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1 Introduction

Understanding the nature of black hole thermodynamics has been the focus of intense

research over the last few decades (see, eg. [1, 2]). Whereas a consistent quantum the-

ory of gravity, which is required to fully understand the microscopic basis underlying the

thermodynamical description of black holes, is still lacking, semi-classical analyses have

nevertheless provided deep insights into the rich phase structure of these systems. As is

well known, these black holes exhibit phase transitions and critical phenomena as seen in

normal thermodynamic systems. These phenomena become more important in the context

of the AdS/CFT duality [3] which has, for example, led to the correspondence between

the Hawking-Page phase transition in asymptotically AdS black holes with the confine-

ment/deconfinement transition in the boundary field theory [4]. It is therefore important

to understand the full phase structure of AdS black holes, the study of which was initiated

in [5–8]

It is well established by now that the phase structure of black holes depends crucially

on the choice of the ensemble, in contrast with conventional thermodynamic systems. For

example, it was established in [9, 10] that in the canonical ensemble (fixed charge) the

charged Reissner-Nordstrom-AdS (RN-AdS) black holes show a first order liquid gas like

phase transition culminating in a second order critical point, analogous to the Van der

Waals gas. However, no such behaviour is seen in the grand canonical (fixed potential)

ensemble, where, instead, a Hawking-Page phase transition occurs. In this context, we

have comprehensively analysed the Kerr-Newman-AdS (KN-AdS) black hole in [11] where

we showed that there is a far richer phase structure for these systems than was previously

known. Namely, we established a liquid gas like phase coexistence behaviour culminating in
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a second order critical point for two new “mixed” ensembles, wherein one thermodynamic

charge (the electric charge or the angular momentum) and one conjugate potential (the

angular velocity or the electric potential respectively) were held fixed. In [12], we also

calculated the critical exponents corresponding to the critical points in these ensembles,

and showed that these are in fact identical to the exponents in the RN-AdS and the Kerr-

AdS black holes, suggesting an universality in the scaling behaviour of asymptotically

AdS black holes in four dimensions. (See also [13] for additional discussions on the phase

transitions in RN-AdS black holes).

In [11] and [12], we also analysed the case of four dimensional AdS black holes from the

point of view of the intrinsic geometry of its equilibrium thermodynamic state space (to be

contrasted with the extrinsic geometric perspective of [15, 16]). This intrinsic geometrical

perspective of thermodynamics, pioneered by Weinhold [17, 18] and Ruppeiner [19, 20] has

been an area of interest in conventional thermodynamics for decades. In [17, 18], a Rie-

mannian metric was attributed to the equilibrium state space of a thermodynamic system.

This was in terms of the Hessian matrix of the internal energy of the system expressed

as a function of the extensive variables, including the entropy. This did not, however,

have a clear interpretation in terms of a distance in the equilibrium thermodynamic state

space. In [20], a similar metric was introduced in terms of the Hessian of the entropy

density expressed as a function of the internal energy and the other extensive variables. It

could then be established that the probability distribution of thermodynamic fluctuations

between equilibrium states are related to the invariant distance between them in the ther-

modynamic state space. For black holes, thermodynamic geometry was first alluded to by

Ferrara et al [21] in the context of extremal black holes in string theory and its relation to

the underlying moduli space. Since then, a lot of work has been done on the application

of thermodynamic geometry to black hole thermodynamics, starting from the work of [22].

In this context, in [11], we showed that the scalar curvature of the equilibrium state space

geometry in fact captured the first order liquid-gas like phase behaviour of conventional

Van der Waals systems, contrary to what was thought before. A detailed analysis re-

veals that in regions of phase coexistence, the scalar curvature shows multi-valued branch

structures, and implies that the curvature changes branch close to the first order phase

transition point. A similar behaviour of the state space scalar curvature was observed for

KN-AdS black holes in the canonical and the mixed ensembles alluded to in the previous

paragraph. In [12], the scaling behaviour of various thermodynamic quantities, including

the Ruppeiner curvature was undertaken. It was established that the scalar curvature

followed a scaling law similar to the well known hyperscaling relation [23, 24].

One of the aims of the present work is to extend the above formalism to the case of

black holes arising in gauged supergravity theories. In particular, we will be concerned with

R-charged black holes in D = 5, 4 and 7, and the corresponding rotating near extremal

D3, M2 and M5 branes. We analyse the thermodynamic stability issues related to these

black holes, and also their equilibrium state space geometry. Our results show a much

richer phase structure for these systems than has been reported, and the importance of

this lies in the description of the corresponding boundary gauge theory. Since the topic

is by now well studied, let us, at the outset, summarise our main results. Firstly, dealing
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with black holes with compact horizon, we find that for single R-charged black holes in

D = 5, there is a region of phase coexistence and first order phase transitions, similar

to liquid-gas systems, that culminate at a second order critical point. We analyse this in

details, and calculate the critical exponents. They turn out to be the same as those of

the four dimensional asymptotically AdS black holes discussed in [12]. For the case of two

charged black holes in D = 5 ( two charges are equal with the third set to zero), a similar

liquid-gas like phase coexistence behaviour is obtained with the same set of exponents. We

also analyse the three charge case (with all charges set equal). Similar phase coexistence

is established, with the same set of exponents as before.

In the grand canonical ensemble, our analysis reveals that for the single charged case

discussed above for D = 5, 4 and 7, the region of thermodynamic stability of the black

hole is more constrained than what one obtains by simply considering the Hessian of

the entropy function. Namely, calculating the isothermal compressibility, we find that

the zeroes of these further constrain the thermodynamically stable region of the black

hole. Interestingly, there is also a region in parameter space where the black hole exhibits

negative isobaric expansivity. These constraints however, are not seen in the two and three

charged examples. We further elucidate the equilibrium state space geometry of these

black holes for several charge configurations. The associated state space scalar curvature

shows expected divergences at points of thermodynamic instability as obtained from the

heat capacity corresponding to the grand canonical ensemble.

This paper is organised as follows. In section 2, we study R-charged black holes in

D = 5. First, we deal with the compact horizon black holes with single R-charge, two charge

and three charge configurations. The analyses is done both in the canonical and the grand

canonical ensembles, and we establish the structure of the internal state space geometry

for the latter. Next, we study the flat horizon case, for the same charge configurations

and elucidate the nature of the equilibrium state space geometries for these cases. Section

3 deals with four dimensional R-charged black holes having four R-charges. In section 4,

we discuss our last example, namely the two R-charged black hole in seven dimensions.

Section 5 concludes with discussions of our results.

2 R-charged black holes in AdS5

A spinning D3-brane configuration is characterized by rotations in planes orthogonal to

the brane forming the rotation group SO(6). The three independent commuting Cartan

generators of the rotation group, called the spins of the D3-brane, represent the three

charges under the global SO(6) R-symmetry group of the N = 4 field theory living on the

world volume of the D3-branes. The superconformal symmetry group of the gauge theory

is fully represented by the enhanced symmetries in the near horizon geometry of the near

extremal D3-branes, which is described by AdS5 × S5 supergravity, with the dual gauge

theory residing on the boundary of AdS5. The Kaluza Klein reduction of the spinning D3-

brane on S5 results in an N = 8 D = 5 gauged supergravity with an SO(6) non-Abelian

gauge group. The three independent spins in the world volume of the D3-brane therefore
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reduce to three U(1) gauge charges of the charged black holes in the AdS5 supergravity

which couple to three chemical potentials.

