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1 Introduction

The last fifteen years have witnessed a tremendous experimental progress in neutrino

physics, leading to a good determination of two mass splittings, two mixing angles and

a fairly stringent bound on the third angle [1]. The most conspicuous difference between

quark and neutrino properties is without any doubt the smallness of neutrino masses. Fur-

thermore, the better and better measurements of neutrino parameters have also revealed

the existence of large mixing angles in the leptonic sector and the existence of a relatively

mild mass hierarchy between the two heaviest neutrino masses [2].

Extending the particle content of the Standard Model (SM) with three heavy right-

handed neutrinos, thus implementing the (type I) see-saw mechanism [3–8], solves very

elegantly the problem of generating small neutrino masses and opens new opportunities to

understand the puzzles of the existence of large mixing angles and a small mass hierarchy.

Unfortunately, whereas the seesaw mechanism does not make any generic prediction about

the leptonic mixing matrix, it tends to predict a neutrino mass hierarchy which is much

larger than the one inferred from experiments [9]. Namely, under the plausible assumption

that the neutrino Yukawa couplings have hierarchical eigenvalues, as observed in the quark

and the charged lepton sectors, the mild mass hierarchy observed between the solar and the

atmospheric mass splitting can only be accommodated in very special cases. One possibility

arises when the hierarchies between the masses of the heavy right-handed neutrinos is much
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larger than the hierarchy between the neutrino Yukawa eigenvalues, in which case the right-

handed mixing angles have to be tiny. Alternatively, when the hierarchy in the masses of

the heavy right-handed neutrinos is comparable to the hierarchy in the Yukawa couplings,

it is possible to accommodate the observed mild neutrino mass hierarchy only for certain,

possibly fine-tuned, choices of the right-handed mixing angles.

Further extensions of the type I see-saw model have been considered in the literature.

A minimal possibility consists on introducing one extra Higgs doublet, which leads to

radiatively induced neutrino masses. Most works impose an additional Z2 symmetry, under

which the Standard Model particles are even, whereas the right-handed neutrinos and

the extra Higgs doublet are odd [10–16]. With this assignment, the tree level neutrino

mass vanishes and the leading contribution is hence the radiatively generated one. In

this scenario, the right-handed neutrinos and the extra Higgses could be directly produced

at colliders while being the neutrino masses in the measured range, thanks to the loop

suppression and an appropriate choice of the neutrino Yukawa and Higgs self-couplings.

Furthermore, the Z2 symmetry ensures the absence of tree level flavour changing neutral

currents. On the other hand, it has also been discussed the general two Higgs doublet

model (2HDM), without imposing ad-hoc discrete symmetries [17, 18]. In this case, both

mechanisms of neutrino mass generation are present, naturally leading to a mild neutrino

mass hierarchy [19].

In this paper we revisit, pursuing a renormalization group approach, the mechanism

of neutrino mass generation in the general two Higgs doublet model extended with right-

handed neutrinos. Rather than being motivated by finding signatures of new physics

in experiments at the energy frontier or at the intensity frontier, we are motivated by

constructing a simple and natural framework capable to explain the observed neutrino

parameters while preserving the successes of the Standard Model. This approach is inspired

in the high scale see-saw mechanism, which despite its well known lack of testability, still

stands as the most compelling explanation for the small neutrino masses.

We will argue that by making all the new particles heavy it is possible to simultaneously

explain the smallness of neutrino masses and the mildness of the neutrino mass hierarchy,

without jeopardizing any of the successes of the Standard Model. Remarkably, in this

model only one right-handed neutrino suffices to generate two neutrino mass scales: the

atmospheric neutrino mass scale will be generated at tree level, whereas the solar mass

scale will be generated by the radiative corrections to the effective neutrino mass matrix.

Both neutrino masses are suppressed by the large right-handed neutrino mass scale, thus

explaining the tininess of neutrino masses. On the other hand, the ratio of the two mass

scales is suppressed by the loop factor and enhanced by a large logarithm of the ratio of

the heavy right-handed neutrino mass to the Higgs mass, resulting in a neutrino mass ratio

which can be roughly of the correct size. Finally, the decoupling of the extra Higgs degrees

of freedom ensures the absence of large contributions to the flavour and CP violating

processes, both in the leptonic sector and in the quark sector, as well as to the electroweak

precision measurements.

In section 2 we review the basic features of the two Higgs doublet model, the various

problems which arise in this very minimal extension of the Standard Model, and how they
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can be circumvented altogether by decoupling the extra scalar degrees of freedom. In

section 3 we show, using a renormalization group approach, that even in the decoupling

limit the extra Higgs particles can play an important role in low energy neutrino physics,

as an explanation for the mild hierarchy observed between the atmospheric and the solar

neutrino mass scales. The viability of this model requires at least one right-handed neutrino

and two Higgs doublets; in section 4 we comment on the differences of this framework with

another minimal framework of neutrino masses, namely the two right-handed neutrino

model with just one Higgs doublet. In section 5 we calculate the corrections to the leptonic

mixing matrix induced by quantum effects, and we argue that a non-zero θ13 is generically

expected, as well as a a deviation from the maximal atmospheric angle which is correlated

to the angle θ13. Lastly, in section 7 we present our conclusions.

2 Benefits of the decoupling limit of the 2HDM

We consider an extension of the SM consisting on adding to the particle content one

additional Higgs doublet, with identical quantum numbers as the SM Higgs doublet. The

most general Higgs potential reads [20, 21]:

V =m2
11Φ

†
1Φ1 + m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.]

+
1

2
λ1(Φ

†
1Φ1)

2 +
1

2
λ2(Φ

†
2Φ2)

2 + λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1)

+

[

1

2
λ5(Φ

†
1Φ2)

2 + λ6(Φ
†
1Φ1)(Φ

†
1Φ2) + λ7(Φ

†
2Φ2)(Φ

†
1Φ2) + h.c.

]

. (2.1)

Despite being such a simple extension of the Standard Model, the introduction of

a second Higgs doublet in general jeopardizes many of the successes of the Standard

Model. More concretely, the Higgs potential has now a richer structure including elec-

trically charged directions, which may lead to the spontaneous breaking of the electromag-

netic U(1) symmetry if there are minima along those directions. Besides, the extra Higgs

doublet contributes to the oblique parameters S, T and U [22], possibly leading to values

in conflict with electroweak precision data. Lastly, the new, in general flavour violating,

couplings of the fermions to the extra Higgs doublet could lead to too large flavour changing

neutral currents or lepton flavour violation.

It is interesting that all these problems are simultaneously solved in the decoupling

limit of the two Higgs doublet model, which is defined as the limit where one of the Higgses

is kept light, with a mass comparable to the Z-boson mass, while the rest acquire masses

much larger than MZ .

