 –
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with `c = (ec, µc, τ c). Notice that the contributions from the superfield θFN can be ne-
glected, with the exception of the right-handed sector, where we consider terms up to
second order in t. The next order term in the u expansion is given by

K(1)
` =

k`S
Λf

(ϕT (` `)S) +
k`A
Λf

(ϕT (` `)A) +
k`ξ′′

Λf
ξ′′(` `)′+

+
k`′S
Λf

(ϕT (` `)S) +
k`′A
Λf

(ϕT (` `)A) +
k`′ξ′′

Λf
ξ
′′(` `)′′ + h.c.

(3.4)

where (. . .), (. . .)′ and (. . .)′′ denote the 1, 1′ and 1′′ singlets of T ′, while (. . .)S and
(. . .)A the symmetric and antisymmetric triplets originating from the contraction of two 3
representations (see the appendix A for details). Notice that the SU(2)L singlet superfields
`c are not affected at this order in the expansion. To discuss the next term it is useful to
distinguish the contributions to the left-handed doublets and the right-handed singlets:

K(2)
` = K(2)

` L +K(2)
`R . (3.5)

For lepton doublets one finds:

K(2)
` L =

17∑
i=1

k`i
Λ2
f

(X`
i ` `) (3.6)

where X` is a list of Z3-invariant operators, bilinear in the flavon superfields and their
conjugates,

X` =
{
ξ ξ, ϕ2

T , ϕ
2
T , ϕT ϕT , ϕS ϕS , ξ

′′
ξ′′, η η, ξ ϕS , ϕS ξ,

ξ′′2, ξ
′′2
, η2, η2, ϕT ξ

′′, ϕT ξ
′′, ϕT ξ

′′
, ϕT ξ

′′
}
,

(3.7)

and each quantity k`i represents a list of parameters since there can be different non-
equivalent ways of combining X`

i with ` ` to form a T ′-invariant. There are also obvious
relations among the coefficients k`i to guarantee that K(2)

` L is real. Notice that in X` we do
not consider the possible combinations with the flavon ξ̃, because it has exactly the same
quantum numbers as ξ and therefore their contributions can be identified by the same
coupling constant. Furthermore, notice that some of the terms in the sum of eq. (3.6) are
vanishing once we consider specific vevs. of the flavons in eq. (2.2).

For lepton singlets, we can distinguish a diagonal contribution and a non-diagonal one:

K(2)
`R =

[
K(2)
`R

]
d

+
[
K(2)
`R

]
nd
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respectively given by:

[
K(2)
`R

]
d

=
1

Λ2
f

7∑
i=1

[
(kee)i (X`

i )e
cec + (keµ)i (X`

i )µ
cµc + (keτ )i (X`

i )τ
cτ c
]
, (3.8)

[
K(2)
`R

]
nd

=
θFN

Λ2
f

(keeµ)1 ξ
′′
ecµc +

θ
2
FN

Λ3
f

(keeτ )1 ξ′′ecτ c +
θFN

Λ2
f

(keµτ )1 ξ
′′
µcτ c+

+
θFN

Λ3
f

[
5∑
i=2

(keeµ)i (X`
i )
′ + (keeµ)6X`

10 + (keeµ)7X`
13

]
ecµc+

+
θ
2
FN

Λ4
f

[
5∑
i=2

(keeτ )i (X`
i )
′′ + (keeτ )6X`

11 + (keeτ )7X`
12

]
ecτ c+

+
θFN

Λ3
f

[
5∑
i=2

(keµτ )i (X`
i )
′ + (keµτ )6X`

10 + (keµτ )7X`
13

]
µcτ c + h.c. .

(3.9)

Due to the structure of the flavon vevs. at LO, the first row in eq. (3.9) vanish. If also the
next-to-leading order (NLO) is considered, these terms contribute at the same level as the
operators in the subsequent rows. The expressions in eqs. (3.3)–(3.9) reduce to the ones
of [60] when the contributions related to the flavons η and ξ′′ are singled out.

The same expansion in u can be considered similarly for the Kähler potential of the
quark sector, Kq:

Kq = K(0)
q +K(1)

q +K(2)
q + . . . . (3.10)

The LO terms in the u expansion are given by:

K(0)
q = kQ0

2∑
i=1

DqiDqi +
[
kq30 + k̂q30

|θFN|2

Λf

]
q3q3+

+ kU0

2∑
i=1

D
c
uiD

c
ui +

[
kt0 + k̂t0

|θFN|2

Λf

]
t
c
tc+

+ kD0

2∑
i=1

D
c
diD

c
di +

[
kb0 + k̂b0

|θFN|2

Λf

]
b
c
bc .

(3.11)

Notice again that the contributions from the superfield θFN can be neglected, with the
exception of the third families, where we consider terms up to second order in t. The next
terms in the u expansion are given by:

K(1)
q =

kQT
Λf

(ϕT (DqDq)3) +
kQ′T
Λf

(ϕT (DqDq)3) +
kQη
Λf

(η Dq)q3+

+
kUT
Λf

(ϕT (Dc
uD

c
u)3) +

kU ′T
Λf

(ϕT (Dc
uD

c
u)3) +

kUη
Λ2
f

θFN(η Dc
u)tc+

+
kDT
Λf

(ϕT (Dc
dD

c
d)3) +

kD′T
Λf

(ϕT (Dc
dD

c
d)3) +

kDη
Λf

(η Dc
d)b

c + h.c.

(3.12)
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K(2)
q =

15∑
i=1

kQi
Λ2
f

(Xq
iDqDq) +

7∑
i=1

kq3i
Λ2
f

(Xq
i ) q3q3 +

5∑
i=1

kQq3i

Λ2
f

(Xq
i+15Dq) q3+

+
15∑
i=1

kUi
Λ2
f

(Xq
iD

c
uD

c
u) +

7∑
i=1

kti
Λ2
f

(Xq
i ) tctc +

5∑
i=1

kUti
Λ3
f

θFN(Xq
i+15D

c
u) tc+

+
15∑
i=1

kDi
Λ2
f

(Xq
iD

c
dD

c
d) +

7∑
i=1

kbi
Λ2
f

(Xq
i ) bcbc +

5∑
i=1

kDbi
Λ2
f

(Xq
i+15D

c
d) b

c + h.c.

(3.13)

where Xq is a list of Z3-invariant operators, bilinear in the flavon superfields and their
conjugates,

Xq =
{
ξ ξ, ϕ2

T , (ϕT )2, ϕT ϕT , ϕS ϕS , ξ
′′
ξ′′, η η, ξ ϕS , ϕS ξ, ϕT ξ

′′, ϕT ξ
′′,

ϕT ξ
′′
, ϕT ξ

′′
, η2, η2, ξ

′′
η, ϕT η, ϕT η, ϕT η, ϕT η

}
, (3.14)

and each ki represents a list of parameters since there can be different non-equivalent
ways of combining Xq

i to quark superfields to form a T ′-invariant. There are also obvious
relations among the coefficients ki in order to guarantee the realness of K(2)

q L. For the same
reason as for X`, also in this case we do not consider in Xq the possible combinations with
the flavon ξ̃.

Finally, the Kähler potential containing the Higgs and FN fields is given by:

Kr = ku|Hu|2 + kd|Hd|2 + kFN|θFN|2 + . . . (3.15)

where dots stand for additional contributions related to the flavon sector.
In order to generate a set of SUSY breaking soft mass terms, each coupling constant

kI is treated as a superfield with non-vanishing constant θ2θ
2 component:

kI = pI + sI θ
2θ

2
m2

0 (3.16)

where pI and sI are complex numbers with absolute value of order one. A more general
expression could be considered, including also terms proportional to θ2 and to θ

2 [65],
but these contributions can be absorbed by a suitable reparametrisation. In the following
analysis it is useful to choose a simplified notation for some of the k parameters:

k`0 = 1 + s`0 θ
2θ

2
m2

0 , (ke0)i = 1 + (se0)i θ2θ
2
m2

0 ,

ku,d = 1 + su,d θ
2θ

2
m2

0 , kFN = 1 + sFN θ2θ
2
m2

0 .
(3.17)

When the flavons develop vevs, the Kähler potential gives rise to non-canonical kinetic
terms:

Lkin = i K`
ij `i σ

µ Dµ `j + i Ke
ij `

c
i σ

µ Dµ `
c
j +

+ i Kq
ij Qi σ

µ DµQj + i Ku
ij U

c
i σ

µ Dµ U
c
j + i Kd

ij D
c
i σ

µ DµD
c
j +

+ K`
ij Dµ ˜̀

i Dµ
˜̀
j + Ke

ij Dµ ˜̀c
i Dµ

˜̀c
j +

+ Kq
ij Dµ Q̃i Dµ Q̃j + Ku

ij Dµ Ũ ciDµ Ũ
c
j + Kd

ij Dµ D̃c
i Dµ D̃

c
j ,

(3.18)
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with Q ≡ {q1, q2, q3}, U c ≡ {uc, cc, tc}, Dc ≡ {dc, sc, bc}, and the matrices Ki given by

K` =

 1 + 2t`1 u t`4 u
2 t`5 u

2

t
`
4 u

2 1− (t`1 + t`2) u t`6 u
2

t
`
5 u

2 t
`
6 u

2 1− (t`1 − t`2) u

 , (3.19)

Ke =

 1 + te1 u
2 + t′e1 t

2 te4 u
2 t te5 u

2 t2

te4 u
2 t 1 + te2 u

2 + t′e2 t
2 te6 u

2 t

te5 u
2 t2 te6 u

2 t 1 + te3 u
2 + t′e3 t

2

 , (3.20)

Kq =

 tqd − t
q
1 u tq5 u

2 tq6 u
2

t
q
5 u

2 tqd + tq1 u tq4 u

t
q
6 u

2 t
q
4 u tqs + tq2 u

2 + tq3 t
2

 , (3.21)

Ku =

 tud − tu1 u tu5 u
2 tu6 u

2 t

t
u
5 u

2 tud + tu1 u tu4 u t

t
u
6 u

2 t t
u
4 u t tus + tu2 u

2 + tu3 t
2

 , (3.22)

Kd =

 tdd − td1 u td5 u
2 td6 u

2

t
d
5 u

2 tdd + td1 u td4 u

t
d
6 u

2 t
d
4 u tds + td2 u

2 + td3 t
2

 . (3.23)

All these coefficients are complex, apart from t`1,2, te1,2,3, t′e1,2,3 and tq,u,dd,s,1,2,3 that are real.
Furthermore, all the tI parameters are linearly related to the parameters pI introduced
before in eq. (3.16), but such relations are not particularly significant and in the rest
of this paper we will treat the tI coefficients as input parameters. Notice that K` and
Ke have exactly the same structure of the corresponding matrices in ref. [60]. The only
difference from ref. [60] is hidden in different relations between the parameters tI and pI
in the matrices K` and Ke, due to the presence of the flavons η and ξ′′. The matrices for
the quark sector are, instead, derived for the first time and extend the analysis presented
in ref. [60].