The metric for the R-charged black holes in D = 5, N = 8 gauged supergravity is

given by [14],

ds2 = −(H1H2H3)
−2/3f dt2 + (H1H2H3)

1/3(f−1 dr2 + r2dΩ3,k) (2.1)

where

f = k − µ

r2
+

r2

l2
Π3

i=1 Hi ; Hi = 1 +
ai

r2
, i = 1 . . . 3 . (2.2)

Here µ is the mass parameter while ai are the charge parameters entering the metric.

k denotes the normalized curvature at the horizon whose position r+ is obtained as the

largest positive root of the equation f = 0. For k = 1 the line element dΩ3,k is that of S3

while for k = 0 the line element is that of R3. Thus, for k = 1 the R-charged black holes

have a compact spherical horizon with the dual gauge theory living on R × S3, while in

the case of k = 0 the horizon is planar and infinite in extent and the corresponding gauge

theory lives on R4. We will first discuss the case k = 1. Following [7] we set the AdS

length scale l to 1 and the Newton’s constant G5 to π/4. The ADM mass is given as

M =
3

2
µ + a1 + a2 + a3 (2.3)

The entropy is given as

S =
A

4G5

= 2π
√

Π3
i=1 (r2

+ + ai) (2.4)

and the charges are given as

q2
i = ai(r

2
+ + ai)

[

1 +
1

r2
+

Πj 6=i (r
2
+ + ai)

]

=
√

ai(µ + ai) (2.5)

The temperature and the conjugate potentials can be obtained from the above equa-

tions by using the first law of thermodynamics. The temperature is given by

T =
1

r2
+ A

[

2r6
+ + r4

+(1 + Σ3
i=1 ai) − Π3

i=1 ai

]

(2.6)

while the chemical potentials conjugate to the charges can similarly be obtained as

φi =
qi

r2
+ + ai

(2.7)

The numerator in the expression for temperature defines the extremality condition at

which the parameter µ becomes

µcrit = 2
a1a2a3

r2
+

+ a1a2 + a2a3 + a3a1 − r4
+ (2.8)

The black hole is non extremal for µ > µcrit while µ = 0 defines supersymmetric BPS

states, [25, 26].1 These supersymmetric states are, however, not black hole solutions since

1See [14] for detailed conditions for existence of horizon for different limits of the charge parameters.
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they fall in the naked singularity region. The mass corresponding to the BPS state is

given by

MBPS = q1 + q2 + q3 (2.9)

since the charges qi become equal to their respective parameters ai on setting µ = 0. From

eq. (2.6) it can be seen that extremal black holes exist only when all the three charges are

non zero.

In the canonical ensemble all the charges q1, q2, q3 are constrained so that the mass M

is the only extensive quantity the black hole exchanges with the surroundings held at a

fixed temperature. The Helmholtz free energy is given as

F (T, qi) = M − TS =
1

2r2
+

[

r4
+(1 + Σ ai) + r2

+(3Σi<j aiaj + 2Σ ai) + 5Π ai − r6
]

(2.10)

In ref. [7], the zero of the Helmholtz free energy is regarded as that of thermal AdS

with fixed R-charges. However, thermal AdS with fixed charge cannot solve the Einstein

equations and so cannot directly serve as the background action in the Euclidean path

integral action calculation. In such a case one could argue that a hot gas of R-charged

particles will have zero Helmholtz free energy so that the black hole is globally stable only

when its free energy is negative. The local stability conditions can be suitably obtained by

finding the heat capacity at constant charges, CQ.

In the grand canonical ensemble, on the other hand, the black hole exchanges its

U(1) charges with the surrounding medium at fixed values of the gauge potentials and the

temperature. The Gibbs free energy is given as

G = − 1

2 r2
+

[

r6
+ + r4

+(Σ ai − 1) + r2
+(Σi<j aiaj) + Π ai

]

(2.11)

Since thermal AdS with a fixed pure gauge potential solves the Einstein’s equations, the

Euclidean action in the grand canonical ensemble can be obtained by background subtrac-

tion of the pure gauge thermal AdS action. As a result, the zero of the Gibbs free energy

corresponds to the Hawking-Page transition between the black hole and the thermal AdS.

At the same time the local stability conditions are determined by the heat capacity at

constant potential Cφ and other susceptibilities.

In our subsequent discussion on the phase structure and stability of these R-charged

black holes we shall find it convenient to consider special cases where some charges are set

to zero or are set equal to each other. The cases we will consider are

Case 1 a1 = a, a2 = a3 = 0

Case 2 a1 = a2 = a, a3 = 0

Case 3 a1 = a2 = a3 = a (2.12)

These choices are made only to simplify the algebra, and our methods can be equally well

applied to arbitrary charge configurations.
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2.1 k=1, case 1

The mass ,charge and entropy can be obtained by using the condition for case 1 in eq. (2.12)

into eqs. (2.3), (2.5) and (2.4),

M =
3

2
r+

2 +
3

2
r+

4 +
3

2
ar+

2 + a (2.13)

q =
√

a (r+
2 + a) (1 + r+

2) (2.14)

S = 2π r+
2
√

r+
2 + a (2.15)

It can be verified that for all positive values of r+ and a, the black hole remains within

the BPS bound while the bound gets saturated for r+ = 0 which corresponds to a naked

singularity.

The temperature and potential may be obtained similarly or by using first law of

thermodynamics.

T =
1

2π

1 + 2 r+
2 + a

√

r+
2 + a

(2.16)

φ =

√
a
√

1 + r+
2

√

r+
2 + a

(2.17)

Let us consider the canonical ensemble first. The Helmholtz free energy for the first

case is reduced to the following

F =
1

2
r+

2 − 1

2
r+

4 +
1

2
ar+

2 + a (2.18)

while the heat capacity at constant charge Cq is obtained as

Cq = 2π

(

1 + 2 r+
2 + a

) (

3 ar+
2 + 4 a + 3 r+

2 + 3 r+
4
)
√

r+
2 + a

6 a + 5 ar+
2 + r+

2 + 2 r+
4 − a2 − 1

(2.19)

For the canonical ensemble it will be useful to invert eq. (2.14) and obtain the parameter

a in terms of the charge q

a =
1

2

√

r+
4 + 2 r+

6 + r+
8 + 4 q2 + 4 r+

2q2 − r+
2 − r+

4

1 + r+
2

(2.20)

Using eq. (2.20) we can directly express the thermodynamic variables obtained above in

terms of q and r+ which will help us in obtaining phase plots.

The local stability condition for the canonical ensemble in terms of the charge q and

the horizon radius r+ is obtained from the expression for the heat capacity Cq in eq. (2.19),

by substituting the value of a from (2.20). Thus the heat capacity Cq is positive for the

range of values of charge given as

q ≤
√

17 r+
2 + 17 + 3

√

33 r+
4 + 64 r+

2 + 32
(

1 + r+
2
)

and

q ≥
√

17 r+
2 + 17 − 3

√

33 r+
4 + 64 r+

2 + 32
(

1 + r+
2
)

(2.21)

– 6 –



J
H
E
P
1
1
(
2
0
1
0
)
1
2
5

0

1

2

3

4

5

6

7

q

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
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Figure 1. Canonical phase diagram for the

single charge D=5 R-charge black hole in q-r+

plane. The red colored local stability curves are

the infinities of Cq while the green colored global

stability curve is the zero of the free energy F .

0

0.05

0.1

0.15

0.2

0.25

q

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

r+

Figure 2. Close up of the lower branch of the

red colored local stability curve of figure 1. For

0.171 < q < 0.195(qc) a locally stable small

black hole branch can exist for certain temper-

atures. q = qc, r = 0.428 is the critical point.

Cq diverges along curves where the inequalities are saturated.

The zeros of the Helmholtz free energy may be similarly obtained in terms of q and r+.

The black hole is globally stable for the range of charge

q ≤ r+
2
√

2 r+
6 + r+

4 − 2 r+
2 − 1

r+
2 + 2

(2.22)

Using eq. (2.21) and eq. (2.22) the phase structure for the canonical ensemble can be

obtained in the q-r+ plane. In figure 1 we reproduce the canonical phase diagram of [7]

in the q-r+ plane. The heat capacity Cq is positive in the region between the two red

colored local stability curves, while the Helmholtz free energy is negative in the region

below the green colored curve. The upper branch of the local stability curve meets the

y-axis at q1 = 5.83. The lower branch of the local stability curve has been drawn separately

in figure 2. It meets the y-axis at q2 = 0.172, and has a maxima at q3 = 0.1955. This

indicates an interesting liquid-gas like phase coexistence behaviour in the system. Let us

see if we can substantiate this.

The canonical ensemble phase behaviour can be classified into four distinct regimes

based on whether (i) q > q1, (ii) q1 > q > q3, (iii) q3 > q > q2 and (iv) q < q2. From figures 1

and 2 it can be seen that for the first and the fourth cases the black hole is locally unstable

for values of r+ starting from zero and up to the point of intersection of the constant

q curves (i.e, the horizontal lines) with the stability curves. On an entropy-temperature

plane, as in figure 3, where we have plotted isocharge S vs T curves for q > q1, the unstable

small black hole branch coexists with the stable large black hole branch starting from the

– 7 –
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S

0.5 0.52 0.54 0.56 0.58 0.6

T

Figure 3. S vs T plot the canonical ensemble of the single charge black hole with q > q1 = 5.83.