To show the absence of charge breaking minima in the decoupling limit we will work

without loss of generality in the Higgs basis where m12 = 0. Then, in complete analogy

to the Standard Model, we postulate the absence of unbounded from below directions

in the potential. Furthermore, and also in analogy to the Standard Model, we require

that one mass squared, say m2
11, is negative, to allow the spontaneous breaking of the

electroweak symmetry. Lastly, a necessary condition for the decoupling of the second

Higgs is m2
22 ≫ |m2

11|/λ1 > 0 [23].
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To study the minima of the potential, we will exploit the SU(2)L invariance to express

the Higgs fields as

Φ1 =
1√
2

(

0

ϕ1

)

Φ2 =
1√
2

(

σ

ϕ2

)

, (2.2)

where σ and ϕ2 are complex fields, while ϕ1 is a real field.

We consider now the direction in field space ϕ2 = aϕ1, σ = bϕ1, along which the

potential reads:

Va,b(ϕ1) =
1

2
m2

11|ϕ1|2 +
1

2
m2

22(|a|2 + |b|2)|ϕ1|2 + const. × |ϕ1|4 . (2.3)

Clearly, for any minimum of V with vacuum expectation values 〈ϕ1〉, 〈ϕ2〉, 〈σ〉 there is a

choice of the parameters a and b such that Va,b(ϕ1) has a minimum at 〈ϕ1〉, concretely for

a = 〈ϕ2〉 / 〈ϕ1〉 and b = 〈σ〉 / 〈ϕ1〉. This is only possible, though, if the quadratic part of

eq. (2.3) is negative, thus for any minimum of V it must hold that:

| 〈ϕ2〉 |2 + | 〈σ〉 |2 <
|〈ϕ1〉|2
m2

22

|m2
11| . (2.4)

Utilizing this inequality it is straightforward to determine the minimum of V . The

differentiation with respect to ϕ1 yields

|〈ϕ1〉|2 =
2|m2

11|
λ1

[

1 + O
(
√

|m2
11|

λ1m
2
22

)]

. (2.5)

Varying now V with respect to σ and ϕ2, it can be checked that

〈σ〉 = 0 ,

〈ϕ2〉 ≃ −〈ϕ1〉
λ∗

6〈ϕ1〉2
2m2

22

,
(2.6)

which shows that the electric charge is conserved. Furthermore, as the decoupling limit is

approached, the Standard Model vacuum is recovered.

Apart from recovering the nice features of the Standard Model vacuum, when taking

the decoupling limit also the successful predictions of the Standard Model in electroweak

observables and flavour physics are recovered. Namely, the existence of an additional Higgs

doublet introduces contributions to the oblique parameters S, T and U which can be in

tension with the electroweak precision measurements. However, it can be shown that in the

decoupling limit S, T and U scale with |m2
11|/(λ1m

2
22) [24], thus bringing the oblique param-

eters within their experimentally allowed values for sufficiently heavy extra scalar states.

Besides, the general 2HDM induces in general too large rates for the flavour changing

neutral currents and the lepton flavour violating processes. Whereas this problem can

be alleviated by assuming concrete flavour structures of the Yukawa couplings [25–30], a

simpler way to suppress altogether all new contributions to the flavour violating processes

consists on assuming that the new scalar particles are all very heavy.
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The general flavour dependent part of the Lagrangian reads

−LYuk = (Y a
e )ij l̄LieRjΦa + (Y a

u )ij q̄LiuRjΦ̃a + (Y a
d )ij q̄LidRjΦa + h.c. (2.7)

where i, j = 1, 2, 3 are flavour indices, a = 1, 2 is a Higgs index and Φ̃a = iτ2Φ
∗
a. It will

be convenient in what follows to work in the Higgs basis where one of the Higgs fields, say

Φ2, does not acquire a vacuum expectation value. In this basis, then, the Yukawa matrices

Y 1
e,u,d are proportional to the fermion mass matrices.

Consider for illustration the contribution of the second Higgs doublet to the process

µ → eγ, whose rate is strongly constrained by experiments BR(µ → e γ) < 1.2×10−11 [31].

For a wide range of parameters, this process is dominated by the two loop Barr-Zee dia-

grams [32]. The leading contribution comes from the top quark unless Y 2
u33 is small [33].

In the decoupling limit the branching ratio reads:

BR(µ → e γ) ≃ 8α3

3π3

|Y 2
e12|2

|Y 1
e22|2

∣

∣

∣

∣

f

(

m2
t

m2
h

)

cos α − Y 2
u33

Y 1
u33

m2
t

m2
H

log2 m2
t

m2
H

∣

∣

∣

∣

2

. (2.8)

Here, mt denotes the top quark mass, f(z) is defined in [33] and evaluates f(2) ≈ 1, and α

is the Higgs mixing angle, which reads cos α ≃ |λ6|v2/m2
H in the decoupling limit. Thus,

the stringent experimental bound on BR(µ → e γ) can be evaded, for the concrete flavour

structure Y 2
e12 =

√

Y 1
e11Y

1
e22 and Y 2

u33 = Y 1
u33, if the scale of the heavy Higgs mH & 2 TeV.

Clearly, the rate of µ → eγ can always be suppressed, regardless of the flavour structure

of the Yukawa couplings, by increasing sufficiently the mass of the extra scalar degrees

of freedom.

In the quark sector, strong constraints come from the measurement of the mass differ-

ence in meson anti-meson systems, such as B0
s − B̄0

s , which arise at tree level in the general

2HDM. In the decoupling limit, the B0
s − B̄0

s mass difference approximately reads:

∆mBs
≃
∣

∣

∣

∣

∆mSM
Bs

+
4

3
mBs

f2
Bs

PLR
2

Y 2∗
d23Y

2
d32

m2
H

∣

∣

∣

∣

. (2.9)

Where fB is the B-meson decay constant, fBs
= 238.8 ± 9.5 MeV [34], mBs

is the Bs

meson mass, mBs
= 5.37 GeV [35], and the coefficient PLR

2 includes the renormalization

group evolution from the scale MZ to ∼ mBS
and the hadronization of the quarks to

mesons [36] and reads PLR
2 ≃ 3.0. Assuming |Y 2∗

d23| ≈ |Y 2
d32| ≈

√

Y 1
d22Y

1
d33, we estimate that

the 2HDM contribution to the B0
s − B̄0

s mass difference lies within the theoretical error of

the SM calculation, ∆mSM
Bs

= (135± 20)× 10−13 GeV [37, 38], for mH & 3 TeV. As before,

the 2HDM contribution to the meson-antimeson mixing can always be suppressed for a

sufficiently large mH , regardless of the flavour structure of the quark Yukawa couplings.

3 Neutrino masses in a 2HDM extended with right-handed neutrinos

We will consider in this paper an extension of the Standard Model consisting in adding one

extra Higgs doublet and at least one right-handed neutrino, singlet under the Standard
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Model gauge group. We will not impose any discrete symmetry on the model. Then,

compatible with this matter content, the most general Lagrangian reads:

L = Lkin + LYuk + Lν − V , (3.1)

where Lkin contains the kinetic terms, LYuk is the Yukawa Lagrangian for the Standard

Model fermions, given in eq. (2.7), V is the Higgs potential, given in eq. (2.1) and Lν is

the part of the Lagrangian involving right-handed neutrinos, given by:

− Lν = (Y a
ν )ij l̄LiνRjΦ̃a −

1

2
MMij ν̄

C
RiνRj + h.c. (3.2)

This term contains a Yukawa coupling, which leads to Dirac neutrino masses, and a Ma-

jorana mass for the right-handed neutrinos, with a size which is a priori unrelated to the

electroweak symmetry breaking scale.

