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1 Introduction

In the Standard Model (SM) the only source of flavor violation arises from the Yukawa
couplings. In the limit of vanishing quark masses the SM Lagrangian acquires a large
global symmetry (known as flavor or horizontal symmetry) mixing SM fermions of different
generations. It is quite tempting to impose such a symmetry on the physics beyond the
SM in order to suppress extra flavor violation. In the extreme case where all new physics
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effects are flavor universal up to small corrections satisfying the full flavor symmetry and
proportional to the SM Yukawa, the scale of such new physics can be a TeV. This idea,
known as minimal flavor violation (MFV) is quite old [1, 2], but recently is gaining ever
more interest (see [3, 4]) as a consequence of the persistent failure to find flavor violation
beyond the Standard Model.

The idea of assuming horizontal symmetries to be true symmetries of nature is even
older [5–14]. Unfortunately such assumption itself is not enough to suppress flavor violation
below the experimental bounds when the flavor symmetry is broken at low scales. The
classical arguments against low-scale flavor symmetry work as follows (see, e.g., [15] for
a nice review). In order to produce the SM Yukawa couplings flavor symmetry must
eventually be broken by the vacuum expectation value (VEV) of some field (“flavon”).
This implies the presence of massless Goldstone bosons (GB) and bounds from hadron
decays and astrophysics on such states are even stronger than those from flavor physics.
Of course GBs can be easily avoided by gauging. In this case, however, there are flavor
gauge bosons that mediate dangerous flavor changing neutral currents (FCNC) and their
masses must be well above the TeV scale.1

Even requiring that the only sources of flavor breaking are the SM Yukawas is not
enough to avoid large FCNC from the flavor gauge bosons. Indeed if the masses of the
gauge bosons are proportional to the SM Yukawa couplings, they generate tree-level four-
fermion operators proportional to inverse powers of the SM Yukawa couplings, enhancing
FCNC among the first generations. Therefore despite the fact that the only spurions
breaking flavor are the SM Yukawa couplings, as in MFV, inverse powers of the spurions
appear in the higher dimensional operators, producing de facto “maximal” flavor violating
operators. This argument shows how MFV models cannot arise directly from having a
fundamental flavor symmetry in the underling theory but rather from accidental ones.

In the classical argument against low-scale flavor gauge bosons sketched above we can
easily identify a way out. If the fields breaking the flavor symmetry are instead proportional
to the inverse of the SM Yukawa couplings, the effective operators generated by integrating
out the flavor gauge bosons will be roughly proportional to positive powers of the Yukawa
couplings, suppressing flavor violating effects for the light generations, much like in MFV
models. The spectrum of the extra flavor states, controlled by the flavon VEVs, will thus
present an inverted hierarchy, with states associated to the third generation much lighter
than those associated to the first two. Models implementing this inverted hierarchy were
first introduced in [18–20].

Remarkably, as we will show in this paper, the mechanism described above is automatic
in the minimal extension of the SM with gauged flavor symmetries. With just the SM
fermion content the full SM plus flavor gauge group would be anomalous. Extra flavorful
fermions have to be added to cancel these anomalies. Such fermions are also welcome as
they can make the SM Yukawa terms arise from a renormalizable Lagrangian, now that
the Yukawa couplings have been uplifted to dynamical “flavon” fields. The smallest set

1Gauging only an abelian subgroup would not help because FCNC are reintroduced after the rotation

needed to go to the mass eigenstate basis.
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of fermions canceling all anomalies leads automatically to the inverted-hierarchy structure
mentioned above. The quantum numbers of these extra fermions are indeed such that
the mixing with the SM fermion is flavor diagonal while their masses are proportional
to the flavon VEVs. The SM fermion masses arise via a see-saw like mechanism, after
integrating out the extra fermions, and are thus proportional to the inverse of the flavon
VEVs. All non-SM particle masses (fermions, vector bosons and flavon fields) are controlled
by the flavon VEVs, thus they are roughly proportional to the inverse of the SM Yukawa.
The resulting inverted hierarchy in the new physics sector protects the SM fermions from
getting large flavor breaking effects even when the lightest new states lie at the electroweak
scale.

There are a number of analogies with MFV models: new physics effects are controlled
by the flavor group, we may have models where only one spurion for each SM Yukawa
matrix breaks the flavor symmetry, and the flavor breaking effects follow the hierarchical
structure of the Yukawa couplings. However, this kind of models are not MFV. Indeed,
in these models there is a limit where all Yukawa couplings vanish but flavor breaking
effects remain finite. Contrary to the naive intuition that flavor violating effects must be
larger than in MFV, it is very easy to find values of the parameters that produce extra
flavor non-universal states without incurring into a flavor problem. Moreover, unlike in
MFV, these could be light, even below the electroweak scale. The tightest bounds on this
kind of models do not come from flavor breaking observables but rather from electroweak
precision tests (EWPT) and direct searches for new particles, opening the possibility for
direct discoveries of flavor physics at the LHC.

The mechanism protecting from flavor violations is robust against deformations of the
model, both when more flavon fields are considered and when the nature of the flavor
subgroup that is actually gauged is changed. Of course the detailed structure of the flavor
sector as well as the size of the flavor violations will depend on these modifications but
the latter will continue to remain sufficiently small in most of the parameter space of the
theory.

We should point out that the possibility of having non-universal gauge bosons (and
other flavorful physics) at the TeV scale is well known in the literature. In composite Higgs
models and similar extra-dimensional constructions, for example, there is the possibility
of having extra flavorful gauge bosons. Unlike in our case however, these vector fields are
not “the” flavor gauge bosons (viz. they are not the states eating the Goldstone bosons of
the broken flavor symmetry), but rather gauge bosons in some non-trivial representation
of the flavor group, getting mass splitting from the breaking of the flavor symmetry (which
generically is explicit in these models). In this respect they are closer to realizing the MFV
idea (see, e.g., [16, 17]).

In the rest of the paper we give the details on how the mechanism works, we will
discuss where the strongest bounds on the model come from and possible signatures at
hadron colliders. For definiteness we will focus on the quark sector, gauging the full flavor
group and considering mainly the minimal set of flavon fields, although the same mechanism
can easily be applied to more general situations.
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2 Inverted hierarchies from anomaly cancellation

In the absence of Yukawas, focusing on the quark sector, the SM enjoys at the classical
level the global symmetry

U(3)QL
⊗U(3)UR

⊗U(3)DR
, (2.1)

where QL, UR and DR transform as fundamentals.
We assume this to be an exact symmetry of nature. In order to allow Yukawa couplings

the flavor symmetry should be broken spontaneously by the vacuum. This can be most
simply realized by the VEVs of two bifundamentals flavon fields transforming as

Yu = (3̄, 3, 1) ,

Yd = (3̄, 1, 3) .
(2.2)

In general the VEVs of these fields, while related, should not be confused with the Yukawa
matrices, as functions of Yu,d may have equal transformation properties. Indeed this will be
the crucial feature of our model. To avoid problematic flavor violating GBs, the symmetry
should be gauged. Within the SM the gauging of the SM flavor symmetry (2.1) is anomalous
due to cubic and mixed hypercharge anomalies. The simplest option to cancel the cubic
non-abelian anomalies is to add two right-handed colored fermions in the fundamental of
SU(3)QL

, one left handed fundamental of SU(3)UR
and one left-handed fundamental of

SU(3)DR
. In this way the fermions are vector-like with respect to the flavor gauge group

but remain chiral with respect to the SM gauge symmetry. The other possibility, with the
two right-handed triplets in an SU(2)L doublet is an uninteresting, non-chiral model. We
are therefore led rather uniquely to the following model:

SU(3)QL
SU(3)UR

SU(3)DR
SU(3)c SU(2)L U(1)Y

QL 3 1 1 3 2 1/6
UR 1 3 1 3 1 2/3
DR 1 1 3 3 1 -1/3
ΨuR 3 1 1 3 1 2/3
ΨdR 3 1 1 3 1 -1/3
Ψu 1 3 1 3 1 2/3
Ψd 1 1 3 3 1 -1/3
Yu 3 3 1 1 1 0
Yd 3 1 3 1 1 0
H 1 1 1 1 2 1/2

Remarkably, with the above matter content all the anomalies except U(1)QL
×SU(2)2

L and
U(1)QL

×U(1)2
Y automatically cancel. When, as required by cancellation of SM anomalies,

the leptons are introduced U(1)B−L remains anomaly free, so that U(1)QL
could also be

gauged by gauging the B − L combination. The VEVs of Yu and Yd break U(1)QL
×

U(1)UR
× U(1)DR

to the diagonal U(1) and an additional scalar field must be introduced
in order to break also U(1)B−L spontaneously. From now on we will focus on the gauging
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of SU(3)3 × U(1)2 which is the largest symmetry group broken by the SM Yukawa, other
gaugings will be considered later.