We have taken q = 8, 9, 10, 11. Similar curves can be obtained for the case q < q2 = 0.172

turning point temperature corresponding to the divergence of Cq up to the temperature

T1 =
(1 + q)

2π
√

q
(2.23)

The temperature T1 is obtained by setting r+ = 0 in eq. (2.16) and it corresponds to

the BPS state. For T > T1 only the locally stable branch exists. On further increasing the

temperature, constant q lines (cf. figure 1) cross the free energy curve and the black hole

becomes becomes globally stable.

For case (ii) there is only one stable branch for all temperatures starting with a naked

singularity at T = T1. The third case is the most interesting since in this range of charge

there is a stable small black hole (sbh) branch separated from the stable large black hole

(lbh) branch by an unstable branch as can be seen from figure 2. This is because Cq is

negative within the lower red stability curve. Moreover, the constant charge line q = q3

becomes tangent to the stability curve in figure 2. This means that the heat capacity Cq

remains positive all along the q3 line and diverges at the tangent point, clearly indicating a

second order phase transition between the sbh and the lbh branches. In figure 4 we plot the

constant charge curves in the S-T plane with charge in the vicinity of q3. The critical curve

(in thick red) has a point of inflection at T = Tc = 0.434. For q > q3 there is a single stable

black hole branch corresponding to case (ii). We further investigate this phase coexistence

behaviour by drawing the Helmholtz free energy with temperature in figure 5. The swallow

tail shape of the free energy curve indicating phase coexistence behaviour is apparent. We

further observe an “incomplete” swallowtail at the bottom of figure. This shows that for

small enough charges the free energy of the sbh branch remains higher than that of the

lbh branch so that for such charges there will be no first order transition between the

two branches. The swallow tail becomes “complete” at q4 ∼ 0.1866 as we have checked

numerically. Thus, for 0.1955 > q > 0.1866 the black holes show first order transition

between the sbh and the lbh branches culminating in a critical point. From figure 5 it

– 8 –
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0

0.5

1

1.5

2

S

0.428 0.43 0.432 0.434 0.436 0.438 0.44

T

0.18

0.182

0.184

0.186

0.188

0.19

0.192

0.194

0.196

0.198

0.2

F

0.43 0.432 0.434 0.436 0.438 0.44

T

Figure 4. S vs T plots of constant charge

curves in the canonical ensemble of the sin-

gle charge case with q near qc. From right

to left the constant charge curves have q =

0.184, 0.193, 0.1955(qc), 0.2.

Figure 5. F vs T plots of constant charge

curves with q near qc. From the bottom to top

the free energy curves are at charges q = 0.184,

0.188, 0.190, 0.192, 0.1955(qc), and, 0.198 re-

spectively.

can also be seen that the critical temperature lies to the left of the first order transition

temperatures on the temperature axis.

We now briefly discuss the scaling behaviour near the critical point in the canonical

ensemble. For the canonical ensemble the order parameter can be chosen to be the radius

r+ or, equivalently, following [9], the potential φ. Note that in the canonical ensemble

the appropriate isothermal susceptibility corresponding to the critical exponent γ will be

κ′
T = (∂φ/∂q)T instead of its inverse κT = (∂q/∂φ)T [27]. The critical exponents α and β

are obtained by first going to the constant charge lines in the q− r+ plane of figure 2. This

is facilitated by converting the equations for T , eq. (2.16), and Cq, eq. (2.19), in terms of

q and r+ by using eq. (2.20) as already mentioned. By Taylor expanding in powers of r+

on the line q = qc around the critical point (qc, r+c) = (0.196, 0.428) we may check that to

the leading order

T − Tc ∼ r3
+ ; C−1

q ∼ r2
+ (2.24)

In order to obtain the critical exponents γ and δ for the susceptibility κ′
T and the

order parameter φ we invert the equation for the temperature eq. (2.16) and obtain the

parameter a in terms of T and r+. Two branches are obtained

a1 = −2 r+
2 − 1 + 2T

(

T π +
√

T 2π2 − 1 − r+
2

)

π

a2 = −2 r+
2 − 1 + 2T

(

T π −
√

T 2π2 − 1 − r+
2

)

(2.25)

Of these the second branch a2 is the one relevant to the critical point. Expressing κ′
T ,

φ and q in terms of T and r+ we Taylor expand these in powers of r+ around the critical

– 9 –
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point (Tc, r+c) = (0.434, 0.428). It turns out that to the leading order

q − qc ∼ r3
+ ; φ − φc ∼ r+ ; κ′

T
−1 ∼ r2

+ (2.26)

Using eq. (2.24) and eq. (2.26) we obtain the critical exponents as

α = 2/3, β = 1/3, γ = 2/3, δ = 3 . (2.27)

These turn out to be exactly the same as those for the canonical ensemble of the RN-

AdS [10, 27] and the Kerr-AdS black holes or the two mixed ensembles of the KN-AdS

black holes obtained in [12].

We now investigate the phase structure of single charge black holes in the grand canon-

ical ensemble. For this ensemble the Gibbs energy reduces to

G = −1

2
r+

2
(

−1 + r2
+ + a

)

(2.28)

Since the grand canonical ensemble is characterized by T and φ as the independent

control parameters it will be convenient, as an intermediate step, to invert eq. (2.17) and

express the parameter a in terms of φ,

a =
r+

2φ2

−φ2 + 1 + r+
2

(2.29)

This equation also implies that for non-negative a,

r2
+ ≥ φ2 − 1 (2.30)

which means that while for φ ≤ 1 the horizon radius has a minimum at r+ = 0 at which

a is zero, for φ > 1 the horizon radius has a finite minimum at which a is infinite. Using

eq. (2.29), the temperature may be expressed in terms of φ and r+ as

T =
1

2π

√

1 + r+
2
(

2 r+
2 − Φ2 + 1

)

r+

√

−Φ2 + 1 + r+
2

(2.31)

The local stability condition can be determined by the positivity of the heat capacity

Cφ and the susceptibilities, (∂q/∂φ)T and (∂q/∂T )φ. The heat capacity Cφ is obtained as

Cφ = 2

√

r+
2 + a

(

1 + 2 r+
2 + a

)

π r+
2
(

a − 3 r+
2 − 3

)

a2 + 1 − 2 a − r+
2a − r+

2 − 2 r+
4

(2.32)

and the susceptibilities are obtained as follows

κT =

(

∂q

∂φ

)

T

=

(

r+
2 + a

) (

a2 − 6 a − 5 r+
2a − r+

2 − 2 r+
4 + 1

)

−2 a − r+
2a + a2 + 1 − r+

2 − 2 r+
4

(2.33)

αφ =

(

∂q

∂ T

)

φ

= 4

(

r+
2 + a

)√
a
√

1 + r+
2
(

−a + 1 + r+
2
)

π

2 a + r+
2a − a2 − 1 + r+

2 + 2 r+
4

(2.34)
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Figure 6. Stability curves of Cφ, κT , αφ in the

a − r+ plane in the grand canonical ensemble

of the single charge case. The curve of zeros of

Gibbs energy is colored green. The grey curves

are isopotentials, with the lower one at φ = 0.98

and the upper one at φ = 1.02

Figure 7. r+ − φ plane plot of infinities of

Cφ in red, zeros of Cφ in blue, zeros of Gibbs

energy in green. The black curve corresponds

to the physical limit r+ =
√

φ2 − 1 on which a

is infinite and above which a becomes negative.

Let us note that while the negative sign of the isothermal capacitance κT does indicate

an electrical instability in the black hole the same for αφ does not point to any instability

as such. Indeed, charge is conjugate to the potential and not temperature.

The zeros and the infinities of Cφ, κT , αφ and the zeros of G have been plotted together

in the a−r+ plane of figure 6. The two magenta colored curves corresponding to the zeroes

of κT are seen to be the same as the stability curves corresponding to the divergence of

Cq in figure 1. The two red curves correspond to the infinities of Cφ, κT and αφ since

their divergence is governed by the same polynomial. The blue curve corresponds to the

zeros of Cφ while the brown curve corresponds to the zeros of αφ. Finally, the green curve

corresponds to the zeros of the Gibbs free energy. κT is positive below the lower magenta

curve, above the upper magenta curve, and between the two red curves. Cφ is positive

between the two red curves and above the blue curve. αφ is positive between the brown

and the lower red curve and above the upper red curve. However, as mentioned above,

the sign of αφ is not an indicator of a thermodynamic instability. It only indicates the

different responses of the black hole in the two regions. It can therefore be deduced that

that the black hole achieves complete local thermal and electrical stability in two regions.