We will assume that the mass scale of the right-handed neutrinos is much larger than

the electroweak symmetry breaking scale and the mass of all the extra Higgs mass eigen-

states H0, A0, H±, which we denote collectively by mH . Hence, the right-handed neutrinos

are decoupled, leading to the following effective operators:

−Lν, eff =
1

2
κab

ij (l̄LiΦ̃a)(Φ̃
T
b lCLj) + h.c. (3.3)

where, at the scale of the lightest right-handed neutrino,

κab(M1) = (Y a
ν M−1

M Y b T
ν )(M1) . (3.4)

Since we have chosen to work in the basis where 〈Φ0
1〉 = v/

√
2, 〈Φ0

2〉 = 0, the neutrino

mass matrix at the scale of the lightest right-handed neutrino depends just on the coupling

κ11:

Mν(M1) =
v2

2
κ11(M1) , (3.5)

which is diagonalized in the standard way:

Mν = U∗diag(m1,m2,m3)U
† . (3.6)

These are not, however, the neutrino parameters measured by experiments, where the en-

ergies involved are much smaller than the right-handed Majorana mass scale. In order to

compare the predictions of the model with low energy experiments we will make use of

the Renormalization Group Equations (RGE) given in the appendix, to run the effective

couplings κab from the scale M1 to the scale mH . Below the scale mH the neutrino mass

matrix runs with the RGEs of the Standard Model extended with massive Majorana neu-

trinos. Since in this framework the neutrino masses are hierarchical, the running will not

introduce any new qualitative feature but will only modify the values of the mass eigen-

values and the entries of the leptonic mixing matrix by a small factor, proportional to the

tau Yukawa coupling squared and to the small logarithm log(mH/MZ) [39–43].
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To emphasize the main features of the quantum corrections to the neutrino mass

matrix, we will concentrate in what follows on a see-saw model with just one right-handed

neutrino with mass Mmaj. Then, with this assumption, the neutrino Yukawa couplings Y a
ν

are 3-vectors. In this scenario the neutrino mass matrix at the scale of the right-handed

neutrino mass Mmaj is given by:

[κ11]tree =
Y 1

ν Y 1 T
ν

Mmaj
, (3.7)

which has rank 1 and thus only one non-vanishing eigenvalue.

On the other hand, quantum effects introduce corrections to the neutrino mass matrix

yielding at low energies κ11(mH) = [κ11]tree + δκ11, where the correction reads, in the

leading-log approximation,

δκ11 = − 1

16π2
βκ11(Mmaj) log

Mmaj

mH
. (3.8)

Using the explicit form of the β function in the appendix, it follows that this correction

can be schematically written as:

δκ11 ≃ B1aκ
a1 + κ1aBT

1a + bκ22 . (3.9)

Here B1a denote 3 × 3 matrices whereas b is a number. The first two terms generalize

the well known correction to the neutrino mass matrix in the Standard Model including

the dimension-5 Weinberg operator. However, the term proportional to κ22 does not have

any correspondence in the Standard Model and, as we will see, introduces new qualitative

features. The coefficient b explicitly reads:

b = − 1

16π2
2λ5 log

Mmaj

mH
, (3.10)

which depends linearly on the coefficient of the potential term λ5(Φ
†
1Φ2)(Φ

†
1Φ2), while only

logarithmically on the ratio between the scale of the right-handed neutrino and the overall

scale of the extra scalars H0, H±, A0.

The neutrino mass matrix Mν = [Mν ]tree + δMν can be diagonalized using perturba-

tion theory, giving as a result the eigenvalues mi = m
(0)
i + δmi with m

(0)
i the eigenvalue at

tree level and δmi the first order correction.

At lowest order in perturbation theory, taking into account only the tree level mass

term, there is only one non-vanishing neutrino mass eigenvalue:

m
(0)
3 =

v2

2Mmaj
|Y 1

ν |2 . (3.11)

On the other hand, the third column of the leptonic mixing matrix reads;

U
(0)
i3 =

Y 1∗
νi

|Y 1
ν |

, (3.12)
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while the first two columns are undefined, due to the degeneracy of the corresponding

neutrino mass eigenvalues. In this expression, |Y a
ν | = (

∑

i |Y a
νi|2)1/2.

The correction to the neutrino mass eigenvalues due to the perturbation δκ11 is given by:

δmi =
v2

2
Re[(U (0)T δκ11 U (0))ii] , (3.13)

which slightly modifies the value of the heaviest neutrino mass eigenvalue:

δm3 =
v2

2Mmaj
Re

[

2(Y 1†
ν B1aY

a
ν ) + b

(Y 1†
ν Y 2

ν )2

|Y 1
ν |2

]

. (3.14)

More importantly, this correction is also non-vanishing for δm2, thus generating radia-

tively a second neutrino mass eigenvalue. This is in contrast to the widely studied case of

the Standard Model extended with a single right-handed neutrino, where there is only one

non-vanishing neutrino mass eigenvalue, even after taking into account the renormalization

group running.1

To show this, we write explicitly the radiative correction to the next-to-lightest neutrino

mass eigenvalue:

δm2 =
v2

2
Re[U

(0)
p2 δκ11

pq U
(0)
q2 ] , (3.15)

which crucially depends on the second column of the zero-th order leptonic mixing ma-

trix. Since the matrix U (0) is unitary, the vector U
(0)
q2 should satisfy

∑

q U
(0)
q2 U

(0)∗
q3 = 0,

∑

q U
(0)
q2 U

(0)∗
q2 = 1. A vector that satisfies those properties can be easily constructed from

the vectors Y 1
ν and Y 2

ν using the Gram-Schmidt process. Starting with U
(0)
i3 given by

eq. (3.12) one finds:

U
(0)
i2 =

1

N2

[

Y 2∗
νi − Y 2†

ν Y 1
ν

|Y 1
ν |

Y 1∗
νi

|Y 1
ν |

]

e−
i

2
arg(−λ5) , (3.16)

where

N2 =

[

Y 2†
ν Y 2

ν − |Y 2†
ν Y 1

ν |
2

|Y 1
ν |2

]1/2

. (3.17)

Substituting into the expression for δm2 we find

m2 =
1

16π2

|λ5|v2

Mmaj

[

|Y 2
ν |

2 − |Y 2†
ν Y 1

ν |
2

|Y 1
ν |2

]

log
Mmaj

mH
. (3.18)

(Note that the phase in eq. (3.16) has been chosen to yield m2 real and positive.) It is

apparent from this expression that in order to generate a non-vanishing neutrino mass

eigenvalue it is necessary the misalignment between the Yukawa couplings Y 1
ν and Y 2

ν , or

in more physical terms, it is necessary the existence of new sources of flavour violation in

1There are, however, tiny finite corrections arising from two-loop diagrams involving W bosons [44–46].
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the neutrino sector. These new sources necessarily generate, through quantum corrections,

off-diagonal elements in the charged lepton Yukawa coupling Y 2
e , which in turn induce

a contribution to the lepton flavour violating processes. Nevertheless, as explained in

section 2 this contribution is suppressed by the large mass of the extra Higgs particles, and

can be consistent with experiments if the extra particles are sufficiently heavy.

