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even as N increases. In the N = 2 case, we find supersymmetry-preserving gauge-invariant
monopole operators whose mass is independent of N . This predicts the existence of branes
which stay light even when the dilaton decreases. We show that, on the gravity side, these
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singularity that develops at large N .
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1 Introduction and summary of results

One of the most striking aspects of string theory is its uniqueness, realized by the fa-
mous “web of dualities” that interconnect its various perturbative realizations. A fa-
mous thread in this web connects weakly coupled, perturbative type IIA string the-
ory with its strong coupling limit, M theory (which reduces at low energies to eleven-
dimensional supergravity).

It has been known for a while, however, that this duality does not work when the
Romans mass parameter F0 [1], which can be thought of as a space-filling Ramond-Ramond
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(RR) 10-form flux, is switched on. There is no candidate parameter in eleven-dimensional
supergravity to match with F0, unlike for all the other fluxes; nor is there any massive
deformation of the eleven-dimensional theory [2–4].1 And, from the type IIA point of view,
the D0-branes which give rise to the momentum modes in the eleventh dimension at strong
coupling do not exist in the massive theory (as there is a tadpole for their worldvolume
gauge field). This would then appear to be an imperfection in our understanding of string
duality: it would be one string theory whose strong coupling limit is not known.

In this paper, we will argue that this strong coupling limit may not exist, and we will
show this explicitly at least at the level of weakly curved solutions. In general these are the
only solutions we have any control over, unless we have a large amount of supersymmetry;
one can separately consider cases with a large amount of supersymmetry, and none of them
seem to lead to strong coupling either. (The type I’ theory of [7] contains in some of its
vacua strongly coupled regions of massive type IIA string theory, but these regions have a
varying dilaton and their size is never larger than the string scale.) Thus, we claim that
there is no reason to believe that any strongly coupled solutions exist (with the exception
of solutions with small strongly coupled regions), and we conjecture that there are none.
This is consistent with the fact that no suggestion for an alternative description of the
massive theory at strong coupling is known.

In section 2 we provide a simple argument that the string coupling gs in massive
type IIA string theory must be small, if the curvature is small. Generically, we find that
gs ∼< ls/R, where R is a local radius of curvature. The argument just uses the supergravity
equations of motion and flux quantization.

This result is in striking contrast with what happens in the massless case. In the
ten-dimensional massless vacuum, for example, the dilaton is a free parameter, and in
particular it can be made large, resulting in the M-theory phase mentioned earlier. The
massive theory has no such vacua.

It is of interest to consider examples with AdS4 factors, where we can take advantage of
a dual field theory interpretation via the AdS/CFT correspondence, which also provides a
non-perturbative definition for the corresponding string theory backgrounds. In particular,
it is natural to consider solutions like the N = 6 supersymmetric solution AdS4 × CP3 of
the massless type IIA string theory [8–10]. In this solution, the dilaton is determined by the
internal flux integers k ∝

∫
CP1 F2 and N ∝

∫
CP3 F6, gs ∼ N1/4/k5/4, whereas the curvature

radius R/ls ∼ N1/4/k1/4. In particular, for N � k5 one has a large dilaton with small
curvature. In this limit, the solution is better described as the AdS4 × S7/Zk M-theory
background. The dual field theory has been identified in [11] as the N = 6 superconformal
Chern-Simons-matter theory with gauge group U(N)×U(N) and Chern-Simons couplings
k and −k.

Massive type IIA solutions are also known on AdS4×CP3, and it is natural to compare

1See [5, 6] for some attempts to lift massive type IIA string theory to eleven dimensions.
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their behavior to the massless case. For example, some solutions with N = 1 supersym-
metry are known explicitly [12, 13]; they contain the N = 6 solution as a particular case.
The field theory duals are Chern-Simons-matter theories whose levels do not sum up to
zero. Even though F0 is quantized as n0/(2πls), one might think that introducing the
smallest quantum of it, say n0 = 1, should have little effect on the solutions, if the other
flux integers k and N are already very large. It would seem, then, difficult to understand
how a massless solution with large dilaton can suddenly turn into a massive solution with
small dilaton when n0 is turned on.

As we will see in section 3, in general this “small deformation” intuition is flawed.
When trying to express the dilaton in terms of the flux parameters, in the massive case one
ends up with expressions in which F0 multiplies other, large flux parameters. Hence F0 can
have a large effect on the behavior of the solutions even if it is the smallest allowed quantum.
As it turns out, as we increase N , the dilaton does start growing as gs ∼ N1/4/k5/4, as
in the massless case. But, before it can become large, gs enters a second phase, where it
starts decreasing with N . Specifically, for N larger than the “critical value” k3/n2

0, we
have gs ∼ N−1/6n

−5/6
0 . Both behaviors are visible in figure 2.

Notice that what happens for these N = 1 solutions is not entirely a consequence of
the general argument in section 2. One could have found, for example, that for large N
the radius of curvature became small in string units. In such a situation, our supergravity
argument would not have been able to rule out a large dilaton; even worse, it would actually
generically predict it to be large. It is interesting to ask whether there are situations
where that happens. Of course, one would not trust such strongly-curved, strongly-coupled
solutions, since we have no control over them; but, if they existed, they would suggest that
perhaps strongly coupled solutions do exist and need to be understood.

To look for such a different behavior, we turn to a second class of massive solutions,
still on AdS4 × CP3, but this time with N = 2 supersymmetry. Such gravity solutions
were predicted to exist via AdS/CFT [14], and found as first-order perturbations in F0 of
the N = 6 solution in [11]. The field theory duals are again Chern-Simons-matter theories
whose levels do not sum up to zero. In section 4 we point out that these theories have certain
gauge-invariant monopole operators, whose mass (which is protected by supersymmetry) is
independent of the rank N . This suggests the existence of wrapped branes that remain light
in the large N limit. This cannot happen for backgrounds which are both weakly-coupled
and weakly-curved.

To see what happens at large N , in section 5 we find these N = 2 gravity solutions,
generalizing the construction in [15] (see also [16]). We reduce the equations of motion and
supersymmetry equations to a system of three ODEs for three functions, which we study
numerically. As in section 3, we then study the behavior of gs as a function of the flux
integers. We find exactly the same phenomenon as in section 3: gs follows initially the same
growth observed for the N = 6 solutions, and departs from that behavior before it can get
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large. The existence of the light states found in section 4 is not a consequence of strong
coupling, but is instead explained by the fact that the internal space develops a conifold
singularity where branes can wrap a small cycle. We compute numerically the mass of
D2-D0 bound states wrapping the vanishing cycle, and we reproduce very accurately the
mass predicted in section 4 from AdS/CFT.

Hence, in both examples we examined, the curvature stays bounded almost everywhere,
and the dilaton does not become strongly coupled.2 Our argument in section 2 does not
rule out the possibility of solutions with large curvature and large dilaton, and it would be
nice to find a way to rule them out. In general, such solutions would not be trustworthy,
but in some situations one might understand them via chains of dualities. For example, in
some cases it might be possible to T-dualize to a massless solution with small curvature,
which in turn might be liftable to M-theory, along the lines of [18]. The behavior found in
the two examples analyzed in this paper may not be universal, and we expect the AdS/CFT
correspondence to be very helpful in any further progress.

One motivation for understanding the strong coupling limit of massive type IIA string
theory is the Sakai-Sugimoto model [19] of holographic QCD, which has Nf D8-branes
separating a region of space with F0 = 0 from a region with F0 = Nf/(2πls). The solution
of this model is known in the IR, where it is weakly coupled and weakly curved and the D8-
branes may be treated as probes; but it is not clear what happens in the UV, where, before
putting in the D8-branes, the coupling became large (see [20] for an analysis of the leading
order back-reaction of the D8-branes in this model). Our analysis rules out the possibility
that the region of massive type IIA string theory between the D8-branes becomes strongly
coupled while remaining weakly curved in the UV. It would be interesting to understand
whether there is a sensible UV completion of this model, and, if so, what it looks like.

2 A general bound on the dilaton

In this section, we will find a bound for the dilaton for type IIA solutions with non-zero
0-form flux F0 6= 0, assuming that the ten-dimensional curvature is small.

The argument is simply based on the equations of motion of type IIA supergravity.
Note that due to supersymmetry, these equations are actually exact (at two-derivative
order) and can be trusted even when the coupling constant becomes large.

The Einstein equations of motion in the string frame take the form

e−2φ

(
RMN + 2∇M∇Nφ−

1
4
HM

PQHNPQ

)
=

∑
k=0,2,4

TFkMN , (2.1)

where
TFkMN =

1
2(k − 1)!

FM
M2...MkFNM2...Mk

− 1
4k!

FM1...Mk
FM1...MkgMN . (2.2)

2A correlation between the string coupling and the curvature in massive type IIA string theory was

noticed recently in [17].
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The equations (2.1) are valid at every point in spacetime, away from possible branes or
orientifolds. On such objects, we would need to include further localized terms, but they
will not be needed in what follows. In fact, all we need is a certain linear combination: let
us multiply (2.1) by e0

Me0
N , where e are the inverse vielbeine; 0 is a frame index in the

time direction. We can now use frame indices to massage T00 on the right hand side:

2TFk00 =
1

(k − 1)!
F0

A2...AkF0A2...Ak−η00

(
1

2(k − 1)!
F 0A2...AkF0A2...Ak+

1
2k!

FA1...AkFA1...Ak

)
=

1
2(k − 1)!

F0
A2...AkF0A2...Ak+

1
2k!

FA1...AkFA1...Ak ≡
1
2

(F 2
0,k−1+F 2

⊥,k) . (2.3)

We have defined the decomposition Fk = e0 ∧ F0,k−1 + F⊥,k. (In particular, F⊥,0 is simply
F0.) Applying this to (2.1), we get

e−2φ

[
e0
Me0

N

(
RMN+2∇M∇Nφ−

1
4
HM

PQHNPQ

)]
=

1
4

∑
k=2,4

F 2
0,k−1+

∑
k=0,2,4

F 2
⊥,k

 .

(2.4)
Again, this is satisfied at every spacetime point (away from possible sources): there is no
integral in (2.4). RMN needs to be small in the supergravity approximation. In fact, all
the remaining terms in the parenthesis on the left-hand side need to be small too: they are
all two-derivative NS-NS terms. If any of them is large in string units, we cannot trust the
two-derivative action any more; hence that parenthesis needs to be � l−2

s .
On the other hand, when F0 6= 0, the right-hand side of (2.4) is at least of order one

in string units. To see this, recall that RR fluxes are quantized, in appropriate sense. The
Fk are actually not closed under d, but under (d−H∧). However, the fluxes

F̃k =
[
e−B(F0 + F2 + F4 + F6 + F8 + F10)

]
k

(2.5)

are closed; when integrated over a closed space-like cycle Ca, they satisfy the quantiza-
tion law ∫

Ca

F̃k = nk(2πls)k−1 , (2.6)

where nk are integers. In particular, F0 = n0/(2πls). Since the right-hand side of (2.4) is
a sum of positive terms, we get that it is > 1/l2s (up to irrelevant order one factors).