One of them lies above the upper magenta curve while the other one lies in between the

upper red curve and the lower red curve. Global stability is attained in regions outside

the green curve. Further, as may be verified from eq. (2.29), φ = 1 corresponds to the line

a = 1 in the a − r+ plane, so that it demarcates the φ < 1 regions below from the φ > 1

regions above. Moreover, the φ = 1 line is fully thermodynamically stable (both locally
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and globally) for all temperatures starting with a BPS solution at r+ = 0 and T = 1/π, [7].

It can be seen that all the constant φ curves asymptote to the a = 1 line for large r+. Two

grey colored in curves have also been plotted in the figure, with the lower one at potential

φ = 0.98 and the upper one at φ = 1.02.

In figure 7 we plot the stability curves in the φ − r+ plane, with the stability curves

retaining the color coding of figure 6. The boundary of the physical region is indicated

by the black curve φ =
√

r2
+ + 1 on which the parameter a is infinite, and above which it

becomes negative. As before, the zeros of the Gibbs free energy are shown in green and

correspond to the Hawking-Page transition between the black hole and thermal AdS. The

regions of complete local thermodynamical stability lie between the upper red curve and

the lower red curve on the one hand and between the black curve and the upper magenta

curve on the other hand. Since G is positive below and negative above the green curve it

can be clearly seen that in the region bounded by the lower red curve and the green curve

the black hole is locally thermodynamically stable but globally unstable, in other words, it

is metastable. Also notice that for φ > 1 the black hole is always globally stable. It seems

therefore that the condition for thermodynamical stability requires more information than

can be obtained from the negativity condition for the Hessian of entropy. This is because

the Hessian provides only the red curves (infinities of Cφ)from its determinant and the

magenta curves from its principal minor (infinities of Cq) as shown in figure 6 and figure 7.

Evidently, the zeros of Cφ, shown by the blue curve in the two figures, does not appear

as a condition for the negativity of the Hessian, even though it plays an important role in

determining the phase structure.

We further illustrate the phase behaviour in the grand canonical ensemble by obtaining

constant potential curves. Figure 8 and figure 9 represent a typical isopotential curve in

the S − T and G − T plane respectively for φ < 1. The phase behaviour is similar to

the grand canonical ensemble of the RNAdS black hole as discussed in [12]. Fig (10)

shows a typical isopotential curve in S − T plane with φ > 1. The lower branch achieves

full thermodynamical stability for T > T2 (c.f caption of figure 10) which corresponds to

crossing to left of the upper magenta curve in figure 7. Whereas on the upper branch

both the horizon radius and the charge become large with increasing temperature, on the

lower branch only the charge becomes large while the radius r+ decreases and approaches

r =
√

φ2 − 1 as T approaches infinity. In figure 11 we draw isopotential curves of G

vs. T with the same potential as in figure 10. The lower branch of Gibbs free energy

corresponds to the upper branch of of S vs T curve in figure 10. From the figure it is

apparent that the black hole always has a negative Gibbs energy for φ > 1 so that the

temperature of the black hole formation itself could be considered as the Hawking Page

temperature. For φ = 1 there is only one branch and it is locally as well as globally

stable for all values of r+ as can easily be inferred from figure 7. Further, from eq. (2.31)

we can see that the φ = 1 black hole solution starts at a finite temperature T1 = 1/π

at r+ = 0 which, it can be verified, is the lower limit of black hole temperature for any

potential, [28].
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Figure 8. The figure shows an isopotential plot

of entropy S with the temperature T for the sin-

gle R-charged black hole in D = 5, with the po-

tential fixed at φ = 0.4. At the turning point

T = 0.44 and r+ = 0.67.

Figure 9. The figure shows an isopotential plot

of the Gibbs energy G vs T , with the potential

φ = 0.4. The locally stable branch is the one

with the lower free energy and it crosses zero at

THP = 0.46.
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Figure 10. Isopotential plot in S − T plane

at φ = 1.5. At the turning point (the Davies

point), TD = 0.62 and r+ = 1.43. Complete

thermodynamic stability is obtained on the lower

branch for T ≥ T2 = 0.72.

Figure 11. G vs T plot at φ = 1.5. The lower

free energy branch corresponds to the upper lo-

cally thermally stable branch of figure 10.
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Figure 12. φ− r+ plot showing zeros (in green) and infinities (in red) of the state space curvature

for a single R-charged black hole in D = 5. The blue curve indicates the zeros of Cφ while the black

curve corresponds to the physical limit in the φ − r+ plane.

We now briefly discuss the thermodynamic geometry associated with these single

charged black holes. The thermodynamic line element is positive in regions where the

Hessian of the entropy is negative. However, as we have seen, for the single charged black

hole there are regions of state space that are thermodynamically stable in spite of them not

meeting the requirement of stability according to the Hessian condition. In other words,

thermodynamic stability does not imply the positivity of the line element in this case.

The state space scalar curvature for the single non zero charge case is obtained as

follows

R =

(

1 + 7r2
+ + 6a + 6r4

+ + 3r2
+a − 3a2

) (

−3a2 + 2a − 3 − r2
+a − r2

+ + 2r4
+

)

π
(

2a + r2
+a − a2 − 1 + r2

+ + 2r4
+

)2

×
(

1 + r2
+

)

√

r2
+ + a

(

4a + 3r2
+a + 3r4

+ + 3r2
+

) (

1 + 2r2
+ + a

) (2.35)

Expectedly, the curvature diverges in the same regions as the heat capacity Cφ or the

susceptibilities κT and αφ. In figure 12 we plot the zeros of R in green and the infinities of R

(which are the same as the infinities of Cφ) in red. The zeros of Cφ are also included in the

plot and are shown in blue. Contrary to the RN-AdS case the zeros of R bear no relation

to the zeros of the Gibbs free energy. Ignoring the detailed phase picture as in figure 7 we

focus here only on the thermal stability. For φ < 1 thermodynamic geometry is not defined

in regions inside the lower red curve, which corresponds to the thermally unstable small

black hole branch of figure 8, since the line element is negative there. For the thermally

stable large black hole branch the state space curvature starts with a negative divergence

and becomes positive on crossing the green curve. A typical such curve has been shown in

the R − T plane in figure 13. For the case φ > 1, as mentioned earlier, the region between

the black curve and the blue curve corresponds to a thermally stable black hole, the region
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Figure 13. Isopotential plot of R vs T for the

single charge case with φ = 0.8

Figure 14. Isopotential plot of R vs T for the

single charge case with φ = 1.5.

between the blue curve and the upper red curve corresponds to the thermally unstable small

black hole while the region to the right of the upper red curve is the thermally stable large

black hole. A typical plot of R vs T for φ > 1 is shown in figure 14 where the red colored

branch corresponds to the thermally stable large black hole while the blue colored branch

corresponds to the thermally stable part of the small black hole branch. An interesting

observation from figure 12 is that for φ > 1 the red curve corresponding to the infinity of

R is closely aligned to one of the green curves corresponding to the zero of R. In fact, it

can be shown that in the large black hole limit the two curves coincide. This leads to a

simplification in the expression for the curvature of flat horizon black holes as will become

clear in a later discussion on the black holes with k=0. Admittedly, there seems to be no

relation between the zeros of the Gibbs free energy and the zeros of the curvature.

The asymptotic behaviour of the state space scalar curvature at high temperatures

can also be determined. It can be verified that for both the large black hole branch and

the stable small black hole branch, the decrease of the state space curvature at large

temperatures is given by

R ∼ 1

T 3
(2.36)

2.2 k=1, case 2

In this case two of the three U(1) charges become equal while the third becomes zero so

that we have q1 = q2 = q, q3 = 0. The first law of thermodynamics for this case becomes

dM = TdS + 2φdq (2.37)

Since in this case fluctuations in the equal charges are also the same we can as well

interpret this to be a black hole system with charge 2q. Absorbing the factor of two into
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the definition of charge the first law can be rephrased as

dM = TdS + φdq (2.38)

We list the thermodynamic quantities for these “2-charged” black holes. The mass

becomes

M =
3

2
r+

2 +
3

2
r+

4 + 3 ar+
2 +

3

2
a2 + 2 a (2.39)

while the entropy and charge are obtained as

S = 2π
(

r+
2 + a

)

r+ (2.40)

and

q = 2
√

a
√

r+
2 + a

√

1 + r+
2 + a (2.41)

The temperature and the electric potential are similarly given as

T =
1

2

r+

(

1 + 2 r+
2 + 2 a

)

π (r+
2 + a)

(2.42)

and

φ =

√
a
√

1 + r+
2 + a

√

r+
2 + a

(2.43)

Interestingly, in this case the temperature goes to zero at the naked singularity as can be

checked by setting r+ = 0 in eq. (2.40) and eq. (2.42).