The most general renormalizable Lagrangian reads,

L =Lkin − V (Yu, Yd, H)+(
λuQLH̃ΨuR + λ′u ΨuYuΨuR +Mu ΨuUR+

λdQLHΨdR + λ′d ΨdYdΨdR +Md ΨdDR + h.c.
)
,

(2.3)

where Mu,d are universal mass parameters and λ(′)
u,d are universal coupling constants. By a

rotation of Ψu and ΨuR these parameters can be chosen to be real. The kinetic terms are
built from covariant derivatives, which in our conventions are given by

DQL = ∂QL + igQAQQL + ig3AcQL + igWQL + ig′ 16BQL (2.4)

and similarly for the other fields.
In general, the VEVs of Yu,d break the flavor symmetry to baryon number.2 By a flavor

transformation we can take Yd = Ŷd diagonal and Yu = ŶuV where V is a unitary matrix.
Integrating out the heavy fermions generates Yukawa interactions for the SM fields. At
leading order for Yu,d � Mu,d one immediately finds that the Yukawa couplings of the
SM are

yu = V †
λuMu

λ′uŶu
,

yd =
λdMd

λ′dŶd
.

(2.5)

Importantly the masses of the SM fermions follow an inverted hierarchy controlled by
the inverse of Ŷu,d (see also [18–20] for related works implementing the inverted hierarchy
mechanism with models where the chiral diagonal SU(3) flavor symmetry is gauged). On
the other hand, the exotic fermions have a mass proportional to Ŷu,d so that the lightest
partner is the one associated to the top quark. As we will see this kind of see-saw mechanism
is a general feature of the model through which all flavor and electroweak precision bounds
can be easily avoided. The unitary matrix V plays the role of the CKM matrix of the SM.
The formulas above receive important corrections for the third family since in this case
the condition Yu,d � Mu,d is not satisfied, particularly for the top quark. As we will see
in the next section once this is properly accounted for it modifies the SM couplings. This
produces important corrections to precision observables, in particular to the electroweak
oblique parameters and the Zbb̄ coupling, which impose the most stringent bounds on the
model.

2.1 Vectors and scalars

The VEVs of Yu,d give also a mass to the flavor gauge bosons,

Lmass = Tr|gUAUYu − gQYuAQ|2 + Tr|gDADYd − gQYdAQ|2

=
1
2
VAa(M2

V )Aa,BbVBb , (2.6)

2We use the same notation both for the fields Yu,d and their VEVs, except when the meaning is not

immediate from the context.
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where

VAa = {AQa , AU a , ADa} , AQ = AQa
λa

2
, AU = AU a

λa

2
, AD = ADa

λa

2
, (2.7)

λa=1,...,8 are the Gell-Mann matrices and λ9 is proportional to the identity.
The flavor gauge bosons couple to the quark currents,

Jµ ij,A = (gQQ
i
Lγ

µQjL, gUU
i
Rγ

µU jR, gDD
i
Rγ

µDj
R). (2.8)

Integrating out the vector fields SM four-fermion operators are produced, which in the
flavor basis read

− 1
8

(M2
V )−1

Aa,Bb λ
a
ijλ

b
hk J

ij,A
µ Jµhk,B . (2.9)

In order to get the four-fermion operators in the mass eigenstate basis a further rotation
by the unitary matrix V is needed on the left-handed up-quarks.

The flavor gauge bosons mediate FCNC since their masses break all flavor symmetries.
Naively this implies the masses of all the gauge bosons to be around 105 TeV or higher
in order to comply with flavor bounds. This expectation is however completely incorrect
in our model because the masses depend on the inverse Yukawas. Roughly speaking the
gauge bosons associated with transitions between light generation are automatically much
heavier than the ones associated with the third generation with a hierarchy determined by
the inverse Yukawas. As a consequence FCNC, which roughly scale as

∼ 1
Y 2
u,d

(q̄γµq)2 , (2.10)

are highly suppressed for the light generations.
To better understand how this works let us consider for simplicity the case where

only Yu is present. Since Yu can be taken to a diagonal form there are no flavor violating
processes and the individual family numbers are not broken so the associated gauge bosons
remain massless. The masses of the flavor gauge bosons can be computed analytically in
this case. Assuming equal couplings for SU(3)QL

and SU(3)UR
the mass terms can be

written as follows,

Lmass =
1
2
g2|Vij |2(Ŷ i

u − Ŷ j
u )2 +

1
2
g2|Aij |2(Ŷ i

u + Ŷ j
u )2

≈ 1
2
g2|Vij |2

(
λuMu

λ′u

)2( 1
yiu
− 1

yju

)2

+
1
2
g2|Aij |2

(
λuMu

λ′u

)2( 1
yiu

+
1

yju

)2

, (2.11)

where V and A are the combinations (AQ+AU )/
√

2 and (AQ−AU )/
√

2 respectively. From
this it follows that 4-fermion operators with light quarks obtained integrating out heavy
gauge bosons are very suppressed. The same mechanism works once the effects of Yd are
included, where all the flavor symmetries are broken and FCNC are generated. As we will
show in various examples, flavor constraints can be avoided generically even if the lightest
gauge boson is below the TeV scale.

The scalar sector is more model dependent due to the unspecified scalar potential.
We discuss the radial fluctuations in detail in appendix A. After flavor symmetry breaking
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there are 10 radial fields contained in Yu,d, corresponding to fluctuations of quark masses
and CKM angles. These modes couple to fermion bilinears and therefore generate at low
energy four-fermion operators. In particular fluctuations of the masses give rise to flavor
diagonal operators and fluctuations of the CKM matrix induce flavor changing processes.
However the suppression due to the inverted hierarchy works in this sector as well. To get
an intuition for why this is the case we focus again on the flavor preserving four-fermion
operators induced by the mass fluctuations. Their coupling to quarks is given by (for values
of the couplings λu,d and λ′u,d of order one)

∼ M

Ŷ i + δY i
v q̄iqi ≈

(
1− yi δY

i

M

)
mqi q̄iqi , (2.12)

so that the couplings of the radial modes δYi are highly suppressed for the light generations.
Since these modes unitarize the scattering of the massive gauge bosons we expect their
masses to be naturally set by the VEVs (mδYi

∼ Ŷi). In this case the coefficients of the
four-fermion operators scale as

∼
(
yimqi

MŶ i

)2

(2.13)

which is extremely suppressed for the light generations. Actually the highly suppressed
couplings alone would be enough to suppress dangerous four-fermion operators even when
the flavon fields are light.

2.2 Remarks

A few comments are in order. While in MFV in the limit of vanishing Yukawa couplings
the full flavor symmetry is restored, in our model there exists a limit where all Yukawa
couplings vanish but flavor-breaking contributions remain finite. This can be seen by
sending Mu,d → 0 with all other parameters fixed. In this limit yu,d → 0 (see eq. (2.5))
while four-fermion operators, depending only on Yu,d (see eq. (2.10)), still break flavor.

In the model above we assumed for simplicity the existence of only two bifundamentals.
Actually in this case it can be shown that there is no renormalizable potential that gives
rise to the Yukawa pattern of the SM. One possibility is to introduce non-renormalizable
potentials. As long as the cut-off suppressing higher-dimensional operators is larger than
the largest flavon VEV, its effects can be treated as perturbations, without spoiling our
mechanism. Alternatively the Yu,d could be combinations of several fields transforming as
bifundamentals under the flavor group,

Yu,d =
N∑
i=1

aiu,dX
i
u,d . (2.14)

We have checked that in this case models with renormalizable potentials can be build.
The mechanism of inverted hierarchy is still at work, leaving the fermion sector as before,
however the relation between the Yukawas and the gauge boson masses is not uniquely
determined. Unless the VEVs of the different fields are correlated the flavor gauge bosons
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will be generically heavier than in the minimal case improving flavor bounds but limiting
the possibility of having these states at the electroweak scale.

In this paper we focus on the flavor symmetries of the quark sector but it is straightfor-
ward to extend this analysis to leptons at least when right-handed neutrinos are included.
In this case the SM flavor symmetry is U(3)6. For leptons cancellation of cubic anomalies
works similarly to the quark sector and requires the addition of fermions transforming as
singlets of SU(2)L and with hypercharge opposite to the SM. In this way one finds that
the only anomalous flavor symmetry is U(1)B+L. We leave the detailed investigation of the
lepton sector to future work.

One could also consider the gauging of smaller subgroups of the SM flavor symmetry.
Obviously cancellation of anomalies can be achieved with the same matter content con-
sidered here so that the mechanism of inverted hierarchy works as before. An interesting
subgroup is the diagonal SU(3) subgroup where the SM left- and right-handed fermions
transform as fundamentals and anti-fundamentals respectively.3 In this case however the
mass of the SU(3) flavor gauge bosons is necessarily increased. Another interesting exam-
ple is the gauging of abelian subgroups as also in this case, due to the inverted hierarchy,
large corrections to FCNC do not arise.

Concerning unification the addition of the new fields charged under color and hyper-
charge worsens the unification of gauge couplings in the SM. Moreover in the case of SO(10)
unification the flavor symmetry is only SU(3). The simplest way to cancel the flavor cubic
anomaly is to add fermions in the anti-fundamental representation of the flavor symme-
try and the 16 of SO(10) to leave the theory chiral. However these degrees of freedom
are insufficient to generalize our model since only one Yukawa term can be written down.
Also for SU(5) the inverted hierarchy structure cannot be obtained at least in the simplest
constructions. It is unclear to us how this model could be embedded in unification.

