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1 Introduction

The AdS4×CP 3 background of type IIA superstring theory is not maximally supersymmet-

ric. It preserves 24 supersymmetries (out of the maximum number of 32) which together

with the bosonic isometries of AdS4 × CP 3 form the supergroup OSp(6|4). It turns out

that the type IIA superspace associated with the AdS4 × CP 3 background which has 32
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Grassmann-odd directions is not a coset superspace of OSp(6|4) [1]. So the complete Green-

Schwarz superstring theory on this superspace is not a coset-superspace sigma-model, in

contrast e.g. to the maximally supersymmetric type IIB superstring on AdS5×S5 described

by the PSU(2, 2|4)/(SO(1, 4) × SO(5)) sigma-model [2]. The worldsheet AdS4 × CP 3 su-

perstring action can be reduced to an OSp(6|4)/U(3) × SO(1, 3) sigma-model constructed

in [3–7] in those sub-sectors of the classical configuration space of the theory in which the

kappa-symmetry can be used to eliminate eight fermionic modes of the string associated

with the broken supersymmetries. However, this is not always possible. For instance such

a gauge choice is inadmissible when the classical string moves entirely in AdS4 [1, 3] or

forms a worldsheet instanton wrapping a 2-cycle inside CP 3 [8]. In these cases the ‘broken

supersymmetry’ fermions are physical modes, so one should start the analysis of the theory

in these sectors from the complete AdS4×CP 3 superstring action [1] and, if required, make

an alternative choice of the kappa-symmetry gauge (see e.g. [9–12]).

The classical integrability of the OSp(6|4)/U(3) × SO(1, 3) σ-model sub-sector of the

theory was demonstrated in [3, 4] by constructing a zero-curvature Lax connection using the

same techniques as for the AdS5 ×S5 superstring [13]. Such a construction is based on the

Z4-automorphism of the isometry superalgebra and can be applied to any G/H supercoset

two-dimensional sigma-model that admits a Z4-grading. Basically, the prescription is as

follows. Take a left-invariant Cartan form K−1dK (with K ∈ G/H being a supercoset

element) which are used to build the supercoset sigma-model action [2–4, 13]. The Cartan

form takes values in the isometry superalgebra G of G and thus can be expanded in the

bosonic generators M0 and P2, and the fermionic generators Q1 and Q3 of G

K−1dK = Ω0 M0 + E2 P2 + E1 Q1 + E3 Q3 . (1.1)

The building blocks of the G/H supercoset sigma-model action are the G/H supervielbeins

E2, E1 and E3, while Ω0 is the H-valued spin connection on G/H.

The bosonic generators M0 of the stability subgroup H have zero grading under the

Z4-automorphism and the bosonic coset-space translation generators P2 carry grading two.

The fermionic generators Q1 and Q3 have the Z4-grading one and three, respectively.

In terms of these generators the superalgebra G has the following schematic Z4-grading

structure

[M0,M0] ∼ M0, [M0, P2] ∼ P2, [P2, P2] ∼ M0,

[M0, Q1] ∼ Q1, [M0, Q3] ∼ Q3, [P2, Q1] ∼ Q3, [P2, Q3] ∼ Q1, (1.2)

{Q1, Q1} ∼ P2, {Q3, Q3} ∼ P2, {Q1, Q3} ∼ M0.

In the case of the AdS4 × CP 3 superstring M0 ∈ so(1, 3) × u(3), P2 ∈ so(2,3)×su(4)
so(1,3)×u(3) and Q1

and Q3 are the 24 fermionic generators of OSp(6|4), see appendix A.4.

The worldsheet Lax connection one-form which takes values in G is constructed by

taking the sum of the components of the Cartan form (1.1) and their worldsheet Hodge-

duals with some arbitrary coefficients, namely

L = Ω0 M0 + (l1E2 + l2 ∗ E2)P2 + l3 E1 Q1 + l4 E3Q3. (1.3)
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Then one imposes the requirement that the curvature associated with the connection L

vanishes

dL − L ∧ L = 0 (1.4)

(the exterior derivative acts from the right, and in what follows we shall not explicitly write

the wedge-product). The sigma-model equations of motion and the Z4-grading structure

of the superalgebra (1.2) ensure that the coefficients in the definition of the zero-curvature

Lax connection (1.3) are expressed in terms of a single independent spectral parameter,

e.g. l1 = 1+z2

1−z2 .

By performing a gauge transformation of (1.3) one can get another form of the Lax

connection [13] associated with right-invariant Cartan forms dKK−1

L = KLK−1 − dKK−1 , dL − LL = 0 . (1.5)

Having at hand the Lax connection, one can then derive an infinite set of conserved charges

of the integrable model from the holonomy of the Lax connection by constructing a corre-

sponding monodromy matrix and the algebraic curve (see e.g. [13, 14] for more details and

references therein).

In the case of the complete Green-Schwarz theory (i.e. when the kappa-symmetry is not

fixed at all) the superstring moves in AdS4 ×CP 3 superspace with thirty two Grassmann-

odd directions and the eight worldsheet fermionic fields associated to the broken supersym-

metry contribute to the structure of the supervielbeins E2, E1 and E3 and to the connection

Ω0 thus spoiling their nature as the G/H Cartan forms. As a result, as one can check by

direct calculations, the OSp(6|4) Lax connection of the form (1.3) or (1.5) constructed

from Ω0, E2, E1 and E3 which include the dependence on these eight fermions will not

have zero curvature for any non-trivial choice of the coefficients. Therefore, a modification

of the form of (1.3) or (1.5) by additional terms depending on the extra eight fermions is

required for restoring the zero curvature condition (1.4). The goal of this paper is to reveal

the structure of these terms.

To construct the Lax connection which includes broken supersymmetry fermions we

have found helpful to look at the form of conserved Noether currents associated with the

OSp(6|4) isometry. In this respect it is more convenient to consider the Lax connection

in the form (1.5) which, in a certain sense, has closer relation to a G/H sigma-model

conserved current having the form [3, 13]

Jcoset = K

(

E2 P2 +
1

2
∗ (E1Q1 − E3Q3)

)

K−1 . (1.6)

The paper is organized as follows. In section 2 we consider the AdS4 × CP 3 superstring

action truncated to the second order in fermions and show that there exist different forms

of the Lax connection, related to each other by local OSp(6|4) transformations, which

have zero curvature at least to the second order. When the eight broken supersymme-

try fermions are put to zero the Lax connection reduces (modulo a gauge transformation)

to the supercoset Lax connection of [3, 4]. The reconstruction of higher order fermionic

terms in the Lax connection becomes technically more and more complicated with each
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order and we have not been able to accomplish the construction in the complete theory

with 32 fermions. So in section 3 we consider a simpler sub-sector of the theory in which

the superstring moves only in an AdS4 superspace with eight fermionic directions associ-

ated with broken supersymmetries. This sub-sector of the theory is not reachable by the

OSp(6|4) supercoset sigma-model and can be regarded as a model of an N = 2, D = 4

superstring in the AdS4 background with completely broken supersymmetries [1]. Nev-

ertheless, this model is invariant under the four-parameter kappa-symmetry, in addition

to the purely bosonic isometry SO(2, 3) of AdS4 and SO(2) transformations of the two

Majorana fermions. So, surprisingly, the integrability of its fermionic sector is not related

to target space supersymmetry. To simplify the construction of the full Lax connection in

this model, in section 4 we gauge fix kappa-symmetry and perform worldsheet T-duality

transformations along the AdS4 Minkowski boundary following the results of [9]. In sub-

section 4.2 we give the explicit form of the kappa-symmetry gauge-fixed Lax connection of

the AdS4 superstring to all orders in fermions thus giving more evidence for the classical

integrability of the complete AdS4 ×CP 3 superstring itself. Section 5 is devoted to a sum-

mary of the obtained results and discussion of the possibility of their generalization and

application to strings in other supergravity backgrounds. Our notation and conventions

are given in appendices A and B, and in appendices C and D we have collected various

formulas and relations which have been used to construct the Lax connections.