Furthermore, it is interesting to note that, under some well motivated assumptions,

the hierarchy between the tree level mass m3 and the radiatively generated neutrino mass

m2 can be fairly mild. For instance, taking the typical values |λ5| ∼ 1, Mmaj ∼ 1011 GeV

and mH ∼ 1TeV and assuming non-aligned neutrino Yukawa couplings with |Y 2
ν | ∼ |Y 1

ν |
one obtains for the ratio between the two heaviest neutrino mass eigenvalues:

m2

m3
≃ |λ5|

8π2

|Y 2
ν |2

|Y 1
ν |2

log
Mmaj

mH
∼ 0.2 , (3.19)

which yields a mild mass hierarchy, in qualitative agreement with the experimental data.

Note that, whereas the overall scale of the light neutrino masses depends linearly on the

inverse of the heavy right-handed neutrino mass, the ratio between the two heaviest neu-

trino mass eigenvalues depends only logarithmically with the masses of the new particles.

As a consequence, the result in eq. (3.19) is fairly insensitive to the exact values of the

masses of the heavy particles.

In the previous analysis we have assumed for simplicity that only one right-handed

neutrino participates in the neutrino mass generation. In the more realistic case where

there are several right-handed neutrinos, the tree level contributions to all neutrino mass

eigenvalues will be non-vanishing. Nevertheless, as discussed in the Introduction, if the

neutrino Yukawa coupling Y 1
ν has hierarchical eigenvalues, as suggested by the observed

hierarchies in the quark and charged lepton masses, then the neutrino mass hierarchy gen-

erated (at tree level) by the see-saw mechanism is in general several orders of magnitude

larger than the one inferred from experiments. Therefore, the radiatively generated contri-

bution to the next-to-lightest neutrino masses by the presence of the second Higgs doublet

will dominate over the tree level contribution, and the conclusions presented above will

still hold.2

In an extended scenario with NH Higgs doublets and one right-handed neutrino, the

radiatively induced next-to-lightest neutrino mass receives NH × (NH −1)/2 contributions,

each of them proportional to the coefficient of the term λab
5 (Φ†

aΦ1)(Φ
†
bΦ1), a, b = 2...NH ,

in the Higgs potential. Therefore, in this case the radiatively generated neutrino mass is

enhanced.

It is amusing to speculate that adding more Higgs doublets to the particle content of

the model may also be relevant to understand the observed pattern of neutrino mixing

angles. In a model with NH Higgs doublets, only the Higgs that acquires a vacuum expec-

tation value, Φ1, will contribute to the tree level mass. Assuming that this is the largest

2Note that this mechanism is qualitatively very different to the one proposed in [47], where one Higgs

doublet suffices to generate radiatively a neutrino mass in the presence of at least two right-handed neutrinos.

In that work it was assumed that the tree level mass vanishes due to cancellations among the contributions

to the effective neutrino mass operator from different right-handed neutrinos, which are then lifted by the

radiative corrections.
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mass, m3 =
√

∆m2
atm, it follows from eq. (3.12) that Ui3 ∝ Y 1∗

νi . Therefore, if there is any

pattern in the neutrino Yukawa coupling Y 1
νi, stemming e.g. from an underlying flavour

symmetry, then this pattern will be inherited by Ui3, thus providing an explanation to the

apparent structure of the last column of the leptonic mixing angle: |U13| ≃ 0, |U23| ≃ |U33|.
In contrast, there are NH − 1 Higgses which contribute via quantum effects to the gen-

eration of the solar neutrino mass scale, m2 =
√

∆m2
sol and of the second column of the

leptonic mixing matrix, Ui2. As a consequence, even if there is a structure in each of the

neutrino Yukawa couplings, Y a
νi, a = 2, ...NH , the generated Ui2 will be structureless, since

it receives contributions from all these Yukawa couplings. This is in rough agreement with

observations, which reveal that the three entries in Ui2 are all O(0.1), without displaying

any remarkable structure (or, alternatively, the solar angle is neither maximal nor zero).

Therefore, in the Standard Model extended with right-handed neutrinos and several Higgs

doublets, the last column of the leptonic mixing matrix is expected to display a “hierar-

chical” structure, whereas the second column, an “anarchical” structure [48], in qualitative

agreement with the data.

4 Comparison to the two right-handed neutrino model

The scenario discussed in this paper leads to a dimension-5 operator which is identical to

the one generated by the Standard Model (with a single Higgs doublet) extended by two

heavy right-handed neutrinos. There are however some conceptual differences in the way

these two scenarios reproduce the observed neutrino data, which we discuss here.

Let us first demonstrate the equivalence of the two Higgs doublet model extended

with one right-handed neutrino (2HD-1RHN model) and the Standard model extended

with two right-handed neutrinos (1HD-2RHN model). At low energies, the coefficient of the

dimension five operator generated in the 2HD-1RHN model reads, following eqs. (3.4), (3.9),

κ11(mH) ≃ 1

Mmaj

[

Y 1
ν Y 1

ν
T

+ B1aY
a
ν Y 1

ν
T

+ Y 1
ν Y a

ν
T BT

1a + bY 2
ν Y 2

ν
T
]

, (4.1)

which can be recast as

κ11(mH) ≃ 1

Mmaj

[

(Y 1
ν +B1aY

a
ν )(Y 1

ν +B1aY
a
ν )T − B1aY

a
ν Y a′

ν

T
BT

1a′ + bY 2
ν Y 2

ν
T
]

. (4.2)

Neglecting the term of O(B2) and defining Ỹ 1
ν = Y 1

ν + B1aY
a
ν , one obtains the following

low energy neutrino mass matrix

Mν ≃
(

Ỹ 1
ν Ỹ 1 T

ν

Mmaj
+

bY 2
ν Y 2

ν
T

Mmaj

)

v2

2
. (4.3)

This result is formally identical to the effective operator which arises in the low energy limit

of the 1HD-2RHN model. More specifically, in this model the high energy Lagrangian reads,

in the basis where the 2 × 2 right-handed neutrino mass matrix is diagonal,

− Lν,2RHN = (Yν)ij l̄LiνRjΦ̃ − 1

2
M1ν̄

C
R1νR1 −

1

2
M2ν̄

C
R2νR2 + h.c. , (4.4)
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which leads, when M1, M2 ≫ v, to the effective neutrino mass matrix

M2RHN
ν ≃

(

Y1Y
T
1

M1
+

Y2Y
T
2

M2

)

v2

2
, (4.5)

being Y1,2 column vectors defined as Y1 ≡ (Yν)i1, Y2 ≡ (Yν)i2. By comparing eqs. (4.3)

and (4.5) it follows that, from the point of view of the neutrino mass generation, the 2HD-