3.2 Superpotential

As for the Kähler potential, also the superpotential can be separated in several parts:

w = w` + wν + wq + wd + wh + . . . (3.24)

representing respectively the charged lepton, the neutrino, the quark, the driving field and
the Higgs terms. Again, each term can be written as an expansion, up to the second order,
in the parameter u.

The part responsible for the charged lepton masses has a LO and NLO terms:

w` = w
(1)
` + w

(2)
` + . . . , (3.25)
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respectively given by

w
(1)
` =

xe
Λf

θ2
FN

Λ2
f

ecHd (ϕT `) +
xµ
Λf

θFN

Λf
µcHd (ϕT `)

′ +
xτ
Λf

τ cHd (ϕT `)
′′ , (3.26)

w
(2)
` =

1
Λ2
f

θ2
FN

Λ2
f

ecHd

[
xTe
(
ϕ2
T `
)

+ xηe
(
η2`
)

+ xξ
′′
e ξ
′′ (ϕT `)

′
]

+

+
1

Λ2
f

θFN

Λf
µcHd

[
xTµ
(
ϕ2
T `
)′ + xηµ

(
η2`
)′ + xξ

′′
µ ξ
′′ (ϕT `)

′′
]

+

+
1

Λ2
f

τ cHd

[
xTτ
(
ϕ2
T `
)′′ + xητ

(
η2`
)′′ + xξ

′′
τ ξ
′′ (ϕT `)

]
.

(3.27)

To generate both the Yukawa interactions and the soft mass contributions of the RL type,
we promote the quantities xf and xT,η,ξ

′′

f to constant superfields, of the type

xf = yf − zf θ2m0 , xT,η,ξ
′′

f = yT,η,ξ
′′

f − zT,η,ξ
′′

f θ2m0 (f = e, µ, τ) , (3.28)

where the coefficients yf , zf , yT,η,ξ
′′

f and zT,η,ξ
′′

f are complex numbers of order one. From
eqs. (3.26) and (3.27), after the flavour and the electroweak symmetry breakings, the
following mass matrix for the charged leptons are obtained:

M` =

 ye t
2 u+ y′e t

2 u2 cT3 ye t
2 u2 cT2 ye t

3 u2

cT2 yµ t
2 u2 yµ t u+ y′µ t u

2 cT3 yµ t u
2

cT3 yτ u
2 cT2 yτ t u

2 yτ u+ y′τ u
2

 v cosβ√
2

. (3.29)

with y′f ≡ yTf + c′2 yηf + cT1 yf . The matrix M` is shown in the basis in which the
kinetic terms are non-canonical. Notice that M` slightly differs from the corresponding
matrix derived in ref. [60] due to the different NLO ϕT vev structure between the AF and
the T ′ models.

Similarly, the neutrino superpotential can be expanded in powers of u:

wν = w(1)
ν + w(2)

ν + . . . (3.30)

The LO term is given by:

w(1)
ν =

xa
ΛfΛL

ξ(Hu`Hu`) +
xb

ΛfΛL
(ϕSHu`Hu`) , (3.31)

with ΛL referring to the lepton number violation scale. Also in this case the constants xa,b
are promoted to superfields of the form:

xa,b = ya,b + za,b θ
2m0 . (3.32)

From this expression for w(1)
ν one can recover the neutrino mass matrix mν of eq. (2.5)

simply setting a = ya ca and b = yb cb. The NLO term in the expansion, w(2)
ν , gives rise

to order u deviations from the TB mixing scheme. Being not relevant for the subsequent
discussion its analytical form will be left out.
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The LO and NLO superpotential terms in the u expansion, responsible for the quark
masses,

wq = w(1)
q + w(2)

q + . . . (3.33)

are respectively given by

w(1)
q = xt (tcq3)Hu +

xb
Λf

θFN (bcq3)Hd+

+
x1

Λ2
f

θFN(ϕTDc
uDq)Hu +

x5

Λ2
f

θFN(ϕTDc
dDq)Hd+

+
x2

Λ2
f

θFNξ
′′(Dc

uDq)′Hu +
x6

Λ2
f

θFNξ
′′(Dc

dDq)′Hd+

+
1

Λf

[
x3 t

c(ηDq) +
x4

Λf
θFN(Dc

uη)q3

]
Hu+

+
1

Λ2
f

θFN

[
x7 b

c(ηDq) + x8 (Dc
dη)q3

]
Hd ,

(3.34)

w(2)
q =

x9

Λ4
f

θFNξ
2(ϕSDc

uDq)Hu +
x11

Λ4
f

θFNξ
2(ϕSDc

dDq)Hd+

+
x10

Λ4
f

θFN(ϕ3
SD

c
uDq)Hu +

x12

Λ4
f

θFN(ϕ3
SD

c
dDq)Hd + . . .

(3.35)

Here dots stand terms which do not introduce new flavour structures in the mass matrices
and therefore can be re-absorbed in the parametrisation, as discussed in ref. [1]. The
quantities xi are taken to be constant superfields with

xf = yf − zf θ2m0. (3.36)

The up and down quark mass matrices obtained from eqs. (3.34) and (3.35), after the
breaking of the flavour and the electroweak symmetries, are given by:

Mu=

 icT2y1t
2u2 + icb(c2ay9 + c2by10)tu3

( (1−i)
2 cT3y1 + c′′y2

)
tu2 −cη2y4tu

2( (1−i)
2 cT3y1 − c′′y2

)
tu2 y1tu c′y4tu

cη2y3u
2 c′y3u yt

 v sinβ√
2
,

Md=

 icT2y5t
2u2 + icb(c2ay11 + c2by12)tu3

( (1−i)
2 cT3y5 + c′′y6

)
tu2 −cη2y8tu

2( (1−i)
2 cT3y5 − c′′y6

)
tu2 y5tu c′y8tu

−cη2y7tu
2 c′y7tu ybt

 v cosβ√
2

.

(3.37)
where all the yi are complex number with absolute value of order one, apart for y6 which
is taken to be slightly larger than its natural value,

y6 ≡ ỹ6
1√
t
, (3.38)

in order to reproduce the correct value of the Cabibbo angle (see ref. [1] for more de-
tails). Notice that the matrices Mu,d are shown in the basis in which the kinetic terms are
non-canonical.
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The term wd is responsible for the vacuum alignment of the flavon fields and, at leading
and renormalisable order, is given by

wd = M (ϕ0
T ϕT ) + g (ϕ0

T ϕT ϕT ) + g7 ξ
′′ (ϕ0

T ϕT )′ + g8 (ϕ0
T η η)+

+ g1 (ϕ0
S ϕS ϕS) + g2 ξ̃ (ϕ0

S ϕS)+

+ g3 ξ
0 (ϕS ϕS) + g4 ξ

0 ξ2 + g5 ξ
0 ξ ξ̃ + g6 ξ

0 ξ̃2+

+Mη (η0 η) + g9 (ϕT η0 η)+

+Mξ ξ
′ 0 ξ′′ + g10 ξ

′ 0 (ϕT ϕT )′ ′ + . . .

(3.39)

where dots denote sub-leading non-renormalizable corrections. In ref. [1] it has been shown
how this superpotential produces the alignment of the flavon vevs. reported in eq. (2.2).

The Froggat-Nielsen flavon θFN gets its vev through a D-term, once we assume that
the symmetry U(1)FN is gauged. The corresponding scalar potential is:

VD,FN =
1
2
(
M2

FI − gFN|θFN|2 + . . .
)2 (3.40)

where gFN is the gauge coupling constant of U(1)FN and M2
FI denotes the contribution of

the Fayet-Iliopoulos (FI) term. Dots represent other terms which are not relevant for the
calculation of the FN field vev. In the SUSY limit one gets

|〈θFN〉|2 =
M2

FI

gFN
(3.41)

which defines the T ′ symmetry breaking parameter t via eq. (2.2).
Finally the term wh is associated with the µ parameter:

wh = µHuHd . (3.42)

This term explicitly breaks the continuous U(1)R symmetry of the model, while preserving
the usual R-parity. Furthermore, the soft SUSY breaking term Bµ can then arise from the
µ term once µ is promoted to a superfield µ+ θ2Bµ.

3.3 Sfermion masses

With the aid of the Kähler potential and of the superpotential written in the previous
subsections one can derive the sfermion mass matrices for the T ′ model. The matter
Lagrangian reads:

−Lm ⊃
(
ẽ ẽc

)
M2

e

(
ẽ

ẽ
c

)
+ ν̃ m2

νLL ν̃+

+
(
ũ ũc

)
M2

u

(
ũ

ũ
c

)
+
(
d̃ d̃c

)
M2

d

(
d̃

d̃
c

)
,

(3.43)

where

M2
f =

(
m2
fLL m2

fLR

m2
fRL m

2
fRR

)
, f = e, u, d . (3.44)
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with m2
(f,ν)LL and m2

fRR being 3× 3 hermitian matrices, while m2
fLR =

(
m2
fRL

)†
. Each of

these blocks receives contributions from different part of the SUSY Lagrangian:

m2
(f,ν)LL = (m2

(f,ν)LL)K + (m2
(f,ν)LL)F + (m2

(f,ν)LL)D ,

m2
fRR = (m2

fRR)K + (m2
fRR)F + (m2

fRR)D + (m2
fRR)D,FN ,

m2
fRL = (m2

fRL)1 + (m2
fRL)2 + (m2

fRL)3 .

(3.45)

that are going to be described more in details in the following. Notice that in the sneutrino
sector only the LL block is present and that any contribution to the sneutrino masses
associated to wν has been neglected.

The contributions to the sfermion masses from the SUSY breaking terms in the Kähler
potential are given by two distinct sources: the first one originates from eqs. (3.3)–(3.13)
and is proportional to the parameters sI . These contributions for the sleptons are given by

(m2
(e,ν)LL)K =

 n`0 + 2n`1 u n`4 u
2 n`5 u

2

n`4 u
2 n`0 − (n`1 + n`2)u n`6 u

2

n`5 u
2 n`6 u

2 n`0 − (n`1 − n`2)u

m2
0 , (3.46)

(m2
eRR)K =

 ne1 ne4 u
2 t ne5 u

2 t2

ne4 u
2 t ne2 ne6 u

2 t

ne5 u
2 t2 ne6 u

2 t ne3

m2
0 , (3.47)

while for the squarks are

(m2
uLL)K = (m2

dLL)K =

 nq0 − n
q
2 u nq5 u

2 nq6 u
2

nq5 u
2 nq0 + nq2 u nq4 u

nq6 u
2 nq4 u nq1 + nq3 t

2

m2
0 , (3.48)

(m2
uRR)K =

 nu0 − nu2 u nu5 u
2 nu6 u

2 t

nu5 u
2 nu0 + nu2 u nu4 u t

nu6 u
2 t nu4 u t nu1 + nu3 t

2

m2
0 , (3.49)

(m2
dRR)K =

 nd0 − nd2 u nd5 u
2 nd6 u

2

nd5 u
2 nd0 + nd2 u nd4 u

nd6 u
2 nd4 u nd1 + nd3 t

2

m2
0 . (3.50)

The coefficients ni are linearly related to the parameters sI introduced in eq. (3.16). As
such relations do not give any deeper insight, for the rest of the paper ni will be considered
free input parameters, with absolute values of order one. All these coefficients are in
general complex, with the obvious exception of the ones appearing in the diagonal, that,
for hermiticity, are real. In addition, one assumes n`0, ne1,2,3 and nq,u,d0,1 positive, in order to
have positive definite squared masses, to avoid electric-charge breaking minima and further
sources of electroweak symmetry breaking.