3 Experimental bounds

In this section we consider the experimental bounds arising from the exotic fermions.
These are the most model independent limits on the model as they only depend on four
parameters, which can be conveniently chosen as the ratios λu/yt, λd/yb, Mu/mt and
Md/mb. The bounds originate from mixing effects between SM and exotic fermions that
contribute in particular to Z → bLb̄L, EW oblique parameters, b → sγ and Vtb as well as
from direct searches.

In the previous section we integrated out the exotic fermions to leading order assuming
Yu,d � Mu,d. This is in general insufficient for the third family, in particular for the top
whose large Yukawa requires a large or maximal mixing between SM and exotic fields and
for the bottom whose coupling to Z may receive observable corrections.

The fermion mass matrices can be easily diagonalized in general. We can first eliminate
the matrix V from the Yukawa interactions in eq. (2.3) by a simultaneous rotation of uL and

3The other choice where the left and right fermions are fundamentals is already anomaly free within the

SM and has been considered in the past, see for example [21] and refs. therein.
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ΨuR. The physical states (without renaming the fields) are then given by the orthogonal
rotations of the left and right fields,(

uiR
u′iR

)
=

(
cuRi −suRi

suRi cuRi

)(
U iR
Ψi
uR

)
,

(
uiL
u′iL

)
=

(
cuLi −suLi

suLi cuLi

)(
U iL
Ψi
u

)
, (3.1)

and similarly for the down-quark sector. The masses of SM and heavy fermions are then
given by,

(mu,mc,mt) = λu
v√
2

(
suR1

cuL1

,
suR2

cuL2

,
suL3

cuL3

)
,

(mu′ ,mc′ ,mt′) = Mu

(
cuL1

suR1

,
cuL2

suR2

,
cuL3

suL3

)
.

(3.2)

We find it useful to define the physical variables,

xi ≡
Mu

mui

, yi ≡
λuv√
2mui

, (3.3)

which satisfy the properties,

xi =
cui

R

sui
L

, yi =
cui

L

sui
R

,
mu′

i

mui

= xiyi ,
λ′uŶ

i
u

mui

=
√

(x2
i − 1)(y2

i − 1) . (3.4)

From the above relations one can easily derive,

suLi =

√
y2
i − 1

x2
i y

2
i − 1

=
λ′uŶ

i
umui√

(M2
u −m2

ui
)2 + (λ′uŶ i

uMu)2
, (3.5)

suRi =

√
x2
i − 1

x2
i y

2
i − 1

=
λ′uŶ

i
umui√

(1
2(λuv)2 −m2

ui
)2 + 1

2(λuλ′uŶ i
uv)2

. (3.6)

Note that the physical region of xi and yi corresponds to xi, yi ≥ 1 or xi, yi < 1. In the first
case mu′

i
≥ mui while mu′

i
≤ mui in the second. In the limit y3 → 1 (λu → yt =

√
2mt/v),

corresponding to Ŷ 3
u → 0, the right handed top becomes Ψ3

uR while U3
R becomes the right

handed top-prime.
For phenomenological purposes and to better understand the parametric dependence

of the results the following approximate expressions will be useful too:

suLi =
λuλ

′
u vŶ

i
u√

2(M2
u + λ′u

2Ŷ i2
u )

,

suRi =
Mu√

M2
u + λ′u

2Ŷ i2
u

(
1− λ2

uλ
′
u

2v2Ŷ i2
u

2(M2
u + λ′u

2Ŷ i2
u )2

)
,

(3.7)

valid up to terms O(v3) in the expansion in the SM Higgs VEV with respect to the new
scales (Ŷt and Mu). Note that before electroweak symmetry breaking only the right-handed
quarks mix with the exotic fermions Ψu,dR while the left-handed mixing is suppressed by
the Higgs VEV.
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The most important consequence of the mixing is that the quark couplings are modified
relative to those in the SM. For example the charged current (that couples to g2W

+
µ /
√

2)
in terms of mass eigenstates is

ūL(cuLV cdL
)γµdL + ūL(cuLV sdL

)γµd′L + ū′L(suLV cdL
)γµdL + ū′L(suLV sdL

)γµd′L. (3.8)

We have used the shorthands cuL = Diag(cuL1 , cuL2 , cuL3), etc, and V is the unitary matrix
introduced in (2.5). Effectively the CKM matrix now becomes

VCKM = cuL · V · cdL
. (3.9)

Note that such a matrix is not unitary. However, as we will see shortly, all the sqLi are
exceedingly small except, possibly, for that of the top quark. Moreover, the 6×6 matrix of
couplings to the charge current is unitary, hence exhibiting a generalized GIM mechanism.

The couplings of quarks to the photon are not modified, since they are protected by
gauge invariance. And since the right handed quarks only mix with singlets of equal charge
their couplings to the Z (proportional to their electric charge) are not modified either. The
coupling of left handed quarks to the Z is now through the current

ūL(T u3 c
2
uL
− s2

wQu)γµuL + ūL(T u3 cuLsuL)γµu′L
+ ū′L(T u3 suLcuL)γµuL + ū′L(T u3 s

2
uL
− s2

wQu)γµu′L + (u→ d), (3.10)

where Qu(d) = 2/3(−1/3) and sw is the sine of the weak mixing angle. Using eq. (3.7) we
see that δgbL/gbL ∼ (mb/Md)2. The couplings of quarks to the Higgs are also modified
relative to those in the SM:

1√
2
λuh[−t̄LcuLsuRtR + t̄LcuLcuRt

′
R − t̄′LsuLsuRtR + t̄′LsuLcuRt

′
R] + (u→ d) + h.c. (3.11)

3.1 Bounds from the down sector

In figure 1 we present the allowed region of parameter space for the down sector. The main
bounds arise from the modified Zbb̄ coupling and direct searches described below. The
green region is allowed by all measurements at 95% CL while the yellow region is model
dependent.

3.1.1 Rb

According to eq. (3.10) Z-couplings are not universal. The heavier the quark the larger the
effect, so for Z decays the largest and most sensitive deviation from the SM predictions is
in Rb, the branching fraction to b quarks. At tree level we find

δΓZbb̄
ΓZbb̄

= −s2
dL3

2 + 4s2
wQd

1 + 4s2
wQd + 8s4

wQ
2
d

≈ −2.3 s2
dL3

, (3.12)

and writing δRb/RSM
b = (1−RSM

b )(δΓbb̄/Γ
SM
bb̄

) ≈ 0.78(δΓbb̄/Γ
SM
bb̄

) we have

δRb
RSM
b

≈ −1.8s2
dL3

, (3.13)

to be compared to the current bound δRb/R
SM
b ∈ [−4, 8] · 10−3 at 95% CL [22].
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Figure 1. Allowed region of parameter space in the λd vs Md plane. The yellow and green shaded
regions are allowed by Rb, the thick green line labeled Z → bb̄ corresponding to the 95% CL limit.
The green one corresponds to mb′ > 385 GeV, while the yellow one to 45 GeV < mb′ < 385 GeV.
Contours of constant mb′(GeV) are shown in red dashed lines and contours of fixed λ′dŶb(GeV) in
black dash-dot lines. The black circle and cross show the choice of parameters in the examples of
section 5.

Additional contributions to δRb from couplings to light quarks are negligible. The
virtual t and t′ contributions deviate from the SM’s virtual t contribution by an amount
that vanishes both with mt′ −mt and with s2

uL3
. The resulting bound on these parameters

is weaker than bounds presented below from Vtb (and the direct limit on mt′).
Figure 1 shows the 95% CL bound from δRb in the λd/yb vs Md/mb plane, where

yb =
√

2mb/v.

3.1.2 Direct bounds on mb′

CDF data excludes a b′ with mass above 100 GeV and below 268 GeV assuming BR(b′ →
Zb) = 100% [23, 25]. For masses above mb′ = mt +MW = 253 GeV the Wt channel opens
up and CDF data sets a mass limit mb′ > 385 GeV assuming BR(b′ → Wt) = 100% [26].
In our model the branching fraction assumptions may not apply. The couplings of the b′

to Wt and Zb include a suppression factor of sdL3
. 0.04 (from Rb). For a light Higgs

the channel b′ → bh can become important. According to eq. (3.11) the bb′ couplings to
the Higgs are 1√

2
λdcdL3

cdR3
= sdL3

cdL3
mb′/v and 1√

2
λusdL3

sdR3
= sdL3

cdL3
mb/v. Hence
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BR(b′ → bh) will be large in the region where it is kinematically allowed, provided mb′ &
MZ . The LEP2 95%CL bound on the Higgs mass, mh > 114GeV, is valid in this model
since the properties of a light Higgs are largely unchanged from that of the SM. Hence
100 GeV < mb′ . mb + mh ≈ 118 GeV is excluded. A bound mb′ > 128 GeV is given by
the PDG [22] based on D0 data [27] on WW + 2jets, used in top pair production searches.
However, the bound assumes BR(b′ → Wq) = 100%. The region between the LEP bound
mb′ & MZ/2 and mb′ < 100 GeV is not easily excluded. D0 has excluded a 4th generation
sequential charge −1/3 quark up to mb′ = mb + MZ by searching for radiative decays
b′ → bγ [28] (see also [29] for bounds using b′ → b`+`− from analysis of Tevatron data).
These bounds again may not apply in our model, since the branching fractions are not
those of a sequential fourth generation quark. For example, the tree level three body decay
b′ → h∗b → bb̄b can compete well with the two body radiative decay. The yellow and
green shaded regions in figure 1 are allowed by Rb, the thick green line labeled Z → bb̄

corresponding to the 95% CL limit. The green one corresponds to mb′ > 385 GeV, while
the yellow one to 45 GeV < mb′ < 385 GeV, and may or may not be excluded depending
on the value of the Higgs mass and, to lesser extent, other model parameters, e.g., flavon
masses. For reference the figure shows contours of constant mb′ in red dashed lines and
contours of fixed λ′dŶb in black dash-dot lines.

