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1 Introduction

With the coming into operation of the Large Hadron Collider (LHC), a new era has begun

in the search for the Higgs boson(s). At the LHC the main production mechanism for the

Standard Model (SM) Higgs boson, HSM, is the loop-induced gluon fusion mechanism [1],

gg → HSM, where the coupling of the gluons to the Higgs is mediated by loops of colored

fermions, primarily the top quark. The knowledge of this process in the SM includes the

full next-to-leading order (NLO) QCD corrections [2–5], the next-to-next-to-leading order

(NNLO) QCD corrections [6–11] including finite top mass effects [12–18], soft-gluon re-

summation effects [19], an estimate of the next-to-next-to-next-to-leading order (NNNLO)

QCD effects [20, 21] and also the first-order electroweak corrections [22–28].

The Minimal Supersymmetric extension of the Standard Model, or MSSM, features

a richer Higgs spectrum which consists of two neutral CP-even bosons h,H, one neutral

CP-odd boson A and two charged scalars H±. The gluon-fusion process is one of the most

important production mechanisms for the neutral Higgs bosons, whose couplings to the

gluons are mediated by colored fermions and their supersymmetric partners. The gluon-

fusion cross section in the MSSM is known at the NLO. The contributions arising from

diagrams with squarks and gluons were first computed under the assumption of vanishing

Higgs mass in ref. [29]. The complete top/stop contributions, including stop mixing and

gluino effects, were computed under the same assumption in ref. [30, 31], and the result
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was cast in a compact analytic form in ref. [32]. Later, more refined calculations aimed

at the inclusion of the full Higgs-mass dependence. In particular, the full squark-gluon

contribution is known in a closed analytic form [33–35], while the full quark-squark-gluino

contribution has been computed in ref. [36] via a combination of analytic and numerical

methods.

It should be stressed that, at least for the case of the light Higgs, the exact two-

loop QCD Higgs-gluon-gluon amplitude is in general well approximated by the amplitude

evaluated in the limit of neglecting the Higgs mass. The latter is much easier to compute

and the corresponding result can be straightforwardly implemented in computer codes that

aim to evaluate the Higgs boson production cross section in a fast and efficient way. Indeed,

it was noticed several years ago for the SM case [37] that the exact K factor, defined as

the ratio between the NLO and leading-order (LO) cross sections, is well approximated

by the so-called effective K factor that can be obtained via an improved effective-theory

calculation. By the latter we mean a result in which the effective NLO cross section is

obtained by multiplying the exact LO partonic cross section by the O(αs) corrections

evaluated in the limit of vanishing Higgs mass. For the SM case this approximation works

at the level of few per cent for Higgs mass values below the 2mt threshold, and up to 10%

for any Higgs mass value. The same level of accuracy is reached when the Higgs couples

to a generic scalar particle with mass mS, with the exception of a narrow region close to

the mH ≃ 2mS threshold [38].

There is only one case in which the effective approximation does not work sufficiently

well, namely when the bottom contribution becomes very relevant. This can happen in

the MSSM when tan β, i.e. the ratio of the vacuum expectation values (vev) of the neutral

components of the two Higgs doublets, becomes large. In such a situation, in principle,

the exact computation of the NLO bottom contribution to the cross section should be

employed. However, explicit analytic results for the part of the NLO bottom contribution

that is induced by two-loop bottom-sbottom-gluino diagrams have not been made available

so far.

In this paper we present an approximate evaluation of the bottom-sbottom-gluino dia-

grams, based on an asymptotic expansion in the large supersymmetric masses that is valid

up to and including terms of O(m2
b/m

2
φ), O(mb/M) and O(m2

Z/M2), where mφ denotes a

Higgs-boson mass and M denotes a generic superparticle mass (M = mg̃,mb̃1
,mb̃2

). To-

gether with the known exact results for the (s)bottom-gluon diagrams [4, 5, 33–35, 38],

our new result allows us to obtain effective K factors that can be easily implemented in

computer codes to provide an accurate and efficient evaluation of the cross section for Higgs

boson production in the MSSM. Such K factors are expected to be at the same level of

accuracy as in the SM, i.e. within a few per cent of the exact value for the light Higgs and

up to ten per cent for the heavy Higgs, with however a much better accuracy expected if

the heavy-Higgs mass is below all the heavy-particle thresholds.

The paper is organized as follows: in section 2 we summarize general results on the

cross section for Higgs boson production via gluon fusion. In section 3 we outline the way

we perform the asymptotic expansion of the bottom-sbottom-gluino diagrams. Section 4

contains the explicit results for the NLO bottom contribution both in DR and in the on-
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shell (OS) scheme. In section 5 we discuss the numerical relevance of the NLO bottom

corrections devoting particular attention to the interplay between the computation of the

Higgs mass and that of its production cross section. In the last section we discuss an

approximate way to take the NLO bottom contribution into account, based on an improved

LO term. Finally, in appendix A we specialize to the MSSM case the general exact results

for the real radiation derived in ref. [38], while appendix B contains the explicit expressions

for the shifts from the DR to the OS parameters in the sbottom sector.

2 Higgs boson production via gluon fusion at NLO in the MSSM

In this section we recall for completeness some general results on Higgs boson production

via gluon fusion. The hadronic cross section for Higgs boson production at center-of-mass

energy
√

s can be written as

σ(h1+h2 → φ+X)=
∑

a,b

∫ 1

0
dx1dx2 fa,h1

(x1, µF ) fb,h2
(x2, µF )×

∫ 1

0
dz δ

(
z − τφ

x1x2

)
σ̂ab(z) ,

(2.1)

where φ = (h,H), τφ = m2
φ/s, µF is the factorization scale, fa,hi

(x, µF ) the parton density

of the colliding hadron hi for the parton of type a (for a = g, q, q̄), and σ̂ab the cross section

for the partonic subprocess ab → φ + X at the center-of-mass energy ŝ = x1 x2 s = m2
φ/z.

The latter can be written in terms of the LO contribution σ(0) and a coefficient function

Gab(z) as

σ̂ab(z) = σ(0) z Gab(z) . (2.2)

We consider now the production of the lightest CP-even Higgs boson, h, through gluon

fusion.1 The LO term can be written as

σ(0) =
Gµ α2

s(µR)

128
√

2 π

∣∣∣TF

(
− sin αH1ℓ

1 + cos αH1ℓ
2

)∣∣∣
2

, (2.3)

where Gµ is the muon decay constant, αs(µR) is the strong gauge coupling expressed in the

MS renormalization scheme at the scale µR, TF = 1/2 is a color factor, and α is the mixing

angle in the CP-even Higgs sector of the MSSM. Hi (i = 1, 2) are the form factors for

the coupling of the neutral, CP-even component of the Higgs doublet Hi with two gluons,

which we decompose in one- and two-loop parts as

Hi = H1ℓ
i +

αs

π
H2ℓ

i + O(α2
s) . (2.4)

The one-loop form factors H1ℓ
1 and H1ℓ

2 contain contributions from diagrams involving

quarks or squarks. The two-loop form factors H2ℓ
1 and H2ℓ

2 contain contributions from

diagrams involving quarks, squarks, gluons and gluinos. Focusing on the contributions

involving the third-generation quarks and squarks, and exploiting the structure of the

1For the heaviest eigenstate, H , general formulae for the production cross section can be obtained

straightforwardly with the replacements (sin α → − cos α, cos α → sin α) in eqs. (2.3) and (2.17) and in

appendix A.
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Higgs-quark-quark and Higgs-squark-squark couplings, the form factors Hi can be written

to all orders in the strong interactions as [32]

H1 = λt

[
mt µ s2θt

Ft + m2
Z s2β Dt

]
+ λb

[
mb Ab s2θb

Fb + 2m2
b Gb + 2m2

Z c2
β Db

]
, (2.5)

H2 = λb

[
mb µ s2θb

Fb − m2
Z s2β Db

]
+ λt

[
mt At s2θt

Ft + 2m2
t Gt − 2m2

Z s2
β Dt

]
. (2.6)

In the equations above λt = 1/ sin β and λb = 1/ cos β, where tan β ≡ v2/v1 is the ratio

of the vev of the two Higgs doublets. Also, µ is the higgsino mass parameter in the

MSSM superpotential, Aq (for q = t, b) are the soft SUSY-breaking Higgs-squark-squark

couplings and θq are the left-right squark mixing angles (here and thereafter we use the

notation sϕ ≡ sin ϕ, cϕ ≡ cos ϕ for a generic angle ϕ). The functions Fq and Gq appearing

in eqs. (2.5) and (2.6) denote the contributions controlled by the third-generation Yukawa

couplings, while Dq denotes the contribution controlled by the electroweak, D-term-induced

Higgs-squark-squark couplings. The latter can be decomposed as

Dq =
I3q

2
G̃q + c2θq̃

(
I3q

2
− Qq s2

θW

)
F̃q , (2.7)

where I3q denotes the third component of the electroweak isospin of the quark q, Qq is the

electric charge and θW is the Weinberg angle.

The one-loop functions entering H1ℓ
1 and H1ℓ

2 are:

F 1ℓ
q = F̃ 1ℓ

q =
1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) − 1

m2
q̃2

G1ℓ
0 (τq̃2

)

]
, (2.8)

G1ℓ
q =

1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) +
1

m2
q̃2

G1ℓ
0 (τq̃2

) +
1

m2
q

G1ℓ
1/2(τq)

]
, (2.9)

G̃1ℓ
q =

1

2

[
1

m2
q̃1

G1ℓ
0 (τq̃1

) +
1

m2
q̃2

G1ℓ
0 (τq̃2

)

]
, (2.10)

where τk ≡ 4m2
k/m

2
h, and the functions G1ℓ

0 and G1ℓ
1/2 read

G1ℓ
0 (τ) = τ

[
1 +

τ

4
ln2

(√
1 − τ − 1√
1 − τ + 1

)]
, (2.11)

G1ℓ
1/2(τ) = −2 τ

[
1 − 1 − τ

4
ln2

(√
1 − τ − 1√
1 − τ + 1

)]
. (2.12)

The analytic continuations are obtained with the replacement m2
h → m2

h + iǫ . For later

convenience, we recall the behavior of G1ℓ
0 and G1ℓ

1/2 in the limit in which the Higgs boson

mass is much smaller or much larger than the mass of the particle running in the loop.