The second contribution to sfermion masses coming from the Kähler potential is related
to the auxiliary fields of the flavon supermultiplets, that acquire non-vanishing vevs, as
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shown in eq. (2.10), when soft SUSY breaking terms are included into the flavon potential.
This type of contribution originates from a fourth derivative term of the Kähler potential:〈

∂4K
∂fi∂f j∂Φk∂Φl

〉〈
∂w

∂Φk

〉〈
∂w

∂Φl

〉
f̃if̃ j , (3.51)

where f refers to the matter scalar fields and Φ to the flavons. For completeness all these
contributions are explicitly derived in appendix B, where it is also shown how these terms
can be safely absorbed in a redefinition of the coefficients ni.

The SUSY contribution from the F terms is completely negligible for sneutrinos, while
for charged sfermions they read:

(m2
eLL)F = M †`

[
(Ke)−1

]T
M` , (m2

eRR)F = M` (K`)−1 M †` ,

(m2
uLL)F = M †u

[
(Ku)−1

]T
Mu , (m2

uRR)F = Mu (Kq)−1 M †u ,

(m2
dLL)F = M †d

[
(Kd)−1

]T
Md , (m2

dRR)F = Md (Kq)−1 M †d ,

(3.52)

where Mf is the fermion mass matrix and Kf is the matrix specifying the kinetic terms,
explicitly written in eqs. (3.19)–(3.23).

The SUSY contribution from the D terms are given by:

(m2
eLL)D =

(
−1

2
+ sin2 θW

)
cos 2β m2

ZK
` ,

(m2
eRR)D = (−1) sin2 θW cos 2β m2

Z(Ke)T ,

(m2
νLL)D =

(
+

1
2

)
cos 2β m2

ZK
` ,

(m2
uLL)D =

(
+

1
2
− 2

3
sin2 θW

)
cos 2β m2

ZK
q ,

(m2
uRR)D =

(
+

2
3

)
sin2 θW cos 2β m2

Z(Ku)T ,

(m2
dLL)D =

(
−1

2
+

1
3

sin2 θW

)
cos 2β m2

ZK
q ,

(m2
dRR)D =

(
−1

3

)
sin2 θW cos 2β m2

Z(Kd)T ,

(3.53)

where mZ is the Z mass and θW is the Weinberg angle. For all the right-handed fields but
tc an additional D term contribution, coming from the gauged U(1)FN sector, is present.
One can check that this contribution can be simply reabsorbed in the redefinition of the
ne,u,di coefficients parametrizing (m2

fRR)K .
Concerning the RL mass blocks, they are the results of three distinct terms: the first

one originates from the superpotential, eqs. (3.26), (3.27), (3.34), (3.35), and is proportional
to the parameters zf and z′f of the decomposition in eqs. (3.28), (3.36):

(m2
(e,d)RL)1 = A

(e,d)
1

v cosβ√
2

A0 , (m2
uRL)1 = Au1

v sinβ√
2
A0 , (3.54)
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with A0 a common (SUSY) trilinear mass term and where for the sleptons we have defined

Ae1 =

 ze t
2 u+ z′e t

2 u2 cT3 ze t
2 u2 cT2 ze t

3 u2

cT2 zµ t
2 u2 zµ t u+ z′µ t u

2 cT3 zµ t u
2

cT3 zτ u
2 cT2 zτ t u

2 zτ u+ z′τ u
2

 , (3.55)

with z′i = zTf + c′2 zηi + cT1 zi for i = e, µ, τ , while for the squarks we have

Au1 =


i cT2 z1 t

2 u2 + i z9 t u
3
(

(1−i)
2 cT3 z1 + c′′ z2

)
t u2 −cη2 z4 t u2(

(1−i)
2 cT3 z1 − c′′ z2

)
t u2 z1 t u c′ z4 t u

−cη2 z3 u2 c′ z3 u zt

 , (3.56)

Ad1 =


i cT2 z5 t

2 u2 + i z11 t u
3
(

(1−i)
2 cT3 z5 + c′′ z6

)
t u2 −cη2 z8 t u2(

(1−i)
2 cT3 z5 − c′′ z6

)
t u2 z5 t u c′ z8 t u

−cη2 z7 t u2 c′ z7 t u zb t

 , (3.57)

with z9 = cb(c2a z9 + c2b z10) and z11 = cb(c2a z11 + c2b z12). Notice that the matrix Ae1 in
eq. (3.55) differs from the corresponding matrix in ref. [60], the reason being the, already
mentioned, different choice of the flavon ϕT vev.

The second term in the LR mass matrices has the same source of eq. (3.51) and it is
related to the non-vanishing vev of the auxiliary fields of the flavon supermultiplets. This
contribution can be written as〈

∂3w

∂Φ∂f ci ∂fj

〉〈
∂w

∂Φ

〉
f̃ ci f̃j + h.c. (3.58)

so that the soft mass matrices (m2
fRL)2 read as

(m2
(e,d)RL)2 = A

(e,d)
2

v cosβ√
2

A0 , (m2
uRL)2 = Au2

v sinβ√
2
A0 . (3.59)

The matrices A(e,u,d)
2 have exactly the same structure of A(e,u,d)

1 in eqs. (3.55)–(3.57) in
terms of u and t, apart from the (3, 3) entries of A(u,d)

2 which are vanishing. Further-
more only the coefficients of order one are different. As it will be discussed in the next
section, these two contributions cannot be absorbed into the same matrix, by a simple
redefinition of the parameters. When moving to the physical basis, in the A

(e,u,d)
1 ma-

trices several cancellations among the parameters happen, while this is not the case for
the A(e,u,d)

2 matrices. Consequently, these two contributions are kept distinct and the ex-
plicit form of A(e,u,d)

2 follows from that of A(e,u,d)
1 in eqs. (3.55)–(3.57), simply substituting

{zf , z′f , zi, ci} with {cF yf , yFf , yi, cFi }, where f = e, µ, τ and i = 1, . . . , 11. The new
parameters in this list are

yFf = 2cF yTf + 2cF ′ yηf + cFT1 yf ,

yF9 = 2 ca(cFa cb + cac
F
b )y9 + 3 cFb c

2
b y10 ,

yF11 = 2 ca(cFa cb + cac
F
b )y11 + 3 cFb c

2
b y12 .

(3.60)
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Finally, the last contribution to the LR mass matrices is proportional to the fermion
masses and explicitly depends on tanβ through:

(m2
(e,d)RL)3 = −µ tanβM(`,d) , (m2

uRL)3 = −µ 1
tanβ

Mu . (3.61)

The origin of this contribution is quite similar to the previous one, since it also arises from
the auxiliary component of a superfield: the terms in eq. (3.59) originate from the auxil-
iary component of the flavon superfields, while the terms in eq. (3.61) from the auxiliary
component associated to the Higgs doublets Hd and Hu.

4 The physical basis

All the matrices of the previous section are written in a basis in which the kinetic terms
of (s)fermion are non-canonical. To have a better phenomenological insight, it is useful to
move to a physical basis defined as a basis in which the kinetic terms are in a canonical
form and the charged lepton and down quark matrices are diagonal. All matrices in the
physical basis are going to be denoted with a hat. Most of the details of this basis change
are deferred to the appendices B and C.

In the preferred allowed T ′-breaking parameters space one has that u ≈ t ≈ λ2. In
terms of powers of the flavour symmetry breaking parameters u and t, the charged fermion
mass matrices in the physical basis read

M̂` ∼ diag(t2 u, t u, u) , M̂d ∼ diag(u3, t u, t) , M̂u ∼


√
t u3 t u2 t u2

√
t u2 t u t u√
t u u 1

 . (4.1)

As exemplification we can show here how it is possible to recover the correct VCKM struc-
ture and to obtain the experimental values just selecting appropriate order one value for
the model unknown coefficients entering in the mixing matrix. The derivation follows
straightforwardly from ref. [1], inserting explicitly the substitution in eq. (3.38) and the
vev alignment for ϕT in eq. (2.2). From eqs. (51) of ref. [1] one obtains the following
identification between the CKM parameters in the Wolfenstein parametrisation and the T ′

model coefficients:

λ = − ỹ6

y5
c′′

u√
t
, A =

(
y7

yb
− y3

yt

)
ỹ2
6

y2
5

c′

c′′2
t

u
. (4.2)

These expressions automatically lead to a consistent identification of the leading 13 and 31
CKM elements,

Vtd ∼ Vub ≈ Aλ3 =
(
y7

yb
− y3

yt

)
ỹ6

y5
c′c′′

u2

√
t
, (4.3)

while leave enough freedom for recovering the experimental (order one) values for the last
two CKM parameters ρ and η. The corresponding expressions in terms of the T ′ order one
coefficients can be easily derived but are not reported here not particularly suggestive.
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Moving to the physical basis and performing the corresponding transformations to the
sfermion sector give quite involved results. Here only the naive structure of the sfermion
mass matrices in terms of the T ′ breaking parameters u and t are showed, thus omitting
all the order one unknown coefficients of the model. A complete description can be found
in appendix B. Starting with the LL block, the Kähler potential contributions are given by

(m̂2
(e,ν)LL)K ∼


1 + u u2 u2

u2 1 + u u2

u2 u2 1 + u

 m2
0 (4.4)

for the sleptons and

(m̂2
(u,d)LL)K ∼


1 + u u

√
t u
√
t

u
√
t 1 + u u

u
√
t u 1

 m2
0 (4.5)

for the squarks.

The supersymmetric F and D term contributions are respectively given by

(m̂2
eLL)F = M̂T

` M̂` , (m̂2
νLL)F = 0 ,

(m̂2
uLL)F = M̂T

u M̂u , (m̂2
dLL)F = M̂T

d M̂d ,

(4.6)

and by

(m2
eLL)D =

(
−1

2
+ sin2 θW

)
cos 2β m2

Z × 1 , (4.7)

(m2
νLL)D =

(
+

1
2

)
cos 2β m2

Z × 1 , (4.8)

(m2
uLL)D =

(
+

1
2
− 2

3
sin2 θW

)
cos 2β m2

Z × 1 , (4.9)

(m2
dLL)D =

(
−1

2
+

1
3

sin2 θW

)
cos 2β m2

Z × 1 . (4.10)

Both, F and D term contributions are suppressed by a factor of order M̂T
f M̂f/m

2
0 or

order m2
Z/m

2
0, respectively, compared to those coming from the Kähler potential and so

numerically negligible for typical values of m0 around 1 TeV.
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The Kähler potential contributions to the RR block of the slepton, up- and down-
squark matrices are respectively

(m̂2
eRR)K ∼


1

me

mµ
u
me

mτ
u

me

mµ
u 1

mµ

mτ
u

me

mτ
u
mµ

mτ
u 1

 m2
0 , (4.11)

(m̂2
uRR)K ∼

 1 + u u2 t u2

u2 1 + u t u

t u2 t u 1

 m2
0 , (4.12)

(m̂2
dRR)K ∼


1 + u u

√
t u
√
t

u
√
t 1 + u u

u
√
t u 1

 m2
0 . (4.13)

The supersymmetric F and D contributions read:

(m̂2
eRR)F = M̂` M̂

T
` ,

(m̂2
uRR)F = M̂u M̂

T
u , (m̂2

dRR)F = M̂d M̂
T
d ,

(4.14)

and
(m2

eRR)D = (−1) sin2 θW cos 2β m2
Z × 1 ,

(m2
uRR)D =

(
+

2
3

)
sin2 θW cos 2β m2

Z × 1 ,

(m2
dRR)D =

(
−1

3

)
sin2 θW cos 2β m2

Z × 1 .