1RHN model is equivalent to the 1HD-2RHN model with the following correspondence

among parameters

{Y1, Y2,M1,M2} ↔ {Ỹ 1
ν , Y 2

ν ,Mmaj,Mmaj/b} . (4.6)

This correspondence allows to write explicit expressions for the most general Yukawa

couplings Y 1
ν , Y 2

ν which lead to the neutrino masses m2,m3 and the leptonic mixing matrix

U . Using the results of [49, 50], one easily finds:

Ỹ 1
ν =

√
2

v

√

Mmaj(
√

m2 cos θ̂U∗
i2 ±

√
m3 sin θ̂U∗

i3) , (4.7)

Y 2
ν =

√
2

v

√

Mmaj

b
(−√

m2 sin θ̂U∗
i2 ±

√
m3 cos θ̂U∗

i3) , (4.8)

where θ̂ is a complex angle which parametrizes the family of Yukawa couplings compatible

with the low energy neutrino data (note that this parametrization may fail if the term of

O(B2) in eq. (4.2) can not be neglected). Finally, the Yukawa coupling with the Higgs Φ1

is Y 1
ν = (1 − B11)Ỹ

1
ν − B12Y

2
ν .

Furthermore, this correspondence allows to better appreciate the advantages of the

2HD-1RHN model over the 1HD-2RHN model in the generation of a mild mass hierarchy.

In the 1HD-2RHN model, the neutrino mass hierarchy is essentially given by

m3

m2
∼ |Y2|2

|Y1|2
M1

M2
, (4.9)

therefore the only possibilities to generate a mild neutrino mass hierarchy are i) |Y2|2 ∼
|Y1|2, M2 ∼ M1, or ii) |Y2| ≫ |Y1| with M2/M1 ∼ |Y1|2/|Y2|2. In view of the observed

large hierarchies in the quark and charged lepton Yukawa eigenvalues, in a model with

two right-handed neutrinos one expects |Y2| ≫ |Y1|, which hence requires a huge hierarchy

between the two right-handed neutrino masses in order to render a mild light neutrino mass

hierarchy. More concretely, if the neutrino Yukawa eigenvalues have a similar hierarchy as

the up-type quark masses, |Y2|/|Y1| ∼ mt/mc ∼ 150, then it is required M2/M1 ∼ 20000.

On the other hand, if the hierarchy is similar to the down-type quark masses, |Y2|/|Y1| ∼
mb/ms ∼ 40, then it is required M2/M1 ∼ 1600. Whereas such large hierarchies in the

right-handed neutrino masses cannot be precluded, it is difficult to conceive that in the

decoupling limit the large hierarchies in the Yukawa couplings cancel almost exactly a huge

hierarchy in the right-handed neutrino masses to generate at low energies a light neutrino

mass hierarchy of ∼ 6, as inferred from experiments.

This drawback is very naturally circumvented by the 2HD-1RHN model which as we

argued above is equivalent, concerning the neutrino mass generation, to the 1HD-2RHN
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model. In the equivalent 1HD-2RHN model, the Yukawa couplings Y1 and Y2 are naturally

of the same size, since in the original 2HD-1RHN they correspond to Yukawa couplings

to the same generation of right-handed neutrinos. Furthermore, in the corresponding two

right-handed neutrino model, the masses M1 and M2 naturally present a mild hierarchy,

given by the factor 1/b ∼ O(1 − 10). As a result, the 2HD-1RHN is equivalent to a

1HD-2RHN model which naturally fulfills the conditions i) to reproduce the observed mild

neutrino mass hierarchy.

Another important difference between the 1HD-2RHN model and the 2HD-1RHN

model concerns the possibility of observing other phenomena at low energies apart from

neutrino masses. It is well known that, in its simplest version, the 1HD-2RHN model does

not have any other observable low energy prediction apart from the tininess of neutrino

masses. In this model the scale of lepton flavour and lepton number violation both coincide

with the scale of the right-handed Majorana neutrino masses, which are postulated to be

much larger than the electroweak symmetry breaking scale. As a consequence, the rates of

all flavour and lepton number violating processes are inversely proportional to the heavy

right-handed neutrino mass resulting in tiny rates.3 In contrast, in the 2HD-1RHN model,

apart from the lepton flavour associated to the right-handed neutrino couplings there exist

another source of lepton flavour violation associated to the charged lepton couplings to the

second Higgs doublet, inducing rates for the rare lepton decays suppressed by the heavy

Higgs masses. If the additional scalar degrees of freedom have masses not far from the elec-

troweak symmetry breaking scale, the induced rates of the lepton flavour violating processes

could be large enough to be observed in experiments. A more detailed discussion about

the prospects to observe the process µ → eγ in experiments will be presented in section 6.

5 Corrections to the mixing angles and discussion of sin θ13

Below the right-handed neutrino mass scale, the neutrino mixing angles receive radiative

corrections with two different origins. First, the change in the entries of the neutrino mass

matrix due to the RGE running, eq. (3.9), generates a correction to the leptonic mixing

matrix given by:

δUκ = U (0)T , (5.1)

where

Tii ≡ − i[U (0) T δMν U (0)]ii

2m
(0)
i

, (5.2)

Tij ≡
m

(0)
i [U (0) T δMν U (0)]ij + m

(0)
j [U (0) T δMν U (0)]∗ij

m
(0) 2
j − m

(0) 2
i

if i 6= j . (5.3)

3A notable exception is the 1HD-2RHN scenario where the right-handed neutrinos form a pseudo-Dirac

pair with masses O(100 − 1000) GeV. In this case, the Yukawa couplings can be sizable while correctly

reproducing the tininess of the neutrino masses. As a consequence, the rates for µ → eγ and neutrino-

less double beta decay can be largely enhanced, possibly allowing their observation in the next round of

experiments [51].
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However, this is not the physical leptonic mixing matrix measured by experiments,

since the RGE running also modifies the structure of the charged lepton Yukawa couplings.