In the first case, i.e. τ ≫ 1, which applies to the top and squark contributions for the

light-Higgs case,

G1ℓ
0 → −1

3
− 8

45 τ
+ O(τ−2) , G1ℓ

1/2 → −4

3
− 14

45 τ
+ O(τ−2) , (2.13)
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while in the opposite case, i.e. τ ≪ 1, which is relevant for the bottom quark,

G1ℓ
0 → τ + O(τ2) , G1ℓ

1/2 → −2 τ +
τ

2
ln2

(−4

τ

)
+ O(τ2) . (2.14)

The coefficient function Gab(z) in eq. (2.2) can be decomposed, up to NLO terms, as

Gab(z) = G
(0)
ab (z) +

αs

π
G

(1)
ab (z) + O(α2

s) , (2.15)

with the LO contribution given only by the gluon-fusion channel:

G
(0)
ab (z) = δ(1 − z) δag δbg . (2.16)

The NLO terms include, besides the gg channel, also the one-loop induced processes gq →
qh and qq̄ → gh:

G(1)
gg (z) = δ(1 − z)

[
CA

π2

3
+ β0 ln

(
µ2

R

µ2
F

)
+ 2Re

(− sinαH2ℓ
1 + cos αH2ℓ

2

− sinαH1ℓ
1 + cos αH1ℓ

2

)]

+ Pgg(z) ln

(
ŝ

µ2
F

)
+ CA

4

z
(1 − z + z2)2 D1(z) + CA Rgg , (2.17)

G
(1)
qq̄ (z) = Rqq̄ , G(1)

qg (z) = Pgq(z)

[
ln(1 − z) +

1

2
ln

(
ŝ

µ2
F

)]
+ Rqg , (2.18)

where the LO Altarelli-Parisi splitting functions are

Pgg(z) = 2CA

[
D0(z) +

1

z
− 2 + z(1 − z)

]
, Pgq(z) = CF

1 + (1 − z)2

z
. (2.19)

In the equations above, CA = Nc and CF = (N2
c − 1)/(2Nc) (Nc being the number of

colors), β0 = (11CA − 2Nf )/6 (Nf being the number of active flavors) is the one-loop

β-function of the strong coupling in the SM, and

Di(z) =

[
lni(1 − z)

1 − z

]

+

. (2.20)

The gg-channel contribution, eq. (2.17), involves two-loop virtual corrections to gg → h

and one-loop real corrections from gg → hg. The former, regularized by the infrared-

singular part of the real emission cross section, are displayed in the first line of eq. (2.17).

The second line contains the non-singular contribution from the real gluon emission in

the gluon fusion process. The latter contribution as well as the ones due to the qq̄ → hg

annihilation channel and the quark-gluon scattering channel, eq. (2.18), are obtained from

one-loop diagrams where only quarks or squarks circulate in the loop. General expressions

for the functions Rgg, Rqq̄, Rqg can be found in ref. [38] (see also refs. [39, 40]). In appendix

A we provide expressions in which the contribution of the bottom quark is kept exact while

those of the top quark and of the squarks are evaluated in the limit of vanishing Higgs mass.

The two-loop top/stop contributions to the form factors H2ℓ
1,2 entering eq. (2.17) are

fully under control in the light-Higgs case. Typically, the mass ratios between the Higgs

– 5 –
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and the particles running in the loops allow for the evaluation of the relevant diagrams

via a Taylor expansion in the Higgs mass, with the zero-order term in the series already

a very good approximation of the full result. The case of the two-loop bottom/sbottom

contributions is obviously different. In general, Taylor-expanded evaluations of the relevant

diagrams are no longer viable, due to the presence of the light bottom quark in the loops.

Thus, the diagrams must be evaluated either exactly or via an asymptotic expansion in a

large mass or momentum.

In the following sections we present the result for the NLO bottom contribution, com-

bining earlier results in the literature with our new calculation of the bottom-sbottom-

gluino contribution. The latter has been obtained via an asymptotic expansion, retaining

terms of O(m2
b/m

2
h), O(mb/M) and O(m2

Z/M2).

3 Outline of the calculation

An exact analytic evaluation of the bottom-sbottom-gluino contribution to H2ℓ
1,2 is, at the

moment, beyond our computational ability. However, it is reasonable to assume that

all of the supersymmetric particles are much heavier than the lightest Higgs boson and

the bottom quark, and look for an approximate evaluation of the diagrams in terms of a

small-momentum (large-mass) expansion. We follow this path by performing a large-mass

expansion, assuming all the supersymmetric particles to be heavy but without requiring

any specific hierarchy among them.

After generating the two-loop diagrams involving bottom, sbottom and gluino that

contribute to the process g(q1)+ g(q2) → h(q) with the help of FeynArts [41, 42], we sepa-

rate them in two classes: i) those that can be evaluated via an ordinary Taylor expansion

in powers of q2/M2, of which we keep only the term of order zero; ii) the diagrams that

require an asymptotic expansion. We recall that a Taylor expansion of a two-loop diagram

in the external momentum q2 is viable for values of q2 up to the first physical threshold.

In our case, diagrams with a physical threshold at q2 = 4m2
b , when Taylor-expanded in

q2, exhibit an infrared (IR) divergent behavior as the bottom mass is sent to zero. Thus,

these diagrams belong to the class ii.

Class-i diagrams are expressed in terms of two-loop vacuum integrals that can be

evaluated using the results of ref. [43]. Concerning the diagrams belonging to class ii,

reviews of the method of asymptotic expansions of Feynman diagrams with respect to

masses or momenta can be found in ref. [44, 45]. In practice, we generate the expansion

of a diagram by adding and subtracting to it the part of the diagram itself that becomes

IR-divergent when mb and q2 are sent to zero. Formally we are adding nothing to the

original diagram but, as graphically2 exemplified in figure 1, this construction allows us to

separate the diagram in two parts: part A in figure 1 which, being by construction IR-safe,

can be evaluated via a Taylor expansion in the same way as class-i diagrams; part B in

figure 1, containing the IR-divergent contribution, which should be evaluated exactly.

The IR-divergent part of a diagram is constructed in the following way. We first note

that in all the diagrams entering our calculation one can choose a routing of momenta

2The diagrams have been drawn using JaxoDraw [46].
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−=

+

A

B

k2 k1
(k1 ·k2)

(k1 ·k2)

Figure 1. Pictorial example of the asymptotic expansion of a two-loop diagram containing one

subintegration (k1) with only heavy particles (bold lines) and the other (k2) with light particles. To

the original diagram its IR-divergent part, represented by the disconnected diagram, is subtracted

and added forming the contribution that can be evaluated via a Taylor expansion (A) and the one

that should evaluated exactly (B). See text for a detailed explanation.

such that the connecting propagators, i.e. the propagators that contain both integration

momenta k1 and k2, are always accompanied by a heavy mass M . Furthermore, only one

subintegration, let us assume the one on k2, is IR divergent. Then, one can rewrite the

connecting propagators using the identity

1

(k1 + k2)2 − M2
=

1

k2
1 − M2

− k2
2 + 2 k1 · k2

[(k1 + k2)2 − M2](k2
1 − M2)

. (3.1)

The first term on the r.h.s. of eq. (3.1) leads to a disconnected integral (product of two

one-loop integrals) that contains the IR-divergent contributions present in the original dia-

gram. This term can be evaluated exactly, i.e. for arbitrary q2, giving rise to the ln(q2/m2
b)

terms that describe the physical threshold. The second term, instead, leads to a two-loop

integral with improved infrared convergence in the k2 integration and improved ultraviolet

convergence in the k1 integration. Therefore, if, for example, the original integral is loga-

rithmically IR divergent in the k2 integration when q → 0 and mb → 0, the corresponding

two-loop integral associated with the second term in eq. (3.1) evaluated at q2 = mb = 0

is no longer IR divergent, but it actually gives a finite result that differs from the result

valid for q2 6= 0 and mb 6= 0 by terms of O(m2/M2 ln(m2/M2)), where m2 denotes either

q2 or m2
b . In general, a repeated application of eq. (3.1), controlled by the power counting

in the IR-divergent terms, allows us to construct the IR-divergent part of any diagram in

terms of products of one-loop integrals with numerators that contain terms of the form

(ki · qj)
m, (ki · kj)

n (i, j = 1, 2) where m, n are generic powers. The Passarino-Veltman re-

duction method is then applied to eliminate the numerators and express the result in terms

of the known one-loop scalar integrals [47]. A check of the validity of our construction of

the IR-divergent part of a diagram is given by the evaluation of its part A. Indeed, one
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b

(a)

b̃i
g̃

b

b

(b)

Figure 2. Examples of two-loop diagrams involving the Higgs-bottom coupling.

b̃i

(a)

b̃i

b̃j

b̃k

(b)

b g̃

b̃i

b̃j

(c)

Figure 3. Examples of two-loop diagrams involving the Higgs-sbottom coupling.

verifies explicitly that the IR-divergent contributions of the original diagram are canceled

by the terms constructed via eq. (3.1), so that the final result for part A is free of any

ln(q2/m2
b) or q2/m2

b term.

4 Two-loop bottom/sbottom contributions

In this section we present the result for the two-loop bottom/sbottom contribution to the

form factor for Higgs boson production via gluon fusion. We stress that, in the MSSM, the

result for the production cross section of a Higgs boson is strictly linked to the computation

of its mass, i.e., both observables should be computed in terms of the same set of SUSY

parameters, defined in the same way beyond tree level. There is however an important

difference between the two calculations. In the computation of the one-loop corrections to

the Higgs masses, the diagrams involving the bottom quark are suppressed by the bottom

mass and can be safely neglected, resulting in a one-loop contribution that is actually

due to the sbottom diagrams only. This implies that in the two-loop calculation of the

Higgs masses the only couplings that require a one-loop renormalization are the trilinear

sbottom-Higgs couplings, while the definition of the bottom-Higgs Yukawa coupling beyond

tree level is irrelevant. On the other hand, in the one-loop calculation of the amplitude

for Higgs production both the bottom-Higgs Yukawa coupling and the trilinear sbottom-

Higgs couplings play a role, thus they both require a one-loop definition when the two-loop

contributions are computed.