2 AdS4 × CP 3 superstring in the quadratic approximation in fermions

2.1 The action and equations of motion

We first check that a zero-curvature Lax connection does exist in the complete AdS4×CP 3

superstring theory at least up to the second order in the fermionic fields. To this end we

start with the AdS4 × CP 3 superstring action truncated to the second order in fermions

as in [15]. In the notation and conventions of [8] the action has the following form

S = − e
2
3
φ0

4πα′

∫

d2ξ
√
−h hIJ eI

AeJ
BηAB (2.1)

− e
2
3
φ0

2πα′

∫

d2ξ Θ(
√
−h hIJ − εIJΓ11)

[

i eI
AΓA∇JΘ − 1

R
eI

AeJ
BΓAP24γ

5ΓBΘ

]

where hIJ(ξ) (I, J = 0, 1) is the intrinsic (auxiliary) worldsheet metric, eI
A =

∂IX
MeM

A(X) are the worldsheet pullbacks of the AdS4 ×CP 3 vielbeins (M = 0, 1, · · · , 9

are the D = 10 space-time indices and A = 0, 1, · · · , 9 are the tangent space in-

dices). XM = (xm̂, ym′

) are AdS4 × CP 3 coordinates (m̂ = 0, 1, 2, 3; m′ = 1′, · · · 6′),
∇Θ = (d − 1

4 ωAB ΓAB)Θ is the worldsheet pullback of the conventional AdS4 × CP 3 co-

variant derivative and P24 is the projector which splits the 32 fermionic coordinates Θα

(α = 1, · · · , 32) into 24 fermionic coordinates ϑ corresponding to the 24 unbroken super-

symmetries of the AdS4 × CP 3 background and 8 ‘broken supersymmetry’ coordinates υ

P24 =
1

8
(6 + iJa′b′ Γ

a′b′ γ7) , ϑ ≡ P24 Θ , υ ≡ (1 − P24)Θ. (2.2)
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In (2.2) Ja′b′ = −Jb′a′ is the Kähler form on CP 3, Γa′

are D = 10 Dirac matrices along the

six CP 3 directions (a′ = 1′, · · · , 6′) and γ7 = iΓ1′ · · ·Γ6′ is the product of all of them. The

presence in the action (2.1) of the projector P24 is due to the interaction of the string with

the constant Ramond-Ramond F4 ∼ dx0dx1dx2dx3 and F2 ∼ dya′

dyb′Ja′b′ fluxes of type

IIA supergravity on AdS4 × CP 3. γ5 = iΓ0123 is the product of the four gamma-matrices

with AdS4 indices. Finally, φ0 is the vacuum expectation value of the dilaton and R is

related to the CP 3 radius in the string frame RCP3 = e
φ0
3 R. See appendix A for more

details of our notation and conventions.

The bosonic field equations which follow from (2.1) are

∇I

[√
−hhIJeJ

A + iΘ(
√
−hhIJ − εIJΓ11)

(

ΓA∇JΘ +
2i

R
eJ

BΓAP24γ
5ΓBΘ

)

]

− i

4
Θ (

√
−hhIJ − εIJΓ11)ΓD

BCΘ RBCE
A eI

DeJ
E = 0 (2.3)

where RBCE
A is the curvature of AdS4 × CP 3 (see appendix A).

The Virasoro constraints are

eI
AeJ

BηAB − 2iΘ
(

e(I
AΓA∇J)Θ +

i

R
e(I

AeJ)
BΓAP24γ

5ΓBΘ
)

=
1

2
hIJ hKL

[

eK
A eL

BηAB − 2iΘ
(

eK
AΓA∇LΘ +

i

R
eK

AeL
BΓAP24γ

5ΓBΘ
)

]

, (2.4)

where the round brackets embracing the indices denote symmetrization X(IYJ) = 1
2 (XIYJ+

XJYI).

The fermionic equations are

(
√
−hhIJ−εIJΓ11)

(

eI
AΓA∇JΘ+

i

R
eI

AeJ
BΓAP24γ

5ΓBΘ

)

− 1

2
∇I(

√
−hhIJeJ

A)ΓAΘ = 0 .

(2.5)

In virtue of the bosonic equations (2.3), the last term in (2.5) is of the third order in

fermions and can be skipped in the linear approximation.

2.1.1 Comment on the relation to the supercoset sigma-model

When the fermionic fields υ are zero the superstring equations of motion reduce to the

bosonic equation

∇I

[√
−hhIJeJ

A + iϑ(
√
−hhIJ − εIJΓ11)

(

ΓA∇Jϑ +
2i

R
eJ

BΓAP24γ
5ΓBϑ

)

]

− i

4
ϑ (

√
−h hIJ − εIJΓ11)ΓD

BCϑ RBCE
A eI

DeJ
E = 0 (2.6)

and the fermionic equations

(
√
−hhIJ − εIJΓ11) eI

AP24ΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ
)

= 0 , (2.7)

(
√
−hhIJ − εIJΓ11) eI

A(1 − P24)ΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ
)

= 0. (2.8)
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eqs. (2.6) and (2.7) are the equations of motion of the OSp(6|4) supercoset sigma-model

in the quadratic approximation in fermions. However, the complete Green-Schwarz super-

string action gives one more fermionic equation of motion which (when υ = 0) produces an

additional equation for the 24 fermions ϑ (2.8). This eight-component equation does not

directly follow from the supercoset action, but it should not be independent of (2.7) and

just manifests the fact that, when the partial kappa-symmetry gauge υ = 0 is admissible,

the residual kappa-symmetry of the supercoset model has eight independent components,

such that the number of physical fermionic modes of ϑ is sixteen.

To show that the fermionic equations (2.7) and (2.8) are linearly dependent let us

rewrite them in an equivalent form as follows

P24(1 − Γ)hIJeI
AΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ

)

= 0 , (2.9)

(1 − P24)(1 − Γ)hIJ eI
AΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ

)

= 0 , (2.10)

where Γ = 1
2
√
−h

εIJeA
I eB

J ΓABΓ11, (Γ)2 = 1 and 1
2(1− Γ) is the canonical kappa-symmetry

projector of the type IIA superstring. The two equations can, therefore, be combined into

(1 − Γ)hIJeI
AΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ

)

= 0 . (2.11)

We shall now show that eq. (2.11) actually follows from eq. (2.9). To this end let us note

that in the sector of classical string solutions in which the kappa-symmetry gauge υ = 0 is

admissible, the projectors P24 and 1
2(1±Γ) do not commute [1], their commutator [Γ,P24]

being a non degenerate matrix. Therefore, multiplying eq. (2.9) by (1 + Γ) we have

[Γ,P24] (1 − Γ)hIJeI
AΓAP24

(

∇Jϑ +
i

R
eJ

Bγ5ΓBϑ

)

= 0 . (2.12)

Since [Γ,P24] is invertible we can multiply the above equation by the inverse of [Γ,P24]

and get eq. (2.11) from which the equation (2.10) follows.