Let us now put these remarks together. Since the parenthesis on the left-hand side is
� 1/l2s , and the right-hand side is > 1/l2s , we have

eφ � 1 . (2.7)

For generic solutions, the parenthesis on the left hand side of (2.4) will be of order
1/R2, where R is a local radius of curvature. In that case, we can estimate, then,

eφ ∼<
ls
R
, (2.8)

which of course agrees with (2.7).
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When F0 = 0, the conclusion (2.7) is not valid because all the remaining terms on the
right hand side can be made small, in spite of flux quantization. For example, assume all
the components of the metric are of the same order 1/R2 everywhere, and that H = 0.
Then, the integral of F is an integer nk, but the value of F 2

k at a point will be of order
(nk/Rk)2 (in string units). At large R, this can be made arbitrarily small. This is what
happens in most type IIA flux compactifications with F0 = 0; the dilaton can then be
made large, and the limit φ → ∞ reveals a new phase of string theory, approximated by
eleven-dimensional supergravity.

To summarize, we have shown that F0 6= 0 implies that the dilaton is small (2.7), as
long as the two-derivative action (the supergravity approximation) is valid.

3 The N = 1 solutions

In this section, we will see how the general arguments of section 2 are implemented in the
N = 1 vacua of [12].

3.1 The N = 1 solutions

We recall here briefly the main features of the N = 1 solutions in [12] on AdS4 × CP3.
The metric is simply a product:

ds2
N=1 = ds2

AdS4
+ ds2

CP3,N=1 . (3.1)

Topologically, CP3 is an S2 fibration over S4. We use this fact to write the internal metric as

ds2
CP3,N=1 = R2

(
1
8

(
dxi + εijkAjxk

)2
+

1
2σ
ds2
S4

)
, (3.2)

where xi are such that
∑3

i=1(xi)2 = 1, Ai are the components of an SU(2) connection on
S4 (with p1 = 1), and ds2

S4 is the round metric on S4 (with radius one). R is an overall
radius, related to the AdS radius by

RAdS ≡ L =
R

2

√
5

(2σ + 1)
. (3.3)

The parameter σ in (3.2) is in the interval [2/5, 2]; this implies, in particular, that L/R is
of order 1 for these N = 1 solutions. For σ = 2, (3.2) is the usual Fubini-Study metric,
whose isometry group is SU(4) ' SO(6). For σ 6= 2, the isometry group is simply the
SO(5) that rotates the base S4.

The metric (3.1) depends on the two parameters L and σ. A third parameter in the
supergravity solution is the string coupling gs. Yet another parameter comes from the
B field. For 2/5 < σ < 2, supersymmetry requires the NS-NS 3-form H to be non-zero
(see [12, eq. (2.2)]). One can solve that constraint by writing

B = −
√

(2− σ)(σ − 2/5)
σ + 2

J + β (3.4)
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where J = i
2(ei ∧ ei) is the Hermitian form (an analogue of the Kähler form: ei, i = 1, 2, 3

are (1, 0) vielbeine), and β is a closed two-form [12, eq. (4.5)]. Because of gauge invariance
B ∼= B + dλ1, the space of such β is nothing but the second de Rham cohomology of the
internal space, H2(CP 3) = R. So we have one such parameter, which we can take to be
the integral of β over the generating two-cycle in H2,

b ≡ 1
(2πls)2

∫
CP1

β , (3.5)

where we normalized b so that large gauge transformations shift it by an integer.
To summarize, the N = 1 supergravity solutions depend on the four parameters

(L, σ, gs, b).

3.2 Inverting the flux quantization equations

We now apply the flux quantization conditions (2.6). It is convenient to separate the
contribution from the zero-mode β:

F̃k = e−βF̃k|β=0 ; (3.6)

we then define
∫
F̃k|β=0 ≡ nbk(2πls)k−1, which can be computed explicitly [12]. We have

1
lgs
f0(σ)

l
gs
f2(σ)

l3

gs
f4(σ)

l5

gs
f6(σ)


=



nb0

nb2

nb4

nb6


≡



1 0 0 0

b 1 0 0

1
2b

2 b 1 0

1
6b

3 1
2b

2 b 1





n0

n2

n4

n6


, (3.7)

where

l = L/(2πls) , (3.8)

and

f0(σ) =
5
4

√
(2− σ)(5σ − 2)

(2σ + 1)
, f4(σ) = − 25π2

3 · 52

(σ − 1)(2σ + 1)5/2

σ2(σ + 2)2

√
(2− σ)(5σ − 2) ,

f2(σ) =
8π√

5
(σ − 1)
(σ + 2)

√
2σ + 1 , f6(σ) = − 27π3

3 · 57/2

(σ2 − 12σ − 4)(2σ + 1)7/2

σ2(σ + 2)2
.

(3.9)

Equation (3.7) is [14, eq. (4.26)], which in this paper we chose to reexpress in terms of l (the
AdS radius in string units) rather than r (the internal size in string units), to harmonize
notation with section 5.

We want to invert these formulas and get expressions for the parameters (l, gs, σ, b) in
terms of the flux integers ni, as explicitly as possible. If one assumes b = 0, this is easy [12];
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Figure 1. A plot of the function ρ(σ) in (3.13).

with b 6= 0, it is a bit more complicated. A good strategy is to consider combinations of
the flux integers that do not change under changes of the b field: in addition to n0, two
other combinations are

(nb2)2−2n0n
b
4 = n2

2−2n0n4 , (nb2)3 +3n2
0n

b
6−3n0n

b
2n

b
4 = n3

2 +3n2
0n6−3n0n2n4 . (3.10)

We then find

n2
2 − 2n0n4 =(f2

2 − 2f0f4)
(
l

gs

)2

=
16
15
π2

(
l

gs

)2 (σ − 1)(4σ2 − 1)
σ2

, (3.11)

n3
2 + 3n2

0n6 − 3n0n2n4 =(f3
2 + 3f2

0 f6 − 3f0f2f4)
(
l

gs

)3

=
8π3

53/2

(
l

gs

)3 (−6 + 17σ − 6σ2)(2σ + 1)3/2

σ2
. (3.12)

We see that (3.11) and (3.12) give two independent expressions for l/gs; this implies

(n2
2 − 2n0n4)3

(n3
2 + 3n2

0n6 − 3n0n2n4)2
=

64(σ − 1)3(2σ − 1)3

27σ2(−6 + 17σ − 6σ2)2
≡ ρ(σ) . (3.13)

This determines σ implicitly in terms of the fluxes. The function ρ(σ) (which we plot in
figure 1) diverges at σ = 17−

√
145

12 ∼ .41, and has zeros at σ = 1
2 and σ = 1. These zeros

have multiplicity three, and hence they are also extrema and inflection points. Moreover,
it has a minimum at σ ∼ .65; and it goes to 1 for both σ = 2 and σ = 2

5 .
We can now combine the equation for n0 in (3.7), which determines gsl, with the

expression for l/gs in either (3.11) or (3.12). We prefer using the latter, since it turns out
to contain functions of σ which are of order one on most of the parameter space:

l =
53/4

23/2
√
π

(2− σ)1/4(5σ − 2)1/4σ1/3

(2σ + 1)1/2(−6 + 17σ − 6σ2)1/6

(
n3

2

n3
0

+ 3
n6

n0
− 3

n2n4

n2
0

)1/6

, (3.14)

gs = 51/4

√
π

2
(2− σ)1/4(5σ − 2)1/4(−6 + 17σ − 6σ2)1/6

σ1/3n
1
2
0 (n3

2 + 3n2
0n6 − 3n0n2n4)1/6

. (3.15)
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The function in the expression for l diverges at σ = 17−
√

145
12 ∼ .41 and vanishes for σ = 2

5

and 2, whereas the function in the expression for gs vanishes for σ = 2
5 , 17−

√
145

12 and 2.
Finally, the second row of equation (3.7) determines b in terms of n2, n0 and the

remaining fields l, gs and σ. One could eliminate l and gs from that expression using (3.14)
and (3.15), but we will not bother to do so.

3.3 A phase transition

We will start by taking for simplicity

n4 = 0 , (3.16)

and we will call
n2 ≡ k , n6 ≡ N (3.17)

as in [11].
In this case, (3.13) reads

ρ(σ) =
(

1 + 3
Nn2

0

k3

)−2

. (3.18)

From the graph in figure 1, we see that the behavior of the solution depends crucially on
the ratio Nn2

0
k3 . If for example

N � k3

n2
0

, (3.19)

we have ρ(σ) ∼ 1. Looking at figure 1, we see that a possible solution is σ = 2. Around
this point, ρ goes linearly; so, if we write σ = 2 − δσ, we have δσ ∼ Nn2

0
k3 . From (3.14)

and (3.15) we then have

l ∼ δσ1/4

(
k

n0

)1/2

=
N1/4

k1/4
, gs ∼ δσ1/4(kn0)−1/2 =

N1/4

k5/4
. (3.20)

This is the same behavior as in the N = 6 solution [11].
If, on the other hand,

N � k3

n2
0

, (3.21)

we have ρ(σ) ∼ 0. The possible solutions are σ ' 1 or σ ' 1
2 . The σ-dependent functions

in the expressions for l and gs in (3.14) and (3.15) are then both of order one. We have

l ∼ N1/6

n
1/6
0

, gs ∼
1

N1/6n
5/6
0

. (3.22)

Notice that this behavior occurs for example in the nearly Kähler solutions of [21].
For those vacua, we have l5/gs = n6 and 1/(lgs) = n0, which gives the same behavior as
in (3.22). Notice also that σ = 1 corresponds indeed to a nearly Kähler metric.
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1 100 104 106 108 1010
n6

0.1

0.2

gs

Figure 2. The behavior of gs as a function of N = n6, for n2 = k = 100, n4 = 0 and n0 = 1. We
see both the growth in the first phase (3.20), for n6 � n3

2/n
2
0 = 106, and the decay in the second

phase (3.22), for n6 � n3
2/n

2
0 = 106.

If one were to find a Chern-Simons dual to a vacuum whose only relevant fluxes are n6

and n0, such as the nearly Kähler solutions, it would be natural to identify n6 with a rank
N and n0 with a Chern-Simons coupling k̃ (because F0 induces a Chern-Simons coupling
on D2-branes). In such a dual, n6

n0
= N

k̃
≡ λ̃ would then be the new ’t Hooft coupling. We

see then that l and gsN in (3.22) are both functions of this λ̃, as expected.

From (3.22) one can calculate the finite temperature free energy to be βF ∼ V2T
2 N2

λ̃1/3
∼

V2T
2N5/3n

1/3
0 , which grows with a higher power of N than in the massless case, for which

at strong coupling βF ∼ V2T
2N3/2k1/2.

In figure 2 we show a graph of gs as a function of N ; we see both behaviors (3.20)
and (3.22).