Let us now discuss the phase behaviour of these two charged black holes. We consider

the canonical ensemble first. The Helmholtz free energy for the two charge case is given by

F =
1

2
r+

2 − 1

2
r+

4 + ar+
2 +

3

2
a2 + 2 a (2.44)

The heat capacity at constant charge Cq is obtained as

Cq = 2π
r+

(

1 + 2 r+
2 + 2 a

) (

r+
2 + a

) (

3 a2 + 6 ar+
2 + 2 a + 3 r+

4 + 3 r+
2
)

6 a3 + 14 a2r+
2 + 7 a2 + 2 a + 8 ar+

2 + 10 ar+
4 + r+

4 + 2 r+
6 − r+

2
(2.45)

We can invert eq. (2.41) for q and express a in terms of q and r+. The expression is

lengthy and we will not reproduce it here. Owing to the algebraic difficulty involved, it is

difficult to obtain the divergence in Cq, eq. (2.45), in terms of q and r+ in a closed form by

using the inversion just mentioned. However, instead we can obtain a as a function of r+

by solving for the zero of the denominator of Cq which controls its divergence. Plugging

the expression for a thus obtained into eq. (2.41) for q we obtain the stability curve in

q − r+ plane. In an analogous manner the curve for the zeros of F may be obtained.

Figure 15 is a plot of the phase structure in the canonical ensemble, with the the heat

capacity Cq negative inside and positive outside its magenta colored curve of divergence.

The green curve represents the zero of the Helmholtz energy F which is negative to the

right of the curve. Once again we may say that the thermal gas of R-charged particles

has approximately zero free energy so that the black hole is globally stable against the
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Figure 15. Phase structure in the q− r+ plane

for the canonical ensemble in the two charge

case. The stability curve showing infinities of

Cq is magenta colored with the maxima at q =

qc = 0.220 while the zeros of Helmholtz energy

are colored green.

Figure 16. Constant charge plots of the

Helmholtz free energy F vs. T . The blue and

magenta colored curves have subcritical charges

q = 0.12 and q = 0.16 respectively while the red

colored curve is the critical curve q = qc = 0.220

and the green curve has q = 0.28 > qc.

thermal charged gas only to the right of the green curve. The constant charge lines which

cross the Cq stability curve two times will display a typical first order behaviour, with

the stable small black hole branch separated from the unstable large black hole branch

by an unstable branch. The constant charge line which is tangent to the Cq stability

curve is the critical curve while the point of tangency is the critical point of the second

order phase transition. In terms of the thermodynamic variables temperature and charge

it corresponds to (T, q) = (0.440, 0.220) while in terms of the black hole parameters it

corresponds to (r+, a) = (0.551, 0.274).

In figure 16 we show iso-charge plots of the free energy vs. temperature for some

representative charges below and above the critical charge. The “swallow tail” shape of

the subcritical plots indicates a first order phase behavior. It can also be seen that the

critical temperature is less than the first order transition temperatures as in the single

charge case. The critical exponents can be obtained in a manner similar to the single

charge case. They are the same as the previous case and are given by

α =
2

3
, β =

1

3
, γ =

2

3
, δ = 3 . (2.46)

We now turn to the phase behaviour in the grand canonical ensemble. The Gibbs free

energy for the two charge case becomes

G =
1

2
r+

2 − 1

2
r+

4 − ar+
2 − 1

2
a2 (2.47)

The heat capacity at constant potential Cφ becomes

Cφ = 2π
r+

(

1 + 2 r+
2 + 2 a

) (

r+
2 + a

) (

a2 + 4 ar+
2 + 3 r+

4 + 3 r+
2
)

2 a3 + a2 + 6 a2r+
2 + 6 ar+

4 + 2 ar+
2 + r+

4 − r+
2 + 2 r+

6
(2.48)
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Figure 17. Phase structure of the two charge

case in the φ − r+ plane for the grand canon-

ical ensemble. The stability curve showing

infinities of Cφ is in red while the zeros of

κT and G are in magenta and green respec-

tively. The grey colored isotherms are at T =

0.120, 0.320, 0.440(Tc), 0.450 from top to bottom.

Figure 18. Isotherms for the two charge

case in the φ − q plane with T = 0.420,

0.440(Tc), 0.449, 0.450 from top to bottom. The

critical isotherm is colored red while the rest

are in grey. Here φ acts as the order parameter

which jumps across a first order transition.

The susceptibilities κT and αφ are given as

κT =

(

6 a3 + 14 a2r+
2 + 7 a2 + 10 ar+

4 + 2 a + 8 ar+
2 + r+

4 − r+
2 + 2 r+

6
)

2 (r+
2 + a)−1 (2 a3 + a2 + 6 a2r+

2 + 6 ar+
4 + 2 ar+

2 + r+
4 − r+

2 + 2 r+
6)

(2.49)

and

αφ = 4

√
ar+

(

r+
2 + a

)3/2 (

1 + r+
2 + a

)3/2
π

2 a3 + a2 + 6 a2r+
2 + 6 ar+

4 + 2 ar+
2 + r+

4 − r+
2 + 2 r+

6
(2.50)

For the two charge case, as opposed to the single charge case, the Hessian alone is

enough to determine the regions of stability in the parameter space, since the only poly-

nomials which control the sign or the divergences of the susceptibilities are those which

govern the divergence (as well as the sign) of the two heat capacities. In order to obtain

the phase behaviour it will be useful to invert eq. (2.43) for φ and obtain a as a function

of φ and r+,

a = −1

2
− 1

2
r+

2 +
1

8
φ2 + 1/8

√

φ4 − 8φ2 + 8 r+
2φ2 + 16 + 32 r+

2 + 16 r+
4 (2.51)

In terms of φ and r+ the temperature can be expressed as

T =
r+(4 r+

2 + φ2 +
√

φ4 − 8φ2 + 8 r+
2φ2 + 16 + 32 r+

2 + 16 r+
4)

π (4 r+
2 − 4 + φ2 +

√

φ4 − 8φ2 + 8 r+
2φ2 + 16 + 32 r+

2 + 16 r+
4)

(2.52)

Using eq. (2.51) the local and global stability conditions can be obtained with φ as a

function of r+ in a straightforward manner. In figure 17 we plot the grand canonical phase
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structure in the φ−r+ plane. The red colored local stability curve represents the divergence

of Cφ which is negative inside the curve. The green colored curve is the Hawking-Page curve

below which the black hole is globally unstable. From the figure it is apparent that the

locally unstable regions are always globally unstable while there exists a region of meta-

stability between the Hawking-Page curve and the Cφ curve. Note that the Cφ-stability

curve meets the y-axis at φ = 1 so that beyond this potential the black holes are globally

as well as locally stable for all temperatures. Below φ = 1 the black hole exhibits a typical

“Davies phase ” behaviour as encountered in the case of the RN-AdS black holes in the

grand canonical ensemble for example. The magenta colored curve inside the Cφ-stability

curve corresponds to the zeros of the susceptibility κT so that it is positive inside the

magenta curve, negative in between the magenta and the red curves and positive outside

the red curve. The stability of κT is important in the consideration of isotherms, some of

which have been shown in the figure in grey color. Further, in figure 18 we plot isotherms

in the φ− q plane in the vicinity of the critical isotherm corresponding to T = Tc = 0.440.

Here, just as in the case of the RN-AdS black holes in the canonical ensemble (see [9]), φ

is the order parameter which jumps across a first order phase transition at constant q.

The thermodynamic curvature for the two charge case can be similarly found to be

R =
1

2

AB
(

2 a3 + a2 + 6 a2r+
2 − 3 r+

2 + 6 ar+
4 − r+

4 + 2 r+
6
)

r+ C (2 a3 + a2 + 6 a2r+
2 + 6 ar+

4 + 2 ar+
2 + r+

4 − r+
2 + 2 r+

6)2
(2.53)

where the polynomials A, B, C are given as

A = 2a2 + a + 4ar2
+ + 2r2

+ + 2r4
+

B = 6r6
+ + r2

+ + 7r4
+ + 18ar4

+ + 14ar2
+ + 7a2 + 6a3 + 18a2r2

+ + 2a

C = 3a2 + 6ar2
+ + 2a + 3r4

+ + 3r2
+ (2.54)

The state space curvature diverges as the square of the heat capacity Cφ and also

changes sign by passing through zero as dictated by the polynomial in the numerator of

its expression in eq. (2.53). The zeros and divergences of the state space curvature have

been represented in figure 19. The curvature also shows a divergence at zero temperature

for φ > 1. However, we shall ignore this divergence as thermodynamics breaks down at

extemality and quantum effects assume significance. It is apparent that the zeros of the

curvature bear no relation to the Hawking-Page transition as was seen in the case of RNAdS

black holes in four dimensions, [12]. Interestingly, it can be see from the figure that for

1.07 > φ > 1 the curvature turns negative briefly before becoming positive again while for

φ > 1.07 it is positive for all temperatures. Figure 20 displays isopotential plots of R vs. T

for some representative values of the potential. The behaviour of R at large temperatures

is the same as in eq. (2.36), namely it decreases as the cube of inverse temperature.