On the other hand, in the sub-sector in which the classical string moves in AdS4

only (i.e. the CP 3 embedding coordinates ym′

are constants), this kappa-gauge is not

admissible ([Γ,P24] = 0) and putting υ to zero results in loosing four physical fermionic

modes associated with υ [1, 3]. This can be seen from the structure of the fermionic

equations (2.7) and (2.8) (or (2.9) and (2.10)). Since ym′

are constants and if υ is set to

zero, eq. (2.8) (or (2.10)) vanishes identically and one is left with eq. (2.7) (or (2.9)) which,

since the projector P24 commutes with the Γâ along the AdS4 directions, reduces to the

fermionic equation in AdS4

(1 − Γ)hIJ eI
â(x)Γâ

(

∇Jϑ +
i

R
eJ

b̂γ5Γb̂ϑ

)

= 0 . (2.13)

where now Γ = 1
2
√
−h

εIJeI
âeJ

b̂ Γâb̂Γ11, (Γ)2 = 1. The projector 1
2(1 − Γ) (which now

commutes with P24) implies that among 24 equations (2.13) only 12 are independent.

Hence ϑ contain only 12 physical modes while the total number must be sixteen. The

missing four physical fermions are half of υ which were put to zero ‘by hand’, while another

half of υ can be gauged away by kappa-symmetry.

– 6 –
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2.2 Noether currents

Under the OSp(6|4) isometries the Type IIA superspace coordinates XM and Θ transform

as follows (up to the second order in fermions)

δXM eM
A(X) = KA(X) + iΘΓA Ξ(X),

δϑ = P24δΘ = Ξ(X) +
1

4
(KM ωM

AB(X) −∇A KB)P24ΓABP24Θ , (2.14)

δυ = (1 −P24) δΘ =
1

4
(KM ωM

AB(X) −∇A KB) (1 − P24) ΓAB (1 − P24)Θ,

where KA(X) = KM (X) eM
A(X) are the AdS4 × CP 3 Killing vectors. More precisely,

KA(X) are the Killing vectors KA
I (X) contracted with constant SO(2, 3)×SU(4) transfor-

mation parameters ΛI , i.e. KA(X) = KA
I (X)ΛI , where I is associated with the 25 gener-

ators of the SO(2, 3)×SU(4) isometries. Note that, like the spin connection ωAB, ∇AKB =

−∇BKA takes values in the stability subalgebra so(1, 3)×u(3) of the AdS4×CP 3 isometry.

Properties of the Killing vectors of symmetric spaces G/H are given in appendix D.

Ξ are 24 supersymmetry parameters of OSp(6|4) satisfying the AdS4 × CP 3 Killing

spinor equation

∇Ξ +
i

R
eA P24γ

5ΓAΞ = 0 , Ξα(X) = ǫµ Ξµ
α(X), Ξ ≡ P24 Ξ(X) , (2.15)

Ξµ
α(X) are AdS4 ×CP 3 Killing spinors and ǫµ = (P24ǫ)

µ are 24 constant Grassmann-odd

parameters.

Note that the terms in the variation of the fermions which are proportional to ΓAB are

the compensating SO(1, 3)×U(3) stability group transformations induced by the isometries

in the (co)tangent space of AdS4 ×CP 3. Note also that in the linear order in fermions the

eight spinor fields υ are not transformed by supersymmetry. The action of the isometry

group OSp(6|4) on these fermions is such that it takes the form of induced SO(1, 3)×U(1)

rotations with parameters depending on X, ϑ and the OSp(6|4) parameters

δυ =
1

4
ΛAB(ǫ,X, ϑ) ΓAB υ . (2.16)

Therefore, the first nontrivial term in the supersymmetry variation of υ is quadratic in

fermionic fields.

To avoid possible confusion, let us note that in the expressions for the conserved cur-

rents and in the Lax connections considered below, KA(X) and Ξ(X) stand for the Killing

vectors and spinors contracted with the corresponding bosonic and fermionic generators

of the OSp(6|4) isometry (see appendix A.4) and not with constant parameters like in

eqs. (2.14) and (2.15).

The following relations between the Killing vectors and spinors contracted with the

OSp(6|4) generators reflect the structure of the OSp(6|4) superalgebra (A.8)–(A.10)

KA(X)
.
= k(X)PAk−1(X) , γ5Ξ(X)

.
= k(X)Qk−1(X) , (2.17)

∇AKB
.
= −1

2
RAB

CD k(X)MCDk−1(X) ,

– 7 –
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where k(X) is an SO(2,3)×SU(4)
SO(1,3)×U(3) coset element of the bosonic isometry, and

[KA,Ξ] = − i

R
ΞΓAγ5P24 ,

[∇AKB ,Ξ] = −1

4
RAB

CDΞΓCDP24 , (2.18)

{Ξ,Ξ} = 2iP24γ
5ΓAγ5P24 KA − R

2
P24Γ

ABγ5P24 ∇AKB .

The conserved Noether current associated with the SO(2, 3) × SU(4) invariance of the

action (2.1) is

JI
B =

√
−h hIJ eJ

A KA + iΘ(
√
−hhIJ − εIJΓ11)

[

ΓA∇JΘ +
2i

R
eJ

BΓAP24γ
5ΓBΘ

]

KA

− i

4
Θ(

√
−hhIJ + εIJΓ11) eJ

A ΓA
BCΘ∇B KC (2.19)

and the conserved (fermionic) supersymmetry current (up to the leading order in fermions)

is

JI
F =

i

2R

(√
−hhIJ eJ

A ΘΓAΞ + Θ(
√
−hhIJ + 2εIJΓ11) eJ

A ΓAΞ(X)
)

=
i

R
Θ(

√
−hhIJ + εIJΓ11) eJ

A ΓAΞ(X) , (2.20)

where the factor of 2 in the last term of the first line appears because the action is invariant

under supersymmetry only up to a boundary term which must therefore be subtracted from

the current to make it conserved. The currents are normalized to be dimensionless (the

dimensions of Ξ and KA are 1/
√

R and 1/R respectively). The sum of JB and JF is the

conserved current taking values in the OSp(6|4) superalgebra

J = JB + JF . (2.21)

Let us now compare this current with the conserved current of the OSp(6|4) supercoset

sigma-model which describes the string with υ = (1 − P24)Θ = 0. As we have mentioned

in the Introduction, the supercoset model conserved current has the following form (in our

conventions)

Jcoset(X,ϑ) = K(X,ϑ)ΛK−1(X,ϑ)
.
= K(X,ϑ)

(

EAPA +
1

2
QΓ11 ∗ E

)

K−1(X,ϑ) , (2.22)

where EA(X,ϑ) and Eα(X,ϑ) are components of the OSp(6|4)-valued Cartan form

K−1dK(X,ϑ) = EAPA + EαQα +
1

2
ΩABMAB , (2.23)

ΩAB(X,ϑ) is the spin connection on OSp(6|4)
SO(1,3)×U(3) and K(X,ϑ) is a coset representative.

Up to the second order in fermions the supervielbeins and spin connection of the OSp(6|4)
supercoset are given by

EA = eA(X) + iϑΓA E , (2.24)

Eα = ∇ϑα +
i

R
eB (P24γ

5ΓB ϑ)α ,

ΩAB = ωAB(X) − 2

R
ϑΓ[AP24γ5Γ

B]E .
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The current (2.22) is conserved (d ∗ Jcoset = 0) as a consequence of the sigma-model

equations of motion

d ∗ Λ − [K−1dK, ∗Λ] = 0. (2.25)

Using a supercoset element of the form K = k(X) eϑQ, the OSp(6|4) superalgebra (ap-

pendix A.4) and eqs. (2.17) we then have

Jcoset = EAKA + eAkϑ[Q,PA]k−1 +
1

2
eAk[ϑQ, [ϑQ,PA]]k−1 +

1

2
kQk−1Γ11 ∗ E

+
1

2
kϑ{Q,Q}Γ11 ∗ Ek−1

= J |υ=0 −
R

8
∗ d(ϑΓABγ7ϑ∇AKB) − 1

2
∗ d(Ξγ7ϑ) , (2.26)

where J = JB +JF (2.21) is the Noether current directly derived from the quadratic Green-