Our analysis above was limited for simplicity to the case n4 = 0, but it is easy to argue
that also for other values of n4, gs cannot become large. Equation (3.15) tells us that
gs = f(σ)/n1/2

0 m1/6, where f(σ) is bounded from above in the relevant range of values,
and m ≡ n3

2 + 3n2
0n6 − 3n0n2n4 is an integer. Thus, if m 6= 0, then gs is clearly bounded

from above in the massive theory by the maximal value of |f(σ)|. If m = 0, then (3.12)
implies that (−6 + 17σ − 6σ2) also vanishes, and we can then use (3.13) to rewrite (3.15)
in the form gs = f̃(σ)/n1/2

0 m̃1/4, where f̃(σ) is again bounded in the relevant range and
m̃ ≡ n2

2 − 2n0n4 is another integer. Thus, if m̃ 6= 0 then gs is bounded from above by the
maximal value of |f̃(σ)|, but this must be true since m and m̃ cannot vanish at the same
time (as is clear from (3.11) and (3.12)). Thus, for any integer fluxes with n0 6= 0, gs is
bounded from above by a number of order one.

3.4 Probes

We will now see that the “phase transition” between (3.20) and (3.22) has a sharp con-
sequence on the behavior of the probe branes in the geometry. We will consider branes
which are particles in AdS4 and that wrap different cycles in the internal space CP3.
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Not all such wrapped branes are consistent. In the N = 6 case, where F0 = 0 and∫
CP1 F2 = n2 6= 0, the action for a D2-brane particle wrapping the internal CP1 has a

tadpole for the world-sheet gauge field A, because of the coupling

1
2πls

∫
R×CP1

A ∧ F2 = n2

∫
R
A (3.23)

(the R factor in the D2-brane worldvolume being time). D0-branes, in contrast, have no
such problem. In the field theory, they correspond [11] to gauge-invariant operators made
of monopole operators and bifundamentals.

For the solutions with both F0 ' n0 6= 0 and
∫

CP1 F2 ' n2 6= 0, both D2’s and D0’s
have a tadpole. If one considers a bound state of nD2 D2 branes and nD0 D0 branes, the
tadpole for A is

(nD2n2 + nD0n0)
∫

R
A . (3.24)

For relatively prime n0 and n2, the minimal choice that makes this vanish is nD2 = n0 and
nD0 = −n2. These branes also correspond to a mix of monopole operators and bifunda-
mentals; we will discuss analogous configurations in more detail in section 5.4.

Consider now the case n0 = 1, and n2 = k � 1. Here we should consider a bound state
of one D2 brane and k D0 branes. In the context of AdS/CFT, all masses are naturally
measured in units of the AdS mass scale mAdS ≡ 1

RAdS
= 1

L ; recall also from (3.3) that R
is of order L. The masses of a D2 and of a D0 particle would then be (setting the string
scale to one)

mD2L ∼
L2/gs
1/L

=
L3

gs
, mD0L ∼

1/gs
1/L

=
L

gs
. (3.25)

Thus, the bound states we are considering here (the particles that have no world-sheet
tadpole) have a mass of order

mD2−kD0 =
L

gs

√
k2 + L4 . (3.26)

Which of the two terms dominates? it turns out that the answer depends on which of
the two phases, (3.20) or (3.22), we are considering. In both phases the ratio of the two
masses is a function of N

k3 .
A simple computation gives that, in the first phase (3.20), the D2’s mass is ∼

√
Nk,

whereas the k D0 branes have mass k × k. The D0’s dominate the mass, which then goes
like k2

√
1 + N

k3 .

In the second phase, the D2’s mass is ∼ N2/3, whereas the k D0’s mass goes like

k ×N1/3. Hence the D2 dominates. The mass then goes like N2/3

√
1 +

(
N
k3

)−2/3.
Another type of branes that have no tadpole problems are D4 branes. In the field

theory, these correspond [11] to baryon operators. In AdS units, these have a mass of order
L4/gs
1/L = L5

gs
. Interestingly, this turns out to be of order N in both phases (3.20) and (3.22),

which looks reasonable for a baryon.

– 11 –



J
H
E
P
1
1
(
2
0
1
0
)
0
4
7

3.5 Field theory interpretation

The field theories dual to the vacua analyzed in this section were proposed in [14]. Because
of the low amount of supersymmetry, we do not expect to be able to make here any useful
check of this duality. However, we can use our gravity results to make some predictions
about those field theories, under some assumptions.

First of all, let us recall briefly the N = 1 field theories defined in [14]. They are similar
to the N = 6 theory of [11, 22], in that they also have a gauge group U(N1)×U(N2). The
matter content can be organized in (complexified) N = 1 superfields XI , I = 1, . . . , 4; they
transform in the (N̄1, N2) representation of the gauge group. The biggest difference is that
the Chern-Simons couplings for the two gauge groups are now unrelated: we will call them
k1 and −k2. For k1 6= k2, it is no longer possible to achieve N = 6 supersymmetry, and
there are several choices as to the amount of flavor symmetry and supersymmetry that one
can preserve. In this section, we consider a choice that leads to N = 1 supersymmetry and
SO(5) flavor symmetry; in the following sections we will consider a different choice, that
leads to N = 2 and SO(4) flavor symmetry.

This theory can be written in terms of N = 1 superfields; the superpotential then reads
WN=1 = Tr[c1X

†
IX

IX†JX
J + c2X

†
IX

JX†JX
I + c3ω

IKωJLX
†
IX

JX†KXL]. Notice that all the
terms are manifestly invariant under Sp(2)=SO(5), as promised. When k1 = k2 ≡ k, the
theory has N = 6 supersymmetry when the parameters are c1 = −c2 = 2π/k, c3 = −4π/k.
For k1 6= k2, this choice is no longer possible, as we already mentioned. In spite of there
being only N = 1 supersymmetry, however, it was argued in [14] that there still exists a
choice of ci that makes the theory superconformal, as long as k1 − k2 is small enough with
respect to the individual ki.

If we define the ’t Hooft couplings

λ1 =
N

k1
, λ2 =

N

−k2
, λ± = λ1 ± λ2 , (3.27)

the N = 6 theory would correspond to λ+ = 0. The argument in [14] then says that there
is a CFT in this space of theories if λ+ � λ−, although at strong coupling it is difficult to
quantify just how much smaller it has to be.

Let us now try to translate in terms of these field theories the “phase transition” we
saw in section 3.3. To do so, we can use the dictionary (5.35) between the field theory
ranks and levels on one side, and flux integers on the other. This dictionary is also valid
for N = 1 theories [14]. The phase transition in section 3.3 happens for N ∼ n3

2/n
2
0. Since

k1 ∓ k2

N
=

1
λ1
± 1
λ2

=
±4λ±
λ2

+ − λ2
−
, (3.28)

when λ+ � λ− we have n0/N ∼ λ+/λ
2
−, n2/N ∼ 1/λ−. So the phase transition happens at

λ− ∼ λ2
+ . (3.29)

– 12 –



J
H
E
P
1
1
(
2
0
1
0
)
0
4
7

In particular, the “ABJM phase” (3.20) corresponds to λ+ �
√
λ−; the “nearly-Kähler”

phase (3.22) corresponds to λ+ �
√
λ−. At strong coupling, then, there is an intermediate

regime where
√
λ− � λ+ � λ−, where it is possible that the second phase (3.22) is also

described by the field theories described in [14] and reviewed in this section. However,
given the low amount of supersymmetry, this can only be a conjecture at this point.

Rather than trying to test further this correspondence, we will now turn our attention
to N = 2 theories, on which there is much better control.

4 Monopoles in N = 2 Chern-Simons-matter theories

In this section, we will recall some general facts about monopole operators in Chern-Simons-
matter theories, and we will apply them to a particular quiver theory, similar to the ABJM
theory; its gravity dual will be examined in section 5.

4.1 Construction of monopole operators in general

Consider a d = 3 gauge theory with gauge group
∏m
i=1 U(Ni). Then there are m currents,

ji = ∗ Tr (Fi), which are conserved by the Bianchi identity. If the theory flows to a CFT
in the IR, then these must be dimension 2 operators in the IR. There may or may not be
operators charged under the corresponding U(1)m flavor symmetry; if they exist we will
call them monopole operators.

In a conformal field theory, it is convenient to use radial quantization and consider
the theory on R × S2. Let us apply the state-operator correspondence to a monopole
operator, with charge vector ni. This results in a state in the theory on an S2, such that∫
S2 Tr (Fi) = 2πni. We will denote the diagonal values of Fi by wai :

Fi = diag(w1
i , . . . , w

Ni
i )volS2 ; (4.1)

taking the trace over the gauge group U(Ni), we have that the magnetic charges are

ni =
∑
a

wai . (4.2)

We are interested in d = 3 N = 2 Chern-Simons-matter theories. We can take them to
be weakly interacting at short distances by adding Yang-Mills terms as regulators [23–26].
In such a regulated theory, there are BPS classical configurations with the gauge field as
in (4.1) and non-trivial values for the scalar fields. The BPS equations on R1,2 include the
Bogomolnyi equations Fi = ∗Dσi, where σi is the adjoint scalar in the vector multiplet. In
R×S2, this equation is different because the metric needs to be rescaled, and the fields need
to be transformed accordingly; the equations then read Fi = σivolS2 . Notice in particular
that the σi are constant. There are also other BPS equations, which involve the other
scalars in the theory (for explicit computations for N = 3 theories, see [24, §3.2], and in
N = 2 language, [27]).
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After adding the regulating Yang-Mills term, g2
YM becomes small in the UV, so the

N = 2 vector multiplet should be treated classically, while the chiral matter fields should
not. This justifies not solving Gauss’s law in describing the “pure” monopole operator,
which then behaves as if it were a local, non-gauge invariant chiral field [24].

The scalar σi is set by the BPS equations to be equal to the inverse Chern-Simons
level times the moment maps of the matter fields,

σi = 2π
Di

ki
, (4.3)

and to have a spin 0 operator, one should satisfy the constraint [27]

σiXij = Xijσj (4.4)

for any bi-fundamental field Xij connecting the i-th and j-th gauge group [28–30]. In
addition, the fields Xij need to satisfy the F-term equations of the N = 2 theory. We see
from (4.3) that some matter fields, which should be neutral under the background U(1),
are necessarily non vanishing in the background; hence, the possibility of satisfying all
equations gives a nontrivial constraint on the possible BPS monopole operators.

In general, monopole operators T creating such configurations at a point will not be
gauge invariant. However, they will behave exactly like local fields. Hence, they can
be combined with other local operators O, to write gauge-invariant expressions of the
schematic form

Tr (TO) , (4.5)

where the indices are contracted as appropriate for the representations in which the oper-
ators transform.

Let us determine how the monopole transforms under the gauge group. This is easy to
find for the Abelian factors of the theory. There is an obvious contribution to the electric
charges of a monopole operator, from the Chern-Simons term

∑ ki
4π

∫
Tr (Ai ∧ Fi). This

says that a monopole with magnetic charges ni will behave like a particle with charges niki
under the ith electric U(1) Abelian factor.