2.3 k=1, case 3

The case of three equal charges for the D = 5 R-charged black holes has been discussed

in detail in [9] and [10] where it was shown that these black holes are equivalent to the

RN-AdS black holes in five dimensions. This is because on setting the three charges equal
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Figure 19. Plot of zeros (in black) and infinities

(in red) of R in the φ−r+ plane for the two charge

case. R is positive outside the black curve. The

green curve is the Hawking-Page curve.

Figure 20. Isopotential plots of R vs. T for

φ = 0.98, 1.05, 1.12 in green, blue and red re-

spectively.

the Maxwell fields decouple from the scalar fields obtained by compactification on S5. Let

us now briefly discuss the thermodynamics and phase structure in this case.

The first law for the three charge case becomes

dM = TdS + 3φdq (2.55)

Just as in the two charge case we reinterpret the total charge 3q as the charge q of the

black hole. In this case there exist extremal black holes as can be seen from the expression

for the temperature

T =
1

2

r+
4 + 2 r+

6 + 3 ar+
4 − a3

π (r+
2 + a)3/2 r+

2
(2.56)

The heat capacity Cq and Cφ are given respectively as

Cq = 6

(

r+
4 + 2 r+

6 + 3 ar+
4 − a3

)

π
(

r+
2 + a

)3/2

5 a3 + 12 a2r+
2 + 4 ar+

2 + 9 ar+
4 + 2 r+

6 − r+
4

(2.57)

and

Cφ = 6

(

r+
4 + 2 r+

6 + 3 ar+
4 − a3

)

π
(

r+
2 + a

)3/2

a3 + 4 a2r+
2 + 5 ar+

4 + 2 r+
6 − r+

4
(2.58)

Similar to the two charge case, the susceptibilities give no additional information regarding

the phase structure.

The state space scalar curvature is also obtained in a straightforward manner as

R =
r2
+

(

3a3 + 8a2r2
+ + 7ar4

+ − 3r4
+ + 2r6

+

)

3π
(

a3 + 4a2r2
+ + 5ar4

+ + 2r6
+ − r4

+

)2 (

r4
+ + 2r6

+ + 3ar4
+ − a3

)

×
(

6r6
+ + r4

+ + 15ar4
+ + 4ar2

+ + 12a2r2
+ + 3a3

)

√

r2
+ + a (2.59)
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Figure 21. q − r+ plane plot of the phase

structure of the canonical ensemble for the three

charge case showing the infinities of Cq in ma-

genta, zeros of Helmholtz energy in green and

the extremal curve in blue. The critical charge

qc = 0.258.

Figure 22. φ−r+ plane plot of the phase struc-

ture in the grand canonical ensemble for the three

charge case showing the infinities of Cφ in red,

zeros of the Gibbs energy in green and the ex-

tremal curve in blue. Additionally, the zeros of

R are shown in black.

In figure 21 we show the phase structure in the canonical ensemble. Constant charge

processes exhibit a phase coexistence behaviour for q < qc = 0.258 while at the critical

value of the charge the black hole undergoes a second order phase transition between the

small black hole and the large black hole at Tc = 0.441. The critical values of the black

hole parameters are (ac, r+c) = (0.016, 0.563). The critical exponents can be calculated in

a manner similar to the previous cases and they are given as

α = 2/3, β = 1/3, γ = 2/3, δ = 3 . (2.60)

This is expected, since these black holes are equivalent to the RNAdS black holes in

five dimensions and the RNAdS black holes in all dimensions have the same set of critical

exponents in the canonical ensemble as above, [10, 27].

In figure 22 we show the phase structure in the grand canonical ensemble. For φ < 1 we

encounter the usual “Davies” phase behaviour followed by a Hawking-Page phase transition

to a globally stable phase. For φ > 1 the black holes are locally as well as globally stable

and also show extremality. Notice that now the zeros of R do not exceed the φ = 1 line as

in the two charge case so that for all values of potential greater than one the state space

curvature remains positive.

3 The case k=0

R-charged black holes in N = 8 D = 5 gauged supergravity with a planar horizon ( k = 0)

are equivalent to the near horizon geometry of near-extremal spinning D3-branes. The

charges on the black holes are recovered by a Kaluza-Klein reduction of the ten-dimensional

D3-brane solution on S5, [7]. The k = 0 solution can also be recovered as large black hole
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limit of the compact k = 1 solution. That is, one takes the limit k → 0+ by setting

r+ ≫ l, ai ≫ l2 (3.1)

where l is the AdS length scale. The details have been worked out extensively in [7].

Taking the limit as mentioned in the previous paragraph we write down the expression

for the thermodynamic variables for the k = 0 black hole. The mass and the charges are

M =
3

2

(

r+
2 + a1

) (

r+
2 + a2

) (

r+
2 + a3

)

r+
2

q1 =

√
a1

√

(r+
2 + a1) (r+

2 + a2) (r+
2 + a3)

r+

, etc. (3.2)

while the entropy remains the same. Similarly, the temperature and the conjugate poten-

tials are given by

T =
1

2

2 r+
6 + r+

4a3 + r+
4a2 + r+

4a1 − a1a2a3

πr2
+

√

r+
2 + a1

√

r+
2 + a2

√

r+
2 + a3

(3.3)

and

φ1 =

√

r+
2 + a3

√

r+
2 + a2

√
a1

r+

√

r+
2 + a1

, etc. (3.4)

In the following we shall briefly sketch the phase structure and thermodynamic geom-

etry of the flat horizon R-charged black holes for the three cases mentioned in eq. (2.12).

For detailed discussions on the phase structure of planar R-charged black holes, we refer

to [29].

We shall now briefly discuss the single charge case, i.e the first case. For the single

charge case the temperature becomes

T =
1

2

2 r+
2 + a

√

r+
2 + aπ

(3.5)

The heat capacity Cq is given as

Cq = 6

(

2 r+
2 + a

) (

r+
2 + a

)3/2
r+

2

5 ar+
2 − a2 + 2 r+

4
(3.6)

Similarly, the heat capacity Cφ and the susceptibilities κT and αφ become, respectively,

Cφ = 2

(

2 r+
2 + a

) (

a − 3 r+
2
)

r+
2

√

r+
2 + a (a − 2 r+

2)
, (3.7)

κT =
−5 ar+

2 + a2 − 2 r+
4

(a − 2 r+
2)

, (3.8)

and

αφ = 4π

(

−r+
2 + a

)√
ar+

a − 2 r+
2

. (3.9)
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The Gibbs free energy and the Hehlmontz free energy are given respectively as

G = −1

2

(

r+
2 + a

)

r+
2 (3.10)

and

F =
1

2
r2

(

−r2 + a
)

(3.11)

Note the Gibbs free energy is always negative in this case, so that the black hole is

always globally stable in the grand canonical ensemble.

The thermodynamic curvature is obtained as

R =
3 a − 2 r+

2

(a − 2 r+
2) (2 r+

2 + a) π
√

r+
2 + a

(3.12)

Note that the above expression can be obtained from the corresponding one for the

k = 1 case in eq. (2.35), by taking the large black hole limit of eq. (3.1). This is expected,

because of the thermodynamic equivalence of black holes in the case k = 0 and the large

black holes for k = 1.2

Just as in the previous cases the state space curvature diverges along with the heat

capacity at fixed potential. The behaviour of the curvature with temperature is the same

as in the compact horizon case, namely the state space curvature goes as the inverse third

power of the temperature. However, a prominent difference with the compact black hole

cases is that R diverges as Cφ and not as the square of Cφ as in the previous cases. This

can be understood by referring to the discussion on figure 12 where it was observed that

for φ > 1, one of the zeroes of R is closely aligned to the polynomial that appears in its

denominator. It can be checked that by taking the large black hole limit of eq. (3.1), that

these curves exactly coincide, leading to observation above.

The thermodynamic behaviour of the R-charged black holes for the two charge and

three charge cases in case of flat horizon is completely regular. Let us briefly discuss the

two cases.