Schwarz action. The two conserved currents therefore differ only by total derivative terms,

as should be the case. A useful relation in checking eq. (2.26) is

P24Γ[AP24γ
5ΓB]P24 = −R2

8
RAB

CDP24ΓCDγ5P24 . (2.27)

2.3 Lax connections to the second order in fermions

2.3.1 The supercoset sigma-model Lax connection

The Lax connection (1.5) of the OSp(6|4) supercoset sigma-model can be written in the

following form in terms of the conserved current (2.22) and components of the Cartan

form (2.23)

Lcoset = K
(

α1E
APA + α2 ∗ EAPA + β1QΓ11E + (1 + β2)QE

)

K−1

= K

(

α1 EA PA + (1 + β2)QE +
(

β1 −
α2

2

)

QΓ11E

)

K−1 + α2 ∗ Jcoset , (2.28)

where

α1 =
2z2

1 − z2
,

α2
2 = α2

1 + 2α1 ,

β1 = ∓
√

α1

2
,

β2 = ± α2√
2α1

. (2.29)

The specific dependence of the coefficients on the spectral parameter z ensures the zero

curvature of the Lax connection1 [3, 4, 13]. Note that the Z4-automorphism splitting of the

fermionic OSp(6|4) generators Q and the corresponding fermionic components of the Cartan

form is simply made by the D = 10 chirality projectors 1
2(1 ∓ Γ11) (see appendix A.4).

1The numerical coefficients in eq. (2.28) are related to those in eq. (1.3) and those of [3] (eq. (4.1) therein)

as follows α1 = l1 − 1, α2 = l2, β1 = l3−l4
2

and β2 = −
l3+l4

2
.
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2.3.2 Lax connection of the complete AdS4 × CP 3 superstring

When the extra eight fermionic degrees of freedom υ are switched on, they contribute to

the supervielbeins, superconnection, conserved current and equations of motion and, as a

consequence, the form of the Lax connection should be modified to account for this. In

contrast to the case of the OSp(6|4) supercoset Z4-grading, it is not obvious which is the

group-theoretical structure that would allow one to guess the dependence of L on υ. So,

to find this dependence we shall use a brute-force method, i.e. we will try to build the Lax

connection out of components of the conserved currents JB (2.19) and JF (2.20), which

depend on the extra fermions υ, by introducing them with arbitrary coefficients in the

Lax connection. The dependence of these coefficients on the spectral parameter is then

determined by the zero-curvature condition. This procedure is akin to the construction of

Lax connections for two-dimensional supersymmetric non-linear sigma-models considered

in [16]. The Lax connection constructed in this way has the following form

L = LB + LF (2.30)

where the bosonic isometry part is

LB = α1e
AKA + α2 ∗ JB + α2

2J
AB∇AKB + α1α2 ∗ JAB∇AKB , (2.31)

and the supersymmetry part is

LF = −α2β1JF + α2β2 ∗ JF . (2.32)

JAB stands for the term in the bosonic isometry current (2.19) which is contracted with

∇AKB , namely JB = JAKA +JAB∇AKB , and α1, α2, β1 and β2 are the same as in (2.29).

It is not very difficult to verify that this Lax connection indeed has zero curvature. To

check the zero-curvature condition one should use the conservation of the Noether current,

the equations of motion as well as the relations

∇JAB = −e[A(JB] − eB]) − 1

2R
eCeD ΘΓCP24Γ

ABγ5P24ΓDΘ

+
1

2R
eC ∗ eD ΘΓCP24Γ

ABγ5P24ΓDΓ11Θ ,

dJF =
i

R
d(eA ΘΓAΞ − ∗eA ΘΓAΓ11Ξ) (2.33)

=
2

R2
eAeB ΘΓAP24γ

5ΓBΞ − 2

R2
eA ∗ eB ΘΓAP24γ

5ΓBΓ11Ξ

and the symmetry properties of the Γ-matrices.

Note that the construction of this Lax connection does not make use (at least directly)

of the Z4-grading of the OSp(6|4) superalgebra but only the Z2-grading of its bosonic

subalgebra. Its form is different from the υ-fermion extension of the supercoset Lax con-

nection (2.28) (e.g. the former does not have terms linear in dΘ, while such terms are

present in the latter). We will now show that the two Lax connections are related by an

OSp(6|4) gauge transformation.
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2.3.3 Relation to the supercoset Lax connection

When υ = 0 the Lax connection (2.30) constructed above should be related to the super-

coset Lax connection in eq. (2.28) by a gauge transformation, so that

Lcoset = g−1L|υ=0 g + g−1dg . (2.34)

for some g ∈ OSp(6|4). It is possible to show that this is indeed the case and with a bit of

algebra one finds that the supergroup element

g(X,ϑ;α2, β1, β2) = k(X) e
α2R
16

ϑΓABγ7ϑRAB
CDMCD e−β1ϑΓ11Q e−(1+β2)ϑQ k−1(X)

= e−
α2R

8
ϑΓABγ7ϑ∇AKB eβ1ϑγ7Ξ e−(1+β2)ϑγ5Ξ (2.35)

does the job. If we apply this gauge transformation to the Lax connection L (2.30) without

setting υ to zero we obtain the supercoset Lax connection extended with the terms up to

quadratic order in υ

L = g−1Lg + g−1dg . (2.36)

The Lax connections constructed above have zero curvatures only up to the quadratic

order in fermions. To get zero curvature also at quartic and higher orders in fermions one

should add to the Lax connection (2.30) or (2.36) corresponding higher-order fermionic υ-

terms with appropriate coefficients at each order. We have not been able to find a generic

prescription for the construction of such terms from the components of the conserved

currents of the complete AdS4×CP 3 superstring, and the brute force computation becomes

technically more and more involved with each new order in fermions. So to simplify the

analysis we shall turn to the consideration of a simpler AdS4 sub-sector of the theory in

which the problem of the construction of the Lax connection can be completely solved at

least in a particular kappa-symmetry gauge.

3 String in N = 2 AdS4 superspace

As has been shown in [1] the structure of the AdS4×CP 3 superstring action and equations

of motion allows one to consistently truncate this theory to a model describing a string

propagating in a four-dimensional superbackground with eight fermionic directions param-

eterized by υ = (1 −P24)Θ. The bosonic subspace of this superbackground is AdS4 but it

does not preserve any supersymmetry.2 This model is obtained by putting to zero the 24

supersymmetric fermionic fields ϑ = P24 Θ = 0 and restricting the string to move entirely

in AdS4 (i.e. the CP 3 embedding coordinates are worldsheet constants). It is, therefore,

not described by the supercoset sigma-model of [3–7]. Lacking supersymmetry this model

is also not the OSp(2|4)
SO(1,3)×SO(2) supercoset sigma-model [1]. Nevertheless, it possesses the four-

parameter kappa-symmetry in addition to the purely bosonic isometry SO(2, 3) of AdS4

and the SO(2) symmetry rotating the two D = 4 Majorana fermions. So it is somewhat

2A somewhat analogous non-supersymmetric AdS4 vacuum was found in a matter-coupled N = 2, D = 4

supergravity in [17].
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surprising that this model turns out to be integrable, and the integrability of its fermionic

sector is not at all related to target space supersymmetry which is lacking.

Let us consider this model in more detail. It is convenient to represent the eight-

component spinors υ = (1 − P24)Θ as four-component Majorana spinors in AdS4, υαi

(α = 1, 2, 3, 4), carrying the internal SO(2) index i = 1, 2. This SO(2) is a relic of the U(1)

gauge symmetry associated with the RR one-form field of D = 10 type IIA supergravity.