This result gives a constraint on the possible gauge invariant operators Tr (TO) we can
obtain. If all matter is in bifundamental and adjoint representations, no gauge invariant
operators can be formed from monopoles that are charged under the overall U(1), since no
matter field transforms under it. Since we just computed the electric charge under the ith

U(1) to be kini, the charge under the overall U(1) is
∑
kini. Thus, if we are to form any

gauge invariant operators of the form (4.5), we need to require

m∑
i=1

kini = 0 . (4.6)

This result will be useful in the theories with gauge group U(N1) × U(N2), which we will
discuss in section 4.2.
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Let us now ask how the monopole will transform under the full non-Abelian group.
One method to determine this is the following. One fixes a particular configuration on
the sphere (breaking the gauge symmetry), one computes the charge under the whole
Cartan subalgebra of the gauge group, and then one integrates over the gauge orbits. Thus
monopole operators can be labelled by U(1) subgroups of the gauge groups. For the U(Ni)
factor of the gauge group, the charges under this Cartan subalgebra are the wai , with
a = 1, ..., Ni, that we saw in (4.1).

Therefore, a monopole associated with magnetic flux wai is in the representation with
weight vector [31, section 4.2]

(kiw1
i , . . . , kiw

Ni
i ) (4.7)

of the ith gauge group. (Our notation here is that the weight vector denotes the number
of boxes in each row of a Young diagram of the representation; thus (k, 0, . . . , 0) is, for
example, the completely symmetric representation.)

Quantization in a background of the type discussed in this section can result in anoma-
lous contributions to the charges and energy of the state. For the non-chiral theories we we
will consider in section 4.2, there is no such a correction to the gauge charges.3 However,
as we will discuss in section 4.2, the dimension of the monopole operator is given by the
energy of the state on the sphere, which often includes a non-zero Casimir energy.

4.2 Dimensions and charges of the monopoles

We will apply in this section the results of section 4.1 to the Chern-Simons-matter theories
with N = 2 and N = 3 given in [14]. In particular, we will compute the dimensions of
particular monopoles, which will be useful later, when comparing to the gravity solutions
of section 5.

Let us first recall some details about the field theories of interest. They are similar to
the N = 6 theory of [11, 22], in that they also have a gauge group U(N1) × U(N2), and
N = 2 “chiral” superfields Ai, Bi, i = 1, 2; the Ai transform in the (N̄1, N2) representation,
whereas the Bi transform in the (N1, N̄2). Just as in section 3.5, the crucial difference
between the N = 6 theory and the N = 2 theory is that the Chern-Simons couplings for
the two gauge groups are now unrelated; we again call them k1 and −k2. The theories we
want to consider in this section are defined by the superpotential

W = Tr(c1(AiBi)2 + c2(BiAi)2) . (4.8)

For generic ci, the theory has N = 2 supersymmetry and SU(2) flavor symmetry. For
ci = 1

ki
, supersymmetry turns out to be enhanced to N = 3, while the flavor symmetry is

3If the matter content is chiral, as for the theories in [15], there will be an additional one-loop correction

to the gauge charges. One way to understand this effect is that the state on the sphere has a constant

value for the scalar in the vector multiplet, which gives a mass to any matter fields charged under that

U(1) subgroup in which the magnetic flux lives. Integrating them out at one-loop can shift the effective

Chern-Simons level in that background if the theory has chiral matter.
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still SU(2). For c1 = −c2 = c, the supersymmetry stays N = 2, but W can be rewritten as

W = cTr(εijεklAiBkAjBl) , (4.9)

which shows that the flavor symmetry is enhanced to SU(2)× SU(2). This N = 2 theory
is dual to the gravity solution discussed in the next section.

We will now apply to these theories the discussion of section 4.1 about monopole
operators. The following computation is a straightforward generalization of that done
in [23, 24] for the N = 3 theory. The results for the N = 3 and N = 2 theories appear
to be identical, since the flavor symmetry guarantees that the matter fields have the same
dimensions as in the more supersymmetric theory.

As we saw in section 4.1, there are non-trivial conditions on the scalars for the monopole
to be BPS. For the theories we are considering, the conditions read

AA† −B†B =
k1

2π
σ1 ,

B B† −A†A =− k2

2π
σ2 ,

σ1Ai =Aiσ2 ,

σ2Bi =Biσ1 ,

(4.10)

together with the F-term constraints coming from (4.8). In view of (4.1) and Fi = σivol2,
such equations relate the magnetic fluxes wa1 with the wa2 . The simplest monopoles we
can consider are defined by magnetic charges wa1 which are all either 0 or 1: namely,
w1 = (1, . . . , 1, 0, . . .) (with n1 1’s) and w2 = (1, . . . , 1, 0, . . .) (with n2 1’s). The non-zero
elements of the fields Ai and Bi are n1×n2 and n2×n1 rectangular matrices, respectively,
which are required to satisfy the first two lines in (4.10) and the F-term constraints. The
problem of finding appropriate vacuum expectation values for the matter fields is equivalent
to finding the BPS moduli space of the generalized U(n1)×U(n2) Klebanov-Witten theory
with superpotential (4.8) and Fayet-Iliopoulos (FI) parameters turned on. Many of these
moduli spaces are non-empty.

Using now (4.6), we see that this monopole operator can be coupled to elementary
fields in a gauge invariant way only if

n1k1 = n2k2 . (4.11)

The matter content is non-chiral, so there are no anomalous contributions to the gauge
charges of the monopole. There is, however, a one-loop correction to the dimension of the
operator, which is given by [24–26]

∆ = −1
2

∑
fermions

|q|R

= −1
2

[
2× 1 (n1(N1 − n1) + n2(N2 − n2))− 4× 1

2
(n1(N2 − n2) + n2(N1 − n1))

]
= (n1 − n2)2 − (N1 −N2)(n1 − n2) , (4.12)
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where R is the R-charge of the fermion and q the charge under the U(1) subgroup specified
by the vectors w1 = (1, ..n1 .., 1, 0, . . .) and w2 = (1, ..n2 .., 1, 0, . . .). The various contri-
butions arise as follows. The four bi-fundamental fermions have R-charge −1/2.4 Each
bi-fundamental fermion is a matrix with N1N2 entries; the n1(N2 − n2) + n2(N1 − n1) off-
diagonal entries have charge ±1 under the magnetic U(1) subgroup, while the remaining
entries are neutral. The two adjoint gauginos have R-charge +1. They are square matrices
with N2

i entries; the 2ni(Ni − ni) off-diagonal entries of the i-th fermion have charge ±1,
while the other are neutral. We used the fact that in this theory, both for N = 3 and
N = 2, the R-charges in the UV and IR are identical.

In the N = 6 theory, k1 = k2 and it follows from (4.11) that n1 = n2. The simplest
monopole has just w1 = w2 = (1, 0, . . . , 0). We need to turn on Ai and Bi fields that solve
the U(1) Klebanov-Witten theory with a FI term. According to (4.7), such a monopole
transforms in the k-fold symmetric representation of U(N1) and in the conjugate k-fold
symmetric representation of U(N2). The monopole can combine with k fields Ai to form
a gauge-invariant operator (we can analogously form a gauge-invariant operator with the
conjugate monopole and k fields Bi).

In the N = 3 and N = 2 theories, we cannot have n1 = n2, but we can now take
n1 = k2 and n2 = k1 and rectangular matrices Ai and Bi that solve (4.10). In general,
the matrices AiBj will not be diagonalizable. Recalling equation (4.7), the monopole op-
erator is in a representation of the gauge group with weight vectors (k1, ..k2 .., k1, 0, ...) and
(k2, ..k1 .., k2, 0, ...). A gauge invariant combination must include k1k2 matter bifundamen-
tals (if k1 and k2 are not relatively prime, some operator with smaller dimension could
exist). The total dimension of the gauge-invariant operator, dressed with k1k2 elementary
fields, is then

∆ =
k1k2

2
+ (k2 − k1)2 − (k2 − k1)(N1 −N2) . (4.13)

Note that we have determined the vacuum expectation values of the matter fields
needed to “support” the flux to form a BPS state on the sphere using the classical moduli
space. This is justified since the Higgs branch does not receive quantum corrections. More
precisely, the ring of chiral operators is the ring of algebraic functions on the moduli space.
There is a natural map [28–30] from the moduli space of Chern-Simons-matter theories to
the moduli space of the four-dimensional Yang-Mills theory with the same field content.
That moduli space cannot receive quantum corrections (aside from wavefunction renormal-
ization which fixes the coefficients of the superpotential), and only the S1 bundle over that
space, associated to the dual gauge fields, is quantum corrected. This precisely corresponds
to 1-loop corrections to the charges and dimensions of monopole operators, which are, how-
ever, constructed in the UV weakly coupled Yang-Mills-Chern-Simons-matter theory.

4Since the superpotential (4.8) must have R-charge +2 and there is a discrete symmetry between Ai and

Bi we have that R(Ai) = R(Bi) = 1/2; the R-charge of the fermionic partners is R(A)−1 by supersymmetry.
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Let us summarize the results of this section. The monopole operators that create
k2 units of flux for the first gauge group and k1 for the second have k1k2 bifundamental
indices, and hence we can contract them with k1k2 bifundamental fields to construct a
gauge-invariant operator. Such operators have dimension given by (4.13). In particular,
they stay light when N1 = N2 ≡ N →∞. Since in general monopole operators correspond
to D-branes, this seems to indicate a limit where D-branes become light, which usually
signals some sort of breakdown of the perturbative description. We will see in section 5.4
precisely how this happens.

5 The N = 2 solution

We now turn to writing and studying the N = 2 solution predicted to exist in [14], and
found in [32] at first order in F0. This solution will be the gravity dual of the field theory
defined by the superpotential (4.9), and it will serve as another illustration of the general
result of section 2.

We will start in section 5.1 by reducing the equations of motion and the supersym-
metry conditions to a system of three equations for three functions of one variable. This
procedure closely parallels [15], where an analogous solution for the gravity dual of the
Chern-Simons theory based on the C3/Z3 quiver was found. In section 5.2, we will im-
pose flux quantization, and derive expressions for the supergravity parameters in terms of
the flux integers; in section 5.3 we find, just like in section 3.3, a “phase transition” that
prevents the dilaton from growing arbitrarily large. Finally, in section 5.4 we find light
D-brane states dual to the monopole operators discussed in section 4.2.

5.1 The N = 2 solutions

The ten dimensional metric we will consider is a warped product of AdS4 with a compact
six-dimensional internal metric with the topology of CP3:

ds2
10 = e2Ads2

AdS4
+ ds2

6 . (5.1)

As discussed in [32, 33], there is a foliation of CP3 in copies of T 1,1, which is in turn a
S1 fibration over S2 × S2. The usual Fubini-Study metric can be written as

ds2
6 =

cos2(t)
4

ds2
S2

1
+

sin2(t)
4

ds2
S2

2
+ dt2 +

1
16

sin2(2t)(da+A2 −A1)2 , (5.2)

where Ai, i = 1, 2, are one-form connections, with curvatures

dAi = Ji , (5.3)

where Ji are the volume forms of the two spheres S2
i . The coordinate t parametrizes the

interval [0, π/2]; all the functions in our solution (including A in (5.1)) will depend on this
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coordinate alone. At one end of the interval [0, π/2], one S2 shrinks; at the other end, the
other S2 shrinks. To make this metric regular, we take the periodicity of a to be 4π.