3.2 Bounds from the up sector

Experimental bounds on the up sector are collected in figure 2. The physical region of
parameters corresponds to the first and third quadrants where mt′ ≥ mt and mt′ ≤ mt,
respectively. The main constraint in the first region arises from precision electroweak
constraints and in particular from corrections to the T parameter. The second region
(where constraints from T , S and U are not applicable) is strongly constrained by Vtb,
b→ sγ and direct searches.

3.2.1 Electroweak precision tests

The exotic fermions modify the oblique corrections to the electroweak gauge bosons with
respect to their SM values. We compute the oblique parameters S, T and U in appendix B.
Since the exotic fermions are SU(2)L singlets they only contribute through the mixing with
SM left doublets.

After electroweak symmetry breaking the quark doublets mix with the left singlets.
This violation of custodial symmetry generates a correction to the T -parameter.4 For
simplicity we only consider the contributions of the third family, which are the dominant
ones. In the limit mb → 0 the exact one loop formula derived in appendix B reads

T =
3 s2

uL3

8π s2
wc

2
w

m2
t

M2
Z

[
c2
uL3

(
m2
t′

m2
t′ −m2

t

log
(m2

t′

m2
t

)
− 1
)

+
s2
uL3

2

(
m2
t′

m2
t

− 1
)]

. (3.14)

As explained above for suL3 = 0 the correction to T vanishes. From eq. (3.3) this
corresponds to Mu → ∞ or λu = yt (i.e., Ŷ 3

u = 0). In the first case the exotic fermions
4This was also studied recently in [24] in a model with vector like top partners. For the third generation

fermions our model reduces to theirs.
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Figure 2. Allowed region of parameter space in the λu vs Mu plane. The shaded grey region is
unphysical. The thick green line labeled EWPT shows the region allowed at 95% CL by the EW
oblique parameters for mH = 115 GeV. For mH = 350 GeV the allowed region becomes the one
between the green dashed lines. The thin green line labeled Vtb shows the 95% CL limit from direct
single top production while the green short-dashed line shows the 95% CL bound from b → sγ.
Of the region allowed by EWPT, Vtb and b → sγ we have distinguished mt′ > 335 GeV shaded in
green from 45 GeV < mt′ < 335 GeV, shaded in yellow. For the latter direct mass bounds may
(or not) apply, depending on the Higgs mass and other model parameters. Contours of constant
mt′(GeV) in red dashed lines and contours of fixed λ′uŶt(GeV) in black dash-dot lines. The black
circle and cross show the choice of parameters in the examples of section 5.

acquire an infinite vector like mass so the correction to T obviously vanishes in this limit.
In the second case the mass of the top partner can be light. Since the amount of custodial
symmetry breaking is proportional to λu we expect T to have the same sign as λu − yt, as
is readily checked using the explicit formulas. Even though the contribution to T is smaller
than in a fourth generation model, it can be sizable and gives one of the most important
bound on the parameters of the model.

On the other hand, the contribution of the exotic fermions to the S-parameter is always
small and its sign is not fixed. This is similar to four-generation models, where corrections
to S are generically smaller than to T . Despite the small contribution to S the bound
obtained combining S and T is significantly more restrictive that the one from T alone,
due to the correlation between S and T in the electroweak fit. In the allowed region in
figure 2 we have also included the bound from the U parameter which however only affects
the results in a minor way.
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A few words of caution. The new physics contributions to precision electroweak pa-
rameters are here obtained as the difference between our model and the SM one loop value.
The mixing also modifies the two loop SM correction which is not negligible in the SM.
This effect is relevant in the region where suL3 is large which is however only allowed in
the region of small mt′ (� TeV). In this region, however, the canonical S, T, U parameters
are in general insufficient and a more refined analysis is needed. Moreover our bounds
are obtained with the assumption of a light Higgs. In the SM, increasing the Higgs mass
would worsen the global electroweak fit mainly because of the negative contribution to the
T parameter (the contribution to S is instead smaller and positive, and thus well within
the bound). Interestingly in our model the correction to S is always small while the contri-
bution to T is positive and easily of the right order to accommodate also an heavy Higgs.
In figure 2 we have also shown the region of parameter space allowed for a Higgs with
mH = 350 GeV which requires a non zero mixing. Therefore the bounds from oblique
parameters should be taken with a grain of salt since both the Higgs mass and other new
physics not related to flavor may alter the bounds.

3.2.2 Vtb

The effective CKM matrix in eq. (3.9) is not unitary. Unitarity of the CKM matrix is
presently only tested with significant accuracy on the first row,

∑
q=d,s,b |V CKM

uq |2 = 0.9999±
0.0011 [22]. However, since only light quarks participate in this, the resulting bound is very
weak, Mu,d greater than a few GeV.

Unitarity of the third row is more restrictive. The measured smallness of |V CKM
td | and

|V CKM
ts | implies that the unitary matrix V in eq. (3.9) has |Vtb| = 1 to high accuracy.

Hence direct measurement of the tbW coupling constrains cuL3 . Single top production
experiments at the Tevatron set a 95%CL bound |V CKM

tb | ≈ cuL3 > 0.77 [30]. The resulting
constraint on the model parameters is shown in figure 2. The allowed values for cuL3 at
95% CL lie between the green line labeled Vtb and the one at λu/yt = 1.

3.2.3 b→ sγ

There are two distinct underlying processes that give rise to radiative B decays. On the one
hand there are ∆B = −∆S = ±1 operators, such as (s̄b)(b̄b), produced by the exchange of
either a flavor vector meson or a radial mode associated to the flavons. These contributions
are highly model dependent and also very suppressed by the overall coefficient of the four
quark operator.

On the other hand there are sizable and less model dependent contributions from SM-
like graphs with a virtual Wt or Wt′. For mt′ > mt, their sum is always larger than
that of the SM. To see this note that if the SM amplitude is a function f(mt) then the
corresponding amplitude in this model is c2

uL3
f(mt) + s2

uL3
f(mt′) = f(mt) + s2

uL3
(f(mt′)−

f(mt)). Since f(mt) is a monotonically increasing function, the deviation from the SM
result, s2

uL3
(f(mt′)− f(mt)) has the same sign as mt′ −mt.
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In more detail, working at NLO in the simplified but accurate approximation of ref. [31]
we find for the process b→ sγ that

δΓbsγ
Γbsγ

= 2s2
uL3

A(x′)−A(x)− 8
3(1− z

2
23 )(D(x′)−D(x))

A(x)− 8
3(1− z

2
23 )D(x)− 6

19X2(1− z
19
23 )

, (3.15)

where x = m2
t /M

2
W and x′ = m2

t′/M
2
W are arguments of the loop functions A and D

(given in ref. [31]) z = αs(mb)/αs(MW ) and X2 = 232/81 is the coefficient of anomalous
dimension mixing the four quark operator into the transition magnetic moment operator.
The resulting 95% CL bound in the λu/yt vs Mu/mt plane, where yt =

√
2mt/v is shown

as a green short-dashes line in figure 2.

3.2.4 Bounds from mt′

Figure 2 also shows, as red dashes, contours of fixed mt′ . CDF excludes mt′ < 335 GeV
at 95%CL, assuming BR(Wq) = 100% [32]. As discussed above for the case of the b′

the branching fraction assumptions in the experimental analysis may not apply in this
model. Of the region allowed by EWPT, Vtb and b → sγ we have therefore distinguished
mt′ > 335 GeV shaded in green from 45 GeV < mt′ < 335 GeV, shaded in yellow. For
the latter direct mass bounds may (or not) apply, depending on the Higgs mass and other
model parameters. For reference the figure shows contours of constant mt′ in red dashed
lines and contours of fixed λ′uŶt in black dash-dot lines.