The Green-Schwarz action for the superstring moving in this AdS4 superspace has the

following form [1]

S = − 1

4πα′

∫

d2ξ
√
−h hIJ EI

âEJ
b̂ηâb̂ −

1

2πα′

∫

B2 , (3.1)

where the vector supervielbeins E â = dxm̂ Em̂
â + dυαiEαi

â along the AdS4 directions of the

target superspace are

E â(x, υ) = e
1
3
φ(υ)

(

eb̂(x) + 4iυγ b̂ sinh2 M/2

M2
Dυ

)

Λb̂
â(υ)

+ e−
1
3
φ(υ) 4R

klp
υ εγ5 sinh2 M/2

M2
Dυ V â(υ) ,

(3.2)

and the NS-NS superform B2 is expressed through components of its field strength H3 =

dB2 as follows

B2 =

∫ 1

0
dt iυH3(x, tυ) . (3.3)

H3 = dB2 = − 1

3!
E ĉE b̂E â(

6

klp
e−φεâb̂ĉd̂V

d̂) + E âEβjEαi(γâγ
5)αβ εij − E b̂E âEαi(γâb̂γ

5 ελ)αi ,

(3.4)

where Eαi(x, υ) are the fermionic supervielbeins

Eαi(x, υ) = e
1
6
φ(υ)

(

sinhM
M Dυ

)βj

Sβj
αi (υ) − ieφ(υ)A1(x, υ) (γ5ελ(υ))αi (3.5)

and A1(x, υ) is a relic of the type IIA RR one-form

A1(x, υ) =
R

klp
e−

4
3
φ(υ)

[(

eâ(x) + 4iυγâ sinh2 M/2

M2
Dυ

)

Vâ(υ)

−4υ εγ5 sinh2 M/2

M2
Dυ Φ(υ)

]

. (3.6)

Note that A1 is zero when υ = 0.

The AdS4 covariant derivative D is defined as

Dυ =

(

∇ +
i

R
eâ(x) γ5γâ

)

υ =

(

d − 1

4
ωâb̂(x) γâb̂ +

i

R
eâ(x) γ5γâ

)

υ (3.7)

and γâ, γ5 are the four-dimensional gamma-matrices in the Majorana representation.
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The dilaton superfield φ(υ), which depends only on the eight fermionic coordinates,

has the following form in terms of the quantities V â(υ) and Φ(υ)

e
2
3
φ(υ) =

R

klp

√

Φ2 + V â V b̂ ηâb̂ . (3.8)

The value of the dilaton at υ = 0 is

e
2
3
φ(υ)|υ=0 = e

2
3
φ0 =

R

klp
(3.9)

(lp is the Plank’s length and k corresponds to the Chern-Simons level in the ABJM model).

The fermionic field λαi(υ) describes the non-zero components of the dilatino superfield

which is related to the dilaton superfield by the equation [18]

λαi = − i

3
Dαi φ(υ) . (3.10)

The new objects appearing in these expressions, M, Λâ
b̂, Φ, V â and Sαi

βj, are functions

of υ and their explicit forms are given in appendix B. Contracted spinor indices have been

suppressed, e.g. (υεγ5)αi = υβjεjiγ
5
βα, where εij = −εji, ε12 = 1 is the SO(2) invariant

tensor.

As we have already noted, in the AdS4 superspace under consideration all supersym-

metries are broken and it only has the bosonic AdS4 isometry SO(2, 3). The superstring

action (3.1) is thus invariant under the SO(2, 3) variations of the coordinates

δxm̂ em̂
â(x) = K â(x) = Km̂(x) em̂

â , δυ =
1

4
(Km̂ ωm̂

âb̂(x) −∇â K b̂) γâb̂ υ. (3.11)

The associated conserved SO(2, 3) current has the following form

JI =
√
−hhIJ EJ

â (iδx E b̂ + iδυ E b̂) ηâb̂ − εIJ (iδx B2 + iδυ B2)J . (3.12)

Due to the complicated form of the supervielbein and B2, the explicit dependence of this

current on υ is still a bit too involved to try to construct a Lax connection. So we shall

further simplify things by gauge fixing kappa-symmetry in a way considered in [9].

4 Gauge fixed superstring action in AdS4 superspace

Let us choose the AdS4 metric in the conformally flat form

ds2
AdS4

=
1

u2

(

dxaηabdxb +
R2

CP3

4
du2

)

, u =

(

RCP3

r

)2

, (4.1)

where xa (a = 0, 1, 2) are the coordinates of the D = 3 Minkowski boundary and u (or r)

is the AdS4 radial coordinate. If the components of the AdS4 vielbein associated with the

metric (4.1) are chosen to be3

e
φ0
3 ea =

r2

R2
CP3

dxa = u−1 dxa , e
φ0
3 e3 =

RCP3

r
dr = −RCP3

2u
du, (4.2)

3Note that the vielbeins ea and e3 appearing in eq. (4.2) correspond to the AdS4 metric of the D = 11

AdS4 × S7 solution characterized by the radius R which is related to the CP 3 radius in the string frame

as follows RCP3 = e
1

3
φ0R =

“

R3

klp

”1/2

. These bosonic vielbeins appear in our explicit expressions for the

AdS4 supergeometry.
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the components of the SO(1, 3) spin connection are

ωa3 = − 2

R
ea , (4.3)

and

ωab = 0 , (4.4)

where the index 3 stands for the 3rd (radial) direction in AdS4.

The following kappa-symmetry gauge fixing condition on υ drastically simplifies the

form of the superstring action

υ =
1

2
(1 + γ012)υ , γ012 ≡ γ , (4.5)

where γ012 is the product of the gamma matrices along the 3d Minkowski boundary

slice of AdS4.

In this gauge the supervielbeins take the following simple form [9]

Ea(x, υ) =

(

R

klp

)1/2

(ea(x) + iυγaD υ)

(

1 − 1

R2
(υυ)2

)

,

E3(x, υ) =

(

R

klp

)1/2

e3(x)

(

1 − 3

R2
(υυ)2

)

,

(4.6)

and the covariant derivative becomes

Dυ =

(

d − 1

R
e3(x) − 1

4
ωab(x) γab

)

υ . (4.7)

Actually, the SO(1, 2) Lorentz connection ωab is zero when the AdS4 supervielbeins are

taken in the form (4.2).

The NS-NS two form becomes

B2 = − i

klp

[

(eb + iυγbDυ) (ea + iυγaDυ)υγcευ εabc − R e3 υεDυ
]

. (4.8)

The kappa-symmetry gauge-fixed superstring action reduces to

S = − 1

4πα′
R

klp

∫

d2ξ
√
−hhIJ

[

eI
3eJ

3

(

1 − 6

R2
(υυ)2

)

+ (eI
a + iυγaDIυ) (eJ

b + iυγbDJυ) ηab

(

1 − 2

R2
(υυ)2

)]

(4.9)

+
1

2πα′
i

klp

∫

[

(eb + iυγbDυ) (ea + iυγaDυ)υγabευ − R e3 υεDυ
]

.

This action is slightly more complicated than the action for the AdS5 × S5 superstring in

the analogous kappa-symmetry gauge [19]. The latter contains fermions only up to the

fourth order.
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In this kappa-symmetry gauge, the conserved SO(2, 3) current (3.12) has the following

explicit form

J =
√
−h hIJ eJ

â Kâ + iυ(
√
−hhIJ − iεIJ γ5ε)γâ∇Jυ Kâ

− i

4
υ(
√
−h hIJ + iεIJ γ5ε)γâ

b̂ĉ υ eJ
â∇b̂ Kĉ (4.10)

−
√
−hhIJ

[

(υυ)2

2R2
(eJ

a Ka + 12 eJ
3 K3) +

3 (υυ)2

8R
eJ

a (∇3 Ka −∇a K3)

−υυ

4
εabc υγa∇Jυ∇bKc

]

− 3

2R
εIJ υγa∇Jυ υγabευ Kb −

1

8
εIJ υγa∇Jυ υγabευ(∇3 Kb −∇b K3) ,

where remember that ε without indices implies εij = −εji with i, j = 1, 2 labeling the two

D = 4 Majorana fermions υαi. The first two lines in (4.10) are the same as in the quadratic

current (2.19) reduced to AdS4 and with ϑ = 0. The third and the fourth line are quartic

in υ and its derivative.