More specifically, if the charged lepton Yukawa coupling Y 1
e is diagonal at Mmaj, the

radiative corrections induced by Y 2
e will generate at low energies off-diagonal entries in

Y 1
e . It is then necessary to redefine the charged lepton fields in order to render a diagonal

charged lepton Yukawa coupling, namely lL → V L
e lL, eR → V R

e eR, where V L
e , V R

e follow

from the singular value decomposition, Y 1
e = V L

e diag(y1
e1, y

1
e2, y

1
e3)V

R†
e . This redefinition

introduces an additional correction to the leptonic mixing matrix given by

δUYe
= (V L

e − 1)T U (0) . (5.4)

The matrix V L
e can be explicitly calculated from the β-functions of the charged lepton

Yukawa couplings. Using

Y 1
e Y 1†

e

∣

∣

∣

mH

= Y 1
e Y 1†

e − 1

16π2
(βY 1

e
Y 1†

e + Y 1
e β†

Y 1
e

) log
Mmaj

mH
, (5.5)

we obtain

(V L
e )ij = − 1

16π2

(βY 1
e
Y 1†

e + Y 1
e β†

Y 1
e

)ij

(y1
ej)

2 − (y1
ei)

2
log

Mmaj

mH
i 6= j . (5.6)

Therefore, summing up the two contributions, the leptonic mixing matrix at low en-

ergies reads, in the physical basis,

U (1) = V L T
e U (0) + U (0)T . (5.7)

We are particularly interested in the correction to the last column of the leptonic mixing

matrix, which in general yields a non-vanishing contribution to sin θ13 and a deviation from

the maximal atmospheric mixing which may be observed in experiments. Concretely, the

correction to the third column of the leptonic mixing matrix due to the running of κ reads

(δUκ)i3 = (U (0)T )i3 =
Y 1∗

νi

|Y 1
ν |

[

−Re(Y 1†
ν B1aY

a
ν )

|Y 1
ν |2

+
i

2

Im(b∗(Y 2†
ν Y 1

ν )2)

|Y 1
ν |4

]

+
(B∗

1aY
a∗
ν )i

|Y 1
ν |

+

(

Y 2∗
νi − Y 1∗

νi

(Y 2†
ν Y 1

ν )

|Y 1
ν |2

)

b∗
Y 2†

ν Y 1
ν

|Y 1
ν |3

, (5.8)

while the contribution from the rediagonalization of the charged lepton Yukawa coupling

reads:

(δUYe
)i3 = − 1

16π2

∑

j 6=i

(βY 1
e
Y 1†

e + Y 1
e β†

Y 1
e

)ji

(y1
ei)

2 − (y1
ej)

2

Y 1∗
ν j

|Y 1
ν |

log
Mmaj

mH
. (5.9)

A quantity of particular interest is the angle θ13, which is constrained by present

experiments to be small. It is interesting that radiative corrections can generate in this

model a fairly large value of θ13, possibly at the reach of the planned experiments, even

if its tree-level value vanishes. Summing up the contributions from eqs. (5.8) and (5.9),
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and neglecting terms cubic in the charged lepton Yukawa couplings, we obtain that the

radiatively induced value of U13 is

δU13 = − 1

16π2

Y 2∗
ν1

|Y 1
ν |

[

3Tr(Y 1†
u Y 2

u + Y 1
d Y 2†

d ) + 2λ∗
6 + 2λ∗

5

Y 2†
ν Y 1

ν

|Y 1
ν |2

]

log
Mmaj

mH

+
1

16π2

(Y 1†
ν (Y 1

e )−1Y 2†
e )1

|Y 1
ν |

[

3Tr(Y 2†
u Y 1

u + Y 2
d Y 1†

d )
]

log
Mmaj

mH
, (5.10)

which is, as the ratio m2/m3, suppressed by the loop factor but enhanced by the large loga-

rithm of the ratio of the Majorana mass over the heavy Higgs mass. As a result, the radia-

tively generated θ13 can be as large as ∼ 0.2 if any of the entries in the bracket is ∼ O(1).

So far we have considered only the corrections to the neutrino mixing angles from

the running below the right-handed neutrino mass scale. However, in a large class of

models the cut-off of the theory lies at higher energies and additional contributions to the

leptonic mixing may arise from radiative corrections between the cut-off scale Λ and the

right-handed neutrino mass scale Mmaj. The corrections for this case can be derived using

eqs. (5.8), (5.9) and the substitution rules given in appendix B, the result being:

δU13 = − Y 2∗
ν1

|Y 1
ν |

{

[

Tr(3Y 1†
u Y 2

u + 3Y 1
d Y 2†

d + Y 1†
ν Y 2

ν ) + 2Y 1†
ν (Y 1

e )−1Y 2†
e Y 1

ν

] log Λ
Mmaj

16π2

+

[

3Tr(Y 1†
u Y 2

u + Y 1
d Y 2†

d ) + 2λ∗
6 + 2λ∗

5

Y 2†
ν Y 1

ν

|Y 1
ν |2

]

log
Mmaj

mH

16π2

}

+
(Y 1†

ν (Y 1
e )−1Y 2†

e )1
|Y 1

ν |
{

Tr(Y 2†
ν Y 1

ν )
log Λ

Mmaj

16π2
+ 3Tr(Y 2†

u Y 1
u + Y 2

d Y 1†
d )

log Λ
mH

16π2

}

.

(5.11)

Quantum effects also induce corrections to the atmospheric mixing angle, leading to

deviations to the maximal mixing even if θ23 = π/4 at tree level. It is interesting that if

the neutrino Yukawa couplings are the dominant source of flavour violation in the leptonic

sector, then a correlation arises between the deviations of U23/U33 and U13 from their

corresponding values at the cut-off scale.

In this limit, the radiative corrections to the last column of the leptonic mixing matrix

are dominated by the first line of eq. (5.10), which can be schematically written as:

Ui3 = (1 + ǫ3)U
(0)
i3 + ǫ2U

(0)
i2 . (5.12)

It can be checked that to first order the ratio U23/U33 does not depend on ǫ3. Then, using

the equation for U13 to eliminate ǫ2 it follows that:

U23

U33
− U

(0)
23

U
(0)
33

≃ U
(0)
22 U

(0)
33 − U

(0)
32 U

(0)
23

U
(0)2
33

U13 − U
(0)
13

U
(0)
12

. (5.13)

Concretely, in the case when at the cut-off scale the atmospheric mixing angle is

exactly maximal and θ13 vanishes, at low energies the elements of the leptonic mixing

matrix approximately satisfy
U23

U33
− 1 ≃ 2

√
2U13 , (5.14)
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Figure 1. Scatter plots showing | sin θ13 cos δ| against θ23 − π

4
at low energies for random choices

of high energy parameters consistent with the measured neutrino oscillation parameters. We have

assumed tri-bi-maximal mixing at the cut-off scale, being the deviation from θ23 = π/4 and θ13 = 0

at low energies only due to the radiative corrections as described in the main text. The cut-off scale

is Λ = Mmaj = 1014 GeV in the left panel and Λ = 1018 GeV in the right panel.

which can be recast as

tan θ23 ≃ |1 + 2
√

2 sin θ13e
−iδ| or θ23 −

π

4
≃

√
2 sin θ13 cos δ . (5.15)

If there are additional sources of lepton flavour violation, then the low energy values

of θ23 and θ13 are expected to deviate from this relation. This is illustrated in the scatter

plots shown in figure 1, which have been obtained by the numerical one loop integration

of the RGEs of the 2HDM extended by one right-handed neutrino. We assume in the plot

mH = 3 TeV, Mmaj = 1014 GeV and tri-bi-maximal mixing at a cut-off scale, which we

take Λ = Mmaj (Λ = 1018 GeV) in the left (right) panel. Quantum effects generate a

non-vanishing value for θ13 and θ23 − π
4 , mostly due to the RGE effects of λ5 and λ6, as

follows from eqs. (5.10) and (5.11). In the plot we fix |λ5| = 0.5 and we take random values

with |λ6| < 0.45, in order to preserve the perturbativity of the quartic couplings in the

renormalization group running. To investigate the impact of the charged lepton mixing in

the correlation we have adopted the ansatz Y 2
e = V Y 1

e , where V is a general unitary matrix

with random angles and phases. Furthermore, since the effect of the charged lepton Yukawa

couplings on the corrections to the leptonic mixing matrix is proportional to Tr(Y 1
u Y 2†

u ), we

have taken in the scatter plot |(Y 2
u )33/(Y

1
u )33| ≤ 0.05 (red points), |(Y 2

u )33/(Y
1
u )33| ≤ 0.15

(green points) and |(Y 2
u )33/(Y

1
u )33| ≤ 0.3 (blue points); the effects of the down quark

Yukawa couplings have been neglected in this analysis, although their role is completely

analogous. All the points in the plot reproduce the neutrino oscillation parameters within

their experimental errors.