In the following we will discuss separately the contributions to the two-loop form fac-

tors H2ℓ
1,2 from the diagrams involving the Higgs-bottom coupling (examples of which are

shown in figure 2) and those from the diagrams involving the Higgs-sbottom couplings

(see figure 3). In our approximation of neglecting terms beyond O(mb/M), the former

– 8 –
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contribute only to the function Gb in eq. (2.5), while the latter contribute only to the func-

tions Fb, F̃b and G̃b in eqs. (2.5) and (2.6). For both kinds of contributions, we first report

the results obtained in the DR renormalization scheme, which is the scheme employed by

several public computer codes [48–50] that return the MSSM mass spectrum starting from

a set of high-energy boundary conditions for the SUSY-breaking parameters. We then dis-

cuss how to move from the DR scheme to a different renormalization prescription, which

generalizes the one introduced for the calculation of the Higgs masses in ref. [51] and im-

plemented in the code FeynHiggs [52]. With a slight abuse of language, since some of the

amplitudes involved in the renormalization of the SUSY parameters are in fact evaluated

off mass shell, we refer to this prescription as to the “on-shell” scheme.

4.1 Contributions controlled by the Higgs-bottom coupling

We start by considering the contributions of the two-loop diagrams involving the Higgs-

bottom coupling. In our approximation those are the only diagrams that contribute to the

function Gb in eq. (2.5). The two-loop part of the function can be decomposed as

G2ℓ
b = CF

(
G

(g,CF )
b + G

(g̃,CF )
b

)
+ CA

(
G

(g,CA)
b + G

(g̃,CA)
b

)
. (4.1)

Assuming that the one-loop form factor H1ℓ
1 is expressed in terms of DR-renormalized

parameters evaluated at the scale Q2, the contribution of the two-loop diagrams with

bottom quarks and gluons (figure 2a) reads:

2m2
b G

(g,CF )
b = F (2ℓ,a)

1/2 (τb) + F (2ℓ,b)
1/2 (τb)

(
ln

m2
b

Q2
− 1

3

)
, 2m2

b G
(g,CA)
b = G(2ℓ,CA)

1/2 (τb) .

(4.2)

Exact expressions for the functions F (2ℓ,a)
1/2 , F (2ℓ,b)

1/2 and G(2ℓ,CA)
1/2 are given in eqs. (2.12), (2.13)

and (3.8) of ref. [34], respectively. In the limit τ ≪ 1 they reduce to

F (2ℓ,a)
1/2 (τ) = −τ

[
9 +

9

5
ζ2
2 − ζ3 − (1 + ζ2 + 4 ζ3) ln

(−4

τ

)
− (1 − ζ2) ln2

(−4

τ

)

+
1

4
ln3

(−4

τ

)
+

1

48
ln4

(−4

τ

)]
+ O(τ2) , (4.3)

F (2ℓ,b)
1/2 (τ) = 3 τ

[
1 +

1

2
ln

(−4

τ

)
− 1

4
ln2

(−4

τ

)]
+ O(τ2) , (4.4)

G(2ℓ,CA)
1/2 (τ) = −τ

[
3 − 8

5
ζ2
2 − 3 ζ3 + 3 ζ3 ln

(−4

τ

)
− 1

4
(1 + 2 ζ2) ln2

(−4

τ

)

− 1

48
ln4

(−4

τ

)]
+ O(τ2) , (4.5)

where ζ2 and ζ3 are Riemann’s zeta functions.

The contributions of the two-loop diagrams with bottom, sbottom and gluino (fig-

ure 2b) require a dedicated calculation. Up to and including terms of O(m2
b/m

2
h) and

O(mb/M), and assuming that H1ℓ
1 is expressed in terms of DR-renormalized parameters
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evaluated at the scale Q2, they read:

2m2
b G

(g̃,CF )
b =

4

3
F (2ℓ,b)

1/2 (τb)
(δmb)

mb

SUSY

− 1

4
G1ℓ

1/2(τb)
mg̃

mb
s2θb

(
x1

1 − x1
ln x1 −

x2

1 − x2
ln x2

)

− mb

mg̃
s2θb

{
1

6x1 (1 − x1)3

[
(1 − x1)

3 ln
m2

g̃

Q2
+ 2

(
x3

1 + 2x2
1

)
ln x1

− 3
(
x3

1 − x1 − 2x2
1 ln x1

)
ln

(
−m2

h

m2
g̃

)
+ 5x3

1 − 5x2
1 + x1 − 1

− 12x2
1 Li2

(
1 − 1

x1

)
− 6x2

1 ln2 x1

]
− (x1 → x2)

}
, (4.6)

2m2
b G

(g̃,CA)
b =

mb

mg̃
s2θb

{
1

6 (1 − x1)2

[
2x1 (1 + x1) ln x1 + 2x1 − 2 − 6x1 Li2

(
1 − 1

x1

)

− 3x1 ln2 x1 + 3 (1 − x1 + x1 ln x1) ln

(
−m2

h

m2
g̃

)]
− (x1 → x2)

}
, (4.7)

where xi = m2
b̃i
/m2

g̃ , and (δmb)
SUSY denotes the SUSY contribution to the bottom self-

energy, in units of CF αs/π and in the limit of vanishing mb:

(δmb)

mb

SUSY

= − 1

4

[
ln

m2
g̃

Q2
+ f(x1) + f(x2) +

mg̃

mb
s2θb

(
x1

1 − x1
ln x1 −

x2

1 − x2
lnx2

)]
,

(4.8)

where

f(x) =
x − 3

4 (1 − x)
+

x (x − 2)

2 (1 − x)2
ln x . (4.9)

If the bottom-quark contribution to H1ℓ
1 is expressed in terms of the pole bottom

mass Mb, the functions G
(g,CF )
b and G

(g̃,CF )
b are shifted with respect to their expressions in

eqs. (4.2) and (4.6). In particular, the former becomes

2m2
b G

(g,CF )
b = F (2ℓ,a)

1/2 (τb) +
4

3
F (2ℓ,b)

1/2 (τb) , (4.10)

and the term proportional to (δmb)
SUSY in the first line of eq. (4.6) is canceled out.

Eqs. (4.6) and (4.8) show that the bottom-sbottom-gluino contribution to H2ℓ
1 contains

terms enhanced by the large ratio mg̃/mb. Recalling the definition of τb, it is clear that

those terms are in fact of O(mb mg̃/m
2
h) , i.e., they still vanish as mb → 0 but they are

enhanced by the ratio mg̃/mh. Such terms arise from two-loop diagrams in which the

helicity flip on the fermion loop is achieved via a gluino mass insertion instead of a bottom

mass insertion, and they by far dominate the new-physics contribution to the two-loop part

of the form factors, no matter whether the bottom-quark contribution to H1ℓ
1 is expressed

in terms of the pole bottom mass Mb or in terms of the DR-renormalized bottom mass

m̂b. However, we notice that all of the two-loop O(mb mg̃/m
2
h) terms cancel out if the

one-loop bottom contribution to the function G1ℓ
b is computed in terms of Mb, but the

function itself is multiplied by m̂b Mb instead of M2
b . As a result the function G2ℓ

b is further
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shifted, with respect to the expression corresponding to the use of Mb in the whole one-loop

contribution, by

2m2
b G2ℓ

b −→ 2m2
b G2ℓ

b − G1ℓ
1/2(τb)CF

[
3

4
ln

m2
b

Q2
− 5

4
+

(δmb)

mb

SUSY
]

. (4.11)

This manipulation amounts to differentiating, in the one-loop contribution, between

the parameter that describes the mass of the bottom quark running in the loop — which is

identified with Mb — and the parameter that describes the Yukawa coupling of the bottom

quark to the Higgs boson — which is identified with m̂b. We recall that, in the MSSM, the

running bottom mass m̂b can be related to the corresponding SM parameter mb as [53]

m̂b =
mb (1 + δb)

1 + ǫb tan β
, (4.12)

where δb denotes terms that are not enhanced by tan β and, to O(αs),

ǫb =
αs CF

4π

2µ mg̃

m2
b̃1
− m2

b̃2

(
x1

1 − x1
ln x1 −

x2

1 − x2
ln x2

)
. (4.13)

Since s2θb
= 2mb (Ab + µ tan β)/(m2

b̃1
−m2

b̃2
) , it is easy to see that the terms enhanced by

mg̃/mb in G
(g̃,CF )
b do indeed contain ǫb tan β. In the effective-theory language of ref. [54]

we can argue that, by expressing the bottom Yukawa coupling entering H1ℓ
1 in terms of

m̂b as defined in eq. (4.12), we “resum” in the one-loop part of the form factor the tan β-

enhanced threshold corrections to the relation between the mass and the Yukawa coupling

of the bottom quark. As a result of this special choice of parameters, all terms of the form

ǫb tan β drop out of the two-loop part of the form factor.