For the two charge case the temperature becomes independent of the parameter a and

is simply given as

T =
r+

π
(3.13)

The Gibbs free energy remains negative while the Helmhontz free energy becomes

F =
1

2

(

r+
2 + a

) (

−r+
2 + 3 a

)

(3.14)

The state space curvature is given as the simple expression

R =
1

2π

1

(r+
2 + a) r+

(3.15)

2For all the charge configurations considered in this paper, this will always be the case, i.e the equilibrium

state space scalar curvature for the k = 0 cases can be obtained by taking the large black hole limit of the

corresponding configurations for the k = 1 cases.
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For the three charge case the temperature becomes

T =
1

2

√

r+
2 + a

(

−a + 2 r+
2
)

π r+
2

(3.16)

The Gibbs free energy is once again always negative while the Helmhontz free energy

becomes

F =
1

2

(

r+
2 + a

)2 (

−r+
2 + 5 a

)

π r+
2

(3.17)

The state space curvature becomes

R = − r+
2
(

3 a + 2 r+
2
)

π (r+
2 + a)3/2 (a − 2 r+

2) (2 r+
2 + a)

(3.18)

It can be verified that for both the two charge and the three charge cases at high temper-

atures, the thermodynamic curvature goes as the inverse third power of the temperature,

which therefore appears to be the case for all black holes in D=5.

4 R-charged black holes in AdS4

Black holes in N = 8 D = 4 supergravity have four R-charges corresponding to the SO(8)

gauge symmetry arising out of isometries in S7 of AdS4×S7. These black holes are obtained

by a Kaluza-Klein compactification of near horizon region of near extremal M2- branes. The

thermodynamics and phase behaviour (mainly the single charge case) of these black holes

have been studied in [7] to which we refer for the general thermodynamic expressions. In

this section we shall briefly discuss the additional features in the grand canonical ensemble

for the single charge case and the scaling behaviour in the canonical ensemble for the three

charge case of these black holes. By the latter we mean that three charges are set equal

while the fourth charge is set to zero. The case of all four charges being equal corresponds

to the RN-AdS black hole in four dimensions, [9].

The mass, charge and entropy corresponding to the single charge black hole can be

expressed in terms of the black hole radius r+ and its charge parameter a as

M = 2 r+ + 2 r+
3 + 2 r+

2a + a, (4.1)

q =
√

a
√

r+ + a
√

1 + r+
2, (4.2)

and

S = 4π r+
3/2

√
r+ + a. (4.3)

Just as in the single charge case for D=5 the BPS bound can be shown to be saturated

only for r+ = 0. The intensive variables temperature and potential are given as

T =
1

4

1 + 3 r+
2 + 2 r+a

π
√

r+

√
r+ + a

, (4.4)
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Figure 23. φ− r+ plot for the grand canonical ensemble of single R-charged black holes in D=4.

The plot shows divergence and zeros of Cφ in red and blue respectively, zeros of κT in magenta,

zeros of αφ in dotted brown, zeros of the Gibbs potential in green and the physical limit curve

φ =
√

r2
+ + 1 in black.

and

φ =

√
a
√

1 + r+
2

√
r+ + a

. (4.5)

The heat capacities and the susceptibilities are given as

Cφ = 4

(

1 + 3 r+
2 + 2 r+a

)

π r+
3/2

√
r+ + a

(

r+a − 2 − 2 r+
2
)

−3 r+
4 + 2 a2r+

2 + 1 − 3 r+a − 2 r+
2 − ar+

3
(4.6)

Cq = 4

(

1 + 3 r+
2 + 2 r+a

) (

2 r+
3 + 2 r+

2a + 2 r+ + 3 a
)

π r+
3/2

√
r+ + a

−a + 6 ar+
4 + 3 r+

5 + 2 r+a2 − r+ + 7 r+
2a + 2 r+

3
(4.7)

κT = −(r+ + a)
(

−a + 6 ar+
4 + 3 r+

5 + 2 r+a2 − r+ + 7 r+
2a + 2 r+

3
)

r+ (−3 r+
4 + 2 a2r+

2 + 1 − 3 r+a − 2 r+
2 − ar+

3)
(4.8)

αφ = 4

√
a
√

1 + r+
2 (r+ + a)

(

−1 − r+
2 + 2 r+a

)

π
√

r+

−3 r+
4 + 2 a2r+

2 + 1 − 3 r+a − 2 r+
2 − ar+

3
(4.9)

We re-emphasize that while the negative sign of the isothermal compressibility κT

implies a thermodynamic instability the negative sign of the “isobaric” expansivity αφ

does not imply any such instability.

For the single charge case the canonical ensemble is simpler than the corresponding

case for D=4 in that it does not exhibit a phase coexistence behaviour for any charge. The

details of canonical ensemble phase behaviour have been worked out in [7]. We shall now

briefly discuss the phase behaviour in the grand canonical ensemble.

The Gibbs free energy for the single charge black holes is obtained as

G = −r+

(

r+
2 + r+a − 1

)

(4.10)
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In order to express the thermodynamic quantities in terms of the potential we find it

convenient to invert eq. (4.5) and express the parameter a in terms of r+ and φ

a =
r+φ2

1 − φ2 + r+
2

(4.11)

Using the above substitution for a every other thermodynamic variable may be ex-

pressed n terms of the potential and the horizon radius. In figure 23 we plot the grand

canonical phase structure in the φ− r+ plane. The two red curves indicate the divergence

in the heat capacity Cφ as well as the susceptibilities. The magenta curve within the lower

red curve corresponds to the zeros of the isothermal capacitance αT which is the same as

the infinities of the heat capacity at constant charge Cq. Notice the difference with the D=5

case, figure 6, which has an additional branch of zeros of αT for φ > 1. Incidentally, the

brown curve corresponding to the zeros of κT intersects the green colored Hawking-Page

curve at its minima at r+ = 1/
√

3 and φ = 0.943. The phase behaviour can be described

as follows. The heat capacity Cφ is positive between the lower and upper red curves and

between the black and the blue curves. The isothermal capacitance αT is positive below

the magenta curve and between the two red curves. The “expansivity” κT is positive be-

tween the dotted brown curve and the lower red curve and between the upper red curve

and the black curve. Moreover, for φ < 0.943 the globally stable black holes always have

positive expansivity while for φ > 0.943 the globally stable black holes have a negative

expansivity up to a certain horizon radius determined by the intersection of the constant

potential straight line with the brown curve. The region of full thermodynamical stability

now only corresponds to the one in between the two red curves. The region in between

the blue curve and the black curve, even though thermally stable, is electrically unstable

since there is no upper branch of the magenta curve as in figure 6 to effect a sign change

in the compressibility. As usual, the region between the lower red curve and the green

Hawking-Page curve is metastable.

The thermodynamic curvature for the single charge case is given as

R =

(

−a + 2 ar+
4 + 6 r+

5 + 2 r+a2 + 7 r+
2a + 6 r+

3 − 4 a2r+
3
)

(3 r+
4 − 2 r+

2a2 − 1 + 3 r+a + 2 r+
2 + r+

3a)2

× A
(

−2 r+
2a2 − 1 + r+a − r+

3a + r+
4
)

(2 r+
3 + 2 r+

2a + 2 r+ + 3 a)
(4.12)

where

A =
9

4

(

1 + r+
2
)√

r+ + a
√

r+ (1 + 3 r+
2 + 2 r+a) π

(4.13)

The curvature diverges in an expected manner as the square of the heat capacity Cφ or

the susceptibilities. The zeros of R have a similar distribution in the φ − r+ plane as the

zeros of R for the single charge case of R-charges black holes in D=5. This means that one

of the polynomial in the numerator of the expression for the curvature has its zeros which

closely follow the upper red branch in figure 23. Further, it can be verified that at large

temperatures the state space curvature goes as

R ∼ 1

T 2
(4.14)
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The thermodynamics of the k=0 case, which corresponds to a Kaluza-Klein compact-

ification of the M2-brane, can be recovered from the k=1 case by taking the limit

r+ ≫ l and ai ≫ l, (4.15)

The thermodynamic curvature for the single charge black hole with k=0 becomes,

R =
9

4

2 a − r+√
r+ + a (3 r+ + 2 a) π

√
r+ (2 a − 3 r+)

(4.16)

Once again this can be understood by taking the large black hole limit, eq. (4.15), of the

thermodynamic curvature for the k=1 case.