The Fubini-Study metric is appropriate for the N = 6 solution, which has F0 = 0.
Once we switch F0 on, as we saw in section 4.2, AdS/CFT predicts the existence of an
N = 2 solution with isometry group SU(2)× SU(2)×U(1) (the first two factors being the
flavor symmetry which is manifest in (4.9), and the third being the R-symmetry). The
internal metric for such a deformed solution is then given by5

ds2
6 =

e2B1(t)

4
ds2

S2
1

+
e2B2(t)

4
ds2

S2
2

+
1
8
ε2(t)dt2 +

1
64

Γ2(t)(da+A2 −A1)2 . (5.4)

Were the functions e2Bi non-vanishing, we would have a metric on the total space of an S2

bundle over S2 × S2. To maintain the topology of CP3, we require that e2B2 vanishes at
t = 0 and e2B1 vanishes at t = π/2. With an abuse of language, we will refer to t = 0 as
the North pole and t = π/2 as the South pole, although there is no real S2 fiber. To have
a regular metric, ε(t) and Γ(t) must behave appropriately at the poles.

It is convenient to define the combinations

wi = 4e2Bi−2A (5.5)

which control the relative sizes of the two S2’s. As discussed in appendix A, the supersym-
metry equations reduce to three coupled first order ordinary differential equations for w1,
w2 and a third function ψ which enters in the spinors:

ψ′ =
sin(4ψ)
sin(4t)

Ct,ψ(w1 + w2) + 2 cos2(2t)w1w2

Ct,ψ(w1 + w2) cos2(2ψ) + 2w1w2
,

w′1 =
4w1

sin(4t)
Ct,ψ(w1w2 − 2w2 − 2 sin2(2ψ)w1)
Ct,ψ(w1 + w2) cos2(2ψ) + 2w1w2

, (5.6)

w′2 =
4w2

sin(4t)
Ct,ψ(w1w2 − 2w1 − 2 sin2(2ψ)w2)
Ct,ψ(w1 + w2) cos2(2ψ) + 2w1w2

,

where
Ct,ψ ≡ cos2(2t) cos2(2ψ)− 1. (5.7)

All other functions in the metric and the dilaton are algebraically determined in terms
of w1, w2, ψ:

ε =
√

2eA(cot(ψ)− tan(ψ))
csc2(2t) sin(2ψ)− cos(2ψ) cot(2t)ψ′

2
√

1 + cot2(2t) sin2(2ψ)
(5.8)

Γ = 4eA
sin(2t) + cos(2t) cot(2t) sin2(2ψ)

2
√

1 + cot2(2t) sin2(2ψ)
(5.9)

5One could have reparameterized the coordinate t so as to set one of the functions in (5.4) to a constant,

for example ε, as in (5.2). We have chosen, however, to fix this reparameterization freedom in another

way: by choosing the pure spinors (A.9) to be as similar as possible to those for the N = 6 solution, see in

particular (A.12).
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e4A = − 4c
F0

csc(4t) sec(2ψ) tan(2ψ) (5.10)

e3A−Φ = c sec(2ψ)
√

1 + cot2(2t) sin2(2ψ) . (5.11)

Here, c is an integration constant, that so far is arbitrary. The fluxes are determined as
well, and have the general form

F2 = k2(t)e2B1J1 + g2(t)e2B2J2 + k̃2(t)
i

2
z ∧ z̄ ,

F4 = k4(t)e2B1+2B2J1 ∧ J2 + k̃4(t)e2B1
i

2
z ∧ z̄ ∧ J1 + g̃4(t)e2B2

i

2
z ∧ z̄ ∧ J2 ,

F6 = k6(t)
e2B1+2B2

16
i

2
z ∧ z̄ ∧ J1 ∧ J2 ,

(5.12)

where i
2z ∧ z̄ = εΓ

16
√

2
dt∧ (da+A2 −A1). The full expressions for the coefficients ki, k̃i, gi,

g̃i can be found in (A.13). The fluxes satisfy the Bianchi identities, which require that

F̃ ≡ e−B(F0 + F2 + F4 + F6) (5.13)

is closed. This dictates in particular that F0 is constant.
We can now study the regularity of the differential equation near its special points,

t = 0 and t = π/2, by finding a power series solution of the equations. The general solution
will depend on three arbitrary constants. However, we are after solutions with particular
topology, where w2 vanishes at t = 0 (the “North pole”) and w1 vanishes at t = π/2 (the
“South pole”). Near t = 0, we obtain

ψ = ψ1t−
2
3

(4ψ1 + 5ψ3
1)t3 +O(t5),

w1 = w0 + (4 + 4ψ2
1 − 2w0 + 2w0ψ

2
1)t2 +O(t4),

w2 = (4 + 4ψ2
1)t2 +O(t4) .

(5.14)

In our solution, w0 and ψ1 are not independent: imposing that w1 vanishes at t = π/2
determines w0 in terms of ψ1. The power series expansion in t̃ ≡ π/2 − t near t = π/2 is
identical, with the role of w1 and w2 exchanged:

ψ = ψ̃1t̃−
2
3

(4ψ̃1 + 5ψ̃3
1)t̃3 +O(t̃5),

w1 = (4 + 4ψ̃2
1)t̃2 +O(t̃4),

w2 = w̃0 + (4 + 4ψ̃2
1 − 2w̃0 + 2w̃0ψ̃

2
1)t̃2 +O(t̃4) .

(5.15)

The constants w̃0 and ψ̃1 should also be determined by ψ1; we can then think of ψ1 as
the only parameter in the internal metric. To find a solution with the required topology,
we note that the equations (5.6) are symmetric under the operation t → π

2 − t, ψ → −ψ,
w1 ↔ w2, and we look for solutions which are left invariant by this symmetry. This
determines ψ̃1 = ψ1 and w̃0 = w0, and it allows us to restrict the study of the equations to

– 20 –



J
H
E
P
1
1
(
2
0
1
0
)
0
4
7

1

2
1

3

2
3

Ψ1

1

2

3

4

w0

Figure 3. A plot of w0 as a function of ψ1. It vanishes linearly around the point ψ1 =
√

3.

the “north hemisphere” t ∈ [0, π/4]. The only thing left to impose is that the solution is
differentiable at t = π/4. This is what determines w0 as a function of ψ1, which we plot in
figure 3. w0(ψ1) is monotonicaly decreasing; our numerical analysis shows that it vanishes
at a point very well approximated by ψ1 =

√
3.

The perturbative expansion of the solutions near the “poles” t = 0 and t = π/2 allows
to check the regularity of the six-dimensional metric. In fact, the only special points in the
metric are the poles, where a copy of S2 degenerates. Using the previous expansion, it is
straightforward to check that, at both poles, the shrinking S2 combines with (t, a) to give
a piece of the metric proportional to

dt2 +
1
4
t2
(
ds2
Si + (da±Ai)2

)
. (5.16)

Thanks to the fact that the periodicity of a is 4π, this is the flat metric of R4. For all
ψ1 ∈ [0,

√
3) the metric is then regular. For ψ1 =

√
3, both spheres degenerate at each pole

and the metric develops two conifold singularities. ψ1 =
√

3 is thus the natural limiting
point in our family of solutions.

We can examine now the number of parameters in the solution. As discussed above,
the differential equations provide just one parameter, ψ1, the value of the derivative of ψ
at the North pole t = 0. It is convenient to define two more parameters by

gs ≡ eφ|t=0 , 2L = eA|t=0 . (5.17)

Both φ and A vary over the internal manifold, but numerical study reveals that they only
do so by order one functions. So gs and L can be thought of as the order of magnitude
of the dilaton and AdS radius in our solutions.6 We can now reexpress the integration

6The normalization has been chosen so that in the metric, at t = 0, L2 multiplies an Anti-de Sitter space

of unit radius, and the relation between the mass of a particle at t = 0 and the conformal dimension of the

dual operator is mL = ∆(∆− 4). This normalization is related to the fact that, in our conventions, ds2AdS4

has cosmological constant Λ = −3|µ|2 and, as discussed in appendix A, we chose µ = 2.
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constant c by evaluating (5.11) at t = 0:

c =
8L3

gs

1√
1 + ψ2

1

. (5.18)

The F0 flux is then determined by evaluating (5.10) at t = 0:

F0 = − 1
Lgs

ψ1√
1 + ψ2

1

. (5.19)

Finally, a fourth parameter comes from the B field. As in section 3, there is a zero-mode
ambiguity coming from the presence of a non-trivial cohomology in our internal manifold.
To see this, let us call B0 a choice of B-field such that H = dB0 solves the equations of
motion. For example, we can choose B0 such that

F̃2 = F2 −B0F0 = 0 . (5.20)

H = dB0 is guaranteed to solve the equations of motion, since equation (5.20) implies that
dF2 = HF0, which we have already solved. However, this will also be true for any B of
the form

B = B0 + β , (5.21)

for any β which is closed. We can apply to this β the same considerations as in section 3.1:
because of gauge invariance B ∼= B+dλ1, the space of such β is nothing but the second de
Rham cohomology of the internal space, H2(CP 3) = R, so we have one such parameter.
And, just as in (3.5), we define the integral of β over the generating two-cycle in H2:
b ≡ 1

(2πls)2

∫
CP1 β. The fact that we use the same notation as in section 3 should not

generate confusion, as the contexts are different.
Summarizing, our solutions are parameterized by the four numbers (L,ψ1, gs, b). The

situation is very similar to the N = 1 solutions we studied in section 3, with σ replaced
by ψ1.

5.2 Inverting the flux quantization equations

This section will follow closely the corresponding treatment for the N = 1 solutions in
section 3.2. The equations are formally very similar:

1
lgs
f0(ψ1)

0

l3

gs
f4(ψ1)

l5

gs
f6(ψ1)


=



nb0

nb2

nb4

nb6


≡



1 0 0 0

b 1 0 0

1
2b

2 b 1 0

1
6b

3 1
2b

2 b 1





n0

n2

n4

n6


, (5.22)

where l = L/(2πls), as in (3.8). The vector on the left hand side is given by the integrals
1

(2πls)k−1

∫
Ck
F̃k, where Ck is the single k-cycle in CP3 (k = 0, 2, 4, 6), and F̃k is defined
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Figure 4. Plots of f4(ψ1) and f6(ψ1). Their asymptotic behavior near 0 and
√

3 is given
in (5.24), (5.25). Notice in particular that f6(

√
3) is small but non-zero.

using the particular B0 in (5.20); this also explains why the second entry of the vector is
zero (this is simply our choice for the definition of b). We could have made such a choice
for the N = 1 solution as well; we did not do so because for SU(3) structure solutions
there is a different and particularly natural choice of B-field.