4.2 Contributions controlled by the Higgs-sbottom coupling

We now turn our attention to the diagrams that involve the Higgs-sbottom coupling. In our

approximation those diagrams contribute only to the functions Fb, F̃b and G̃b in eqs. (2.5)

and (2.6). In analogy with ref. [32], the two-loop parts of the functions can be written as

F 2ℓ
b = Yb̃1

− Yb̃2
−

4 c2
2θb

m2
b̃1
− m2

b̃2

Yc2
2θb

, (4.14)

F̃ 2ℓ
b = Yb̃1

− Yb̃2
+

4 s2
2θb

m2
b̃1
− m2

b̃2

Yc2
2θb

, (4.15)

G̃2ℓ
b = Yb̃1

+ Yb̃2
. (4.16)

Furthermore, the various terms in eqs. (4.14)–(4.16) can be split in the contributions coming

from diagrams with gluons (g, figure 3a), with strong, D-term-induced quartic bottom

couplings (4b̃, figure 3b), and with gluinos (g̃, figure 3c),

Yx = Y g
x + Y 4b̃

x + Y g̃
x (x = b̃1, b̃2, c

2
2θb

) . (4.17)

The first two terms in eq. (4.17) can be obtained from the analytic expressions presented for

the stop contributions in eqs. (27)–(30) of ref. [32], identifying ∂Za

∂x with Y a
x after making
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the trivial replacement t̃ → b̃. The gluino contributions, on the other hand, require a

dedicated calculation. Writing

Y g̃
x = CF Y (g̃,CF )

x + CA Y (g̃,CA)
x (x = b̃1, b̃2, c

2
2θb

) , (4.18)

and assuming that the parameters in H1ℓ
1 and H1ℓ

2 are expressed in the DR scheme at the

renormalization scale Q2, we find for the functions Y g̃
x :

Y
(g̃,CF )

b̃1
=

s2θb

4mb mg̃
G1ℓ

1/2(τb)

(
1

1 − x1
+

1

(1 − x1)2
ln x1

)

− 1

6m2
g̃

(
1

1 − x1
+

1

(1 − x1)2
lnx1 −

1

x2
1

+
1

x2
1

ln
m2

g̃

Q2

)
, (4.19)

Y
(g̃,CA)

b̃1
= − 1

12m2
g̃

(
1

1 − x1
+

1

(1 − x1)2
ln x1

)
, (4.20)

Y
(g̃,CF )

c2
2θb

= − mg̃

8mbs2θb

G1ℓ
1/2(τb)

(
x1

1 − x1
ln x1 −

x2

1 − x2
ln x2

)
, (4.21)

Y
(g̃,CA)

c2
2θb

= 0 , (4.22)

where we retained only terms that induce O(m2
b/m

2
h), O(mb/M) and O(m2

Z
/M2) contribu-

tions to H2ℓ
1,2. The expression for Yb̃2

can be obtained from the expression for Yb̃1
through

the replacements x1 → x2 and s2θb
→ −s2θb

. Comparing eqs. (4.19) and (4.20) with eq. (42)

of ref. [32] we notice that, contrary to what we stated in section 3.3 of that paper, even for

θb = 0 the two-loop bottom-sbottom-gluino contribution to F̃b and G̃b cannot be obtained

by taking the limit mt → 0 in the corresponding top contribution.

4.3 On-shell renormalization scheme for the sbottom parameters

We now discuss a suitable OS renormalization scheme for the parameters that determine

the sbottom contribution to H1ℓ
1,2. We recall that, at the one-loop level, the vev v1 and

v2, the Z boson mass, the Weinberg angle and the parameter µ are not renormalized by

the strong interactions. Therefore, the only parameters that require a one-loop definition

are (hb, Ab, s2θb
,mb̃1

, mb̃2
), where by hb we denote the coupling constant entering the

cubic and quartic sbottom-Higgs interactions, which at tree level is related to the bottom

mass by mb = hb v1/
√

2. Indeed, the factor mb that multiplies the function Fb in eqs. (2.5)

and (2.6) has to be interpreted as a bookmark for hb. In fact, only four of those parameters

are independent, because of the relation

s2θb
=

√
2 hb (Ab v1 + µ v2)

m2
b̃1
− m2

b̃2

. (4.23)

In the analysis of the sbottom corrections to the neutral MSSM Higgs boson masses pre-

sented in ref. [51] it was pointed out that, while the sbottom masses can be naturally

identified with the pole masses, an OS definition of (hb, Ab, s2θb
) is less easily singled out.

Proceeding in analogy with the OS renormalization of the stop sector (see, e.g., ref. [32]),

we might choose as independent parameters a conveniently defined bottom mixing angle,
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s2θb
, and the bottom Yukawa coupling hpole

b , as defined by the pole bottom mass Mb via

the relation Mb ≡ hpole
b v1/

√
2. Then, eq. (4.23) might be used to establish the one-loop

definition of Ab in terms of the pole bottom and sbottom masses and the sbottom mixing

angle. However, for large values of tan β such definition would produce very large shifts in

Ab with respect to its DR value,3 δAb = O(αs µ2 tan2 β/mg̃) [55, 56]. This is related to

the fact that, in the large-tan β limit (i.e., v1 → 0), s2θb
becomes independent of Ab , as

can be easily seen from eq. (4.23). To cure the problem, it was suggested in ref. [51] (see

also ref. [57, 58]) to take s2θb
and Ab as independent parameters, while considering hb as

a derived quantity via eq. (4.23). Suitable renormalization conditions were then proposed

for s2θb
and Ab.

In the OS analysis of the cross section for Higgs boson production we want to retain

the convenient features of the renormalization prescription employed in ref. [51]. However,

that prescription needs to be expanded: first of all, the renormalization conditions in

ref. [51] were defined in the limit tan β → ∞ (i.e., v1 = 0), while in the case at hand we

do not impose constraints on tan β. Moreover, while in the calculation of the one-loop

corrections to the Higgs masses the contributions controlled by the bottom-Higgs Yukawa

coupling (which we denote as hY
b to distinguish it from hb) are suppressed, the one-loop

diagram controlled by hY
b gives an important contribution to the production cross section.

Therefore, a one-loop definition of hY
b is required. Since it does not seem appropriate to

define the bottom-Higgs coupling hY
b in terms of quantities of the sbottom sector, as would

happen if we imposed on it the same renormalization condition used for hb, we need to

impose different renormalization conditions on hY
b and hb, or, equivalently, on the bottom

mass that enters the one-loop bottom contribution and the one that enters the one-loop

sbottom contribution. In particular, we identify the former with the pole mass Mb (the

resulting shifts in the function G2ℓ
b are discussed in section 4.1). Concerning the bottom

mass in the one-loop sbottom contribution, we follow ref. [51], extending the prescription

presented in that paper to the case of finite tan β.

To obtain definitions for δhb and δAb, we consider two quantities

X̃b =
hb v1√

2
(Ab + µ tan β) , Ỹb =

hb√
2

(sβ Ab − cβ µ) , (4.24)

that allow for a natural interpretation: X̃b , at the classical level, is the off-diagonal term in

the sbottom mass matrix, related to the mixing angle s2θb
via eq. (4.23); Ỹb is proportional

to the coefficient of the trilinear interaction (̃b1b̃
∗
2A). A definition of the mixing angle θb

like the one proposed in ref. [59–62],

δθb =
1

2

Π̂12(m
2
b̃1

) + Π̂12(m
2
b̃2

)

m2
b̃1
− m2

b̃2

, (4.25)

together with the identification of the sbottom masses as pole masses, can be immediately

3For the generic parameter x, we define the shift from the DR value x̂ as δx ≡ x̂ − x.
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translated, using eq. (4.23), into a prescription for X̃b:

δX̃b =
1

2
c2θb

[
Π̂12(m

2
b̃1

) + Π̂12(m
2
b̃2

)
]

+ X̃b

Π̂11(m
2
b̃1

) − Π̂22(m
2
b̃2

)

m2
b̃1
− m2

b̃2

. (4.26)

In eqs. (4.25) and (4.26), Π̂ij(q
2) (i, j = 1, 2) denotes the finite part of the (i, j) self-energy

of the sbottoms.

Recalling that in the tan β → ∞ limit Ỹb → hb Ab/
√

2, the extension to the case of

finite tan β of the prescription for Ab introduced in eq. (15) of ref. [51] reads:

δỸb = − i

2

[
Λ12A(m2

b̃1
,m2

b̃1
, 0) + Λ12A(m2

b̃2
,m2

b̃2
, 0)
]

+
1

2
Ỹb

Π̂11(m
2
b̃1

) + Π̂22(m
2
b̃1

) − Π̂11(m
2
b̃2

) − Π̂22(m
2
b̃2

)

m2
b̃1
− m2

b̃2

(4.27)

where iΛ12A(p2
1, p

2
2, p

2
A) denotes the proper vertex b̃1b̃

∗
2A.

Finally, the shifts of the parameters hb and Ab are related to those of X̃b and Ỹb by

δhb =

√
2

µ v

(
δX̃b sβ − δỸb v cβ

)
, (4.28)

δAb =
2

h2
b µ v

(
X̃b δỸb − Ỹb δX̃b

)
, (4.29)

where v =
√

v2
1 + v2

2 . Explicit expressions for δhb and δAb, as well as for δs2θb
and δm2

b̃i
,

can be found in appendix B.

If the one-loop sbottom contribution to H1ℓ
1 and H1ℓ

2 is evaluated in terms of OS

quantities, the two-loop functions in eqs. (4.14)–(4.16) must be replaced by

F 2ℓ
b −→ F 2ℓ

b +
π

6αs

[
δm2

b̃1

m4
b̃1

−
δm2

b̃2

m4
b̃2

−
(

δhb

hb
+

δs2θb

s2θt

) (
1

m2
b̃1

− 1

m2
b̃2

)]
, (4.30)

F̃ 2ℓ
b −→ F̃ 2ℓ

b +
π

6αs

[
δm2

b̃1

m4
b̃1

−
δm2

b̃2

m4
b̃2

− δc2θb

c2θb

(
1

m2
b̃1

− 1

m2
b̃2

)]
, (4.31)

G̃2ℓ
b −→ G̃2ℓ

b +
π

6αs

[
δm2

b̃1

m4
b̃1

+
δm2

b̃2

m4
b̃2

]
. (4.32)

In addition, the two-loop form factor H2ℓ
1 receives a contribution originating from the shift

in Ab:

H2ℓ
1 −→ H2ℓ

1 − mb s2θb

cβ

π

6αs

(
1

m2
b̃1

− 1

m2
b̃2

)
δAb . (4.33)
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5 A numerical example

We will now illustrate the effect of the two-loop bottom/sbottom contributions to the

form factors for the production of a Higgs boson in a representative region of the MSSM

parameter space.