(4.15)

Also in this case the SUSY contributions are numerically negligible in most of the parameter
space.

Finally, the contributions to the RL block for charged sfermions read

(m̂2
eRL)1 ∼


me me u me u

mµ t u
2 mµ mµ u

mτ u
2 mτ t u

2 mτ

 A0 . (4.16)

(m̂2
eRL)2 ∼

 me me u me u

mµ u mµ mµ u

mτ u mτ u mτ

 A0 , (4.17)

(m̂2
eRL)3 = −µ† tanβ M̂` . (4.18)

An important feature of (m̂2
eRL)1 is that the elements below the diagonal are suppressed

by a factor ∼ u compared to the corresponding elements of the matrix in the non-canonical
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basis. However, this fact does not happen for (m̂2
eRL)2. As a result the elements of (m̂2

eRL)2
dominate with respect to those of (m̂2

eRL)1.
The RL matrix for the up squarks sector is given by the three following contributions:

(m̂2
uRL)1 ∼


√
t u3 t u2 t u

√
t u2 t u u

u2/
√
t u 1

 v sinβ√
2
A0 , (4.19)

(m̂2
uRL)2 ∼


t u2 t u2 t u2

√
t u2 t u t u

u2/
√
t u u2

 v sinβ√
2
A0 , (4.20)

(m̂2
uRL)3 = −µ† 1

tanβ
M̂u . (4.21)

Comparing these results with the un-hatted matrices of eqs. (3.54) and (3.59), one can
observe that the first column of (m̂2

uRL)1 is enhanced by a factor t−1/2, while the entry
(13) of (m̂2

uRL)1 is enhanced by a factor u−1. Also the first column of (m̂2
uRL)2 is increased

by a factor t−1/2 with respect to (m2
uRL)2, except for the (11) entry which is, instead,

enhanced by a factor t−1. Moreover the entry (33) of (m̂2
uRL)2 is not vanishing as in

(m2
uRL)2, but it is proportional to u2.

Finally the down squarks LR contributions are the following:

(m̂2
dRL)1 ∼


u3

√
t u2
√
t u2

√
t u2 t u t u

√
t u2 t u t

 v cosβ√
2

A0 , (4.22)

(m̂2
dRL)2 ∼


u3

√
t u2
√
t u2

√
t u2 t u t u

√
t u2 t u t u2

 v cosβ√
2

A0 , (4.23)

(m̂2
dRL)3 = −µ† tanβ M̂d . (4.24)

The first column of (m̂2
dRL)1,2 shows the same enhancement, compared to the un-hatted ma-

trices of eqs. (3.54) and (3.59), as for the up-type squarks, while the entry (33) of (m̂2
dRL)2

is not vanishing as in (m2
dRL)2, but scales as t u2.

5 Phenomenology of the T ′ FCNC sector

While several flavour models can account for the correct SM mass and mixing patterns,
a discrimination between them can only be obtained through a detailed analysis of the
associated phenomenology. This section will be dedicated to study the predictions of the
T ′ model to the most relevant, leptonic and hadronic, FCNC observables. The results
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for the FCNC leptonic sector are going to be a straightforward replica of those obtained
in ref. [60] for the A4 model, as the two realisations (almost) coincide when restricted to
leptons: only slight differences are expected from the extra flavons η and ξ′′ (see eq. (2.2))
that are included when the embedding of A4 in T ′ is considered. No corresponding analysis,
instead, has ever been performed on the T ′ predictions for the FCNC hadronic sector.
Therefore the main goal of this section will be twofold: from one side we will explore the T ′

model constraints coming form the hadronic sector; from the other side, we will combine
such constraints with those arising from the leptonic sector. This combined analysis will
help in better identifying which cross-correlations can be most useful in discriminating
between several (discrete) flavour models.

As discussed in the previous sections both the fermion and sfermion flavour structures
are obtained in our model in terms of the two T ′ symmetry breaking parameters u and
t. While t governs essentially the charged fermion mass hierarchy, the amount of flavour
changing is proportional to the u parameter. The allowed range in which u and t can be
varied is constrained by the experimental data on lepton masses and mixings. As stated in
section 2 one gets t ' 0.05 and 0.007 . u . 0.05. The allowed values of tanβ are fixed by
the requirement that the τ mass is consistent with experimental data (see eq. (2.4)) giving
a range 2 . tanβ . 15 for u = 0.05 while for u = 0.007 only tanβ ' 2 is permitted.

Although it is not possible to set consistently u = 0, as viable fermion masses and
mixings cannot be obtained, an interesting limit is found when u = 0 is selected only in
the sfermion sector. Indeed, at the high energy scale Λf ≈MGUT , the SUSY scalar sector
very much resembles the MSUGRA framework, with the scalar mass matrices function
of the common, flavour universal, soft bilinear and trilinear parameters (m0, A0). This
fact is inherited from the underlying assumption that all the SUSY breaking of the model
is provided by a unique (hidden) sector. However, our construction deviates from plain
MSUGRA due to the different T ′ embedding of the matter fields that permits, also in the
u = 0 limit, non-universal (order one) diagonal soft terms in the sfermion mass matrices,
as it appears evident, for example, from eqs. (3.3) and (3.11). The flavour symmetry Gf
does not predict the parameters involved either in the gaugino or in the Higgs(ino) sectors.
Therefore, inspired by MSUGRA, a common gaugino mass M1/2 and a common scalar
mass m0 are assumed at the high energy scale Λf . The µ parameter is fixed by imposing
the requirement of a correct EW symmetry breaking: it can be expressed as a (one-loop)
function of the other MSUGRA parameters, with the only freedom of the sign[µ].

Due to all these constraints, one expects our T ′ model to (almost) approxi-
mate MSUGRA, in the small u region, while significant deviations can be, instead, ex-
pected only in the large u (and large tanβ) region. We will concentrate on the two most
compelling cases:

A) the (almost) universal “limit” u = 0.01, with tanβ = 5. In this scenario one does not
expect any sizable difference between the T ′ and the MSUGRA FCNC phenomenology.3

In the following we will refer to this case as Reference Point A (RPA);

3The lowest allowed value for (u, tanβ) is (0.007, 2), for which it turns out to be statistically harder to

found a physically allowed SUSY spectrum, due to the smallness of tanβ. No significant phenomenological

difference can be seen with respect to the considered case.
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B) the non-universal “limit” u = 0.05 with tanβ = 15. In this scenario one has the
strongest allowed deviation from the universal soft breaking term case. The T ′ model
might be experimentally distinguished from the MSUGRA assumption. We will refer
to this case as Reference Point B (RPB);

Regarding the scalar bilinear and trilinear parameters we will show the results for two
different choices: low (A0 = 2m0 = 400 GeV) and high (A0 = 2m0 = 2000 GeV) soft
breaking scale, with the gaugino mass term spanning in the 100 < M1/2 < 1000 GeV range.

5.1 SUSY mass spectrum: MSUGRA vs. T ′

The SUSY spectrum at low energies has been obtained by means of the code
SPheno-2.2.3 [66]. This program implements SUSY one-loop (and partially two loops)
Renormalisation Group Equations (RGE) from the high energy scale where the model
parameters are defined, down to the electroweak scale, where observables are measured.
This procedure is performed in an iterative way until a stable (under RGE) SUSY low
energy spectrum is obtained. Even if the default algorithm deals with universal boundary
conditions, typical of the MSUGRA setting, it is already built in the possibility to account
for non-diagonal Yukawas and soft terms, as in the MSSM.

Using this general framework we have implemented in SPheno our T ′ model in a con-
sistent way, i.e. by requiring that the iteration procedure does not spoil the agreement with
the physical values of fermionic masses and mixing, also predictions of the model. In prac-
tice, the structures of the high energy fermion and sfermion mass matrices introduced in
SPheno are the ones given in section 4 in the physical basis. At the end of the iteration, the
stable set of SUSY masses are used for calculating the corrections to the fermionic masses
and mixings at the EW scale (see ref. [66]). Consistency at 1σ level with the known SM
flavour (low energy) parameters [2] is obtained by accordingly fixing the (order one) values
of few of the T ′ free parameters. All the other T ′ coefficients are, instead, considered as
free order-one parameters, with an absolute value chosen randomly in the (1/2, 2) range.

This procedure is simultaneously “natural” and “stable”. Natural because only order
one values for all the T ′ parameters (let fixed or free) are chosen. Stable because once the
fixed T ′ parameter are set, the effect on the SM parameters of choosing random (order one)
free T ′ parameters is negligible. Notice, moreover, that fixing some of the T ′ parameters
does not introduce any fine-tuning in the model, as it has been exemplified in the previous
section for the VCKM case. This procedure in principle can restrict the SUSY spectrum
obtained at low energy, as a consequence of the combined RGE evolution. However, this
effect is (partially) compensated by the presence of the many free (order one) parameters
in the soft SUSY sector.

In figure 1 we compare the MSUGRA scalar spectrum (left plots) with the T ′ model
one (right plots), as function of common gaugino mass M1/2. The results in figure 1(a)
refer to the RPA case (i.e. u = 0.01 and tanβ = 5) while the plots in figure 1(b) cover the
RPB case (i.e. u = 0.05 and tanβ = 15). In each figure, the two upper plots are shown for
a common bilinear and trilinear scalar SUSY scale A0 = 2m0 = 400 GeV, while for the two
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(a) MSUGRA (left) vs. T ′ (right) spectra for u = 0.01 and tanβ = 5. In the

upper (lower) plots A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV).
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(b) MSUGRA (left) vs. T ′ (right) spectra for u = 0.05 and tanβ = 15. In the

upper (lower) plots A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV).

Figure 1. SUSY scalar spectra. The colors in the plots refer respectively to: Magenta for h0,
Green for ˜̀, Blue for ν̃, Cyan for H±, Black for t̃, and Red for b̃.
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lower plots A0 = 2m0 = 2000 GeV has been chosen. For definiteness only the sign[µ] > 0
results have been shown, as no significative dependence on it is expected, nor observed.