3.3 Neutron EDM

The interactions among quarks due to flavor-vector or flavon exchange can give contribu-
tions to the Electric Dipole Moment (EDM) of hadrons. In the SM the dominant mech-
anism for EDM of the neutron is from a ∆S = −1 CP violating transition n → Λ,Σ0

followed by a ∆S = 1 transition Λ,Σ0 → nγ [33]. The CP violating interaction is a 1-loop
induced four-quark “penguin” operator

LCPV = i
3αsGF
9
√

2π
ln(m2

t /m
2
c)Im (V ∗tdVts)(d̄Lγ

µT asL)
∑

q=u,d,s

(q̄γµT aq). (3.16)

A recent estimate gives [34]
dSM
n ' 10−32e cm. (3.17)

A rough estimate of the new contributions to the neutron EDM induced by flavor-vector
or flavon exchange is obtained by replacing the coefficient of the four-quark “penguin”
operator in the calculation of dSM

n by the CP violating coefficient CCPV of a newly induced
four-quark operator. One then has

∆dn ∼
CCPV

3αsGF

9
√

2π
ln(m2

t /m
2
c)Im (V ∗tdVts)

dSM
n ≈ 7.6× 109GeV2CCPV d

SM
n . (3.18)

The resulting bounds on the model parameters are extremely weak. For example, the CP
violating part of coefficients of ∆S = ±1 four-quark operators in eq. (2.9) are numerically
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of order CCPV ∼ 10−15GeV−2. The smallness of this result justifies the crude nature of
the estimate (in which we have ignored, for example, the different possible Dirac and color
structures that may arise in the four-quark operators). The coefficients of operators from
flavon exchange, although more model dependent, are similarly small.

Additional contributions arise from graphs involving only electroweak interactions but
in which the heavy quarks participate. These are all at best of the order of the SM
contributions (for example, by modifying the coefficient of the penguin operator).

We conclude then that this class of models predicts small EDMs of hadrons, comparable
in order of magnitude to those of the SM.

4 Signatures

Despite the small number of extra parameters beyond the SM ones and the relatively
rigid structure of the spectrum of the model, mostly fixed by the SM Yukawa couplings,
the phenomenology above the production threshold of new states is very rich, drastically
changing in different regions of the parameters space. We will not attempt to cover here
this subject, which deserves a separate study. Instead we will only give a sampling of some
possible new signatures of the model (for recent more detailed analysis on similar models
see, e.g., [24, 35, 36], keeping in mind however that the BR in our case could be altered by
the presence of the extra vector and flavon fields).

Among all new states, the one that presents less model dependence is the b′. As
discussed before, existing searches do not provide very strong bounds on such particles and,
as shown explicitly in the next section, it is easy to find parameters of the model where such
resonance is within the reach of hadron colliders. The strong bounds from Z → bb̄ force
the b′ to have small mixing with the SM b quark, which implies a small coupling with the
SU(2)L gauge fields. It turns out that, choosing O(1) values for the couplings of the model
(such as λd, λ

′
d and the gauge couplings), the standard fourth-generation channels Wt, Zb

and Wt′ can compete with others such as Z ′b, b̃b and bh. In particular the BR to bh can
easily be of order one. Being a colored object, the b′ could be pair produced copiously at
the LHC, provided its mass is not too high. The signature would be quite striking having
up to six bottom quarks in the final state (pp̄→ b̄′b′ +X → 2h+ 2b+X → 6b+X).

For the t′ the discussion is similar, with the possibility however of a substantial differ-
ence. In this case the bound on the mixing angle suL3 is weaker, coming only from EWPT.
Choosing as before O(1) values for the parameters, we have two means of maintaining suL3

below the bounds, either by increasing Mu with respect to mt or by suppressing Ŷ 3
u . In the

first case we get a similar result to that of the b′, with the t′ → th→W + 3b decay channel
becoming important. The t′ could be pair produced at hadron colliders, leading to very
clean 6b+WW signals (see [35] for a detailed study). Notice that both in the b′ and in the
t′ case the O(1) BR into hb and ht could substantially increase the Higgs production cross
section, improving the capability of discovering and studying its properties. In the second
case, in the limit of small Ŷ 3

u , also the right mixing angle cuR3 get suppressed. In this case
the dominant channel becomes tt̃, if the radial mode of the top Yukawa (t̃) is light enough.
Actually in the limit Ŷ 3

u → 0 the t′ almost decouples from the SM, and an approximate
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discrete symmetry (similar to R-parity) prevents the lightest among the t′ and the t̃ from
decaying into SM particles.5 Such discrete symmetry is broken only by the mixing of the
t′ sector with the other generations, thus producing a highly suppressed decay rate for the
t′ in this scenario.

Finally some comments on the possible lightest gauge flavor fields. The lightest state
is expected to couple more to the third generation, and in particular to the top. The
actual couplings, however, depend on which flavor group is gauged and the magnitude of
its coupling constants.

For the lightest states three possibilities are favored. If the gauge group is SU(3)3

then the lightest state couples through the diagonal Gell-Mann λ8 generator of SU(3)3,
thus with doubled strength to the third generation respect to the first two. In this case
we get a leptophobic non-universal Z ′, which can be produced directly via qq̄ annihilation
and can decay either into tt̄ or into two jets. Existing Tevatron studies of similar Z ′ set
mass bounds below a TeV [37]. More possibilities arise when the U(1)s are also gauged. In
particular the flavor boson can mix with the SM hypercharge vector and acquire a coupling
to leptons too. If such mixing is large, the lightest vector behave as a heavy Z ′ coupled
to the hypercharge current and with an anomalous coupling to the right-handed top. In
this case strong bound are present from the EWPT [38, 39]. If instead the mixing with
the hypercharge is negligible, then the lightest gauge boson will only couple to t′L and to a
linear combination of tR and t′R (depending on suL3). In this case the four-top(top′) signal
becomes one of the most interesting (see, e.g., [40]).

5 Examples

The details of a particular realization of the mechanism described in section 2 depend
strongly on the actual model and parameters chosen. Depending on the gauge group
(U(3)3, SU(3)3 × U(1)2, SU(3)3, SU(3), U(1)n,. . . ), the number and representations of
scalar flavon fields and the different parameters of the Lagrangian, the spectrum of the
new particles and their couplings may vary substantially. Still there are some features that
are rather model independent and characterize the model.

As shown before, with the exception of the top quark sector, the structure of the
fermionic part of the model is quite rigid, depending only on the two scales Mu and Md,
the rest being fixed by the SM Yukawa couplings. Once the gauge group and the scalar
content has been chosen so is the basic structure of the spin-1 sector. But as a result of
the larger number of parameters connecting its spectrum and couplings to the SM Yukawa
terms, such as the gauge couplings and extra Yukawa couplings (λu,d, λ′u,d), it is far from
being specified in detail.

In the following we will provide two explicit examples where all the parameters have
been fixed, in order to demonstrate how easy it is to build explicit models with O(1) cou-
plings, new flavor non-universal states at the TeV scale and compatibility with all existing

5Actually a similar limit is also possible for the down sector, when Ŷ 3
d → 0, sdL3 → 0 and the b′ decouples

from the b; however this happen in the small coupling limit λd → yb ≈ 1/40, then the scales of the s′ and

d′ decrease accordingly and FCNC induced by the first generation may start becoming important.

– 17 –



J
H
E
P
1
1
(
2
0
1
0
)
0
6
7

Figure 3. Spectrum of the flavor spin-1 (left) and spin-1/2 (right) fields for the first example (see
text for details). Each vector fields is represented by a set of three 3× 3 matrices representing the
associated generators to the three gauged SU(3) groups (SU(3)Q, SU(3)U , SU(3)D respectively),
the intensity of the color (from white to red) correspond to the size of each entry in the generators
(from 0 to 1). The position in the vertical axis represent instead the corresponding mass in TeV,
analogously for the masses of the heavy quark partners, on the right.

experimental bounds. In fact, depending on the choice of the parameters the strongest
bounds may come from different sources, such as EWPT, Z → bb̄, single top production
at Tevatron, Z ′ searches and other direct bounds for spin-1 and spin-1/2 particles, ∆MK ,
etc. . .

The two examples below correspond to the two different flavor gaugings SU(3)3 and
SU(3)3 × U(1)2, respectively. For definiteness in both cases the flavon content have been
chosen to be minimal: just the two Yu and Yd fields of section 2. The couplings have
been chosen to be O(1) and the two mass scales Mu and Md to be low enough to pro-
duce interesting physics for high-energy colliders and possibly for next generation flavor
experiments.

5.1 First example: an SU(3)3 model

In the first example we choose the following parameters:

Mu (GeV) Md (GeV) λu λ′u λd λ′d gQ gU gD
400 100 1 0.5 0.25 0.3 0.4 0.3 0.5
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Given the parameters above the entries of the flavon VEVs are fixed by requiring the right
SM Yukawa couplings be reproduced, this gives:6

Yu ≈ Diag
(
1 · 105 , 2 · 102 , 8 · 10−2

)
· V TeV ,

Yd ≈ Diag
(
5 · 103 , 3 · 102 , 6

)
TeV ,

(5.1)

where V is the unitary experimental CKM matrix [22].
The couplings are chosen to be smaller than 1 to avoid possible problems with early

Landau-poles except for λu, which must be larger than yt =
√

2mt/v ' 1 (or slightly
smaller when mt′ < mt; see section 3). For λu = 1, as in this example, the mixing of the
left doublet is small and the lowest eigenvalue of Yu approaches zero.