The SM parameters entering our calculation are the Z boson mass mZ = 91.1876 GeV,

the Fermi parameter GF = 1.16637 × 10−5 GeV−2, the sine of the Weinberg angle s2
θW

=

0.223 and the strong coupling constant αs(mZ) = 0.118 [63]. For the pole masses of the

top and bottom quarks we take Mt = 173.1 GeV [64] and Mb = 4.49 GeV, the latter

corresponding to the SM running mass (in the MS scheme) mb(mb) = 4.16 GeV [65–67].

The tree-level mass matrix for the CP-even Higgs bosons can be expressed in terms of the

physical pseudoscalar mass mA and the DR-renormalized parameter tan β, in addition to

mZ . In the calculation of the physical Higgs boson masses and of the mixing angle α we

include the one-loop O(αt+αb) and two-loop O(αtαs+αbαs) corrections as in refs. [51, 68].

When computing the two-loop corrections to both mass matrix and production form

factors for the CP-even Higgs bosons, the parameters that determine the stop and sbot-

tom masses and mixing angle and are subject to O(αs) corrections require a one-loop

specification. For the stop sector we adopt the OS scheme described e.g. in ref. [32]. In

particular, we take as input the pole top mass Mt and the soft SUSY-breaking parameters

(mQ,t̃ ,mU , At) that can be derived by rotating the diagonal matrix of the OS stop masses

by the angle θt, defined as in eq. (37) of ref. [32]. Concerning the corresponding parameters

of sbottom sector (hb,mQ,b̃ ,mD, Ab) additional care is required, because of our non-trivial

definition of hb and of the fact that, at O(αs), the parameter mQ,b̃ entering the sbottom

mass matrix differs from the corresponding stop parameter mQ,t̃ by a finite shift [55, 56].

We start by computing the renormalized Higgs-sbottom coupling as given by hb = ĥb−δhb,

where ĥb is the DR-renormalized running coupling that can be trivially extracted from m̂b

computed via eq. (4.12), and δhb is defined in eq. (4.28). Then we compute mQ,b̃ following

the prescription of [55, 56]. Finally, we use the parameters hb and mQ,b̃ to compute the

actual values of the OS sbottom masses and mixing angle.

To set the stage for further discussion, we show in figure 4 the masses and mixing

angle of the CP-even Higgs bosons as a function of tan β. All the relevant SUSY-breaking

parameters, as well as the supersymmetric mass parameter µ, are set to a common value

M = 500 GeV, and the physical pseudoscalar mass mA is set to 150 GeV. The left panel

of figure 4 shows the masses of the two Higgs bosons h and H in the range 25 < tan β <

50, while the right panel shows the combinations − sin α/ cos β and cos α/ sin β, which

determine the strength of the coupling of h to the bottom and top quarks, respectively,

relative to the corresponding SM couplings. For each set of curves, the solid line represents

the result obtained in the OS renormalization scheme of ref. [51], described in section 4.3.

For comparison, we also show as a dotted line the result that would be obtained if the

sbottom parameters hb and Ab were renormalized in the same way as the corresponding

stop parameters. The left plot shows the well-known fact that, at large tan β, the radiative

corrections from sbottom loops tend to reduce mh. The right plot shows that, for the

chosen values of mA and tan β, the coupling of h to the bottom quark is still substantially
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Figure 4. CP-even Higgs boson masses (left plot) and effective couplings of h to top and bottom

quarks (right plot) as a function of tanβ, for mA = 150GeV and all SUSY mass parameters equal

to M = 500GeV. For the meaning of the solid and dotted lines see the text.

enhanced with respect to its SM value. This has to be contrasted with the couplings of h

to the top quark and to the gauge bosons (not shown), which are already very close to the

SM values they tend to in the “decoupling” limit mA ≫ mZ.

The comparison between the dotted and solid lines in figure 4 shows that, if we had

adopted for the sbottom parameters hb and Ab the renormalization scheme used for the

stop parameters, the results for mH and for − sin α/ cos β would differ wildly from the ones

obtained with the renormalization scheme discussed in section 4.3 (conversely, we checked

that the results obtained in the DR scheme would be in good qualitative agreement with

the solid lines). The discrepancy is due to the fact that in the “bad” OS scheme the (1,1)

and (1,2) entries of the CP-even Higgs mass matrix are subject to very large two-loop

corrections scaling like M2 tan β2, induced by the contribution of the counterterm δAb. It

is interesting to note that, since the contribution of δAb to the form factor H2ℓ
1 in eq. (4.33)

is suppressed by a factor mb, its impact on the Higgs boson production cross section in

the “bad” OS scheme is not as extreme as the impact on the Higgs mass. However, we

stress that a consistent determination of the properties of the Higgs bosons requires that

the same definition of input parameters be used in the calculations of mass and production

cross section. Since the naive choice of using the same OS renormalization scheme for the

stop and sbottom sectors is not viable in the calculation of the Higgs masses, it should not

be applied to the calculation of the cross section either.

We are now ready to discuss the effect of the two-loop bottom/sbottom contributions

to the form factor for Higgs-boson production. To this purpose, we define a factor Kh that

contains the ratio of two-loop to one-loop form factors appearing in eq. (2.17):

Kh = 1 + 2
αs

π
Re

(− sin αH2ℓ
1 + cos αH2ℓ

2

− sin αH1ℓ
1 + cos αH1ℓ

2

)
. (5.1)
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Figure 5. K factor for the production of a light Higgs boson h as a function of tanβ, for mA =

150GeV and all SUSY mass parameters equal to M = 500GeV. For the meaning of the different

lines see the text.

In the left panel of figure 5 we plot Kh as a function of tan β, with the same choice

of SUSY parameters as in figure 4, in the OS renormalization scheme described in sec-

tion 4.3. The one-loop form factors in the denominator of the term between parentheses in

eq. (5.1) contain both the top/stop and bottom/sbottom contributions, computed under

the approximations of eqs. (2.13) and (2.14). The lines in the plot correspond to differ-

ent computations of the two-loop form factors in the numerator: the dotted line includes

only the contributions of the top/stop sector, as computed in ref. [32]; the dashed line in-

cludes also the contribution of two-loop diagrams with bottom quarks and gluons; the solid

line includes the full two-loop contribution of the bottom/sbottom sector as computed in

section 4; finally, the dot-dashed line is obtained by approximating the bottom/sbottom

contribution (with the exception of the bottom-gluon diagrams) with just the terms en-

hanced by mg̃/mb in eq. (4.6). From the comparison between the dotted and dashed lines

it can be seen that, in the OS renormalization scheme, the contribution to H2ℓ
1 of the

two-loop diagrams with bottom quarks and gluons is very small. This is due to a par-

tial cancellation between the terms CF F (2ℓ,a)
1/2 and CA G(2ℓ,CA)

1/2 entering the function G2ℓ
b ,

and to the fact that, in this scheme, the term F (2ℓ,b)
1/2 is not enhanced by the potentially

large logarithm of the ratio between the bottom mass and the renormalization scale, as

can be seen by comparing eqs. (4.2) and (4.10). The solid line shows that the effect of

the diagrams involving sbottoms can be very sizable at large tan β, more than doubling

Kh. Indeed, for large tan β the coupling of the light Higgs boson to the (s)bottom is

considerably enhanced with respect to its SM value, as can be seen in the right panel of

figure 4. However, the proximity between the solid and dot-dashed lines shows that this

sizable effect is almost entirely due to the terms enhanced by mg̃/mb in the contribution

of the two-loop bottom-sbottom-gluino diagrams in which the light Higgs boson couples to

the bottom quark.
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Figure 6. Same as figure 5 for the heavy Higgs boson H .

As discussed in section 4.1, the terms enhanced by mg̃/mb in the OS result can be

canceled out if the Higgs-bottom Yukawa coupling in the one-loop part of the result is

identified with the DR-renormalized MSSM bottom mass m̂b instead of the physical mass

Mb. To this effect, the factor m2
b multiplying the function Gb in eq. (2.5) must be expressed

as m̂b Mb, and the two-loop part of Gb must be shifted as in eq. (4.11). In the right panel

of figure 5 we present the result of this manipulation, with m̂b evaluated at the scale

Q = mh. The input parameters and the meaning of the different lines are the same as

for the plot in the left panel. The proximity between the dashed and solid lines shows

that the contribution of the two-loop diagrams involving sbottoms is rather small in this

renormalization scheme, at least for our choice of input parameters. However, Kh still

shows a sizable increase at large tan β. This is due to the fact that the shift in eq. (4.11)

brings back a large logarithm, ln(m2
b/m

2
h), in the contribution of the two-loop diagrams

with bottom and gluon (this logarithm compensates the scale dependence of the running

mass m̂b).

To conclude this section, we show in figure 6 the factor KH for the production of the

heavy CP-even Higgs boson, in the range 2 < tan β < 50. The definition of KH can be

obtained from the one of Kh in eq. (5.1) via the replacements sin α → − cos α, cos α →
sin α. The input parameters are chosen exactly as in figures 4 and 5, and the meaning of the

lines in the left and right panels is the same as in figure 5. Since in this example the mass of

the heavy Higgs boson is of the order of 150 GeV (see figure 4), i.e. well below any threshold

for heavy-particle production, we expect the approximation of vanishing Higgs mass to

hold reasonably well even for H. From figure 6 it appears that the balance of the various

contributions to KH in the two different renormalization schemes is qualitatively similar

to the one for Kh shown in figure 5: in the OS scheme the factor KH receives a sizable

contribution from the sbottom diagrams, largely dominated by the terms enhanced by

mg̃/mb in the diagrams controlled by the Higgs-bottom coupling; in the “mixed” scheme, on
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the other hand, the sbottom contribution is rather small, but there is a sizable contribution

from the diagrams with bottom and gluon.

This said, the factor KH shows a peculiar dependence on tan β: for sufficiently large

values of tan β, it grows linearly in the OS scheme, while it reaches a plateau in the mixed

scheme. This can be easily understood by recalling that, for moderate-to-large tan β and

for our choice of mA, the Yukawa coupling of the heavy MSSM Higgs to bottom quarks is

enhanced by tan β with respect to the SM value, while the coupling to top quarks is sup-

pressed by tan β. Consequently, both the one-loop and the two-loop form factors in KH are

dominated by the contribution of the diagrams controlled by the Higgs-bottom coupling,

with the result that the coupling itself cancels out in the ratio. However, the dominant

contribution from the bottom-sbottom-gluino diagrams in the OS scheme contains an ad-

ditional tan β-enhancement hidden in the product s2θb
mg̃/mb (see the discussion at the

end of section 4.1), which explains the linear rise of KH . On the other hand, the domi-

nant contribution of the bottom-gluon diagrams in the mixed scheme possesses no further

tan β-enhancement, which explains the plateau.