The problem of the construction of the Lax connection thus becomes more treatable,

but we would like to simplify things even further.

4.1 Worldsheet T-dual action for the AdS4 superstring

Upon a T-duality transformation on the worldsheet [9], similar to that described in [19],4

the action (4.9) takes an even simpler form

S = − 1

4πα′
R

klp

∫

d2ξ
√
−hhIJ

(

ẽI
a ẽJ

b ηab + eI
3eJ

3
)

(

1 − 6

R2
(υυ)2

)

− 1

2πα′
iR

klp

∫

(

e3 υεDυ + ẽa υγaDυ − 1

R
ẽa ẽb υγabευ

)

, (4.11)

where e3(r) and ẽa(x̃, r) are the vielbeins of the dual AdS4 space. The dual vielbeins ẽa(x̃, r)

along the Minkowski directions are related to the initial quantities as follows (see [9] for

more details)

∂I (
r2

R2
P I

a ) = 0 ⇒ P I
a =

R2

r2
εIJ∂J x̃a ≡ εIJ ẽJa (4.12)

where

P I
a = −

√
−h

(

1 − 2

R2
(υυ)2

)(

hIJηab +
2i

R
√
−h

εIJ υγabευ

)

(eJ
b + iυγbDJυ) . (4.13)

4Note that in contrast to the AdS5 × S5 superstring where this bosonic T-duality can be accompanied

by a fermionic one [20–22] which brings the superstring action to itself but in a different kappa-symmetry

gauge, in the AdS4×CP 3 case the fermionic T-duality is not possible [9, 23], at least in the same fashion and

in application to the broken supersymmetry fermions υ. For an alternative suggestion to perform bosonic

and fermionic worldsheet T-duality of the AdS4 ×CP 3 supercoset model see [24–26] and for problems with

its realization see [27].
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The quantities (4.13) (up to a rescaling) are the conserved currents of the d = 3 translation

part of the SO(2, 3) isometries

δ x̃a = ca, δ r = δ υ = 0 . (4.14)

The action (4.11) can be cast in the manifestly SO(1, 3) covariant form

S =− 1

2πα′
R

klp

∫

d2ξ

(

1

2

√
−h hIJ ẽI

â ẽJ
b̂ ηâb̂

(

1− 6

R2
(υυ)2

)

+iεIJ ẽI
â υ(1 − Γ11) γâ∇Jυ

)

,

(4.15)

where Γ11 stands for (1−P24)γ
5 γ7(1−P24) ≡ iγ5 ε which indicates its origin from D = 10

and ∇ = d − 1
4 ω̃âb̂ γâb̂.

The bosonic and fermionic equations of motion which follow from (4.15) are, respec-

tively,

∇I

(√
−hhIJ ẽJ

â(1− 6

R2
(υυ)2)+iεIJυ(1−Γ11) γâ∇Jυ

)

− 2i

R2
εIJ ẽI

b̂ ẽJ
ĉ υ(1−Γ11) γâ

b̂ĉυ=0

(4.16)

and

i

2
(1 + γ)(1 − Γ11) εIJ ẽI

â γâ ∇J υ − 6

R2
υ (υυ)

√
−hhIJ ẽI

â ẽJ
b̂ ηâb̂ = 0 , (4.17)

The fermionic equation can also be rewritten in the following form

i
√
−hhIJ ẽJ

â (1 − Γ11) γâ ∇Iυ − 6

R2
εIJ ẽI

â ẽJ
b̂ (1 − Γ11)γâb̂υ (υυ) = 0 , (4.18)

The conserved current of the SO(2, 3) isometry is

JI =

(√
−h hIJ ẽJ

â

(

1 − 6

R2
(υυ)2

)

+ iεIJ υ(1 − Γ11) γâ∇Jυ

)

Kâ

+
i

4
εIJ ẽJ

â υ (1 − Γ11) γâ
b̂ĉ υ∇b̂ Kĉ . (4.19)

4.2 The Lax connection

As in the quadratic approximation of section 2.3, we construct an SO(2, 3)-valued zero-

curvature Lax connection L

R = dL − LL = 0 =⇒ εIJ(∂I LJ + LI LJ) = 0 (4.20)

using the pieces of the conserved current (4.19) which enter the Lax connection with ar-

bitrary coefficients. The problem has a non-trivial solution if the zero-curvature condition

allows for expressing the coefficients in terms of a single spectral parameter. In the case

under consideration the zero-curvature Lax connection has the following form

LI = α1 ẽI
â Kâ + α2

εIJ

−h
JJ +

α2
2√
−h

FI + α1α2
εIJ

−h
F J

− α2
2

4R2
υ (1 − Γ11) γâ ∇I υ υ (1 − Γ11) γâb̂ĉ υ Kb̂ Kĉ (4.21)

+
3α2

2

2R2
(υυ)2 ẽI

â Kâ +
3α2(α1 + 2)

8
∂I

(

(υυ)2√
−G

εJK ẽJ
â ẽK

b̂ KâKb̂

)

,
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where G = det(ẽI
â ẽJ

b̂ ηâb̂),

F I =
i

4
εIJ ẽJ

â υ (1 − Γ11) γâ
b̂ĉ υ∇b̂ Kĉ =

i

2
εIJ ẽJ

â υ (1 − Γ11) γâ
b̂ĉ υ Kb̂ Kĉ (4.22)

and (as in section 2.3)

α2
2 = α2

1 + 2α1. (4.23)

So the Lax connection contains one independent (spectral) parameter α1 = 2z2

1−z2 .

To check that (4.21) has zero curvature one should use the string equations of mo-

tion (4.16)– (4.18), the Killing vector relations (appendix D) and the Fierz identities (ap-

pendix C).

Note that in the kappa-symmetry gauge under consideration the Lax connection is of

the fourth order in fermions (as is the action (4.15) and the conserved current (4.19)).

Applying the inverse duality transformation (4.12) to (4.21) one gets the Lax connec-

tion for the original model (4.9) which is non-local in the coordinates xa of the Minkowski

boundary of the AdS4 space (4.1), the non-local quantities being the Killing vectors

KA(x̃(x), r) and their derivatives ∇A KB(x̃(x), r) = [KA,KB ] expressed in terms of the

original AdS4 coordinates. With some more technical effort, it should be possible to con-

struct an alternative local Lax connection of the model (4.9) directly from the conserved

current (4.10). We leave this exercise for future consideration.

5 Conclusion and discussion

In this paper we have constructed the full Lax connection for the AdS4 sub-sector of the

AdS4 × CP 3 superstring with eight ‘broken supersymmetry’ fermionic modes which is

not described by the supercoset sigma-model. Because of the technical complexity of the

problem, the construction has been carried out for the kappa-symmetry gauge fixed and

worldsheet T-dualized action of the theory. For a generic (semi)classical configuration of

the AdS4 × CP 3 superstring with 32 fermionic fields (which are not subject to a kappa-

symmetry gauge fixing) we have constructed the Lax connections up to the second order in

the fermionic fields. These results provide a direct evidence for the classical integrability

of the complete AdS4 × CP 3 superstring theory.