Given the parameters above we can calculate both the spectrum and couplings of the
spin-1 and spin-1/2 sectors of the theory. The spectrum is summarized in figure 3.

The masses of the four lightest spin-1 states are 2.8, 53, 53, and 66 TeV. The lightest
state, which is one order of magnitude lighter than the next to lightest one, couples to
fermions through the λ8 flavor generator and with equal strength to left/right up/down
type fermions (the unequal intensity of shading in figure 3 is compensated by the different
values of the gauge couplings). Although its coupling to the third generation is the largest,
the lightest vector couples also to the first two generations, which makes it accessible at
the LHC. For all practical purposes it corresponds to a flavor non-universal leptophobic
Z ′. The existing mass bounds on analogous resonances from Tevatron searches in the tt̄
channel lie below 1 TeV [37].

The masses of the three lightest fermion fields are 0.40, 1.8, and 90 TeV. In this case
both lightest states, the t′ and the b′, should be within the reach of the LHC. It is important
to keep in mind however that, contrary to 4th generation quark fields, their couplings to the
SM W and Z bosons arise through mixing with SM left-handed fields and are suppressed
by the small angles suL3 and sdL3

, which for the current choice of parameters are 0.05 and
0.02, respectively.

It is interesting to check how much this model is actually safe against existing bounds.
The values of parameters chosen for this case correspond to the point with symbol “◦” in
the (λu/d, Mu/d) planes of figures 1 and 2. The contributions to Z → bb̄, EW precision
observables and Vtb read

δRb
Rb

= −1.0 · 10−3 ,

S = 0.00 , T = 0.01 , U = 0.00 ,

Vtb = 1.00 .

(5.2)

6The values of the Yu,d VEVs (and the the results that follow) have been calculated taking into account

the running of the Yukawa couplings only up to the TeV scale. The effects coming from the running from

the TeV scale up to the flavor breaking scales are more model dependent and affect mainly the value of the

highest Yu,d VEVs, which we do not need to know with high accuracy. In fact the knowledge of the order

of magnitude for these quantities is enough for our purposes.
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Except for the correction to Rb which is naturally suppressed by the b mass the small
corrections to the observables above are due to the choice λu ' yt. In this region of
parameters, which arises automatically anytime λ′uŶ

3
u � Mu, the new physics in the up-

sector decouples from the SM.

As discussed in section 2.1 the exchange of flavor gauge bosons can also produce flavor
breaking 4-fermion operators at tree level. Existing strong bounds on these operators
are often used to rule out the possibility of low scale flavor vector fields. However the
inverted hierarchy present in our spectrum allows to easily avoid all such bounds. Indeed,
from figure 3 we note that the vector fields mediating transitions among the first and the
higher generations are among the heaviest, followed by those mediating transition among
the second and the third generations, while the lightest is flavor diagonal. At tree level
the strongest bounds come from ∆F = 2 quark transitions, whose bounds on 4-fermion
operators are conveniently summarized in [41]. Our vector boson only produce three types
of such operators at tree level:

Q
qiqj
1 = qαjLγµq

α
iL q

β
jLγ

µqβiL ,

Q̃
qiqj
1 = qαjRγµq

α
iR q

β
jRγ

µqβiR ,

Q
qiqj
5 = qαjRq

β
iL q

β
jLq

α
iR .

(5.3)

The coefficients of these operators can be obtained numerically from eq. (2.9). In our
explicit example they read:

Re (in GeV−2) Im (in GeV−2)
C1
K −1 · 10−14 −1 · 10−19

C̃1
K −2 · 10−16 −2 · 10−21

C5
K −5 · 10−15 −6 · 10−20

C1
D −2 · 10−20 −2 · 10−23

C̃1
D −2 · 10−25 −2 · 10−28

C5
D −2 · 10−22 −2 · 10−25

C1
Bd

1 · 10−16 5 · 10−16

C̃1
Bd

9 · 10−22 3 · 10−21

C5
Bd

1 · 10−18 5 · 10−18

C1
Bs

3 · 10−13 −4 · 10−13

C̃1
Bs

4 · 10−16 −6 · 10−16

C5
Bs

4 · 10−14 −6 · 10−14

We have used here the notation for coefficients of ref. [41]. Comparing with the bounds in
that work,
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Re (in GeV−2) Im (in GeV−2)
C1
K [−9.6, 9.6] · 10−13 [−4.4, 2.8] · 10−15

C̃1
K [−9.6, 9.6] · 10−13 [−4.4, 2.8] · 10−15

C5
K [−1.0, 1.0] · 10−14 [−5.2, 2.9] · 10−17

|C1
D| < 7.2 · 10−14

|C̃1
D| < 7.2 · 10−14

|C5
D| < 4.8 · 10−13

|C1
Bd
| < 2.3 · 10−11

|C̃1
Bd
| < 2.3 · 10−11

|C5
Bd
| < 6.0 · 10−13

|C1
Bs
| < 1.1 · 10−9

|C̃1
Bs
| < 1.1 · 10−9

|C5
Bs
| < 4.5 · 10−11

one realizes that the resulting FCNC processes are well within the experimental bounds,
with the most dangerous one (ReC5

K) still a factor of two smaller than current limits. This
is so even if we chose extreme parameters that make flavorful new physics lie just beyond
the exclusion bounds from direct searches and from flavor non-violating observables.

5.2 Second example: an SU(3)3 ×U(1)2 model

Our second example involves the gauging of SU(3)3×U(1)2. With respect to the previous
one, two extra vector fields have been added, corresponding to the right-handed up and
down flavor numbers. The flavor gauge fields can thus be identified with the generators of
the SU(3)QL

× U(3)UR
× U(3)DR

group. This means that now they are free to mix (even
above the flavor breaking scale) with the SM hypercharge. This effect produces a mixing
between the flavor gauge bosons (only those with a non-vanishing U(1) component) and
the SM Z boson. We thus have two extra free parameters, characterizing the hypercharge
mixing with each of the two flavor U(1). There are two expected sizes for such mixing: a)
O(1) if they started O(1) at some high scale; b) “one-loop suppressed”×“logs” if they were
suppressed for some reason at the high scale and are produced only via radiative corrections.
Since the mixing with the hypercharge does not change the flavor-breaking structure, it
will not alter significantly the calculation of the flavor breaking effects. However the mixing
with the hypercharge now allows such vector fields to couple to leptons at tree level. On
the one hand the mixing makes it easier to detect such vector fields through their leptonic
channels. On the other, however, it makes the bound on their masses stronger, in order to
escape limits from electroweak precision tests.

The values of parameters we choose in this example are similar to those of the previous
one:

Mu (GeV) Md (GeV) λu λ′u λd λ′d gQ gU gD
350 100 1.1 0.5 0.25 0.25 0.3 1 0.3

As before together with the values of the SM Yukawa couplings these parameters fix the
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Figure 4. Spectrum of the flavor spin-1 (left) and spin-1/2 (right) fields for the second example
(see text and caption of figure 3 for details).

values of the flavon VEVs:

Yu ≈ Diag
(
1 · 105 , 2 · 102 , 3 · 10−1

)
· V TeV ,

Yd ≈ Diag
(
6 · 103 , 4 · 102 , 7

)
TeV .

(5.4)

The spectrum is summarized in figure 4. As expected the fermionic spectrum is not
very different from the previous example, with the three lightest states having masses of
0.4, 1.8, and 90 TeV.

The gauge boson spectrum underwent larger modifications. Now we have two extra
states, which populate the lowest part of the spectrum. The four lightest states have now
the following masses: 0.29, 1.9, 3.9, and 80 TeV. Thus we have three flavor gauge bosons
that in principle are within the reach of the LHC. In particular the possibility of having
vector fields associated to non-traceless generators allowed the presence of a very light
vector particle coupled only to the right-handed third generation charge +2/3 quarks, tR
and t′R, since it receives a mass only from the Ŷ 3

u entry of the flavon field, which is the
smallest one.

Neglecting possible kinetic mixing, the lightest vector couples only to tR. For this
reason it could have escaped detection and indirect bounds, despite its low mass. Once the
mixing with hypercharge is taken into account strong bounds from EWPT may start be-
coming important: for a Z ′ coupling to hypercharge the bound reads: MZ′/gZ′ ≤ 8.55 TeV
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(95% CL) [38, 39]. This implies that in this explicit model we may allow for a mixing not
bigger than 5% to avoid conflicts with EWPT.

The position of the parameters chosen for this example in the (Mu/d, λu/d) plane is
shown with the symbol “×” in figures 1 and 2, thus within the experimental bounds coming
from direct searches of mb′ and mt′ and indirect effects such as Z → bb̄, EWPT and Vtb.
In particular, for these latter quantities we get

δRb
Rb

= −1.0 · 10−3 ,

S = 0.00 , T = 0.15 , U = 0.01 ,

Vtb = 0.97 .

(5.5)

This is close to the bounds from EWPT, as can also be seen from figure 2. The figure also
shows that for this values of parameters a heavy Higgs with mass up to ∼ 350 GeV is still
allowed.