6 Conclusions and discussion

In this paper we presented analytic results for the NLO bottom-sbottom-gluino contribu-

tion to the cross section for Higgs boson production in gluon fusion, obtained using an

asymptotic expansion in the large supersymmetric masses. This approximation is fully

valid for the light-Higgs case, while for the heavy Higgs it covers the mass region where

mH is below all the heavy-particle thresholds. Together with the previously known results

for the NLO corrections in the MSSM, our expressions can be easily implemented in com-

puter codes that aim to provide an accurate and efficient evaluation of the cross section

for Higgs boson production in the MSSM.

In our analysis we paid special attention to the consistency between the calculations

of the masses and the production cross sections of the MSSM Higgs bosons, i.e. to the

fact that the same input parameters, defined at the one-loop level, should be used in both

calculations. The OS definition of the parameters of the bottom sector is delicate, as dis-

cussed for the case of the Higgs masses in ref. [51]. The choice of treating the top and the

bottom sectors on the same footing suffers from the fact that large two-loop corrections

proportional to tan2 β are generated in the contributions controlled by the Higgs-sbottom

couplings, affecting both the calculation of the Higgs masses and that of the production

cross sections. To avoid such large two-loop effects, a convenient OS renormalization pre-

scription was proposed in ref. [51] for the calculation of the Higgs masses. In the present

paper we have extended that prescription to cover also the calculation of the production

cross sections.

Our analysis of the NLO bottom contribution to the gluon-fusion production cross

section shows that, with our choice of OS renormalization conditions, the bulk of the

corrections comes from the two-loop diagrams involving the Higgs-bottom Yukawa coupling,

while the diagrams controlled by the Higgs-sbottom coupling play a secondary role. The

contribution controlled by the Higgs-bottom Yukawa coupling can be further divided in two
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parts: diagrams with only bottom and gluons and diagrams involving bottom, sbottom

and gluino. By far, the most important pieces of the latter diagrams are the terms of

O(mbmg̃/m
2
h,H), i.e. the ones in which the helicity flip on the fermion line is achieved via

a gluino mass insertion instead of a bottom mass insertion.

It is natural to wonder if it is possible to absorb most of the NLO bottom contribution

into the LO term with a suitable choice of the input parameters. In such a situation the

factor Kh,H , as defined in eq. (5.1), would be basically sensitive to the top/stop contribution

only. The contribution of the two-loop bottom-gluon diagrams can be made small if the

one-loop bottom diagrams are expressed in terms of the pole bottom mass Mb, but in

this case the O(mbmg̃/m
2
h,H) terms give a sizable contribution. On the other hand, if

the Higgs-bottom Yukawa coupling in the one-loop result is expressed in terms of the

running bottom mass m̂b, and the bottom mass in terms of Mb, the O(mbmg̃/m
2
h,H) terms

in the two-loop contribution cancel out, but the bottom-gluon diagrams give a relevant

contribution because of the presence of large logarithms of the ratio between mb and the

renormalization scale. However, the explicit knowledge of the NLO bottom contribution

allows us to devise a simple recipe to absorb the bulk of the NLO contribution into the

LO term. It amounts to writing the LO bottom contribution entirely in terms of the pole

bottom mass Mb, then rescaling it by a factor 1/(1 + ǫb tan β). Once this manipulation

is implemented, we expect the remaining NLO bottom/sbottom contributions to be quite

small — at least in large regions of the parameter space — in which case they can be

neglected in the evaluation of the form factors H2ℓ
1,2 without introducing large errors.4 We

stress that the validity of this simple recipe is strictly linked to the absence of spuriously

large corrections to the Higgs-sbottom coupling. This is realized with our choice of OS

renormalization conditions for the sbottom sector (and also in the DR scheme) but it is

not guaranteed with other renormalization conditions.

Finally, the results derived in this paper for the production cross section can be

straightforwardly applied to the NLO computation of the gluonic and photonic decay

widths of the CP-even Higgs boson in the MSSM, as described in section 5 of ref. [32].
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A NLO contributions from real parton emission

In this appendix we specialize to the MSSM case the general exact results of ref. [38] for

the functions Rgg, Rqq̄, Rqg. We aim at expressions that, on one hand, are sufficiently

accurate, while on the other hand allow for a fast numerical evaluation. Thus we report

expressions in which the contributions of the top quark and of the squarks are evaluated in

4A somewhat similar procedure was suggested, without a detailed discussion, in ref. [69].
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the limit of neglecting the Higgs mass, while the contribution of the bottom quark is kept

exact.

The function Rgg can be written as

Rgg =
1

z(1 − z)

∫ 1

0

dv

v(1 − v)

{
8 z4

∣∣Agg(ŝ, t̂, û)
∣∣2

∣∣− sin αH1ℓ
1 + cos αH1ℓ

2

∣∣2 − (1 − z + z2)2

}
, (A.1)

where t̂ = −ŝ(1 − z)(1 − v), û = −ŝ(1 − z)v, with

|Agg(s, t, u)|2 = |A2(s, t, u)|2 + |A2(u, s, t)|2 + |A2(t, u, s)|2 + |A4(s, t, u)|2. (A.2)

Furthermore, the functions A2 and A4 can be cast in the following form:

A2(s, t, u) = − sinαRA2

1 (s, t, u) + cos αRA2

2 (s, t, u) , (A.3)

A4(s, t, u) = − sinαRA4

1 (s, t, u) + cos αRA4

2 (s, t, u) , (A.4)

with

RA2

1 (s, t, u) =
s2

4 (s + t + u)2
H1ℓ

1

+ λb

{
τ2
b

16

[
b1/2

(
s

m2
b

,
t

m2
b

,
u

m2
b

)
+ b1/2

(
s

m2
b

,
u

m2
b

,
t

m2
b

)]
− s2

4 (s + t + u)2
G1ℓ

1/2(τb)

}
,

(A.5)

RA2

2 (s, t, u) =
s2

4 (s + t + u)2
H1ℓ

2 , (A.6)

RA4

1 (s, t, u) =
1

4
H1ℓ

1

+ λb

{
τ2
b

16

[
c1/2

(
s

m2
b

,
t

m2
b

,
u

m2
b

)
+ c1/2

(
t

m2
b

,
u

m2
b

,
s

m2
b

)
+ c1/2

(
u

m2
b

,
s

m2
b

,
t

m2
b

)]

− 1

4
G1ℓ

1/2(τb)

}
, (A.7)

RA4

2 (s, t, u) =
1

4
H1ℓ

2 , (A.8)

where the functions b1/2(s, t, u) and c1/2(s, t, u) are defined in eqs. (2.22) and (2.24) of

ref. [38], respectively, and it is understood that the top and squark contributions to H1ℓ
1,2 are

evaluated in the limit of neglecting the Higgs mass. In several cases the terms proportional

to λb in eqs. (A.5) and (A.7) are numerically very small and can be neglected. In such

a situation the integration in eq. (A.1) can be performed analytically, resulting in Rgg =

−11(1 − z)3/(6z).

The qq̄ → Hg annihilation channel can be written as

Rqq̄ =
128

27

z (1 − z)
∣∣Aqq̄(ŝ, t̂, û)

∣∣2
∣∣− sinαH1ℓ

1 + cos αH1ℓ
2

∣∣2 , (A.9)

with

Aqq̄(s, t, u) = − sin αRAqq̄

1 (s, t, u) + cos αRAqq̄

2 (s, t, u) . (A.10)
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where

RAqq̄

1 (s, t, u) =− t + u

2 (s + t + u)
H1ℓ

1 + λb

[
τb

4
d1/2

(
s

m2
b

,
t

m2
b

,
u

m2
b

)
+

t + u

2 (s + t + u)
G1ℓ

1/2(τb)

]
,

(A.11)

RAqq̄

2 (s, t, u) =− t + u

2 (s + t + u)
H1ℓ

2 . (A.12)

The function d1/2(s, t, u) is defined in eq. (2.31) of ref. [38].

Finally, we consider the quark-gluon scattering channel, qg → qH. The relevant

function Rqg can be written as

Rqg=CF

∫ 1

0

dv

(1 − v)

{
1 + (1 − z)2v2

[1 − (1 − z)v]2
2 z
∣∣Aqg(ŝ, t̂, û)

∣∣2
∣∣− sin αH1ℓ

1 + cos αH1ℓ
2

∣∣2 − 1 + (1−z)2

2z

}
+

1

2
CF z,

(A.13)

where

Aqg(ŝ, t̂, û) = Aqq̄(t̂, ŝ, û) . (A.14)

As in the case of Rgg, when the terms proportional to λb in eq. (A.11) can be neglected

the integration in eq. (A.13) can be performed analytically, giving Rqg = 2z/3− (1− z)2/z

and Rqq̄ = 32(1 − z)3/(27z).