Using equation (5.19) we can write

f0(ψ1) = − ψ1√
1 + ψ2

1

. (5.23)

We know the other functions fk(ψ1) only numerically. We obtain 2f4(ψ1) by integrating
F̃4 over the diagonal S2 times the “fiber” (t, a), which is a representative of twice the
fundamental four-cycle. The plots of fk(ψ1) are given in figure 4. Our numerical analysis
indicates the following asymptotics at the two extrema ψ1 = 0, ψ1 =

√
3:

f4 ∼ ψ−1
1 , f6 ∼ ψ−2

1 for ψ1 → 0 ; (5.24)

f4 ∼ (
√

3− ψ1), f6 → const for ψ1 →
√

3 . (5.25)

We can now proceed in the same fashion as in the N = 1 case to determine ψ1 from
the flux parameters. Namely, we write the combination

(n2
2 − 2n0n4)3

(n3
2 + 3n2

0n6 − 3n0n2n4)2
= − 8f4(ψ1)3

9f6(ψ1)2f0(ψ1)
≡ ρ(ψ1) , (5.26)

which allows us to determine ψ1 in terms of fluxes. l and gs are then given by

l6 =
f0(ψ1)
3f6(ψ1)

(
n2

n0

)3(
1 + 3

n2
0n6

n3
2

− 3
n0n4

n2
2

)
, (5.27)

g6
s = 3f5

0 (ψ1)f6(ψ1) (n2n0)−3

(
1 + 3

n2
0n6

n3
2

− 3
n0n4

n2
2

)−1

. (5.28)
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Figure 5. A plot of the function ρ(ψ1) in (5.26).

A crucial role is played by the function ρ(ψ1) which we plot in figure 5. It decreases
monotonically from 1 at ψ1 = 0 to zero at ψ1 =

√
3. Its asymptotic behavior at ψ1 = 0

and ψ1 =
√

3 is:

ρ ∼ 1− c̃ ψ2
1 for ψ1 → 0 , ρ ∼ (

√
3− ψ1)3 for ψ1 →

√
3 , (5.29)

for some constant c̃. This is in agreement with (5.24), (5.25). The fact that ρ vanishes at
the same point, ψ1 =

√
3, where the solution develops a singularity, is strongly supported

by our numerical analysis, and will be crucial in reproducing the field theory results.

5.3 A phase transition

As in the N = 1 case, consider for simplicity the case n4 = 0 and call, as usual, n6 = N

and n2 = k. Equation (5.26) becomes

ρ(ψ1) =
(

1 + 3
n2

0N

k3

)−2

. (5.30)

As in the N = 1 case, there are two interesting regimes. For N � k3/n2
0, ψ1 → 0 and

we are near the undeformed solution. From (5.29), we see that 1 − ρ(ψ1) ∼ ψ2
1; hence we

can identify in this regime

ψ1 ∼
(
n2

0N

k3

)1/2

. (5.31)

Moreover, we see from (5.23) that f0(ψ1) ∼ ψ1; using also (5.24), we easily compute
from (5.27)

l ∼ N1/4

k1/4
, gs ∼

N1/4

k5/4
, (5.32)

which is indeed the behavior of the N = 6 solution [11].
For N � k3/n2

0, the function ρ(ψ1) should approach zero, and this happens for ψ1 →√
3. From (5.29) and (5.30), we see that

δψ1 ≡
(√

3− ψ1

)
∼
(

k3

Nn2
0

)2/3

. (5.33)
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From (5.25) we then conclude

l ∼ N1/6

|n0|1/6
, gs ∼

1
N1/6|n0|5/6

, (5.34)

which is the same behavior as in (3.22). Again, as in the N = 1 case, we can also argue
generally that gs remains bounded for any integer values of the fluxes, with n0 6= 0.

At first sight, this seems puzzling. At the end of section 4.2, we noticed that this
gravity solution is expected to develop light D-branes in the limit N1 = N2 = N →∞. As
argued in [22], N1 = N2 precisely when n4 = 0 (see also (5.35)). But there do not seem to
be any light D-branes in a limit where gs is small and the internal manifold is large, since
a D-brane mass scales as Lk/gs, with k ≥ 0.

As we remarked after equation (5.16), however, in the limit ψ →
√

3 (which is relevant
for large N) the internal manifold develops two conifold-like singularities, since the two-
cycle is now shrinking to zero at the “poles”. As we will now see, the new light states are
obtained from D-branes wrapping the vanishing cycle for that singularity.

5.4 Probes

We now want to compare this gravity solution with the field theory we saw in section 4.2;
specifically, the one defined by the superpotential in (4.9), which has the right symmetries
to be the dual of the gravity solution we found in section 5.1.

We can first of all try to predict what sort of bulk field corresponds to the monopole
operators discussed in section 4.2. Let us recall how the duality works in the ABJM case,
when F0 = 0. Consider first a monopole operator that creates one unit of field strength
for both gauge groups at a particular point. This operator has k indices under both gauge
groups, and we can make it gauge-invariant by contracting it with k bifundamentals. The
resulting bound state corresponds to a D0 brane in the gravity dual; notice that such a
brane has no tadpole on its worldsheet for the worldsheet vector potential A, as we already
saw in section 3.4. Another monopole operator that can be considered is the one that
creates one unit of flux for, say, the second gauge group. In this case, we cannot make
this operator gauge-invariant: it will have k “dangling” indices. This corresponds to a
D2 brane wrapping an internal two-cycle. As we also already saw in section 3.4, such
a brane has a tadpole on its worldsheet, coming from the term

∫
A1F =

∫
F2A; so one

needs to have k strings ending on it, and these k strings correspond to the k indices of the
monopole operator.

When we switch on F0, even a D0 brane will have a tadpole on its worldsheet, coming
from the coupling

∫
F0A. On the field theory side, this corresponds to the fact that the

monopole operator that creates one unit of field strength for both gauge groups has now k1

fundamental indices for the first gauge group and k2 antifundamental ones for the second.
This cannot be made gauge-invariant; we are always left with at least |k1 − k2| “dangling”
indices. This fact was used in [14] to establish that the Romans mass integer is the sum of
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the Chern-Simons couplings, so that, in the present language, n0 = k1−k2; see also [34, 35].
In [22] it was similarly shown that n4 is the difference between the two gauge group ranks
N2 −N1.7 Putting this together, we obtain a dictionary between the flux integers and the
ranks and levels of the field theory:

n0 = k1 − k2 , n2 = k2 , n4 = N2 −N1 , n6 = N2 . (5.35)

In section 4.2, we considered monopole operators which create k2 units of field strength
for the first gauge group, and k1 units of field strength for the second. We noticed that
these have k1k2 bifundamental indices, and thus can be made gauge-invariant. Following
the identifications of D2 branes and D0 branes above, if we assume for example that
k1 > k2, we can say that these new gauge-invariant monopoles correspond to a bound state
k2 D0 branes and k1 − k2 D2 branes. We have already noticed in section 3.4 that such
a bound state can cancel the tadpole on the worldsheet, because it makes the prefactor
in (3.24) vanish.

Let us make this expectation more precise. Consider a D2 brane wrapped on a two-
cycle B2 in the N = 2 solution. As we will see in appendix B.2, supersymmetry requires
that the D2 brane lives at the North pole t = 0 or at the South pole t = π/2, and that
it wraps the S2 that does not shrink there. We also need to cancel the tadpole for the
world-volume field A which arises from the Wess-Zumino coupling,

A ∧ (F2 + F0(F −B)) . (5.36)

We can split B into a fiducial choice plus a zero mode, as in (5.21). The tadpole cancella-
tion requires

F −B = F − β −B0 = −F2/F0. (5.37)

Since B0 was chosen to satisfy (5.20), we need to turn on a world-volume flux

F = β . (5.38)

There is a possible obstruction to doing this, coming from the quantization of the world-
volume flux, that says that 1

(2πls)2

∫
S2 F ∈ Z. The value of b = 1

(2πls)2

∫
S2 β from (5.22)

is given by b = −n2/n0; hence in general it is rational and not an integer. So we see
that a single D2 brane is generally not consistent. We can get around this, however, by
considering n0 D2-branes. In that case, the equation we want to satisfy actually reads

F = β 1D0 . (5.39)

The integral of the trace of the left hand side is the first Chern class on the world-volume,
which is the induced D0-brane charge n0. The integral of the trace of the right hand side

7The relative sign between the expressions for n4 and n0 had not been determined so far. We made here

a choice consistent with our final result in formula (5.43).
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now gives bn0 = −n2. We conclude that we can cancel the tadpole by considering a bound
state of n0 D2 branes and n2 D0 branes, just as in section 3.4.

Naively, one might think that the mass of a D2-D0 bound state should be at least as
heavy as a D0-brane, which in units of AdS mass is mD0L ∼ L/gs. Since this is heavy in
the limit (5.34), one might think that such a bound state can never reproduce the light
mass predicted in section 4.2.

Fortunately, such pessimism proves to be unfounded. The mass of the state is given by

mD2L = n0L
1

(2π)2gsl3s

∫
B2

√
det (g + F −B) = n0L

1
(2π)2gsl3s

∫
B2

√
det
(
g − F2

F0

)
.

(5.40)
where we used the tadpole cancellation condition. We will take the cycle B2 to be a
representative of the non-trivial cycle, which is the diagonal of the two S2’s. Using the
explicit form for the metric in (5.4), as well as (5.12), (5.18) and (A.13), we get:

mD2L = 4π
n0L

(2π)2gsl3s

√(
e2B1

4

)2

+
(
k2e2B1

F0

)2

= 2π2n0l
3

gs
w0(ψ1)

√
1 + ψ2

1

ψ2
1

. (5.41)

The fact that the two expressions under the square root are proportional is related to the
BPS condition, as discussed in appendix B.2.

Inserting the values of l and gs from (5.27), (5.28) for generic fluxes we obtain

mD2L =
(
n2

2

2
− n0n4

)
2π2w0(ψ1)
f4(ψ1)

√
1 + ψ2

1

ψ2
1

. (5.42)

Quite remarkably, the function of ψ1 in the previous formula, which can be computed
numerically, turns out to be constant with value 1. The final result for the mass formula
is then

mD2L =
(
n2

2

2
− n0n4

)
. (5.43)

Upon using the dictionary (5.35), this formula is identical to the field theory predic-
tion (4.13) in the limit where n0 � n2. This is exactly the limit where we can trust
the supergravity solution, since, as shown in (5.27), for a generic value of ψ1, L is large
only if n2 � n0. In this limit, it is also true that the dimension of the corresponding
operator is given by ∆ ∼ mD2L.

In contrast with the N = 1 results in section 3.4, and with the naive expectation
expressed earlier, we see from (5.43) that the mass of the bound state remains finite also
in the limit N � k3/n2

0. A contribution from the B field cancels the large mass ∼ L/gs of
the constituent D0-brane, leaving a smaller piece that is proportional to the volume of the
shrinking S2. These are precisely the new light states that we had predicted to exist from
the field theory analysis in section 4.2.
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A Supersymmetry equations and pure spinors for the N = 2 solution

We will give in this section more details about the N = 2 solution we found in section 5.