It would be useful, though, to find a procedure for the construction of a Lax connection

of the complete theory to all orders in the thirty two fermions. A hint at a possible

method to achive this goal may come from the construction of Lax connections in two-

dimensional supersymmetric O(N) and CPN sigma-models. When these sigma-models

are formulated in components of corresponding d = 2 supermultiplets, a prescription for

constructing the Lax connection was proposed in [16] which, as we have already mentioned,

has prompted the techniques used in this paper. A more systematic way of constructing

the Lax connections for these supersymmetric sigma-models is in the framework of their

worldsheet superfield description which allows one to operate with a corresponding Cartan

superform or a conserved super-current in the worldsheet superspace rather than with their

components [28–30].
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One can try to develop similar methods for studying the classical integrability of Green-

Schwarz superstrings in the framework of the superembedding approach (see [31–33] for

review and references). The superembedding description of superparticles, superstrings and

superbranes is based on the fact that the worldsheet kappa-symmetry is a somewhat weird

realization of the conventional extended worldsheet supersymmetry [34]. The dynamics of

p-branes is described by an embedding of a worldsheet supersurface into a target superspace

subject to a certain superembedding condition. The embedding super-coordinates XM and

Θα of a superstring in this formulation are therefore worldsheet superfields, as in the case of

two-dimensional supersymmetric sigma-models and the Ramond-Neveu-Schwarz strings. A

difference is that in the latter the component (bosonic and fermionic) worldsheet fields are

in the same supermultiplet, while in the superembedding approach X and Θ are (a priori)

in different supermultiplets and corresponding superfields. However, these superfields are

related to each other by the superembedding constraint which (at least in some cases) can be

solved in terms of a single ‘prepotential’. The superembedding formulation is intrinsically

related to super-twistors [34–36] and pure-spinors [37, 38]. It has proved to be extremely

useful e.g. for the derivation of the M5-brane equations of motion [39, 40] and for making

progress in the covariant description of multiple coincident branes [41–45].

To construct a Lax connection for a superstring in the superembedding approach one

should first derive a conserved worldsheet supercurrent associated with the superisometry of

the supergravity background under consideration and then try to use it in combination with

a spectral parameter for building the worldsheet superfield Lax connection. The expansion

of this Lax connection in worldsheet superfield components should then reproduce the form

of Lax connections considered in this paper to all orders in fermions. We hope to address

this problem in the near future.

Other possible applications and development of the results of this paper can be the gen-

eralization to the complete AdS4×CP 3 superstring of the algebraic curve constructed in [46]

and the study of the integrability of type IIB superstrings compactified on AdS3 × S3 ×
S3×S1 and on AdS3×S3×T 4 (with 16 preserved supersymmetries) in those sectors which

are not described by corresponding supercoset sigma-models (see [14, 47] and references

therein). An even more interesting case is type II superstrings in an AdS2×S2×T 6 super-

background which preserves only eight supersymmetries and is related to the near horizon

geometry of D = 4 black holes [48]. In this case 16 independent kappa-symmetries are not

enough to eliminate 24 ‘broken supersymmetry’ fermions and hence the PSU(1,1|2)
SO(1,1)×U(1) super-

coset sigma-model [49] cannot be regarded as a kappa-gauge fixed description of this theory.

One may also look for other examples of integrable superstrings in superbackgrounds

with less or no supersymmetry, whose purely bosonic sub-sector is integrable. As we have

seen in section 3, the superstring in the N = 2 AdS4 superspace is integrable in spite of

the fact that all the eight supersymmetries are broken. If we did not know that this non-

supersymmetric model is a truncation of the AdS4 × CP 3 superstring, we would wonder

what might be the reason for its integrability. An obvious further example to check for

integrability is the superstring in the AdS4 × CP 3 background with all supersymmetries

broken. This superbackground is obtained from the 24-supersymmetric solution by chang-

ing the sign of the F2 flux [50]. We have not been able to construct a zero-curvature Lax
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connection for this case using the technique developed in this paper. So it still remains

to be understood what is the deep reason for the integrability of the AdS4 × CP 3 super-

string in the fermionic sub-sector corresponding to the broken supersymmetries. Does this

indicate that the superstring in AdS4 × CP 3 remembers that it is obtained by the dimen-

sional reduction of the maximally supersymmetric AdS4 × S7 superbackground of D = 11

supergravity [50–52]?
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A Main notation and conventions

The convention for the ten-dimensional metric is the ‘almost plus’ signature (−,+, · · · ,+).

Generically, the tangent space vector indices are labeled by letters from the beginning of

the Latin alphabet, while letters from the middle of the Latin alphabet stand for curved

(world) indices. The spinor indices are labeled by Greek letters.

A.1 AdS4 space

AdS4 is parametrized by the coordinates xm̂ and its vielbeins are eâ = dxm̂ em̂
â(x), m̂ =

0, 1, 2, 3; â = 0, 1, 2, 3. The D = 4 gamma-matrices satisfy:

{γâ, γ b̂} = 2 ηâb̂ , ηâb̂ = diag (−,+,+,+) , (A.1)

γ5 = iγ0 γ1 γ2 γ3, γ5 γ5 = 1 . (A.2)

The charge conjugation matrix C is antisymmetric, the matrices (γâ)αβ ≡ (C γâ)αβ and

(γâb̂)αβ ≡ (C γâb̂)αβ are symmetric and γ5
αβ ≡ (Cγ5)αβ is antisymmetric, with α, β =

1, 2, 3, 4 being the indices of a 4-dimensional spinor representation of SO(1, 3) or SO(2, 3).

The AdS4 curvature is

Râb̂ĉ
d̂ =

8

R2
ηĉ[â δd̂

b̂]
, Râb̂ = − 4

R2
eâ eb̂ , (A.3)

where R
2 is the AdS4 radius.
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A.2 CP 3 space

CP 3 is parametrized by the coordinates ym′

and its vielbeins are ea′

= dym′

em′
a′

(y),

m′ = 1, · · · , 6; a′ = 1, · · · , 6. The D = 6 gamma-matrices satisfy:

{γa′

, γb′} = 2 δa′b′ , δa′b′ = diag (+,+,+,+,+,+) , (A.4)

γ7 =
i

6!
ε a′

1a′

2a′

3a′

4a′

5a′

6
γa′

1 · · · γa′

6 γ7 γ7 = 1 . (A.5)

The charge conjugation matrix C ′ is symmetric and the matrices (γa′

)α′β′ ≡ (C γa′

)α′β′

and (γa′b′)α′β′ ≡ (C ′ γa′b′)α′β′ are antisymmetric, with α′, β′ = 1, · · · , 8 being the indices

of an 8-dimensional spinor representation of SO(6).

The CP 3 curvature is

Ra′b′c′
d′ = − 2

R2

(

δc′[a′ δd′

b′] − Jc′[a′ Jb′]
d′ + Ja′b′ Jc′

d′
)

. (A.6)

A.3 The D = 10 gamma-matrices ΓA

{ΓA, ΓB} = 2ηAB , ΓA = (Γâ, Γa′

) , (A.7)

Γâ = γâ ⊗ 1, Γa′

= γ5 ⊗ γa′

, Γ11 = γ5 ⊗ γ7, â = 0, 1, 2, 3; a′ = 1, · · · , 6 .

The charge conjugation matrix is C = C ⊗ C ′.

The fermionic variables Θα of IIA supergravity carrying 32-component spinor indices

of Spin(1, 9), in the AdS4 × CP 3 background and for the above choice of the D = 10

gamma-matrices, naturally split into 4-dimensional Spin(1, 3) indices and 8-dimensional

spinor indices of Spin(6), i.e. Θα = Θαα′

(α = 1, 2, 3, 4; α′ = 1, · · · , 8).