B Renormalization scheme shifts in the sbottom sector

In this appendix we present explicit expressions for the shifts from the DR to the OS scheme

of the parameters in the sbottom sector that require a one-loop definition. Denoting,

generically, a quantity in the DR scheme as xDR, and the same quantity in the OS scheme

as xOS, we can write the one-loop relation as xDR = xOS + δx. Retaining only terms that

do not induce contributions suppressed by m2
b/M

2, we find:

δm2
b̃1

m2
b̃1

=
αs CF

4π

{
3 ln

m2
b̃1

Q2
− 3 − c2

2θb

(
ln

m2
b̃1

Q2
− 1

)
− s2

2θb

m2
b̃2

m2
b̃1

(
ln

m2
b̃2

Q2
− 1

)

− 6
m2

g̃

m2
b̃1

− 2

(
1 − 2

m2
g̃

m2
b̃1

)
ln

m2
g̃

Q2
− 2

(
1 −

m2
g̃

m2
b̃1

)2

ln

∣∣∣∣∣1 −
m2

b̃1

m2
g̃

∣∣∣∣∣



 , (B.1)

δs2θb

s2θb

=
αs CF

4π

{
−2 c2

2θb
+

2 c2
2θb

m2
b̃1
− m2

b̃2

(
m2

b̃1
ln

m2
b̃1

Q2
− m2

b̃2
ln

m2
b̃2

Q2

)}
, (B.2)

δhb

hb
=

αs CF

4π



−4 + 2 ln

m2
g̃

Q2
(B.3)

+




2m2
b̃1

m2
b̃1
− m2

b̃2


2 ln

m2
b̃1

m2
g̃

−
(

1 −
m2

g̃

m2
b̃1

)2

ln

∣∣∣∣∣1 −
m2

b̃1

m2
g̃

∣∣∣∣∣


+ (1 ↔ 2)






 ,
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δAb =
αs CF

2π
mg̃

{
4 − 2 ln

m2
g̃

Q2
−
[(

1 −
m2

g̃

m2
b̃1

)
ln

∣∣∣∣∣1 −
m2

b̃1

m2
g̃

∣∣∣∣∣+ (1 ↔ 2)

]}
, (B.4)

where the notation (1 ↔ 2) in eqs. (B.3) and (B.4) means a term that is obtained from

the previous ones inside the square bracket with the exchange m2
b̃1

↔ m2
b̃2

. The shift

δm2
b̃2

is obtained from eq. (B.1) via the interchange m2
b̃1

↔ m2
b̃2

. Finally we note that the

expressions for δhb and δAb in eq. (B.3) and eq. (B.4), respectively, which are valid for

generic values of tan β, coincide with the corresponding expressions in ref. [51], which were

derived in the limit tan β → ∞.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution Noncommercial License which permits any noncommercial use, distribution,

and reproduction in any medium, provided the original author(s) and source are credited.

References

[1] H.M. Georgi, S.L. Glashow, M.E. Machacek and D.V. Nanopoulos, Higgs Bosons from Two

Gluon Annihilation in Proton Proton Collisions, Phys. Rev. Lett. 40 (1978) 692 [SPIRES].

[2] S. Dawson, Radiative corrections to Higgs boson production, Nucl. Phys. B 359 (1991) 283

[SPIRES].

[3] A. Djouadi, M. Spira and P.M. Zerwas, Production of Higgs bosons in proton colliders: QCD

corrections, Phys. Lett. B 264 (1991) 440 [SPIRES].

[4] M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC,

Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [SPIRES].

[5] R. Harlander and P. Kant, Higgs production and decay: Analytic results at next-to-leading

order QCD, JHEP 12 (2005) 015 [hep-ph/0509189] [SPIRES].

[6] R.V. Harlander, Virtual corrections to g g → H to two loops in the heavy top limit,

Phys. Lett. B 492 (2000) 74 [hep-ph/0007289] [SPIRES].

[7] S. Catani, D. de Florian and M. Grazzini, Higgs production in hadron collisions: Soft and

virtual QCD corrections at NNLO, JHEP 05 (2001) 025 [hep-ph/0102227] [SPIRES].

[8] R.V. Harlander and W.B. Kilgore, Soft and virtual corrections to p p → H + X at NNLO,

Phys. Rev. D 64 (2001) 013015 [hep-ph/0102241] [SPIRES].

[9] R.V. Harlander and W.B. Kilgore, Next-to-next-to-leading order Higgs production at hadron

colliders, Phys. Rev. Lett. 88 (2002) 201801 [hep-ph/0201206] [SPIRES].

[10] C. Anastasiou and K. Melnikov, Higgs boson production at hadron colliders in NNLO QCD,

Nucl. Phys. B 646 (2002) 220 [hep-ph/0207004] [SPIRES].

[11] V. Ravindran, J. Smith and W.L. van Neerven, NNLO corrections to the total cross section

for Higgs boson production in hadron hadron collisions, Nucl. Phys. B 665 (2003) 325

[hep-ph/0302135] [SPIRES].

[12] S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Higgs production via gluon-gluon

fusion with finite top mass beyond next-to-leading order, Nucl. Phys. B 800 (2008) 127

[arXiv:0801.2544] [SPIRES].

– 23 –

http://dx.doi.org/10.1103/PhysRevLett.40.692
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,40,692
http://dx.doi.org/10.1016/0550-3213(91)90061-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B359,283
http://dx.doi.org/10.1016/0370-2693(91)90375-Z
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B264,440
http://dx.doi.org/10.1016/0550-3213(95)00379-7
http://arxiv.org/abs/hep-ph/9504378
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9504378
http://dx.doi.org/10.1088/1126-6708/2005/12/015
http://arxiv.org/abs/hep-ph/0509189
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0509189
http://dx.doi.org/10.1016/S0370-2693(00)01042-X
http://arxiv.org/abs/hep-ph/0007289
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0007289
http://dx.doi.org/10.1088/1126-6708/2001/05/025
http://arxiv.org/abs/hep-ph/0102227
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0102227
http://dx.doi.org/10.1103/PhysRevD.64.013015
http://arxiv.org/abs/hep-ph/0102241
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0102241
http://dx.doi.org/10.1103/PhysRevLett.88.201801
http://arxiv.org/abs/hep-ph/0201206
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0201206
http://dx.doi.org/10.1016/S0550-3213(02)00837-4
http://arxiv.org/abs/hep-ph/0207004
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0207004
http://dx.doi.org/10.1016/S0550-3213(03)00457-7
http://arxiv.org/abs/hep-ph/0302135
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0302135
http://dx.doi.org/10.1016/j.nuclphysb.2008.03.016
http://arxiv.org/abs/0801.2544
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.2544


J
H
E
P
1
1
(
2
0
1
0
)
0
4
4

[13] S. Marzani, R.D. Ball, V. Del Duca, S. Forte and A. Vicini, Finite-top-mass effects in NNLO

Higgs production, Nucl. Phys. Proc. Suppl. 186 (2009) 98 [arXiv:0809.4934] [SPIRES].

[14] R.V. Harlander and K.J. Ozeren, Top mass effects in Higgs production at

next-to-next-to-leading order QCD: virtual corrections, Phys. Lett. B 679 (2009) 467

[arXiv:0907.2997] [SPIRES].

[15] R.V. Harlander and K.J. Ozeren, Finite top mass effects for hadronic Higgs production at

next-to-next-to-leading order, JHEP 11 (2009) 088 [arXiv:0909.3420] [SPIRES].

[16] A. Pak, M. Rogal and M. Steinhauser, Virtual three-loop corrections to Higgs boson

production in gluon fusion for finite top quark mass, Phys. Lett. B 679 (2009) 473

[arXiv:0907.2998] [SPIRES].

[17] A. Pak, M. Rogal and M. Steinhauser, Finite top quark mass effects in NNLO Higgs boson

production at LHC, JHEP 02 (2010) 025 [arXiv:0911.4662] [SPIRES].

[18] R.V. Harlander, H. Mantler, S. Marzani and K.J. Ozeren, Higgs production in gluon fusion

at next-to-next-to-leading order QCD for finite top mass, Eur. Phys. J. C 66 (2010) 359

[arXiv:0912.2104] [SPIRES].

[19] S. Catani, D. de Florian, M. Grazzini and P. Nason, Soft-gluon resummation for Higgs boson

production at hadron colliders, JHEP 07 (2003) 028 [hep-ph/0306211] [SPIRES].

[20] S. Moch and A. Vogt, Higher-order soft corrections to lepton pair and Higgs boson

production, Phys. Lett. B 631 (2005) 48 [hep-ph/0508265] [SPIRES].

[21] V. Ravindran, Higher-order threshold effects to inclusive processes in QCD,

Nucl. Phys. B 752 (2006) 173 [hep-ph/0603041] [SPIRES].

[22] A. Djouadi and P. Gambino, Leading electroweak correction to Higgs boson production at

proton colliders, Phys. Rev. Lett. 73 (1994) 2528 [hep-ph/9406432] [SPIRES].

[23] A. Djouadi, P. Gambino and B.A. Kniehl, Two loop electroweak heavy fermion corrections to

Higgs boson production and decay, Nucl. Phys. B 523 (1998) 17 [hep-ph/9712330] [SPIRES].

[24] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Two-loop light fermion contribution to

Higgs production and decays, Phys. Lett. B 595 (2004) 432 [hep-ph/0404071] [SPIRES].

[25] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Master integrals for the two-loop light

fermion contributions to g g → H and H → gamma gamma, Phys. Lett. B 600 (2004) 57

[hep-ph/0407162] [SPIRES].

[26] G. Degrassi and F. Maltoni, Two-loop electroweak corrections to Higgs production at hadron

colliders, Phys. Lett. B 600 (2004) 255 [hep-ph/0407249] [SPIRES].

[27] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NLO Electroweak Corrections to Higgs

Boson Production at Hadron Colliders, Phys. Lett. B 670 (2008) 12 [arXiv:0809.1301]

[SPIRES].

[28] S. Actis, G. Passarino, C. Sturm and S. Uccirati, NNLO Computational Techniques: the

Cases H → γγ and H → gg, Nucl. Phys. B 811 (2009) 182 [arXiv:0809.3667] [SPIRES].

[29] S. Dawson, A. Djouadi and M. Spira, QCD corrections to SUSY Higgs production: The Role

of squark loops, Phys. Rev. Lett. 77 (1996) 16 [hep-ph/9603423] [SPIRES].

[30] R.V. Harlander and M. Steinhauser, Hadronic Higgs Production and Decay in Supersymmetry

at Next-to-Leading Order, Phys. Lett. B 574 (2003) 258 [hep-ph/0307346] [SPIRES].