The supersymmetry parameters for compactifications of the form AdS4 × M6 (or
Minkowski4 ×M6) decompose as

ε1 =
∑N

a=1 ζ
a
+ ⊗ η1a

+ + ζa− ⊗ η1a
− , (A.1)

ε2 =
∑N

a=1 ζ
a
− ⊗ η2a

+ + ζa+ ⊗ η2a
− . (A.2)

Here, N is the number of supersymmetries. The subscripts ± denote positive and negative
chirality spinors, in four and six dimensions; the negative chirality spinors are conjugate
to the positive chirality ones,

ζa− = (ζa+)∗ , ηia− = (ηia+ )∗ . (A.3)

For each a, ζa+ can vary among a basis of four-dimensional Weyl spinors; we will take the
elements of this basis to be “Killing spinors”, which means that Dµζ+ = µ

2γµζ−. The ηia+ ,
with i = 1, 2, are a priori independent six-dimensional Weyl spinors. In this section, we
will consider N = 2.

A priori, one could have taken the ζa in ε1 and ε2 to be different. This can indeed
be done for compactifications with vanishing RR flux; for example, for the usual N = 2
Calabi-Yau compactifications. To recover that case in (A.1), one can take for example
η21 = η12 = 0, and keep a non-vanishing η11 and η22. However, in compactifications where
RR fluxes are present, the ζa in ε1 and ε2 are required to be equal, up to a constant that
can be reabsorbed in the ηia. Hence (A.1) describes all possible N = 2 compactifications,
and is particularly appropriate for vacua with RR fluxes.

Using (A.1) in the supersymmetry equations yields equations for the internal spinors
ηia. In fact, these equations do not mix the ηi1 with the ηi2. In what follows, we will first
analyze the equations of the ηi1 ≡ ηi; we will come back to the second pair later.
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We will construct a pair of pure spinors as tensor products of the supersymmetry
parameters8 η1 and η2

Φ± = η1
+ ⊗ η

2 †
± . (A.4)

The type IIA supersymmetry conditions can be expressed as [36]:

(d−H∧)(eA−ϕRe (Φ−)) = 0 , (A.5a)

(d−H∧)(e3A−ϕIm (Φ−)) = −3e2A−ϕµIm (Φ+) +
e4A

8
∗ λ(F ) , (A.5b)

(d−H∧)(e2A−ϕΦ+) = −2µeA−ϕRe (Φ−) ; (A.5c)

||Φ+|| = ||Φ−|| = eA . (A.5d)

Here, F are the internal fluxes (which determine also the external fluxes, by self-duality).
A is the warping function, defined as ds2

10 = e2Ads2
AdS4

+ ds2
6. The cosmological constant

in ds2
AdS4

is given by Λ = −3|µ|2. Since A is non-constant in the solution, however, this Λ
has no independent meaning, since one can reabsorb it in A. We have normalized µ = 2
in this paper. The symbol λ acts on a k-form by multiplying it by the sign (−)Int(k/2).
Finally, the norm in (A.5d) is defined as ||A||2 = i(A ∧ λ(Ā))6.

The metric (5.4) can be written in terms of the vielbein

E1 =
1

2
√

2
εdt+

i

8
Γ(da+A2 −A1),

E2 =
1
2

(
eB1 sin(t)e−ia/2e1 − eB2 cos(t)eia/2e2

)
,

E3 =
1
2

(
eB1 cos(t)e−ia/2e1 + eB2 sin(t)eia/2e2

)
,

(A.6)

where ei = dθi + i sin θidφi are the natural one-forms on the spheres S2
i . For eB1 = cos(t)

and eB2 = sin(t) we recover the Fubini-Study metric of CP3 with natural Kähler form
J = i

2

∑3
i=1Ei ∧ Ēi and natural three form section Ω = E1 ∧E2 ∧E3 (see for example [32,

(5.31)]). It is also convenient to use the forms

Ji = dAi =
i

2
ei ∧ ēi (not summed) , o ≡ i

2
eiae2 ∧ ē1 ; (A.7)

the Ji were already defined in (5.3). These forms satisfy

dJi = 0 , do = i(da+A2 −A1) ∧ o , o ∧ ō = −J1 ∧ J2 . (A.8)

The generic pure spinors corresponding to an SU(3)× SU(3) structure can be written
in terms of the “dielectric Ansatz”

Φ+ =
i

8
cos(2ψ) eA+iθ exp

(
−i
(

j

cos(2ψ)
+
i

2
z ∧ z̄

)
+ tan(2ψ) Re(ω)

)
,

Φ− = − i
8

sin(2ψ)eA+iθ z ∧ exp
(
− cot(2ψ) Re(ω)− i

sin(2ψ)
Im(ω)

)
,

(A.9)

8As usual, we left implicit a Clifford map on the left hand side, that sends dxm → γm.
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where θ and ψ are two new angular variables; one can see easily that the supersymmetry
equations (A.5) relate them by

tan(θ) = − cot(2t) sin(2ψ) . (A.10)

The one-form z and the two-forms j and ω can also be used to describe an SU(2) structure
on M6. For our solution, these forms are given by

z = −ie−iθE1 ,

j =
i

2
(
E2 ∧ Ē2 + Ē3 ∧ E3

)
,

ω = iE2 ∧ Ē3 .

(A.11)

We can also characterize j and ω in terms of the forms in (A.7): j

−Re(ω)

 =
1
4

 cos(2t) − sin(2t)

sin(2t) cos(2t)

−e2B1J1 + e2B2J2

2eB1+B2Re(o)

 , Im(ω) =
1
2
eB1+B2Im(o).

(A.12)
The RR fluxes are determined to be as in equation (5.12) with

k2 =
c e−4A

2w1

sec(2ψ)
cos(2t)

(2Ct,ψ + w1) ,

g2 = −c e
−4A

2w2

sec(2ψ)
cos(2t)

(2Ct,ψ + w2) ,

k̃2 = 2
c e−4A

w1w2
(2Ct,ψ(w1 + w2) + 3w1w2) ,

k4 = − c e−4A

4w1w2

sin(2ψ)
sin(4t) cos2(2ψ)

(2Ct,ψ(w1 + w2) + w1w2) ,

k̃4 =
c e−4A

2w2

tan(2ψ)
sin(2t)

(2Ct,ψ + 3w2) ,

g̃4 = −c e
−4A

2w1

tan(2ψ)
sin(2t)

(2Ct,ψ + 3w1) ,

k6 = 6 c e−4A,

(A.13)

where Ct,ψ was defined in (5.7). Recall also that one possible choice of NS-NS field that
satisfies the equations of motion is B0 = F2/F0, as in (5.20).

So far we have described the solution as if it were an N = 1 solution: we have only
paid attention to the a = 1 part of (A.1). To show that the solution actually has N = 2
supersymmetry, we have to provide a second pair of spinors, ηi2, that satisfies the equations
of motion for supersymmetry with the same expectation values for all the fields. In terms
of pure spinors, we can now form the bilinears

Φ̃± = η12
+ ⊗ η

22 †
± (A.14)
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and require that they solve again the equations (A.5), with the same values of the fluxes
and the same metric.

In fact, one expects the two solutions Φ and Φ̃ to be rotated by R-symmetry, so that
there is actually a U(1)’s worth of solutions to (A.5). To see this U(1), rotate the two-form
o in (A.7) by a phase:9

o→ e−iαo ≡ oα . (A.15)

We can correspondingly define a pair of pure spinors Φα
±, by changing o→ oα wherever it

appears. The crucial fact about the rotation of o in (A.15) is that it keeps its differential
properties (A.8) unchanged: namely, doα = i(da+A2−A1)∧ oα. Because of this fact, the
computations to check (A.5) do not depend on α; and, since we checked already that α = 0
gives a solution, it follows that any Φα

± is a solution. A priori, this could be a solution with
different fluxes; but we can see from (5.12) that o never appears in Fk. We conclude, then,
that the solution we have found is an N = 2 solution.

B BPS particles

In this section, we will give a general analysis of BPS particles in flux compactifications
(subsection B.1), and we will then apply those general results to the N = 2 background
described in section 5 and appendix A.

B.1 General considerations

We will start with some general considerations about BPS states in N = 2 backgrounds
with fluxes. These will in general be states that are left invariant by a certain subalgebra
of the supersymmetry algebra. This subalgebra is in general defined by the fact that the
two supersymmetry parameters εi are related:

Γ‖ε2 = ε1 . (B.1)

In first approximation, Γ‖ is the product of the gamma matrices parallel to the brane.
When B fields or worldsheet fluxes F are present, Γ‖ receives additional contributions of
eF−B. We will give a definition later on, in the context needed for this paper; for the general
and explicit expression, see for example [37, eq. (3.3)]. For an AdS4×M6 compactification,
we would like to use the decomposition (A.1). For particles, this will lead to an equation
involving the four-dimensional spinors ζi± and γ0ζ

a
±; here and in what follows, the index 0

is meant to be a frame index. To have a chance to solve the resulting equations, we need
to postulate a relation between these spinors. One can write for example

γ0ζ
a
+ = Aabζb− , (B.2)

9Alternatively, one can change the vielbeine (A.6) by translating a→ a+ α.
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for some matrix A. (Recall that in general the index a runs from 1 to N ; for us, N = 2,
and so a = 1, 2.) In fact, (B.2) is almost the most general choice one can make, compatibly
with the symmetries of the problem. The only generalization one could make would be
to multiply the left-hand side by another matrix Bab. Whenever this matrix is invertible,
one can reabsorb it by a redefinition of Aab. In this sense, we can say that (B.2) is the
“generic” Ansatz for a BPS particle.