It is apparent from the plots that when the charged lepton Yukawa couplings have a

negligible effect on the running (corresponding to |(Y 2
u )33/(Y

1
u )33| ≪ 1), there is a fairly

strong correlation between the radiatively generated θ13 and θ23 − π
4 . When the cut-off

is Λ = Mmaj, the numerical results are in good agreement with eq. (5.15), shown as a

black solid line in the plot. In contrast, when Λ = 1018 GeV there is a larger spread of

the points, due to the additional RGE effects between Λ and Mmaj. Besides, in this case
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the numerical results do not agree with eq. (5.15), since the RGE running between Λ and

Mmaj generates a non-vanishing (and negative) shift of U23/U33 at the scale Mmaj, even if

U13 still vanishes. This produces, following eq. (5.13), the shift of the points to the left of

the black solid line.

To summarize, from our analytical and numerical analysis, it follows that in the 2HDM

extended with one right-handed neutrino it is generally expected a deviation of the atmo-

spheric angle from the maximal value which is comparable to the reactor angle
∣

∣

∣
θ23 −

π

4

∣

∣

∣
≈ θ13 . (5.16)

unless the CP violating phase δ is very close to π/2.

6 Lepton flavour violation

In the general 2HDM extended with RH neutrinos, one generically expects a misalignment

in the charged lepton Yukawa couplings which will lead to new phenomena at low energies,

apart from neutrino masses, in contrast to the standard see-saw scenario with just one Higgs

doublet. This misalignment will generically arise already at tree level. However, even if the

charged lepton Yukawa couplings are aligned at the cut-off scale Λ, radiative corrections

from the neutrino Yukawa couplings from the RGE running above the Majorana mass scale

will introduce off-diagonal entries in both charged lepton Yukawa matrices. Note that the

radiative generation of neutrino masses requires a misalignment in the neutrino Yukawa

couplings, hence some amount of flavour violation is necessarily generated via quantum

corrections in the charged lepton sector.

To calculate the minimum amount of lepton flavour violation in the charged lepton

sector, we assume that Y 1
e , Y 2

e are diagonal at the cut-off scale Λ > Mmaj. Then, due to

the radiative corrections from the neutrino Yukawa couplings Y 1
ν , Y 2

ν , both charged lepton

Yukawa couplings become non-diagonal at the scale Mmaj. As discussed in the previous

section, we now redefine the charged lepton fields in order to bring the Yukawa coupling Y 1
e

into its diagonal form. As a result, the off-diagonal elements of the charged lepton Yukawa

coupling read, at the Majorana mass scale:

(V L†
e Y 2

e )ij

∣

∣

∣

Mmaj

=
log Λ

Mmaj

8π2

(

− Y 1
ν Y 1†

ν Y 2
e − Y 2

ν Y 1†
ν Y 2

e (Y 1
e )−1Y 2

e

+ Y 1
ν Y 2†

ν Y 1
e + Y 2

ν Y 2†
ν Y 2

e

)

ij
i < j . (6.1)

Below the Majorana mass scale the charged lepton Yukawa couplings are also affected by

the quantum effects, however the off-diagonal elements at low energies are still given by

the previous expression, up to second order effects.

To estimate this contribution we assume Y 2
e = ξeY

1
e , with at the cut-off scale. With

this ansatz, eq. (6.1) reads:

(V L†
e Y 2

e )12

∣

∣

∣

Mmaj

=
log Λ

Mmaj

8π2
(Y 1

ν + ξeY
2
ν )1(−ξeY

1∗
ν + Y 2∗

ν )2Y
1
e22 . (6.2)
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Inserting this contribution into eq. (2.8) one obtains the approximate lower bound:

BR(µ → e γ) &
8α3

3π3

(

log Λ
Mmaj

8π2

)2

|Y 1
ν1 + ξeY

2
ν1|2|Y 2

ν2 − ξ∗eY
1
ν2|2

∣

∣

∣

∣

f

(

m2
t

m2
h

) |λ6|v2

m2
H

∣

∣

∣

∣

2

, (6.3)

which is saturated when the charged lepton Yukawa couplings are aligned and when the

Yukawa couplings of the heavy Higgs to the quarks are negligible.

To estimate the size of this lower bound, we will assume neutrino Yukawa couplings

maximally misaligned with the form Y 1
ν = y1√

2
(0, 1, 1)T , Y 2

ν = y2√
3
(1, 1,−1)T , being y1 and y2

the corresponding norms. With this choice, we obtain, in the limit |ξe| ≫ 1 and mH ≫ MZ

and taking Λ = 104Mmaj,

BR(µ → e γ) & 3 × 10−15 × |λ6y1y2ξ
2
e |2
( mH

3 TeV

)−4
. (6.4)

Given that this bound is very conservative, the observation of the process µ → eγ may be

at the reach of the MEG experiment, which aims to BR(µ → e γ) > 10−13 [52], provided

the couplings are sizable and provided the extra scalar degrees of freedom are not too

heavy.

7 Conclusions

We have considered in this paper an extension of the Standard Model by one extra Higgs

doublet and one or more Majorana right-handed neutrinos, including in the Lagrangian all

terms compatible with the Standard Model gauge symmetry. We have calculated, using

a renormalization group approach, the quantum corrections to the neutrino parameters

under the assumption that the right-handed Majorana mass scale is much larger than the

mass of the Higgs mass eigenstates. We have argued that if the neutrino Yukawa couplings

are misaligned, the radiatively generated contribution to the mass of the next-to-heaviest

neutrino can be much larger than the tree level mass. Furthermore, for reasonable choices

of the parameters of the model, the radiatively generated mass of the next-to-heaviest

neutrino is a factor of a few smaller than the mass of the heaviest neutrino. Since the mass

hierarchy depends only logarithmically on the masses of the extra degrees of freedom, this

conclusion is fairly insensitive to the scales at which the new physics appears.

Hence, in this simple model two puzzles in neutrino physics can be simultaneously ex-

plained. First, the smallness of the neutrino masses is explained by the see-saw mechanism.