– 24 –

http://dx.doi.org/10.1016/j.nuclphysBPS.2008.12.019
http://arxiv.org/abs/0809.4934
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.4934
http://dx.doi.org/10.1016/j.physletb.2009.08.012
http://arxiv.org/abs/0907.2997
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2997
http://dx.doi.org/10.1088/1126-6708/2009/11/088
http://arxiv.org/abs/0909.3420
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0909.3420
http://dx.doi.org/10.1016/j.physletb.2009.08.016
http://arxiv.org/abs/0907.2998
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0907.2998
http://dx.doi.org/10.1007/JHEP02(2010)025
http://arxiv.org/abs/0911.4662
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0911.4662
http://dx.doi.org/10.1140/epjc/s10052-010-1258-x
http://arxiv.org/abs/0912.2104
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.2104
http://dx.doi.org/10.1088/1126-6708/2003/07/028
http://arxiv.org/abs/hep-ph/0306211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0306211
http://dx.doi.org/10.1016/j.physletb.2005.09.061
http://arxiv.org/abs/hep-ph/0508265
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0508265
http://dx.doi.org/10.1016/j.nuclphysb.2006.06.025
http://arxiv.org/abs/hep-ph/0603041
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0603041
http://dx.doi.org/10.1103/PhysRevLett.73.2528
http://arxiv.org/abs/hep-ph/9406432
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9406432
http://dx.doi.org/10.1016/S0550-3213(98)00147-3
http://arxiv.org/abs/hep-ph/9712330
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9712330
http://dx.doi.org/10.1016/j.physletb.2004.06.063
http://arxiv.org/abs/hep-ph/0404071
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0404071
http://dx.doi.org/10.1016/j.physletb.2004.09.001
http://arxiv.org/abs/hep-ph/0407162
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0407162
http://dx.doi.org/10.1016/j.physletb.2004.09.008
http://arxiv.org/abs/hep-ph/0407249
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0407249
http://dx.doi.org/10.1016/j.physletb.2008.10.018
http://arxiv.org/abs/0809.1301
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.1301
http://dx.doi.org/10.1016/j.nuclphysb.2008.11.024
http://arxiv.org/abs/0809.3667
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0809.3667
http://dx.doi.org/10.1103/PhysRevLett.77.16
http://arxiv.org/abs/hep-ph/9603423
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9603423
http://dx.doi.org/10.1016/j.physletb.2003.09.013
http://arxiv.org/abs/hep-ph/0307346
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0307346


J
H
E
P
1
1
(
2
0
1
0
)
0
4
4

[31] R.V. Harlander and M. Steinhauser, Supersymmetric Higgs production in gluon fusion at

next-to-leading order, JHEP 09 (2004) 066 [hep-ph/0409010] [SPIRES].

[32] G. Degrassi and P. Slavich, On the NLO QCD corrections to Higgs production and decay in

the MSSM, Nucl. Phys. B 805 (2008) 267 [arXiv:0806.1495] [SPIRES].

[33] C. Anastasiou, S. Beerli, S. Bucherer, A. Daleo and Z. Kunszt, Two-loop amplitudes and

master integrals for the production of a Higgs boson via a massive quark and a scalar-quark

loop, JHEP 01 (2007) 082 [hep-ph/0611236] [SPIRES].

[34] U. Aglietti, R. Bonciani, G. Degrassi and A. Vicini, Analytic results for virtual QCD

corrections to Higgs production and decay, JHEP 01 (2007) 021 [hep-ph/0611266] [SPIRES].

[35] M. Muhlleitner and M. Spira, Higgs boson production via gluon fusion: Squark loops at NLO

QCD, Nucl. Phys. B 790 (2008) 1 [hep-ph/0612254] [SPIRES].

[36] C. Anastasiou, S. Beerli and A. Daleo, The two-loop QCD amplitude gg -¿ h,H in the

Minimal Supersymmetric Standard Model, Phys. Rev. Lett. 100 (2008) 241806

[arXiv:0803.3065] [SPIRES].

[37] M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the

LHC, Nucl. Phys. B 511 (1998) 523 [hep-ph/9611272] [SPIRES].

[38] R. Bonciani, G. Degrassi and A. Vicini, Scalar Particle Contribution to Higgs Production via

Gluon Fusion at NLO, JHEP 11 (2007) 095 [arXiv:0709.4227] [SPIRES].

[39] R.K. Ellis, I. Hinchliffe, M. Soldate and J.J. van der Bij, Higgs Decay to tau+ tau-: A

Possible Signature of Intermediate Mass Higgs Bosons at the SSC,

Nucl. Phys. B 297 (1988) 221 [SPIRES].

[40] U. Baur and E.W.N. Glover, Higgs Boson Production at Large Transverse Momentum in

Hadronic Collisions, Nucl. Phys. B 339 (1990) 38 [SPIRES].

[41] T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3,

Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [SPIRES].

[42] T. Hahn and C. Schappacher, The implementation of the minimal supersymmetric standard

model in FeynArts and FormCalc, Comput. Phys. Commun. 143 (2002) 54

[hep-ph/0105349] [SPIRES].

[43] A.I. Davydychev and J.B. Tausk, Two loop selfenergy diagrams with different masses and the

momentum expansion, Nucl. Phys. B 397 (1993) 123 [SPIRES].

[44] V.A. Smirnov, Applied asymptotic expansions in momenta and masses, Springer Tracts Mod.

Phys. 177 (2002) 1.

[45] V.A. Smirnov and E.R. Rakhmetov, The regional strategy in the asymptotic expansion of

two-loop vertex Feynman diagrams, Theor. Math. Phys. 120 (1999) 870 [Teor. Mat. Fiz. 120

(1999) 64] [hep-ph/9812529] [SPIRES].

[46] D. Binosi and L. Theussl, JaxoDraw: A graphical user interface for drawing Feynman

diagrams, Comput. Phys. Commun. 161 (2004) 76 [hep-ph/0309015] [SPIRES].

[47] G. Passarino and M.J.G. Veltman, One Loop Corrections for e+e− Annihilation Into µ+µ−

in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [SPIRES].

[48] B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra,

Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [SPIRES].

– 25 –

http://dx.doi.org/10.1088/1126-6708/2004/09/066
http://arxiv.org/abs/hep-ph/0409010
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0409010
http://dx.doi.org/10.1016/j.nuclphysb.2008.07.022
http://arxiv.org/abs/0806.1495
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0806.1495
http://dx.doi.org/10.1088/1126-6708/2007/01/082
http://arxiv.org/abs/hep-ph/0611236
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611236
http://dx.doi.org/10.1088/1126-6708/2007/01/021
http://arxiv.org/abs/hep-ph/0611266
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0611266
http://dx.doi.org/10.1016/j.nuclphysb.2007.08.011
http://arxiv.org/abs/hep-ph/0612254
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0612254
http://dx.doi.org/10.1103/PhysRevLett.100.241806
http://arxiv.org/abs/0803.3065
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0803.3065
http://dx.doi.org/10.1016/S0550-3213(97)00679-2
http://arxiv.org/abs/hep-ph/9611272
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9611272
http://dx.doi.org/10.1088/1126-6708/2007/11/095
http://arxiv.org/abs/0709.4227
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0709.4227
http://dx.doi.org/10.1016/0550-3213(88)90019-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B297,221
http://dx.doi.org/10.1016/0550-3213(90)90532-I
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B339,38
http://dx.doi.org/10.1016/S0010-4655(01)00290-9
http://arxiv.org/abs/hep-ph/0012260
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0012260
http://dx.doi.org/10.1016/S0010-4655(01)00436-2
http://arxiv.org/abs/hep-ph/0105349
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0105349
http://dx.doi.org/10.1016/0550-3213(93)90338-P
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B397,123
http://dx.doi.org/10.1007/BF02557396
http://arxiv.org/abs/hep-ph/9812529
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/9812529
http://dx.doi.org/10.1016/j.cpc.2004.05.001
http://arxiv.org/abs/hep-ph/0309015
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0309015
http://dx.doi.org/10.1016/0550-3213(79)90234-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B160,151
http://dx.doi.org/10.1016/S0010-4655(01)00460-X
http://arxiv.org/abs/hep-ph/0104145
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0104145


J
H
E
P
1
1
(
2
0
1
0
)
0
4
4

[49] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric

and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426

[hep-ph/0211331] [SPIRES].

[50] W. Porod, SPheno, a program for calculating supersymmetric spectra, SUSY particle decays

and SUSY particle production at e+e− colliders, Comput. Phys. Commun. 153 (2003) 275

[hep-ph/0301101] [SPIRES].

[51] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two-loop sbottom corrections to

the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79

[hep-ph/0206101] [SPIRES].

[52] S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: a program for the calculation of the

masses of the neutral CP-even Higgs bosons in the MSSM,

Comput. Phys. Commun. 124 (2000) 76 [hep-ph/9812320] [SPIRES].

[53] L.J. Hall, R. Rattazzi and U. Sarid, The Top quark mass in supersymmetric SO(10)

unification, Phys. Rev. D 50 (1994) 7048 [hep-ph/9306309] [SPIRES].

[54] M.S. Carena, D. Garcia, U. Nierste and C.E.M. Wagner, Effective Lagrangian for the t̄bH+

interaction in the MSSM and charged Higgs phenomenology, Nucl. Phys. B 577 (2000) 88

[hep-ph/9912516] [SPIRES].

[55] A. Bartl et al., QCD corrections to Higgs boson decays into squarks in the minimal

supersymmetric standard model, Phys. Lett. B 402 (1997) 303 [hep-ph/9701398] [SPIRES].

[56] H. Eberl, K. Hidaka, S. Kraml, W. Majerotto and Y. Yamada, Improved SUSY QCD

corrections to Higgs boson decays into quarks and squarks, Phys. Rev. D 62 (2000) 055006

[hep-ph/9912463] [SPIRES].

[57] S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the

MSSM Higgs sector at O(αbαs), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114] [SPIRES].

[58] S. Heinemeyer, H. Rzehak and C. Schappacher, Proposals for Bottom Quark/Squark

Renormalization in the Complex MSSM, Phys. Rev. D 82 (2010) 075010 [arXiv:1007.0689]

[SPIRES].

[59] A. Pilaftsis, Resonant CP-violation induced by particle mixing in transition amplitudes,

Nucl. Phys. B 504 (1997) 61 [hep-ph/9702393] [SPIRES].
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