For the three charge case, namely, three charges are set equal while the fourth charge

is set to zero, the D=4 black hole exhibits a phase coexistence behaviour terminating in

a critical point for the canonical ensemble, much like the two charge case for the D=5

black hole. The critical parameters are (a, r+, T, q) = (0.091, 0.320, 0.257, 0.629) while

the critical exponents are the same as in the D=5 black holes. It can be verified that

the thermodynamic curvature behaves in the same manner at high temperatures, as in

eq. (4.14), for all D=4 black holes.

5 R-charged black holes in AdS7

R-charged black holes in N=4, D=7 supergravity are obtained in the near horizon limit of

the near extremal M5-branes. They carry two independent R-charges corresponding to the

isometries of S4 in the near horizon geometry AdS7 ×S4. The thermodynamics and phase

structure of the single charge D=7 black holes was first discussed in [5]. For the single

charge compact horizon black holes, the mass, charge and entropy become

M =
5

4
r+

4 +
5

4
r+

6 +
5

4
r+

2a + a (5.1)

q =
√

a
√

r+
4 + a

√

r+
2 + 1, (5.2)

and

S = π r+
3
√

r+
4 + a. (5.3)

while the intensive variables temperature and potential are

T =
1

2

2 r+
2 + 3 r+

4 + a

π
√

r+
4 + ar+

, (5.4)

and

φ =

√
a

√

r+
4 + a

. (5.5)

The BPS bound is saturated at the naked singularity r+ = 0 just as in the single

charge cases of the previous black holes. The heat capacities and the susceptibilities are
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given as

Cφ =

(

2r+
2 + 3r+

4 + a
)

π
√

r+
4 + ar+

3
(

a − 5r+
4 − 5r+

2
)

2r+
4 − r+

6 − 3r+
8 − 2r+

4a − 3r+
2a + a2

(5.6)

Cq = −r+
3
(

2r+
2 + 3r+

4 + a
) (

5r+
2a + 6a + 5r+

6 + 5r+
4
)

π
√

r+
4 + a

2r+
6 − r8 − 3r+

10 − 12r+
6a + 2a2 − 17r+

4a + 3r+
2a2 − 4r+

2a
(5.7)

κT =

(

r+
4 + a

) (

−2r+
6 + r+

8 + 3r+
10 + 12r+

6a − 2a2 + 17r+
4a − 3r+

2a2 + 4r+
2a

)

r+
2 (−2r+

4 + r+
6 + 3r+

8 + 2r+
4a + 3r+

2a − a2)

(5.8)

αφ = 4

√
a
√

r+
2 + 1r+

(

r+
4 + a

) (

2r+
4 + 2r+

2 − a
)

π

−2r+
4 + r+

6 + 3r+
8 + 2r+

4a + 3r+
2a − a2

(5.9)

The Helmholtz and the Gibbs free energies are obtained as

F =
1

4
r+

4 − 1

4
r6 +

3

4
r+

2a + a (5.10)

and

G = −1

4
r+

2
(

r+
4 − r+

2 + a
)

(5.11)

In figure 24 we obtain the phase structure in the canonical ensemble in the q − r+

plane. The two magenta curves, the first one being open and the second one being closed,

indicate the divergence in the heat capacity Cq while the green line indicates the zero of

the Helmholtz free energy. The heat capacity Cq is negative to the left of the first magenta

curve and inside the second magenta curve while it is positive everywhere else. The free

energy is negative to the right of the green curve. Because of the peculiar arrangement of

the Cq-stability curves an unstable black hole branch exists for all temperatures starting

from the “Davies” temperature while the stable branch itself displays a phase coexistence

behaviour somewhere above the Davies temperature. In figure 25 we further illustrate this

behaviour in an isocharge plot of the Helmholtz free energy vs. temperature. The curve

on the positive y-axis which is almost a straight line and moves rightwards towards infinity

represents the unstable region to the left of the first magenta curve in figure 24 while the

rest of the phase coexistence behavior is due to the crossing by the iso-charge lines of

the lower magenta curve in figure 24. The critical point corresponds to the parameters

(a, r+, T, q) = (0.011, 0.721, 0.774, 0.069). It can be verified that the critical exponents are

the same as those for the previous black hole cases, namely,

α = 2/3, β = 1/3, γ = 2/3, δ = 3 . (5.12)

The thermodynamic curvature is given as

R =

(

−6 r+
6 − 21 r+

8 − 15 r+
10 − 4 r+

2a − 17 r+
4a − 10 r+

6a + 5 r+
2a2 + 2 a2

)

(2 r+
4 − r+

6 − 3 r+
8 − 3 r+

2a − 2 r+
4a + a2)2

× 9
(

1 + r+
2
) (

a2 − r+
2a + 2 r+

4 + r+
6 − r+

8
)
√

r+
4 + a

πr (5 r+
6 + 5 r+

2a + 5 r+
4 + 6 a) (2 r2 + 3 r4 + a)

(5.13)
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Figure 24. q − r+ plane plot of the phase

structure in the canonical ensemble for the sin-

gle charge black hole in D=7 supergravity. The

magenta curves represent the infinities of Cq and

the green curve shows the zeros of F .

Figure 25. Plot of the Helmholtz free energy vs

temperature with the charge fixed at q = 0.03.

It can be verified that at large temperatures it behaves as

R ∼ 1

T 5
(5.14)

for the k=0 case the state space curvature becomes

R = 9

(

a − r+
4
)

r+

(−3 r+
4 + a) (3 r+

4 + a) π
√

r+
4 + a

(5.15)

Once again this can be recovered from eq. (5.13) by taking the large black hole limit which

for D=7 black holes corresponds to r ≫ l, , a ≫ l4. It can be verified that for all black

holes in D = 7, the equilibrium state space scalar curvature at high temperature behaves

as R ∼ 1

T 5 .

6 Discussions and conclusions

The present study is a logical culmination of the investigation initiated in our previous

papers [11] and [12], where we studied the thermodynamic geometry and critical phenomena

of asymptotically AdS black hoes in four dimensional Einstein Maxwell theory. In the

present paper, we have elucidated the issues of thermodynamic stability and the equilibrium

state space geometry of R-charged black holes arising in gauged supergravity theories.

Although the issue of stability for these black holes have been extensively studied over

the last few years, our work demonstrates certain novel features which complement earlier

results on the subject.

For the case of compact R-charged black holes in D = 5, 4 and 7, our results indicate

a novel liquid-gas like first order phase transition in the canonical ensemble, culminating
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at a second order critical point. Interestingly, we have shown that the critical exponents

are identical for all the cases mentioned above. Further, they also turn out to be the

same for those of the Kerr-AdS and KN-AdS black holes in D = 4 [12] and the RN-AdS

black holes in arbitrary dimensions [9]. This naturally suggests an interesting universality

in the critical behaviour of asymptotically AdS black holes. We have further shown that

in the grand canonical ensemble, the regions of stability for the single charged case are

more constrained than the results obtained through the positivity of the Hessian for the

appropriate system.

The equilibrium state space geometry for different charge configurations for the black

holes mentioned above have also been considered in this paper and the corresponding state

space scalar curvatures have been obtained. The curvatures diverge at the Davies points,

which correspond to the singularities in the heat capacity at constant potential in the grand

canonical ensemble. Note that thermodynamic geometry requires fluctuations in at least

two extensive variables, and therefore naturally alludes to a grand canonical ensemble.

Further, for the large black hole limit of the k = 1 case, the state space scalar curvature

has been shown to asymptote to the k → 0+ case, as expected.

It was shown in [6] and [7] that the divergence of the heat capacity Cφ in the grand

canonical ensemble in the single charge case signals a second order phase transition in the

dual field theory. The critical exponents for this phase transition have been calculated

in [6]. We point out here that the thermodynamic curvature does not scale as expected

(see, e.g [12]) at these critical points (the Davies points). The reason for this is that at the

Davies points, the system changes from an unstable to a stable branch.

We have also established the asymptotic behaviour of the scalar curvature at high

temperatures. It has been shown that R ∼ 1

T 3 for the D = 5 case, whereas for D = 4 and 7,

it goes as 1

T 2 and 1

T 5 respectively. The nature of the scalar curvature is clear for conventional

thermodynamic systems, as a correlation volume. For asymptotically flat black holes, the

interpretation is not quite well established. However, as a consequence of the gauge/gravity

duality, the thermodynamics of AdS black holes have a clear interpretation on the dual

field theory side. Hence, it is expected that the scalar curvature and its asymptotic forms

obtained in this paper should have specific interpretations in the the strongly coupled dual

field theory. We leave these issues for a future investigation.
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