The matrix Aab in (B.2) needs to satisfy certain conditions. Let us work for simplicity
in a basis where all the space-time gamma matrices γµ, µ = 0, . . . , 3 are real, and the
internal γm, m = 1, . . . , 6, are purely imaginary; the ten-dimensional gamma matrices are
then given as usual by

Γµ = eAγµ ⊗ 1 , Γm+3 = γ5 ⊗ γm . (B.3)

It follows from these definitions that Γµ are real. Let us now conjugate (B.2); using (A.3),
the fact that γ0 is real, and that γ2

0 = −1, we get

AabAbc = −δac . (B.4)

If we were considering an N = 1 background, Aab would be a one-by-one matrix, and (B.4)
would have no solution. This is just what one would expect: there are no BPS particles in
a N = 1 background. For N = 2, one choice that satisfies (B.4) is

A = e−iλ

 0 1

−1 0

 . (B.5)

We can now use (B.3) to write

Γ‖ = γ0 ⊗ γ‖ , (B.6)

where γ‖ is now an element of the internal Clifford algebra; it contains the product of
all the internal gamma matrices parallel to the brane, plus additional contributions from
the worldsheet flux and B-field. Let Bp ⊂ M6 be the p-cycle wrapped by the brane, of
dimension p and with coordinates σα, α = 1, . . . , p. Then we define the natural volume
form on B to be

volB ≡
√

det(g + F −B) dσ1 ∧ . . . ∧ dσp . (B.7)

One can also define similarly an “inverse volume form” as the multivector

vol−1
B =

∂1 ∧ . . . ∧ ∂p√
det(g + F −B)

, (B.8)

which is a section of Λp(TB). This multivector can be used to give an intrinsic definition
of γ‖: here is how. We can define eFvol−1 to be the multivector of mixed degree that one
obtains by contracting the indices of the form eF with the multi-vector vol−1. Recall now
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that multivectors can be “pushed forward”: if we call x : B ↪→ M6 the embedding map,
with components xm(σ), then x∗(eFvol−1) is a multivector in M6, obtained by contracting
all indices α on B with the tensor ∂αxm. In fact:

γ‖ = x∗(eF−Bvol−1
B ) . (B.9)

Here, we left implicit on the right hand side a Clifford map that sends a vector ∂m into a
gamma matrix γm. We already used this map on forms (see footnote 8). One can show
that γ‖ is unitary:

γ†‖γ‖ = 1 . (B.10)

For a more explicit expression of γ‖, see [37, eq. (3.5)].
If we now use (B.2), (B.6) and (A.1) in (B.1), we get

γ‖ η
2a
+ = (A−1)baη1b

+ . (B.11)

For our choice (B.5), this reads

γ‖ η
22
+ = −eiλη11

+ , (B.12a)

γ‖ η
21
+ = eiλη12

+ . (B.12b)

We are now left with solving (B.12), which are two purely internal equations. Each
of the two equations is formally identical to others that have already appeared [37] in the
context of BPS objects which do exist in N = 1 flux compactifications: branes which
extend along the time direction, plus one, two or three space directions. Hence we can
simply follow the same steps; we will now summarize that procedure for (B.12a), and then
apply the result to (B.12b).

Let us first define the new pure spinors

Ψ± ≡ η11
+ ⊗ η

22 †
± ; (B.13)

notice that these are different from the pure spinors Φ±, defined in (A.4), which entered
the supersymmetry equations (A.5). In (A.4), η1 and η2 were to be understood as η1a and
η2a, for a either 1 or 2. In (B.13), we are mixing a = 1 with a = 2.

A possible basis for the space of spinors of positive chirality is given by η11
+ and γmη11

− .
Three linear combinations of the γm make γmη11

− vanish: they are its three “annihilators”
γi, where i is a holomorphic index with respect to an almost complex structure I. Explicitly
we have η11 †

+ γmγ
nη11

+ = (1 + iI)mn ≡ 2Π̄m
n. In terms of this basis a priori one can expand

γ‖η
22
+ = aη11

+ + bmγ
mη11
− . (B.14)

The coefficients a and bm have a geometrical interpretation. To compute a, we can mul-
tiply (B.14) from the left by η11 †

+ ; we get aeA = η11 †
+ γ‖η

22
+ = Tr(γ‖η22

+ η
11 †
+ ) = Tr(γ‖Ψ

†
+).

From the formula
Tr(�A�B†) =

8
k!
Am1...mkB̄

m1...mk , (B.15)
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we see that Tr(γ‖Ψ
†
+) consists of contracting the free indices of γ‖ with those of Ψ̄+.

From (B.9), we see that γ‖ contains factors of ∂αxm; when contracting with Ψ̄+, these
factors reconstruct a pull-back of that form. In conclusion we get10

(eF−BΨ̄+)|B =
a

8
eA volB , (B.16)

where |B denotes the top-form part on B of the pull-back. By similarly multiplying (B.14)
from the left by η11 †

− γn, we get

(dxm · eF−BΨ−)|B = −1
4
bnΠn

meA volB , (B.17)

where · denotes the Clifford product: v· = v ∧ +vx. Here, ∂mx(dxm1 ∧ . . . ∧ dxmp) ≡
p δm

[m1dxm2 ∧ . . . dxmp].
We can now go back to (B.12a). Comparing to the expansion (B.14), we get

a = −eiλ , bm = 0 . (B.18)

Using the geometrical interpretations (B.16) and (B.17), we get

Re(−e−iλeF−BΨ+)|B =
1
8
eAvolB , (B.19)

and

Im(e−iλeF−BΨ+)|B = 0, (B.20a)

(v · eF−BΨ−)|B = 0 . (B.20b)

Actually, one can show that (B.19) is equivalent to the system (B.20). To see this,
observe that γ‖ is unitary, as we saw in (B.10). This implies that γ‖η22

+ should have the
same norm as η22

+ . Since all the spinors have norm eA (see footnote 10), it follows that

|a|2 + 2bmb̄m = 1 . (B.21)

This means that imposing Re(a) = 1 is equivalent to imposing Im(a) = 0 and bm = 0.
Recalling (B.16) and (B.17), we get our claim that (B.19) is equivalent to (B.20).

This completes our analysis of (B.12a) (along the lines of [37]). For (B.12b), similar
considerations apply; we obtain

Re(e−iλeF−BΨ̃+)|B =
1
8
eAvolB , (B.22)

and

Im(e−iλeF−BΨ̃+)|B = 0, (B.23a)

(v · eF−BΨ̃−)|B = 0 , (B.23b)

10The factor of eA comes from the fact that ∀a, i, ||ηia|| = eA/2, which follows from (A.5).
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for the pure spinors

Ψ̃± ≡ η12
+ ⊗ η

21 †
± . (B.24)

Let us now summarize this section: we have shown that a brane wrapping an internal
cycle B, and extended along the time direction, is BPS if and only if (B.19) (or equiva-
lently (B.20)) is satisfied by Ψ and, analogously, (B.22) (or equivalently (B.23)) is satisfied
by Ψ̃, where Ψ and Ψ̃ are defined respectively in (B.13) and (B.24). We will now compute
these pure spinors for the solution described in section 5 and in appendix A.

B.2 D2/D0 bound states in the N = 2 solution

As discussed in the previous section, in order to study the supersymmetry of BPS particles
obtained from wrapped branes, we need to form bilinears in the supersymmetry spinors
ηia+ . We first need to write them explicitly. A convenient basis to expand our spinors is
given by the pair of spinors defining the SU(3)× SU(3) structure in (A.11). Recall that a
SU(3) structure is specified by two invariant tensors (J,Ω) or, equivalently, by a spinor η+

(of norm 1) such that

η+ ⊗ η†+ =
1
8
e−iJ ,

η+ ⊗ η†− = − i
8

Ω .

(B.25)

The SU(3)× SU(3) structure in (A.11) can be seen as the intersection of two SU(3) struc-
tures given by (J1,Ω1) = (j + i

2z ∧ z̄, ω ∧ z) and (J2,Ω2) = (−j + i
2z ∧ z̄,−ω̄ ∧ z). We

call the corresponding spinors η+ and χ+. They are related by χ+ = 1√
2
z · η−, where z·

denotes the Clifford multiplication by the one-form zmγ
m. We will need in the following

an expression for the tensor products of a generic linear combination

µ+ = a η+ + b χ+ ,

ν+ = x η+ + y χ+ .
(B.26)

This is given by [38]

µ+ ⊗ ν†+ =
1
8

[
ax̄e−ij + bȳeij − i(aȳω + x̄bω̄)

]
e1/2zz̄ ,

µ+ ⊗ ν†− =
1
8

[
i(byω̄ − axω) + (bxeij − aye−ij)

]
z .

(B.27)

We can choose the spinors for the first supersymmetry as follows

η11
+ = ieA/2+iθ(ei

π
4 cos(ψ) η+ − ie−i

π
4 sin(ψ)χ+) ,

η21
+ = ieA/2(ei

π
4 cos(ψ) η+ + ie−i

π
4 sin(ψ)χ+) .

(B.28)

It is easy to reproduce, using formula (B.27), the dielectric ansatz (A.9) for the pure spinors.
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As discussed in appendix A, there is a U(1) family of supersymmetries obtained by
rotating o→ oα = e−iαo. We can conveniently choose as a second independent supersym-
metry the one with oπ = −o. This is defined by

η12
+ = ieA/2+iθ(ei

π
4 cos(ψ) η̃+ − ie−i

π
4 sin(ψ) χ̃+) ,

η22
+ = ieA/2(ei

π
4 cos(ψ) η̃+ + ie−i

π
4 sin(ψ) χ̃+) ,

(B.29)

where

η̃+ = −i cos(2t) η+ + i sin(2t)χ+ ,

χ̃+ = i sin(2t) η+ + i cos(2t)χ+ .
(B.30)

This reproduces the rotated pure spinors Φπ
±.

With these ingredients, we can compute the spinors Ψ± and Ψ̃± defined in (B.13)
and (B.24) and check the BPS conditions for a D2-brane. It is easy to see that the D2-
brane considered in section 5, which wraps the diagonal S2 and sits at the North or South
pole, is indeed supersymmetric. Let us consider, for definiteness, the North pole. At t = 0,
ψ = 0 and we see that ηi2+ = −iηi1+ . As a consequence, at t = 0,

Ψ± = ±iΦ± , Ψ̃± = −iΦ± , (B.31)

and we are reduced to check expressions for the pure spinors Φ± at the North pole. Taking
into account that ψ = 0 there, we have

Φ+|t=0 =
i

8
eA+iθe−iJ ,

Φ−|t=0 =
i

8
eA+iθz ∧ ω .

(B.32)

The condition (B.20b) for Ψ− (and the analogous (B.23b) for Ψ̃−) gets contributions only
from the contraction with the vector z and it is automatically satisfied because ω vanishes
at the North pole, t = 0. It is easily seen that the conditions for Ψ+ and Ψ̃+ are equivalent
and it is enough to analyze those for Ψ+. Equation (B.20a) reads

Im
(
ei(θ−λ)e−ij

)
∧ eF−B|B2 = 0, (B.33)

and determines the world-volume field

F = (B + cot(θ − λ)j)|B2 . (B.34)

We see that a wrapped D2 brane can be made supersymmetric by choosing an appropriate
world-volume field. However, as discussed in section 5.4, to have a consistent BPS state we
need to impose the quantization of the world-volume field and the cancellation of tadpoles.
As discussed there, the quantization condition requires to take n0 D2-branes. On the other
hand, the tadpole condition requires F = β or, equivalently, F − B = −F2/F0. At t = 0,
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using the explicit form for the metric in (5.4), as well as (5.12), (5.18), (A.11), (A.10)
and (A.13), we evaluate tan(θ) = −ψ1 and j = −1

4e
2B1J1 and F2/F0 = −1

4e
2B1J1/ψ1.

Recall that J1 is the volume form of one of the two S2’s, as defined in (5.3). We thus see
that the tadpole condition is satisfied by λ = 0. The mass of n0 D2 branes is then obtained
by integrating the volume form in (B.19)

n0

∫
B2

√
det(g + F −B) = n0

1
sin(θ)

∫
B2

J = n0
1
4
e2B1

√
1 + ψ2

1

ψ1

∫
B2

J1 . (B.35)

Using this, one exactly reproduces the result (5.41) of section 5.4.
A more detailed analysis of equations (B.20) (and the analogous ones for Ψ̃±) shows

that a D2-brane sitting at t 6= 0, π/2 cannot be supersymmetric and simultaneously satisfy
the tadpole condition.
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