Secondly, the mild hierarchy between the atmospheric and the solar neutrino mass scales

is explained by the radiative origin of the mass of the next-to-heaviest neutrino, which is

suppressed by the loop factor but enhanced by the large logarithm of the ratio between the

heavy Majorana mass scale and the heavy Higgs scale. Furthermore, by making the heavy

Higgs scale sufficiently large, all the successes of the Standard Model can be preserved,

since all low energy effects of the extended Higgs sector are suppressed at least by two

powers of the heavy Higgs mass.

The misalignment in the Yukawa couplings, necessary for the radiative generation of

the solar neutrino mass scale, amounts to new sources of lepton flavour violation which
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also modify the structure of the leptonic mixing matrix through the renormalization group

evolution. Therefore, we expect in this model deviations from the maximal atmospheric

mixing and from a vanishing θ13 due to quantum effects. We have carefully calculated

these corrections and we have found that the radiatively generated angle θ13 can be large

enough to be measured in present and future experiments.

In this paper we have concentrated on the scenario where neutrino masses are generated

by the decoupling of heavy right-handed neutrinos and extra Higgs doublets. However, it

is important to note that our conclusions were derived from the analysis of the quantum

corrections to the dimension five operator and do not depend on the concrete mechanism

which generates it. Therefore, the same conclusions will also apply to extensions of the

Standard Model with extra Higgs doublets and heavy fermionic singlets, scalar triplets or

fermionic triplets, when the tree level light neutrino mass eigenvalues are very hierarchical.
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A Quantum corrections below Mmaj

The one-loop β functions of the multi-Higgs doublet model, including the dimension five

operator which yields neutrino masses, have been derived in [53]. The β functions of the

charged lepton Yukawa couplings, Y a
e , and the dimension five operators κab read, for energy

scales below the right-handed neutrino Majorana mass scale,

βY a
e

=

(

−9

4
g2 − 15

4
g′2
)

Y a
e +

[

3Tr
(

Y a†
u Y c

u + Y a
d Y c†

d

)

+ Tr
(

Y a
e Y c†

e

)]

Y c
e

+ Y a
e Y c†

e Y c
e +

1

2
Y c

e Y c†
e Y a

e , (A.1)

βκab =
1

2

[

Y c
e Y c†

e κab + κab
(

Y c
e Y c†

e

)T
]

+ 2

[

Y c
e Y b†

e κac + κcb
(

Y c
e Y a†

e

)T
]

− 2

[

Y c
e Y a†

e (κcb + κbc) + (κac + κca)
(

Y c
e Y b†

e

)T
]

+
[

3Tr(Y a
u Y c†

u + Y a†
d Y c

d ) + Tr(Y a†
e Y c

e )
]

κcb

+ κac
[

3Tr(Y b
u Y c†

u + Y b†
d Y c

d ) + Tr(Y b†
e Y c

e )
]

− 3g2κab + 2λacbdκ
cd , (A.2)

where summation over repeated indices is understood and the quartic couplings λ are

defined by V ⊃ 1
2λabcd(Φ

†
aΦb)(Φ

†
cΦd).

In the case of only one right-handed neutrino and two Higgs doublets, κ11(mH) can

be approximately written at the leading log at any mass scale mH < Mmaj in the form of
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eq. (3.9) which we repeat here for completeness:

κ11(mH) ≈ κ11(Mmaj) −
1

16π2
βκ11(Mmaj) log

Mmaj

mH
(A.3)

≡ κ11(Mmaj) + B1aκ
a1 + κ1aBT

1a + bκ22 , (A.4)

where we have defined flavour matrices B11, B12 and the complex number b by

16π2

log
Mmaj

mH

B11 = −1

2
Y 2

e Y 2†
e +

3

2
Y 1

e Y 1†
e − 3Tr(Y 1

u Y 1†
u + Y 1†

d Y 1
d ) − Tr(Y 1†

e Y 1
e ) +

3

2
g2 − λ1 ,

(A.5)

16π2

log
Mmaj

mH

B12 = 2Y 2
e Y 1†

e − 3Tr(Y 1
u Y 2†

u + Y 1†
d Y 2

d ) − Tr(Y 1†
e Y 2

e ) − 2λ6 , (A.6)

16π2

log
Mmaj

mH

b = −2λ5 . (A.7)

B Quantum corrections above Mmaj

In the case that the cut-off scale of the theory, Λ, is larger than Mmaj, the relevant matricial

couplings of the leptonic Lagrangian are the charged lepton Yukawa couplings, Y a
e , the

neutrino Yukawa couplings, Y a
ν , and the right-handed Majorana mass matrix MM. The

corresponding β-functions are:

βΛ
Y a

e
= βY a

e
+ Tr(Y a†

ν Y c
ν )Y c

e − 2Y c
ν Y a†

ν Y c
e +

1

2
Y c

ν Y c†
ν Y a

e , (B.1)

βΛ
Y a

ν
=

[

−9

4
g2 − 3

4
g′2
]

Y a
ν +

[

3Tr(Y a
u Y c†

u +Y a†
d Y c

d ) + Tr(Y a
ν Y c†

ν + Y a†
e Y c

e )
]

Y c
ν

− 2Y c
e Y a†

e Y c
ν + Y a

ν Y c†
ν Y c

ν +
1

2
Y c

e Y c†
e Y a

ν +
1

2
Y c

ν Y c†
ν Y a

ν , (B.2)

γΛ
MM

= −M−1
M

[

(

Y c†
ν Y c

ν

)T
MM + MMY c†

ν Y c
ν

]

. (B.3)

The running above Mmaj modifies some of the expressions that we have derived in this

paper. The effects of the running can be easily incorporated in our results by substituting

B1a → B1a + BΛ
1a , κab → Y a

ν Y b T
ν

Mmaj
. (B.4)

More concretely, the values for BΛ
1a read:

16π2

log Λ
Mmaj

BΛ
11 =

9

4
g2 +

3

4
g′2 − 3Tr(Y 1

u Y 1†
u + Y 1†

d Y 1
d ) − Tr(Y 1

ν Y 1†
ν + Y 1†

e Y 1
e )

− 1

2
Y 2

e Y 2†
e +

3

2
Y 1

e Y 1†
e − 1

2
Y 1

ν Y 1†
ν − 1

2
Y 2

ν Y 2†
ν , (B.5)

16π2

log Λ
Mmaj

BΛ
12 = 2Y 2

e Y 1†
e − 3Tr(Y 1

u Y 2†
u + Y 1†

d Y 2
d ) − Tr(Y 1†

e Y 2
e + Y 1

ν Y 2†
ν ) . (B.6)

– 19 –



J
H
E
P
1
1
(
2
0
1
1
)
0
2
2

Note that the running above Mmaj does not modify the value of b nor m2, cf. eq. (3.18).

Besides, the running above Mmaj also affects the structure of V L
e at low energies. This

can be taken into account with the following substitution in the relevant formulas:

βY 1
e

log
Mmaj

mH
→ βY 1

e
log

Mmaj

mH
+ βΛ

Y 1
e

log
Λ

Mmaj
. (B.7)
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