Finally the effects on ∆F = 2 processes are (see the previous example for details):

Re (in GeV−2) Im (in GeV−2)
C1
K −7 · 10−15 −8 · 10−20

C̃1
K −1 · 10−16 −1 · 10−21

C5
K −4 · 10−15 −4 · 10−20

C1
D −3 · 10−20 −3 · 10−23

C̃1
D −3 · 10−25 −4 · 10−28

C5
D −4 · 10−22 −4 · 10−25

C1
Bd

2 · 10−16 2 · 10−16

C̃1
Bd

1 · 10−21 1 · 10−21

C5
Bd

2 · 10−18 2 · 10−18

C1
Bs

3 · 10−13 −4 · 10−13

C̃1
Bs

5 · 10−16 −6 · 10−16

C5
Bs

5 · 10−14 −6 · 10−14

which are similar or smaller to those of the previous example, thus well within the experi-
mental bounds.

6 Discussion

We have investigated the possibility of gauging the SM flavor symmetries. Remarkably can-
cellation of gauge anomalies automatically leads to a model characterized by a hierarchical
structure of new physics where the light generations are protected from large corrections
with respect to the SM predictions, while deviations could be present for the top and bot-
tom quarks. Contrary to the standard lore, the mechanism described here allows the scale
of flavor physics to be as low as a TeV while avoiding all flavor and precision electroweak
bounds but within reach at the Tevatron and the LHC. The lightest new states are the top
partners in the fermionic sector and a few flavor gauge bosons that behave as non-universal
Z ′. Depending on the flavor gauge group a few flavor gauge bosons could be observable.
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Most of the spectrum is much heavier than a TeV and can not be accessed directly in
present day accelerators. However the contributions could still be important for precision
observables particularly in flavor physics. The actual details of the model can vary sub-
stantially (the choice of the gauge group, the number of flavon fields, values of coupling
constants, etc.) however the general structure of inverted hierarchy is rather robust.

The main drawback of our model is that the scale of new physics, roughly set by the
parameters Mu,d, is an arbitrary parameter which, if larger than few TeV would render the
new states heavy, out of reach of present experiments. We are tempted to speculate that the
scale of flavor physics is linked to the electroweak scale implementing this mechanism within
a theory that addresses the hierarchy problem in the SM. In general flavor physics imposes
formidable constraints on physics beyond the SM. At present two strategies seem possible.
The first is to demand that new physics respects a MFV structure. To our knowledge
however this hypothesis cannot be derived from a symmetry of the UV theory but only
arise in the IR accidentally. The other possibility is the idea of partial compositeness,
see for example [42]. In this case the light generations are elementary as in the SM and
the flavor transitions are suppressed by the small mixing with composite states to which
the Higgs couple. Unfortunately the flavor and CP protection achieved in this case seems
at present incomplete. The inverted hierarchy of our model has some similarities with
both scenarios but here the suppression is due to the large mass of the relevant degrees of
freedom rather than the coupling. Of course some obvious challenges should be faced in
particular how to avoid reintroducing quadratic divergences in the Higgs sector once the
new physics has hierarchical scales.

We hope to return to this question in the future.
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A Radial modes

Radial and GB modes of the flavon fields can be parametrized as (see also [43, 44] for
related discussion),

Yu = UUρuU
†
Q ,

Yd = UDρdU
†
Q ,

(A.1)

where UQ,U,D are the three unitary matrices parametrizing the 9+9+8=26 Goldstone
modes. ρu and ρd are the matrices of the remaining 36-26=10 radial modes, with VEVs

〈ρu〉 =
λuMu

λ′u
ŷ−1
u V ,

〈ρd〉 =
λdMd

λ′d
ŷ−1
d ,

(A.2)

– 24 –



J
H
E
P
1
1
(
2
0
1
0
)
0
6
7

where, for simplicity, we assumed small Yukawa couplings (for the third generation the
exact expression, eq. (3.3), should be used). Requiring that the radial modes in ρu,d be
orthogonal to the Goldstone modes correspond in the unitary gauge to the condition that
cross product terms of the type ∂µρAµ vanish. This correspond to the the three sets of
conditions

AU : Im Tr[ρu∂ρ†uλ
α] = 0 , α = 1, . . . , 9

AD : Im Tr[ρd∂ρ
†
dλ

α] = 0 , α = 1, . . . , 9

AQ : Im Tr[(∂ρ†uρu + ∂ρ†dρd)λ
α] = 0 , α = 1, . . . , 8 .

(A.3)

We can conveniently rewrite
ρu = ΣRuDuΣ†LuV ,

ρd = ΣRdDdΣ
†
Ld ,

(A.4)

where Du,d are real diagonal matrices parametrizing the 6 radial modes associated to the
Yukawa masses (〈Du,d〉 = λu,dMu,dŷ

−1
u,d/λ

′
u,d), and ΣRu,Lu,Rd,Ld are four unitary matrices

parametrizing (after imposing the constraints) the remaining four angle modes. In partic-
ular we can write

ΣX = exp (iΠX) = exp
(
i
λα

2
παX

)
. (A.5)

Out of the corresponding 36 fields παX only 4 combinations remain since 6 cancel out in the
combination (A.4) and 26 are removed by the constraints (A.3). The latter in terms of the
ΠX fields read

AU : Tr[(2DuΠLuDu −D2
uΠRu −ΠRuD

2
u)λα] = 0 , α = 1, . . . , 9

AD : Tr[(2DdΠLdDd −D2
dΠRd −ΠRdD

2
d)λ

α] = 0 , α = 1, . . . , 9

AQ : Tr[(V †(2DuΠRuDu −D2
uΠLu −ΠLuD

2
u)V

+ 2DdΠRdDd −D2
dΠLd −ΠLdD

2
d)λ

α] = 0 , α = 1, . . . , 8 .

(A.6)

The combination of παX which cancel out can be found from the relations

ΣRuDuΣ†Lu = Du , ΣRdDdΣ
†
Ld = Dd , (A.7)

which give the following constraints for the remaining modes:

π3,8,9
Ru = −π3,8,9

Lu , π3,8,9
Rd = −π3,8,9

Ld . (A.8)

The first 9+9 conditions of (A.3) give the following constraints:

2dudcπ
1,2
Lu = π1,2

Ru(d2
u + d2

c) ,

2dudtπ
4,5
Lu = π4,5

Ru(d2
u + d2

t ) ,

2dcdtπ
6,7
Lu = π6,7

Ru(d2
c + d2

t ) ,

π3,8,9
Ru = π3,8,9

Lu ,

2dddsπ
1,2
Ld = π1,2

Rd(d2
d + d2

s) ,

2dddbπ
4,5
Ld = π4,5

Rd(d2
d + d2

b) ,

2dddbπ
6,7
Ld = π6,7

Rd(d2
s + d2

b) ,

π3,8,9
Rd = π3,8,9

Ld ,

(A.9)
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where 〈Du,d〉 = Diag(du,d, dc,s, dt,b) and together with the previous condition imply that
π3,8,9
X = 0 .

We thus ended up with 12 fields, without lack of generality π1,2,4,5,6,7
Ru,Rd . There are 8

further constraints from the last line in (A.6), which leave only four independent fields.
Notice that these are the only constraints that make the CKM angles appear. The expres-
sions we obtain are quite lengthy and we do not report them here explicitly, but we only
notice that all the 12 fields are in general different from zero and can be written as linear
combination of four independent fields.

A.1 General facts about radial modes

From the parametrization given above we notice some interesting facts about the way the
radial modes couple. Among the invariants that can be written in the Lagrangian those
which are only functions of one type of flavon field, depend only on the diagonal modes in
a simple way. Indeed

Tr[(Y †u,dYu,d)
n] = Tr[(D2n

u,d] ,

Det[Yu,d] = Det[Du,d] .
(A.10)

Σ-flavons only appear when both Yu and Yd are present. We have for example

Tr[Y †uYuY
†
d Yd] = Tr[D2

u(ΣLuV Σ†Ld)D
2
d(ΣLuV Σ†Ld)

†] , (A.11)

and in general the operators will be strings of the type

Tr[D2n1
u (ΣLuV Σ†Ld)D

2n2
d (ΣLuV Σ†Ld)

†D2n3
u (ΣLuV Σ†Ld)

† . . . ] . (A.12)

Thus the CKM radial modes only enter through the combination (ΣLuV Σ†Ld).
In the coupling to the SM fermions we have instead

QH̃
λuMu

λ′u
Y −1
u UR = QH̃

λuMu

λ′u
V †ΣLuD

−1
u Σ†RuUR ,

QH
λdMd

λ′d
Y −1
d DR = QH

λdMd

λ′d
ΣLdD

−1
d Σ†RdDR .