The SM-like Higgs particle (in Magenta) is almost insensitive on the gaugino mass
parameter. Only points of the parameter space surviving the LEP2 lower bound are con-
sidered. The SUSY lightest scalar is typically the τ̃1 (in Green) except for large m0 and
small M1/2 where the (right-handed) t̃1 is lighter (in Black). In Blue is shown the lightest
sneutrino, ν̃1, while in Red the lightest sbottom, b̃1. All the other sfermions are not shown
in the plot. However all the (almost) left-handed sleptons are practically degenerate with
the ν̃1, while the (almost) right-handed are degenerate with the τ̃1. The first two family
squarks are heavier than b̃1 and t̃1 and nearly degenerate. Finally, the charged Higgs (in
Cyan) can be the heaviest particle of the spectrum in the large m0 and small M1/2 region.

As it can be noticed, comparing the left with the right plot of figure 1, the SUSY
scalar spectra for MSUGRA and T ′ are very similar for small m0 value (upper plots)
while two evident differences appear when going to heavier scalar masses (lower plots).
The first difference can be noticed in the low M1/2 region where the T ′ spectrum always
extends to lower M1/2 compared with the MSUGRA one. This happens because of the
“phenomenological” requirements that have been imposed on Higgs and SUSY masses4 In
the T ′ model, due to the freedom in the choice of the (order one) diagonal and off-diagonal
parameters, one can always have a physically allowed spectrum down M1/2 ∼ 100 GeV.
The second evident difference is represented by a broadening of all scalar masses, but the
lightest Higgs. This effects can be already noticed in the m0 = 200 GeV plot, and then it is
strongly enhanced for large values of m0 and A0. The reason of such a broadening is related
to the strong dependence that these masses have from the order one (randomly chosen in
the (1/2, 2) range) free T ′ coefficients. Nevertheless, still in this case, the “average” T ′

scalar masses agree quite well with the MSUGRA predictions.
In figure 2 we compare the MSUGRA fermionic spectrum (left plots) with the T ′ model

one (right plots), as function of common gaugino mass M1/2. The results in figure 2(a)
refer to the RPA case, while the plots in figure 2(b) cover the RPB case. In each figure
the two upper plots are shown for a common bilinear and trilinear scalar SUSY scale
A0 = 2m0 = 400 GeV, while for the two lower plots A0 = 2m0 = 2000 GeV has been
chosen. For definiteness, again, only the sign[µ] > 0 results have been shown, as no
significative dependence on it is expected, nor observed.

As typical in the MSUGRA framework, the lightest supersymmetric fermion is the
lightest neutralino χ̃0

1 (in Black), while the lightest chargino χ̃+
1 is almost degenerate to

the next-to-lightest neutralino χ̃0
2 (in Red). The gluino is typically the heaviest fermion

(in Blue). As it can be noticed, comparing the upper left with the upper right plots of
figures 2(a) and 2(b), the SUSY fermionic spectra for MSURGRA and T ′ look very similar
for small m0 values, while evident differences appear in the large m0 case. Again, for m0 =
1000 GeV one can notice that the T ′ spectrum is “phenomenologically” allowed down to
M1/2 ∼ 100 GeV, while the MSUGRA one stops to be acceptable at M1/2 ∼ 300 GeV. The

4Specifically, we assumed a Higgs mass mH > 114 GeV, lightest chargino and slepton masses m
χ̃+
1
,m˜̀>

100 GeV, as well as the neutralino being the LSP.
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(a) MSUGRA (left) vs. T ′ (right) spectra for u = 0.01 and tanβ ≈ 5. In the

upper (lower) plots A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV).
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Figure 2. SUSY fermion spectra. The colors in the plots refer respectively to: Black for χ̃0
1, Red

for χ̃0
2 and χ̃+

1 , Green for χ̃0
3,4 and χ̃+

2 , and Blue for g̃.
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second evident difference, as in the scalar case, is the presence of the broadening. However,
differently from the scalar case, this effect appears only in the mass of next-to-heaviest
gauginos (in Green), associated to the (mostly) higgsino-like chargino and neutralino, χ̃+

2 ,
χ̃0

3,4. The reason for such a broadening is due to the way the µ-parameter is derived: while
in MSUGRA, |µ| is uniquely fixed once all the common SUSY parameters are defined, in
our model µ indirectly depends also from the randomly chosen (order one) parameters that
enter in the sfermion mass matrices. This freedom largely affects the derived value of |µ|
especially in the large (m0, A0) region.

5.2 FCNC in the leptonic sector

The LFV analysis of the T ′ model is going to be a straightforward replica of that performed
in ref. [60] for the A4 realisation, as the two models (almost) coincide when restricted to
the leptonic sector. As already stated in the previous sections, only slight differences
are expected due to the presence of the extra flavons η and ξ′′ (see eq. (2.2)) that are
introduced when the embedding of A4 in T ′ is considered. The only relevant improvement,
compared to the A4 analysis of ref. [60], is the implementation here of the complete (one-
loop) RGE running of the high-energy model parameters down to the EW scale, that leads
to a somehow heavier SUSY spectrum when compared to the un-ran case. In order to
compare the T ′ and A4 predictions, the T ′ branching ratio for µ→ eγ is shown in figure 3
as a function of the common gaugino scale M1/2. The full horizontal line represents the
recently reported 90% C.L. MEG upper limit ref. [67] of 2.4× 10−12 on the BR(µ → eγ),
while the dashed line shows, for comparison, the old MEGA bound of 1.2× 10−11.

The two upper plots refer to A0 = 2m0 = 400 GeV, respectively for the RPA case
(upper-left) and RPB case (upper-right). Red points are excluded either by the direct
experimental requirements on the light Higgs or SUSY masses (mainly in the low M1/2

region), or by the requirement of a neutral LSP (mainly in the high M1/2 region where the
τ̃1 becomes lighter that the χ̃0

1). Blue (Green) points refer to µ > 0 (µ < 0) respectively.
No significative dependence on the sign[µ] is observed, consequence of the arbitrary sign
with which the T ′ coefficients can enter in most of the off-diagonal entries of the slepton
mass matrices. As it can be noticed from the two upper plots, the low (A0,m0) scenario
is almost excluded for both the cases: in the RPA case mostly due to the requirement
of neutral LSP, while in the RPB case because of a too large BR. However, in the RPB
case few points are still allowed, independently of the M1/2 value, thanks to a fine tuned
cancellation between different terms. Concerning the A0 = 2m0 = 2000 GeV case, the left-
lower plot of figure 3 shows that no constraints comes from the BR(µ → eγ) for the RPA
scenario, while for large u and tanβ (right-lower plot of figure 3) our T ′ model is allowed
only for M1/2 & 500 GeV. Our results are quite in agreement with the A4 analysis of [60],
once a factor 10 suppression in the BR, produced by the heavier spectrum, is taken into
account. The results for the τ decays are not shown as no competing results are expected
from τ → eγ and τ → µγ decays, even assuming Super B factory luminosities.

When studying FCNC, it is quite common to present bounds in terms of Mass Insertion
(MI) instead of using directly the specific observables. The MI approach has the advantage
to provide easy connections between the predictions of our T ′ model with the more general
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Figure 3. Scatter plots for BR(µ → eγ ) for the T ′ model. Red points are not allowed by
“phenomenological” constraints on Higgs or SUSY masses. Blue (Green) points refer to µ > 0
(µ < 0). The full (dashed) line represents MEG (MEGA) bound. The left (right) plots refer to the
RPA (RPB) case for A0 = 2m0 = 400 GeV (upper plots) or A0 = 2m0 = 2000 GeV (lower plots).

(SUSY) framework. We have not derived explicit formulas in the MI approximation as
most of them can be found in [60]. Instead, a numerical analysis is performed and regions
of expectation for all the MI have been derived.

A thoughtful work on leptonic MI in the SUSY context has been performed in [68],
where the upper limits, in the single-dominance approximation, for all the relevant MIs
are plotted as function of the scalar and gaugino common scales, m0,M1/2. To compare
the results with the literature we have defined the MIs as the corresponding entry in the
sfermion mass matrix divided by the “typical” SUSY scale that for being conservative we
have chosen as the mass of the lightest scalar in the corresponding sector.

In figure 4 the results for the LL and RL leptonic MIs for the 21 sector, (δ21)`, are
shown for the RPA case and for the two reference values A0 = 2m0 = 400 GeV (up-
per plots) and A0 = 2m0 = 2000 GeV (lower plots). Dots represent the value of the
relevant observable as computed (at one-loop in the NLO approximation) by SPheno as
function of the SUSY gaugino parameter M1/2 and varying randomly all the unknown T ′

coefficients in the (1/2, 2) range. Orange points are excluded by present MEG bound on
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Figure 4. LL and RL Leptonic Mass insertions (δ21)` for the RPA case. In the upper (lower)
plots A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV) respectively. Orange points are not allowed
by recent MEG data. Blue (Green) points refer to µ > 0 (µ < 0). Continuous lines represent MI
bounds derived from ref. [68].

the µ→ eγ Branching Ratio, while Blue (Green) points represent an allowed region for
µ > 0 (µ < 0) respectively. For all points shown, experimental spectrum constraints are
satisfied. The continuous black lines represent the MI values, derived from ref. [68], that
saturate the experimental data. As it can be noticed from the right-upper plot of figure 4,
MEG data severely constrain our model and force the (δ21

RL)` MI to be below 2×10−6, with
a mild dependence on M1/2. This is, in fact, expected to be the dominant contribution
in the low tanβ regime. In our model the (δ21

LL)` MI can vary in the range 10−5 − 10−4,
roughly a factor 5-10 below the saturation limit. The RR and LR MIs are completely ir-
relevant in our analysis and therefore are not shown. When a higher value for the common
scalar mass scale is chosen, A0 = 2m0 = 2000 GeV, no limits are obtained on the MIs, as
shown in figure 4 (lower plots). The main contribution still comes from the (δ21

RL)` MI, just
below the saturation limit.

In figure 5 the results for the LL and RL leptonic MIs are shown for the RPB case and
for the two reference values A0 = 2m0 = 400 GeV (upper plots) and A0 = 2m0 = 2000 GeV
(lower plots). As can be noticed, in this case the amount of flavour changing is too high
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Figure 5. LL and RL Leptonic Mass insertions (δ21)` for the RPB case. In the upper (lower)
plots A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV) respectively. Orange points are not allowed
by recent MEG data. Blue (Green) points refer to µ > 0 (µ < 0). Continuous lines represent MI
bounds derived from ref. [68].

and, at least in the low scalar mass scale case (upper plots of figure 5), almost no points
survive the experimental bound. Only at higher scalar scale the model is not completely
excluded by MEG result, especially at high M1/2 values. However, one expects that, for
larger values of tanβ as the one of RPB, both LL and RL MIs can be relevant, opening the
possibility of cancellations. This indeed happens in both low and high m0 scenario, being
particularly evident in the first case where even if both the LL and RL MIs are above the
saturation limit of [68] by at least a factor 5-10, still few points of the model are allowed.
Again the RR and LR MIs are completely irrelevant and therefore are not presented here.