A.4 OSp(6|4) superalgebra

The bosonic part of the OSp(6|4) algebra is generated by translations and Lorentz-

transformations which split into AdS4 and CP 3 parts as PA = (Pâ, Pa′) and MAB =

(Mâb̂,Ma′b′) respectively. These satisfy the commutation relations

[PA, PB ] = −1

2
RAB

CDMCD, [MAB , PC ] = ηAC PB − ηBC PA , (A.8)

[MAB ,MCD] = ηAC MBD + ηBD MAC − ηBC MAD − ηAD MBC , (A.9)

where the curvature RAB
CD = (Râb̂

ĉd̂, Ra′b′
c′d′), and the AdS4 and CP 3 curvature are given

in (A.3) and (A.6) respectively. The fermionic part of the algebra consists of 24 super-

symmetry generators which can be described by 32-component Majorana spinor generators

subject to the projection Qα = (P24 Q)α (see eq. (2.2)). Their commutation relations are

as follows

[PA, Q] =
i

R
Qγ5ΓAP24 , [MAB , Q] = −1

2
QΓABP24 , (A.10)

{Q,Q} = 2i (P24Γ
AP24)PA +

R

4
(P24γ

5ΓABP24)RAB
CDMCD ,
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where γ5 = iΓ0Γ1Γ2Γ3. Note that the splitting of the fermionic generators Q into Q1 and

Q3 by the Z4-grading of OSp(6|4) is simply achieved by splitting the D = 10 Majorana

spinor Q into the left– and right Majorana-Weyl spinors

Q1 =
1

2
Q (1 − Γ11) , Q3 =

1

2
Q (1 + Γ11) . (A.11)

B Quantities appearing in the definition of the AdS4 × CP 3 superspace

of section 3

R (M2)αi
βj = 4(ευ)αi(υεγ5)βj − 2(γ5γâυ)αi(υγâ)βj − (γâb̂υ)αi(υγâb̂γ

5)βj , (B.1)

Λâ
b̂ = δâ

b̂ − R2

k2l2p
· e−

2
3
φ

e
2

3
φ + R

klp
Φ

Vâ V b̂ ,

Sβj
αi =

e−
1
3
φ

√
2



(1−P24)





√

e
2

3
φ+

R

klp
Φ1− R

klp

V â ΓâΓ11
√

e
2
3
φ+ R

klp
Φ



 (1−P24)





βj

αi (B.2)

V â(υ) = −8i

R
υγâ sinh2 M/2

M2
ε υ ,

Φ(υ) = 1 +
8

R
υ εγ5 sinh2 M/2

M2
ευ . (B.3)

Let us emphasise that the SO(2) indices i, j = 1, 2 are raised and lowered with the unit

matrices δij and δij so that there is actually no difference between the upper and the lower

SO(2) indices, εij = −εji, εij = −εji and ε12 = ε12 = 1.

C Identities for the kappa-projected fermions

When the fermionic variables υαi are subject to the constraint (4.5), the following identities

hold.

υiγ5υj = υiγ3υj = 0 , υαiυβjδij = −1

4
((1 + γ)C−1)αβυυ , (C.1)

where γ = γ012 and υυ = δijυ
αiCαβυβj .

Another useful relation is (ε012 = −ε012 = 1)

υγabdυ = ±εabcυγcdυ . (C.2)

Using eqs. (C.1) and (C.2) we find that

υεγaυ υεγbυ = δa
b (υυ)2 , υεγacυ υεγcbυ = 2δa

b (υυ)2 , (C.3)

and

(M2ευ)αi = 0 . (C.4)

A similar computation shows that

υεγ5M2 = 0. (C.5)

– 21 –



J
H
E
P
1
1
(
2
0
1
0
)
1
4
3

It is also true in general (i.e. without fixing κ-symmetry) that

M2υ = 0 , υγ5M2 = 0. (C.6)

Using the above identities we find that for υ satisfying (4.5)

M2Dυ =
6i

R2
(ea +

R

2
ωa3)(γaυ)υυ (C.7)

which results in

4υγa sinh2(M/2)

M2
Dυ = υγa

(

1+
1

12
M2

)

Dυ = υγa

(

d− 1

4
ωbcγbc

)

υ+
i

2R2

(

ea +
R

2
ωa3

)

(υυ)2,

(C.8)

where ea, e3 ωbc and ωa3 are AdS4 vielbeins and connection defined in eqs. (4.2)–(4.4) and

the matrix M2 is defined in eq. (B.1).

We also find that

4υεγ5 sinh2 M/2

M2
Dυ = υεγ5Dυ =

i

R
(ea +

R

2
ωa3)υεγaυ . (C.9)

Other D = 4 covariant Fierz identities (â = (a, 3)) used in the construction of the Lax

connection in section 4.2 are

εIJ ∇Iυ (1−Γ11) γâ ∇J υ υ (1−Γ11) γâb̂ĉ υ − 2 εIJ υ (1 − Γ11) γ b̂ ∇I υ υ (1−Γ11) γ ĉ ∇J υ =

=
1

2
εIJ∇I

(

υ (1 − Γ11) γâ ∇J υ υ (1 − Γ11) γâb̂ĉ υ
)

− 2

R2
εIJ eI

b̂ eJ
ĉ (υυ)2 , (C.10)

υ(1− Γ11)γâĉd̂υ υ(1− Γ11)γ b̂ĉd̂υ=−6δb̂
â (υυ)2 = 6υ(1− Γ11)γâγ5υ υ(1− Γ11)γ b̂γ5υ . (C.11)

where Γ11 stands for (1−P24)γ
5 γ7(1−P24) ≡ iγ5 ε which indicates its origin from D = 10.

D Basic relations for the Killing vectors on symmetric spaces G/H

Let KM (X) or KA(X) = eA
M (X)KM (X) be the Killing vectors of a D-dimensional sym-

metric space G/H, where M are world indices and A are tangent space indices. The

Killing vectors KM (X) take values in the algebra of the isometry group G and the one-

forms K = dXM KM satisfy the Maurer-Cartan equations

dK = −2K ∧ K, dK ∧ K = K ∧ dK = −2K ∧ K ∧ K. (D.1)

The following relations also hold

[∇A,∇B ]KC = −RABC
D KD , ∇AKB = [KA,KB ], (D.2)

∇A∇BKC = [∇AKB , KC ] + [KB ,∇AKC ]

= [∇AKB , KC ] − [∇AKC , KB] = −2RA[BC]
DKD, (D.3)

[∇AKB , KC ] = [[KA, KB ], KC ] = −RABC
D KD, (D.4)

[

[KA,KB ], [KC ,KD]
]

= RAB[C
F [KD],KF ] − RCD[A

F [KB],KF ] , (D.5)
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where RABC
D is the curvature of the symmetric space G/H.

For instance, for the AdS4 Killing vectors we have

[∇â,∇b̂]Kĉ = −Râb̂ĉ
d̂ Kd̂ , Râb̂ĉ

d̂ =
8

R2
ηĉ[â δd̂

b̂]
, Râb̂ = − 4

R2
eâ eb̂ , (D.6)

∇âKb̂ = [Kâ,Kb̂], (D.7)

∇â∇b̂Kĉ = [∇âKb̂, Kĉ] + [Kb̂,∇âKĉ] = [∇âKb̂, Kĉ] − [∇âKĉ, Kb̂] =
8

R2
ηâ[b̂ Kĉ], (D.8)

[∇âKb̂, Kĉ] = [[Kâ, Kb̂], Kĉ] = − 8

R2
ηĉ[â Kb̂] (D.9)

[

[Kâ,Kb̂], [Kĉ,Kd̂]
]

= − 16

R2
(K[ĉ ηd̂][â Kb̂] − K[â ηb̂][ĉ Kd̂]). (D.10)
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