(A.13)

Calculating only three particle vertices, relevant for tree-level flavor breaking, we have two
possible types of operators, from the interaction of SM fermions to the diagonal and the
CKM radial modes respectively. For the first we can put the Higgs and the CKM modes
to their VEVs ΣX = 1 and get

v√
2
ULV

†λuMu

λ′u
D−1
u UR →

v√
2
UL

λuMu

λ′u
D−1
u UR = −

√
2λ′u
λu

m2
ui

Muv
U
i
LD

ii
uU

i
R ,

v√
2
DL

λdMd

λ′d
D−1
d DR = −

√
2λ′d
λd

m2
di

Mdv
D
i
LD

ii
dD

i
R ,

(A.14)

where we went from the Yukawa to the quark mass eigenstate basis UL → V UL. We make
two observations here. First, the interactions of these modes are doubly suppressed by the
Yukawa coupling constants (one suppression more than for the Higgs), and second, the
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interactions are flavor diagonal in the mass eigenstate basis, a sort of GIM mechanism is
at work and they do not induce FC processes at tree level.

The interactions of the CKM modes read instead

U
i
LΣij

Lumuj (Σ†Ru)jkUkR = iU
i
L(Πij

Lumuj −muiΠ
ij
Ru)U jR ,

D
i
LΣij

Ldmdj
(Σ†Rd)

jkDR = iD
i
L(Πij

Ldmdj
−mdi

Πij
Rd)D

j
R ,

(A.15)

from where we see that they can mediate flavor violations. Alternatively, the Σ-fields can
be reabsorbed into a field redefinition of the quark fields, which makes the interactions
appear from the kinetic terms:

iUL,Rγ
µΣ†Lu,Ru∂µΣLu,RuUL,R = −UL,Rγµ∂µΠLu,RuUL,R ,

iDL,Rγ
µΣ†Ld,Rd∂µΣLd,RdDL,R = −DL,Rγ

µ∂µΠLd,RdDL,R .
(A.16)

In this form the interactions of the CKM modes resembles the one of the longitudinal modes
of the vector fields. To estimate the potential flavor violation induced by these interactions,
we should write explicitly the dependence on the independent modes in the Π-fields and
work out the spectrum of the corresponding modes. The full analytic expression turns
out to be lengthy and not very illuminating, therefore we will give them explicitly in the
two-flavor case to illustrate their structure, while for the three-flavor case we will give only
the numerical estimates.

A.2 The 2-flavors example

In the two dimensional case there is only one CKM mode, which means that all Π-fields
can be rewritten in terms of one field only. The diagonal entries vanish because of the
constraints, like in the 3 flavor case. It is simple to work out all the constraints and the
explicit results for the Π-fields, in terms of the canonically normalized field ϕ, read

ΠLu =
σ2

2
d2
d − d2

s

d2
u − d2

c

d2
u + d2

c

κ
ϕ ,

ΠRu =
σ2

2
d2
d − d2

s

d2
u − d2

c

2dudc
κ

ϕ ,

ΠLd =
σ2

2
d2
u − d2

c

d2
d − d2

s

d2
d + d2

s

κ
ϕ ,

ΠRd =
σ2

2
d2
u − d2

c

d2
d − d2

s

2ddds
κ

ϕ ,

κ =
√

(d2
d + d2

s)(d2
u − d2

c)2 + (d2
u + d2

c)(d2
d − d2

s)2 ,

(A.17)

where σa are Pauli matrices. As we explained earlier only the combination (ΣLuV Σ†Ld) can
appear in the scalar potential. Notice that in this case V = exp(iσ2θ12) and therefore

(ΣLuV Σ†Ld) = exp(i(ΠLu −ΠLd + σ2θ12)) = exp
(
iσ12

(
θ12 +

κ

2(d2
u − d2

c)(d2
d − d2

s)
ϕ

))
,

(A.18)
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so that the CKM modes in this case enter like a shift of the Cabibbo angle in the scalar
potential.

The interactions with the SM fermions read instead

1
2
uL
d2
d − d2

s

d2
u − d2

c

d2
u + d2

c

κ
mc

(
1− 2d2

c

d2
u + d2

c

)
cRϕ '

1
2

dd

du

√
d2
u + d2

d

mcuLcRϕ ≈
√

2λ′umumc

λuMuv
uLcRϕ

1
2
cL
d2
d − d2

s

d2
u − d2

c

d2
u + d2

c

κ
mu

(
2d2

u

d2
u + d2

c

−1
)
uRϕ '

1
2

dd

du

√
d2
u + d2

d

mucLuRϕ ≈
√

2λ′um
2
u

λuMuv
cLuRϕ

(A.19)
and analogously for the down-type quarks. The most dangerous interaction is suppressed
by λ′

umumc

λuMuv
which, like for the diagonal modes, provide an extra Yukawa suppression with

respect to the Higgs coupling, which is already Yukawa suppressed.
In this case the smallness of the coupling guarantees no dangerous tree-level FC effects

regardless of what the masses of the radial modes may be, as long as they are above the
bounds from direct searches (and such bounds can be even quite loose because of the small
couplings).

A.3 The 3-flavors case: numerical

In the 3-flavor case the formulae are lengthy and less intuitive, however one can still calcu-
late numerically the 3-fields vertices involving two SM fermions and one of the four CKM
radial modes (canonically normalized). Even without knowing the potential, and therefore
the mass matrix of these radial modes, one can estimate their maximum FC contributions
by assuming that the lightest eigenmode couples to the vertices with the largest couplings.
In this case contributions to ∆F = 2 operators of the form

c

m2
π

(qq)2

are obtained, with

Re(c) Im(c)
(sRdL)2 −7 · 10−18 −1 · 10−20

(cRuL)2 −4 · 10−18 −3 · 10−19

(bRdL)2 −7 · 10−17 −7 · 10−22

(bRsL)2 −8 · 10−13 −9 · 10−18

and with mπ the mass of the lightest CKM mode eigenstate. The contributions are so
suppressed that mπ can be as light as 100 MeV without incurring into problems with
flavor. The quantitative results above nicely fit with what is observed in the two flavor
case, and the couplings of the canonically normalized CKM modes to the fermions are
numerically compatible with the short-hand formula

πCKM

λ′u,dmqimqj

λu,dvMu,d
qiRq

j
L , (A.20)

which is similar to the flavor preserving one for the radial modes of the diagonal flavon
fields.
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B Oblique corrections

In this appendix we derive the one loop expression for the S, T and U parameters in our
model.

We use the standard definitions [45],

S = −16πΠ′3Y (0) ,

T =
4π

s2
wc

2
wM

2
Z

[Π11(0)−Π33(0)] ,

U = 16π
[
Π′11(0)−Π′33(0)

]
.

(B.1)

For simplicity we work in the limit where only the mixing of the top is important.
From the couplings (3.8), (3.10) the contribution of the third generation to T (obtained as
the difference between the correlators in our model and their SM values corresponding to
suL3 = 0) is given by,

T =
48π

s2
wc

2
wM

2
Z

[2s2
uL3

ΠLL(mt,mb, 0) + 2s2
uL3

ΠLL(mt′ ,mb, 0) + (1− c4
uL3

)ΠLL(mt,mt, 0)

− s4
uL3

ΠLL(mt′ ,mt′ , 0)− 2s2
uL3

c2
uL3

ΠLL(mt,mt′ , 0)] (B.2)

where we have introduced the self energies ΠLL(m1,m2, q) with two left currents. In the
limit mb → 0 one finds,

T =
3 s2

uL3

8π s2
wc

2
w

m2
t

M2
Z

[
c2
uL3

(
m2
t′

m2
t′ −m2

t

log
(m2

t′

m2
t

)
− 1
)

+
s2
uL3

2

(
m2
t′

m2
t

− 1
)]

. (B.3)

Repeating the same steps for S one obtains,

S = 4π[c2
uL3

(c2
uL3

+ 3s2
uL3

c2
uL3
− 4)Π′LL(mt,mt, 0) + s2

uL3
(3c2

uL3
+ 1)Π′LL(mt′ ,mt′ , 0)

− 6s2
uL3

c2
uL3

Π′LL(mt,mt′ , 0) + 4c2
uL3

Π′LR(mt,mt, 0) + 4s2
uL3

Π′LR(mt′ ,mt′ , 0)] , (B.4)

which gives

S =
s2
uL3

6π

[(
3c2
uL3

(m2
t′ +m2

t )(m
4
t′ − 4m2

t′m
2
t +m4

t )
(m2

t′ −m2
t )3

− 1
)

log
(m2

t′

m2
t

)
−c2

uL3

5m4
t′ − 22m2

t′m
2
t + 5m4

t

(m2
t′ −m2

t )2

]
. (B.5)

For completeness the U parameter is given by,

U =
s2
uL3

6π

[
−3
(
c2
uL3

(m2
t′ +m2

t )(m
4
t′ − 4m2

t′m
2
t +m4

t )
(m2

t′ −m2
t )3

− 1
)

log
(m2

t′

m2
t

)
+c2

uL3

5m4
t′ − 22m2

t′m
2
t + 5m4

t

(m2
t′ −m2

t )2

]
. (B.6)

For our analysis we have used the recent analysis [46],

S = 0.02± 0.11
T = 0.05± 0.12
U = 0.07± 0.12

with correlation matrix

 1 0.879 −0.469
0.879 1 −0.716
−0.469 −0.716 1

 . (B.7)
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