The T ′ model at hands, predicts on the same footing also FCNC for the 31 and 32
MIs sectors. Bounds on (δ31)` and (δ31)` can be mostly obtained by analysing τ → eγ

and τ → µγ radiative decays. Nevertheless, as already mentioned no relevant information
come from these channels and these sectors are not shown here.
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5.3 FCNC in the hadronic sector

Differently from the leptonic case, no previous study to the hadronic FCNC sector for
the T ′ model as ever been performed before. Furthermore, for this sector no general MI
analysis in all the available SUSY breaking parameters (M1/2, m0) has been performed, so
we prefer to discuss the phenomenology directly showing the FCNC observables.

In order to study the hadronic FCNC observables, it has been necessary to modify
the corresponding SPheno routines, and check the agreement with the literature in several
ways [69, 70]. In the b → sγ Branching Ratio, new contributions coming from gluinos
and neutralinos, not present in SPheno-2.2.3, have also been included [71]. Moreover as
SPheno result is not completely up-to-date in reproducing the NNLO SM contribution to
the b→ sγ BR, we found more convenient to calculate with SPheno at NLO the “differen-
tial” Branching Ratio:

∆BR(B̄ → Xsγ) = BRSM+NP(B̄ → Xsγ)− BRSM(B̄ → Xsγ) .

We then compare it with the current experimental value [2], measured with a photon-energy
cut-off Eγ > 1.6 GeV in the B-meson rest frame,

BR(B̄ → Xsγ) = (3.55± 0.24± 0.09)× 10−4 ,

subtracted by the SM prediction calculated at NNLO [72–74] for the same photon
energy cut-off,

BR(B̄ → Xsγ) = (3.15± 0.23)× 10−4 .

In figure 6 the T ′ Branching Ratio for b → sγ is shown as function of the common
gaugino scale M1/2. The two upper (lower) plots refer to A0 = 2m0 = 400 GeV (A0 =
2m0 = 2000 GeV), respectively for the RPA case (left) and RPB case (right). Red points
are excluded by imposing “phenomenological” requirements on the Higgs and/or SUSY
masses. Blue (Green) points refer to µ > 0 (µ < 0) as usual. The horizontal dashed lines
represent the 2σ experimental bound from ref. [2]. In the small (A0,m0) region (upper
plots), the dominant T ′ contribution to the b→ sγ BR is typically the charged Higgs one,
due to the fact that the stop is for most of the M1/2 range heavier than the H± (and
the chargino heavier than the top). The Higgs contribution is always concordant in sign
with the SM one. The second most relevant contribution is the chargino one with a sign
depending on sign[µ]: it tends to enhance (cancel) the SM contribution for µ < 0 (µ > 0).
Gluino contributions are practically independent from sign[µ], while neutralino ones are
completely negligible. In appendix D, we report the break down of the relevant Wilson
Coefficient for BR(B̄ → Xsγ) in terms of the supersymmetric contributions. This helps
understanding the results showed in figure 6. As a consequence, experimental constraints
on the b → sγ BR tend to disfavor µ < 0 for M1/2 . 500 GeV especially for the larger
tanβ values of the RPB point (right plots). The positive µ case, instead, turns out to
be mostly allowed. In the A0 = 2m0 = 2000 GeV scenario (lower plots) all new physics
contributions get strongly suppressed and no significative limits are expected from the
b→ sγ measurement in neither the two cases considered.
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Figure 6. Scatter plots for the b → sγ BR for the T ′ model. Red points are not allowed by
“phenomenological” constraints on Higgs or SUSY masses. Blue (Green) points refer to µ > 0
(µ < 0). The left (right) plots refer to the RPA (RPB) case for A0 = 2m0 = 400 GeV (upper plots)
or A0 = 2m0 = 2000 GeV (lower plots).

In figure 7 the T ′ predictions for ∆MBs vs. ∆MBd are shown as function of the
common gaugino mass M1/2. The two upper (lower) plots refer to A0 = 2m0 = 400 GeV
(A0 = 2m0 = 2000 GeV), respectively for the RPA case (left) and RPB case (right). Red
points, as usual, are excluded by imposing “phenomenological” requirements on the Higgs
and/or SUSY masses while Blue (Green) points refer to µ > 0 (µ < 0). The horizontal
and vertical dashed lines show the 2σ bounds on the Bd and Bs mass differences obtained
by ref. [75]:

∆MBd = 0.55+0.11
−0.10 ps−1

∆MBs = 16.8+4.1
−2.8 ps−1 ,

perfectly compatible with present experimental bounds from ref. [2]:

∆MBd = 0.507± 0.005 ps−1

∆MBs = 17.77± 0.12 ps−1 .

The T ′ SUSY contribution to ∆MBd,s has always opposite sign compared to the SM one,
independently on the sign[µ]. As evident from the plots of figure 7 this fact always leads
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Figure 7. Scatter plots for ∆MBs
vs. ∆MBd

for the T ′ model. Red points are not allowed by
“phenomenological” constraints on Higgs or SUSY masses. Blue (Green) points refer to µ > 0
(µ < 0). The dashed lines represent 2σ experimental bound. The left (right) plots refer to the RPA

(RPB) case for A0 = 2m0 = 400 GeV (upper plots) or A0 = 2m0 = 2000 GeV (lower plots).

to a suppression of the neutral meson mass differences, where the “comet” tail is obtained
for large values of M1/2, while for small M1/2 the points addensate in the “comet” head
region. However, both Bd and Bs bounds are still too loose to provide any useful constraints
especially in the RPA scenario (left plots). Nevertheless it is interesting to note that, for
the higher tanβ of the RPB scenario (right plots) the low M1/2, tails start getting excluded
by the present value of ∆MBd both in the low and in the high m0 case. One can expect,
that with a future improvement in the hadronic flavour parameters at LHCb or at Super
B factories, constraints from the hadronic FCNC will start being competitive with the
leptonic experiments.

Finally, no relevant bounds from K0 − K̄0 oscillations are obtained in our model as
the first two family squarks are nearly degenerate, producing no significant deviations from
the SM (though poorly known) reference value.

– 34 –



J
H
E
P
1
1
(
2
0
1
1
)
0
4
7

5.4 Cross-correlations between leptonic and hadronic observables

The main feature of the SUSY T ′ model presented in this paper is the simultaneous pre-
diction of the SM fermion mass sector together with the sfermion mass matrix structures.
Furthermore, the amount of FCNC in the leptonic and hadronic sectors are tightly con-
nected, providing very peculiar signatures.

In figure 8 the T ′ cross-correlations between µ → eγ vs. b → sγ (figure 8(a)) and
µ→ eγ vs. ∆MBd (figure 8(b)) are shown varying the common gaugino mass M1/2 in the
range (100, 1000) GeV. The left (right) plots refer to the RPA (RPB) case, while in the
upper (lower) plots of each figure the A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV) case
is presented. Red points are excluded by imposing “phenomenological” requirements on
the Higgs and/or SUSY masses. Blue (Green) points refer to µ > 0 (µ < 0) as usual. The
horizontal dashed lines indicate the 2σ experimental bounds as reported in the previous
subsections.

It is evident from figure 8(a) that the strongest constraint still comes from the µ →
eγ BR, which almost excludes the small m0 region. However, when larger values of m0

are considered (lower plots), an improvement in the µ → eγ bound will not impose any
severe exclusion on the model, as BR values as small as 10−15 are still acceptable. Some
help can come, instead, from the hadronic sector. For the moment the precision in the
b→ sγ BR measurement is not sufficiently good to impose further bounds on the T ′ model,
when larger values of m0 are considered (lower plots). However, an improved measure of
b→ sγ , can eventually leads in the large tanβ scenario to a discrimination of the sign[µ].
An improvement in the knowledge of the meson mass differences at future facilities can
help in further constraining the model in the large tanβ regime (see lower-right plot of
figure 8(b)), while the large m0, small tanβ case will be almost impossible to exclude.

6 Conclusions

In the Standard Model (SM) of particle physics an explanation of the origin of the fermionic
mass and mixing patterns is missing. A complete description of Nature should include a
comprehensive description of the flavour sector. In this paper, a SUSY model based on the
discrete flavour group T ′, mainly based on ref. [1], has been analysed. This model accounts
both for leptons, predicting the TB mixing pattern, and for quarks, providing a realistic
CKM matrix.

While several flavour models can accomplish these goals, however, a discrimination
between them can only be obtained through a detailed analysis of the associated phe-
nomenology. In this paper we have studied the T ′ model predictions to the most relevant,
leptonic and hadronic, FCNC observables. Concerning the leptonic FCNC we have es-
sentially confirmed the µ → eγ results obtained in ref. [60] for the A4 model, as the two
realisations (almost) coincide when restricted to leptons. The main difference is related to
the full implementation in our study of the RGE for the low energy SUSY spectrum, by
means of the use of the SPheno routines. In addition we performed, for the first time, a
detailed analysis of the T ′ predictions for FCNC in the hadronic sector. It turns out that
the amount of FCNC in the leptonic and hadronic sectors are tightly connected.
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Figure 8. Cross correlations between hadronic and leptonic observables. Red points are not allowed
by “phenomenological” requirements on Higgs and/or SUSY masses. Blue (Green) points refer to
µ > 0 (µ < 0).
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The strongest bounds on the FCNC sector still come from the µ → eγ Branching
Ratio. Making use of the latest available MEG data, supplemented by “phenomenological”
constraints on the Higgs and SUSY spectrum, almost all the available parameter space
is excluded in the low (A0,m0) region. No bounds can be set when the common soft
scalar breaking scale is increased to the TeV range and small values of the T ′ symmetry
breaking parameter u are selected, while the low M1/2 region is excluded for larger u and
tanβ. Hadronic FCNC observables like b → sγ Branching Ratio or the neutral B meson
mass differences, ∆MBd and ∆MBs can provide independent information, even if they
are not yet enough precise to severely constrain the model. A factor 2 improvement in
their experimental and theoretical determinations could however be enough for making the
corresponding constraints quite competitive. The neutral K meson mass difference, ∆MK

turns out to almost coincide with SM prediction, due to the quasi degeneracy in the first
two squark families.

The forthcoming results from LHCb and Super B factories will provide stronger
constraints in the hadronic sector and allow a better study of the parameter space for
the T ′ model.
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A The group T ′

The group T ′ has 24 elements and 7 irreducible representations: one triplet 3, three dou-
blets 2, 2′ and 2′′ and three singlets 1, 1′ and 1′′. It is generated by two elements S and
T fulfilling the relations

S2 = R , T 3 = 1 , (ST )3 = 1 , R
2 = 1 , (A.1)

where R = 1 in case of the odd-dimensional representation and R = −1 for 2, 2′ and 2′′

such that R commutes with all elements of the group. Beyond the center of the group,
generated by the elements 1 and R, there are other Abelian subgroups: Z3, Z4 and Z6. In
particular, there is a Z4 subgroup here denoted by GS , generated by the element TST 2
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and a Z3 subgroup here called GT , generated by the element T . GS and GT are of great
importance because they represent the low-energy flavour structures of the fermion masses.

The multiplication rules of the representations are as follows:

1a × rb = rb × 1a = ra+b for r = 1, 2

1a × 3 = 3 + 1a = 3

2a × 2b = 3 + 1a+b

2a × 3 = 3× 2a = 2 + 2′ + 2′′

3× 3 = 3 + 3 + 1 + 1′ + 1′′

(A.2)

where a, b = 0,±1 and we have denoted 10 ≡ 1, 11 ≡ 1′, 1−1 ≡ 1′′ and similarly for
the doublet representations. On the right-hand side the sum a + b is modulo 3. The
Clebsch-Gordan coefficients for the decomposition of product representations can be found
in ref. [1].

B Details on the sfermion mass matrices

In this appendix we give more details on the computation of the sfermion mass matrices
listed in the sections 3.3 and 4.

The contributions to the sfermion masses from the SUSY breaking terms in the Kähler
potential are given by two distinct terms: (m2

fLL)K of eqs. (3.46)–(3.50) and those contribu-
tions related to the non-vanishing VEV of the auxiliary fields of the flavon supermultiplets.
Denoting these second ones as (m2

fLL)K2, we find for the slepton sector:

(m2
(e,ν)LL)K2 =

 t`F1 u
2 t`F4 u

2 t`F5 u
2

t
`
F4 u

2 t`F2 u
2 t`F6 u

2

t
`
F5 u

2 t
`
F6 u

2 t`F3 u
2

 , (B.1)

(m2
eRR)K2 =

 teF1 u
2 teF4 u

2t teF5 u
2 t2

teF4 u
2t teF2 u

2 teF6 u
2 t

teF5 u
2 t2 teF6 u

2 t teF3 u
2

 , (B.2)

where the coefficients t`,eF are combinations of pI in eq. (3.16) and the distinct cF in
eqs. (2.10). Such relations are not particularly significant and we avoid to report them
here. Notice that these contributions are absent in ref. [60], but do not change those results:
indeed (m2

eLL)K2, (m2
νLL)K2 and (m2

eRR)K2 can be safely absorbed in a redefinition of the
parameters of (m2

eLL)K , (m2
νLL)K and (m2

eRR)K .
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For the same contributions in the quark sector we get:

(m2
(u,d)LL)K2 =

 tqF1 u
2 tqF4 u

2 tqF5 u
2

t
q
F4 u

2 tqF2 u
2 tqF6 u

2

t
q
F5 u

2 t
q
F6 u

2 tqF3 u
2

 , (B.3)

(m2
uRR)K2 =

 tuF1 u
2 tuF5 u

2 tuF6 u
2 t

t
u
F5 u

2 tuF2 u
2 tuF4 u

2 t

t
u
F6 u

2 t t
u
F4 u

2 t tuF2 u
2

 , (B.4)

(m2
dRR)K2 =

 tdF1 u
2 tdF4 u

2 tdF5 u
2

t
d
F4 u

2 tdF2 u
2 tdF6 u

2

t
d
F5 u

2 t
d
F6 u

2 tdF3 u
2

 , (B.5)

where the coefficients tq,u,dF are combinations of pI in eq. (3.16) and the distinct cF
in eqs. (2.10). Such relations are not particularly significant. Furthermore notice that
(m2

uLL)K2, (m2
dLL)K2, (m2

uRR)K2 and (m2
dRR)K2 can be safely absorbed in a redefinition of

the parameters in (m2
uLL)K , (m2

dLL)K , (m2
uRR)K and (m2

dRR)K .
We then comment on additional SUSY contributions to the m2

fRR mass matrices com-
ing form the D terms. The relevant factors in the scalar potential (through a D term) are
the following:

VD,FN =
1
2

(
M2

FI + gFNQ
i
FN

∂K
∂φi

φi

)2

+ qFNm
2
0|θFN|2

= g2
FN cθm

2
0

[
2|ẽc|2 + |µ̃c|2 + |ũc|2 + |c̃c|2 + |d̃c|2 + |s̃c|2 + |b̃c|2+

+
(
te4 u

2t ẽ
c
µ̃c + te6 u

2t µ̃
c
τ̃ c + tu6 ut ũ

c
t̃c + h.c.

) ]
+ . . .

(B.6)

where QiFN stands for the FN charge of the scalar field φi, and in the second line we have
displayed only the leading contributions to the terms quadratic in the matter fields for the
slepton and the squark sectors. This result has been recovered considering the FN field
vevs in eq. (3.41), but in the SUSY broken phase:

M2
FI

gFN
− | 〈θFN〉 |2 = cθm

2
0 . (B.7)

As commented in section 3.3, these contributions can be simply reabsorbed in (m2
fRR)K

through a field redefinition.
Once in the physical basis and assuming for simplicity that all the parameters of the

model are real, we find the following results for the sfermion mass matrices.
We start with the LL block. For the sleptons we find

(m̂2
(e,ν)LL)K =

 n`0 + 2n̂`1u n̂`4u
2 (n̂`5 + (3n̂`1 − n̂`2)cT3)u2

n̂`4u
2 n`0 − (n̂`1 + n̂`2)u n̂`6u

2

(n̂`5 + (3n̂`1 − n̂`2)cT3)u2 n̂`6u
2 n`0 − (n̂`1 − n̂`2)u

m2
0,

(B.8)
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where the coefficients are defined by

n̂`i = n`i − t`in`0 (i = 1, 2, 4, 5, 6) . (B.9)

For the squarks we have

(m̂2
(u,d)LL)K =


n̂q0 − n̂

q
2 u 2 c′′ n̂q2

ỹ6

y5
u
√
t c′′ n̂q3

ỹ6

y5
u
√
t

2 c′′ n̂q2
ỹ6

y5
u
√
t n̂q0 + n̂q2 u n̂q3 u

c′′ n̂q3
ỹ6

y5
u
√
t n̂q3 u n̂q1

 m2
0 , (B.10)

where the coefficients are defined by

n̂q0 =
nq0
tqd
, n̂q1 =

nq1
tqs
, n̂q2 =

1
tqd

(nq2 − t
q
1 n̂

q
0) ,

n̂q3 =
1√
tqs t

q
d

(nq4 − t
q
4 n̂

q
0) + c′

y7

yb

√
tqs
tqd

(n̂q0 − n̂
q
1) .

(B.11)

For the RR block we find that (m̂2
fRR)K for the sleptons is given by

(m̂2
eRR)K =


nc1 2 cT3 (nc1 − nc2)

me

mµ
u 2 cT3 (nc1 − nc3)

me

mτ
u

2 cT3 (nc1 − nc2)
me

mµ
u nc2 2 cT3 (nc2 − nc3)

mµ

mτ
u

2 cT3 (nc1 − nc3)
me

mτ
u 2 cT3 (nc2 − nc3)

mµ

mτ
u nc3

 m2
0 ,

(B.12)
while for the up squarks we have

(m̂2
uRR)K =

 n̂u0 − n̂u2 u n̂u5 u
2 n̂u6 t u

2

n̂u5 u
2 n̂u0 + n̂u2 u n̂u4 t u

n̂u6 t u
2 n̂u4 t u n̂u1

 m2
0 , (B.13)

where the coefficients are defined by

n̂u0 =
nu0
tud
, n̂u1 =

nu1
tus
, n̂u2 =

1
tud

(nu2 − tu1 n̂u0) ,

n̂u4 =
1√
tudt

u
s

(
nu4 − tu4

nu0 − nu1
tud − tus

)
, n̂u5 =

1
tud

(
nu5 −

tu5
tu1
nu2

)
,

n̂u6 =
1√
tudt

u
s

(
nu6 − tu6

nu0 − nu1
tud − tus

)
− tu5

2 tu1
n̂u4 ,

(B.14)

and finally for the down squarks we get

(m̂2
dRR)K =


nd0 − n̂d2 u −2 c′′ n̂d2

ỹ6

y5
u
√
t −c′′ n̂d3

ỹ6

y5
u
√
t

−2 c′′ n̂d2
ỹ6

y5
u
√
t nd0 + n̂d2 u n̂d3 u

−c′′ n̂d3
ỹ6

y5
u
√
t n̂d3 u nd1

 m2
0 , (B.15)
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with the coefficients given by

n̂d0 =
nd0
tdd
, n̂d1 =

nd1
tds
, n̂d2 =

1
tqd

(
nd2 − tds n̂d0

)
,

n̂d3 =
1√
tds t

d
d

(
nd4 − td4 n̂d0

)
+ c′

y8

yb

√
tds
tdd

(
n̂d0 − n̂d1

)
.

(B.16)

Finally, we report the results for the RL block. For the charged sleptons, the contri-
butions are the following:

(m̂2
eRL)1 = Âe1

v cosβ√
2

A0 , (m̂2
eRL)2 = Âe2

v cosβ√
2

A0 , (B.17)

where Âe1 is given by[
Âe1

]
11

=
ze
ye
me

√
2

v cosβ
,[

Âe1

]
12

= cT3
(zeyµ − zµye)

yeyµ
meu

√
2

v cosβ
,[

Âe1

]
13

= cT3
(zeyτ − zτye)

yeyτ
meu

√
2

v cosβ
,[

Âe1

]
21

=
[
cT2

(zµy′µ − z′µyµ)
y2
µ

mµtu
2 + cT3

(zeyµ − zµye)
y2
µ

metu+

−cT3

(
(zµy′µ − z′µyµ)

y2
µ

+
(zτy′τ − z′τyτ )

y2
τ

)
mµu

3

] √
2

v cosβ
,

[
Âe1

]
22

=
zµ
yµ
mµ

√
2

v cosβ
,[

Âe1

]
23

= cT3
(zµyτ − zτyµ)

yµyτ
mµu

√
2

v cosβ
,[

Âe1

]
31

= cT3
(zτy′τ − z′τyτ )

y2
τ

mτu
2

√
2

v cosβ
,[

Âe1

]
32

=
[
cT2

(zτy′τ − z′τyτ )
y2
τ

mτ tu
2 + cT3

(zµyτ − zτyµ)
y2
τ

mµtu

] √
2

v cosβ
,[

Âe1

]
33

=
zτ
yτ
mτ

√
2

v cosβ
,

(B.18)

while for Âe2 we have

Âe2 =

 cF me (cFT3 − cF cT3)me u cFT2me u

cFT2mµ u cF mµ (cFT3 − cF cT3)mµ u

(cFT3 − cF cT3)mτ u cFT2mτ u cF mτ

 √
2

v cosβ
, (B.19)

Moving to the up squarks, the contributions are the following:

(m̂2
uRL)1 = Âu1

v sinβ√
2
A0 , (m̂2

uRL)2 = Âu2
v sinβ√

2
A0 , (B.20)
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where Âu1 is given by

[
Âu1

]
11

=
c′′ ỹ6

y5

cT3 z1 + 2c′′ z2

2
√
tqd t

u
d

− tu5 z1

2
√
tqd t

u
d t

u
1

+
c′ tu6(z3 yb − zt y7)√
tqd t

u
d (tud − tus ) yb

 √tu3+

− c′ tu4 t
u
5 (z3 yb − zt y7)

2
√
tqd t

u
d t

u
1 (tud − tus ) yb

u4

√
t

 ,
[
Âu1

]
12

=

cT3 z1 + 2c′′ z2

2
√
tqd t

u
d

− tu5 z1

2
√
tqd t

u
dt
u
1

+
c′ tu6(z3 yb − zt y7)√
tqd t

u
d (tud − tus ) yb

 tu2+

− c′ tu4 t
u
5(z3 yb − zt y7)

2
√
tqd t

u
d t

u
1 (tud − tus ) yb

u3 ,

[
Âu1

]
13

=
tu6 zt√

tqstud(tud − tus )
tu− tu4 t

u
5 zt

2
√
tqs tud t

u
1 (tud − tus )

u2 ,

[
Âu1

]
21

=
c′′ z1 ỹ6√
tqd t

u
d y5

√
tu2 +

c′ tu4(z3 yb − zt y7)√
tqd t

u
d (tud − tus ) y5 yb

u3

√
t

[
Âu1

]
22

=
z1√
tqd t

u
d

tu+
c′ tu4(z3 yb − zt y7)√
tqd t

u
d (tud − tus ) yb

u2 ,

[
Âu1

]
23

=
tu4 zt√

tqs tud (tud − tus )
u ,

[
Âu1

]
31

=
c′ c′′ ỹ6 (z3 yb − zt y7)√

tqd t
u
s y5 yb

u2

√
t
,

[
Âu1

]
32

=
c′ (z3 yb − zt y7)√

tqd t
u
s yb

u ,

[
Âu1

]
33

=
zt√
tqs tus

,

(B.21)
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while for Âu2 we have

[
Âu2

]
11

=
cFT2 y1√
tqd t

u
d

tu2 ,

[
Âu2

]
12

=

cT3y1+cF ′′ y2

2
√
tqd t

u
d

− cF tu5 y1

2
√
tqd t

u
d t

u
1

+
cF ′ tu6 y3√

tqd t
u
d (tud − tus )

 tu2 − cF ′ tu4 t
u
5 y3

2
√
tqd t

u
d t

u
1 (tud−tus )

u3 ,

[
Âu2

]
13

= −
(cF ′ tu5 + 2 cFη2 t

u
1)y4

2
√
tqs tud t

u
1

tu2 ,

[
Âu2

]
21

=
cF c′′ y1 ỹ6√
tqd t

u
d y5

√
tu2 +

cF ′ c′′ tu4 y3 ỹ6√
tqd t

u
d (tud − tus ) y5

u3

√
t[

Âu2

]
22

=
cF y1√
tqd t

u
d

tu+
cF ′ tu4 y3√

tqd t
u
d (tud − tus )

u2 ,

[
Âu2

]
23

=
cF ′ y4√
tqs tud

tu ,

[
Âu2

]
31

=
cF ′ c′′ y3 ỹ

6√
tqd t

u
s y5

u2

√
t
,

[
Âu2

]
32

=
cF ′ y3√
tqd t

u
s

u ,

[
Âu2

]
33

=
cF ′ y3(c′ tqs y7 − tq4 yb)√

tqs tus t
q
d yb

u2 .

(B.22)

Finally we deal with the down squarks and the contributions are the following:

(m̂2
dRL)1 = Âd1

v cosβ√
2

A0 , (m̂2
dRL)2 = Âd2

v cosβ√
2

A0 , (B.23)

where Âd1 is given by

Âd1 =



− c′′2 z5 ỹ
2
6√

tqd t
d
d y

2
5

u3 − c′′ z5 ỹ6√
tqd t

d
d y5

√
tu2 c′ c′′ ỹ6 (z8 yb − zb y8)√

tqs tdd y5 yb

√
tu2

c′′ z5 ỹ6√
tqd t

d
d y5

√
tu2 z5√

tqd t
d
d

tu
c′(z8 yb − zb y8)√

tqs tdd yb

tu

c′ c′′ ỹ6 (z7 yb − zb y7)√
tqd t

d
s y5 yb

√
tu2 c′(z8 yb − zb y8)√

tqd t
d
s yb

tu
zb√
tqs tds

t


(B.24)

– 43 –



J
H
E
P
1
1
(
2
0
1
1
)
0
4
7

while for Âd2 we have

Âd2 =



c′′(2cF ′′ − cF c′′) ỹ2
6√

tqd t
d
d y5

u3 (cF ′′ − cF c′′) ỹ6√
tqd t

d
d

√
tu2 −c

F ′ c′′ ỹ6 y8√
tqs tdd y5

√
tu2

−(cF ′′ − cF c′′) ỹ6√
tqd t

d
d

√
tu2 cF y5√

tqd t
d
d

tu
cF ′ y8√
tqs tdd

tu

cF ′ c′′ ỹ6 y7√
tqd t

d
s y5

√
tu2 cF ′ y7√

tqd t
d
s

tu
[
Âd2

]
33


(B.25)

where [
Âd2

]
33

=

(
y8 (c′ tds y8 − td4 yb)√

tqs tds t
d
d

+
y7 (c′ tds y7 − tq4 yb)√

tqs tds t
q
d

)
cF ′ tu2

yb
. (B.26)

C Canonical normalisation of the kinetic terms and diagonalisation of

M`,d

We first perform the transformations to go to the basis in which the kinetic terms are
canonically normalised and after we diagonalise the charged lepton and the down quark
mass matrices. We perform these transformations not only on the fermions, but also on
the sfermions in order to ensure that the gaugino-fermion-sfermion vertices do not violate
flavour at this stage.

To diagonalise the hermitian matrices Kf , f = `, e, q, u, d, we apply the unitary trans-
formations W f :

W f†KfW f = diag . (C.1)

Normalizing Kf requires a rescaling of the fields via the real (diagonal) matrices Rf :

RfW f†KfW fRf = 1 . (C.2)

The superfields Ψf = {`, `c, q, qc} are expressed as

Ψf = W fRf Ψ′f , (C.3)

so that the kinetic terms are in their the canonical form

iΨ′f,iσ
µDµΨ′f,i + |DµΨ̃′f,i|2 . (C.4)

The mass matrices for fermions in this basis read as

`cM` ` = `c ′Re (W e)T M`W
`R` `′ ≡ `c ′M ′` `

′ ,

U cMuQ = U c ′Ru (W u)T MuW
q Rq Q′ ≡ U c ′M ′uQ

′ ,

DcMdQ = Dc ′Rd (W d)T MdW
q Rq Q′ ≡ Dc ′M ′dQ

′ ,

(C.5)

while for sleptons as

˜̀m2
eLL

˜̀= ˜̀′R` (W `)†m2
eLLW

`R` ˜̀′ ,

˜̀cm2
eRR

˜̀c = ˜̀c ′Re (W e)T m2
eRRW

e ∗Re ˜̀c ′ ,
˜̀cm2

eRL
˜̀= ˜̀c ′Re (W e)T m2

eRLW
`R` ˜̀′ ,

(C.6)
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and for quarks as

Q̃m2
qLL Q̃ = Q̃

′
Rq (W q)†m2

qLLW
qRq Q̃′ ,

Ũ cm2
uRR Ũ

c
= Ũ c ′Ru (W u)T m2

uRRW
u ∗Ru Ũ

c ′
,

D̃cm2
dRR D̃

c
= D̃c ′Rd (W d)T m2

dRRW
d ∗Rd D̃

c ′
,

Ũ cm2
uRL Q̃ = Ũ c ′Ru (W u)T m2

uRLW
q Rq Q̃′ ,

D̃cm2
dRL Q̃ = D̃c ′Rd (W d)T m2

dRLW
q Rq Q̃′ .

(C.7)

We diagonalise the resulting mass matrices m′` and m′d of the charged leptons and
down quarks, respectively, by the usual bi-unitary transformations:

UTe M
′
`Ve = diag(me, mµ, mτ ) ,

UTd M
′
dVd = diag(md, ms, mb) .

(C.8)

In this way we can define the mass eigenbasis `′′, `c ′′, Q′′, Dc ′′:

`′ = Ve `
′′ , `c ′ = Ue `

c ′′ , Q′ = VdQ
′′ , Dc ′ = UdD

c ′′ . (C.9)

Finally, the slepton mass matrices are given by

˜̀m2
eLL

˜̀= ˜̀′′
[
V †e R

`W `†m2
eLLW

`R`Ve

]
˜̀′′ ≡ ˜̀′′m̂2

eLL
˜̀′′ ,

˜̀cm2
eRR

˜̀c = ˜̀c ′′ [UTe Re(W e)Tm2
eRRW

e ∗Re U∗e
] ˜̀c ′′ ≡ ˜̀c ′′m̂2

eRR
˜̀c ′′ ,

˜̀cm2
eRL

˜̀= ˜̀c ′′
[
UTe R

e(W e)Tm2
eRLW

`R`Ve

]
˜̀′′ ≡ ˜̀c ′′m̂2

eRL
˜̀′′ ,

(C.10)

and the squark ones by

Q̃m2
qLL Q̃ = Q̃

′′ [
V †dR

q (W q)†m2
qLLW

qRqVd

]
Q̃′′ ,

D̃cm2
dRR D̃

c
= D̃c ′′

[
UTd R

d (W d)T m2
dRRW

d ∗RdU∗d

]
D̃
c ′′
,

Ũ cm2
uRL Q̃ = Ũ c ′

[
Ru (W u)T m2

uRLW
q RqVd

]
Q̃′′ ,

D̃cm2
dRL Q̃ = D̃c ′′

[
UTd R

d (W d)T m2
dRLW

q RqVd

]
Q̃′′ .

(C.11)

Note that the m2
uRR has been not affected by these last transformations.

To arrive at this result we assume that all couplings involved are real and as a result
the matrices W f , Ue,d and Ve,d turn out to be orthogonal instead of unitary.

D Wilson coefficient contributions for BR(B̄ → Xsγ)

In this appendix we report the break down of the C7γ Wilson coefficient for BR(B̄ → Xsγ)
in terms of the distinct supersymmetric contributions. In figure 9, the two upper (lower)
plots refer to A0 = 2m0 = 400 GeV (A0 = 2m0 = 2000 GeV), respectively for the RPA case
(left) and RPB case (right). The different colors refer to distinct contributions: Magenta
(Red) for the chargino contribution with positive (negative) sign[µ]; Black (Cyan) for the
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Figure 9. Wilson coefficient contributions for BR(B̄ → Xsγ). The left (right) plots refer to the
RPA (RPB) case for A0 = 2m0 = 400 GeV (upper plots) or A0 = 2m0 = 2000 GeV (lower plots).
See the text for details.

charged Higgs contribution with positive (negative) sign[µ]; Green (Blue) for the gluino
contribution with positive (negative) sign[µ].

Figure 9 confirms the analysis reported in section 5.3: in the small (A0,m0) region
(upper plots) the dominant T ′ contribution to the b → sγ BR is typically the charged
Higgs one, that is always concordant in sign with the SM one. The second most relevant
contribution is the chargino one with a sign depending on sign[µ]: it tends to enhance
(cancel) the SM contribution for µ < 0 (µ > 0). Gluino contributions are practically
independent from sign[µ]. In figure 9 we do not show the neutralino contribution, since it
turns out to be completely negligible.
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