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Abstract: We present a simple systematic method to study candidate counterterms in

N = 8 supergravity. Complicated details of the counterterm operators are avoided because

we work with the on-shell matrix elements they produce. All n-point matrix elements of an

independent SUSY invariant operator of the form D2kRn + . . . must be local and satisfy

SUSY Ward identities. These are strong constraints, and we test directly whether or

not matrix elements with these properties can be constructed. If not, then the operator

does not have a supersymmetrization, and it is excluded as a potential counterterm. For

n > 4, we find that Rn, D2Rn, D4Rn, and D6Rn are excluded as counterterms of MHV

amplitudes, while only Rn and D2Rn are excluded at the NMHV level. As a consequence,

for loop order L < 7, there are no independent D2kRn counterterms with n > 4. If an

operator is not ruled out, our method constructs an explicit superamplitude for its matrix

elements. This is done for the 7-loop D4R6 operator at the NMHV level and in other cases.

We also initiate the study of counterterms without leading pure-graviton matrix elements,

which can occur beyond the MHV level. The landscape of excluded/allowed candidate

counterterms is summarized in a colorful chart.
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1 Introduction and summary of results

At which loop order does the first UV divergence occur in N = 8 supergravity in four di-

mensions? Could the theory possibly be perturbatively finite? These old enticing questions

have recently received renewed attention. Impressive calculations in field theory [1–4] —

with unexpected cancellations [1–9] even for dimensions D > 4 — have explicitly demon-

strated that four-point 3- and 4-loop amplitudes are finite. In addition both superspace
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formulations [10–17] and string theory methods [18–23] have been explored to rule out some

operators as potential counterterms and identify others as the likely first divergence. An

important goal of such studies is the classification of operators that are viable candidate

counterterms of N = 8 supergravity.

The purpose of this paper is to introduce a simple systematic method to study the

supersymmetrization of local operators as a test of whether they can be candidate countert-

erms in N = 8 supergravity. Consider the operator D2kRn, which denotes an unspecified

Lorentz invariant contraction of 2k covariant derivatives and n Riemann tensors. To be

a candidate counterterm, it must have an N = 8 supersymmetrization, which we denote

schematically by “D2kRn + . . .”. This could appear at loop level L = n + k − 1. Rather

than examine the operator directly, we study the n-point on-shell matrix elements it would

generate. SUSY requires that these on-shell matrix elements satisfy SUSY Ward identities.

Furthermore, locality implies that they have no poles in any momentum channels. If the

combined constraints of locality and SUSY cannot be satisfied for any matrix elements of

the putative term D2kRn + . . ., then such a supersymmetrization does not exist. In that

case we can rule out D2kRn + . . . as a candidate counterterm. On the other hand, in cases

where SUSY Ward identities and locality are compatible, our method constructs the matrix

elements explicitly. The SUSY Ward identities test supersymmetry at the linearized level,

and the matrix elements correspond to a linearized supersymmetrization of the operator.

The index contractions of an operator D2kRn + . . . can be organized according to the

NKMHV classification of its n-point matrix elements. This is possible because on-shell the

Riemann tensor Rµνρσ splits into a totally symmetric 4th rank spinor Rαβγδ and its conju-

gate R̄
α̇β̇γ̇δ̇

, which communicate to gravitons of opposite helicity. Terms in D2kRn with 2

factors of R and (n−2) factors of R̄ contribute to the MHV graviton matrix element while

R3 R̄n−3 is the NMHV part and so on. This separation persists in the SUSY completion,

because amplitudes in each NKMHV sector satisfy Ward identities independently.

We examine the MHV and NMHV matrix elements of each operator separately, but

never need to concern ourselves with its specific index contractions. Indeed the only input

needed is the mass dimension (for D2kRn + . . . it is 2(k+n)). This information is combined

with little group scaling requirements [24] to study the possible local n-particle matrix ele-

ments that the operator generates. This allows us to construct the most general expressions

for the local “basis matrix elements” needed to determine the MHV and NMHV generat-

ing functions (also called ‘superamplitudes’). At the NMHV level we use the manifestly

supersymmetric “basis expansion” for superamplitudes derived in [25]. Individual matrix

elements (projected out from these superamplitudes by Grassmann differentiation) are lin-

ear combinations of the basis matrix elements, and they automatically satisfy the SUSY

Ward identities. However, the input of local basis matrix elements is not necessarily suffi-

cient to make all matrix elements local. We utilize a complex shift to identify cases where

locality fails. The failure of locality means that supersymmetrization of the operator is

ruled out. When locality succeeds, the method produces the explicit permutation symmet-

ric superamplitude that generates the matrix elements of the linear supersymmetrization

of the operator.

At the MHV level, the method allows us to rule out the existence of independent
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Figure 1. Results for candidate counterterms in N = 8 supergravity, organized by loop order

L and n-point level of their leading matrix elements. The color indicates whether a linearized

supersymmetrization of the D2kRn operator under consideration exists (green), is excluded (red),

or is unknown (gray). Beyond the MHV level, there could be SUSY operators without a leading

pure-graviton contribution. These could also “live” above the Rn diagonal in this diagram. In

section 6, we rule out such operators at the NMHV level above the D4Rn line.

supersymmetric completions of all operators of the form Rn, D2Rn, D4Rn, and D6Rn, for

any n ≥ 5. On the other hand, linearized supersymmetrizations of D8Rn MHV operators

exist for all n ≥ 4, as we show through an explicit construction. At the NMHV level,

we rule out supersymmetrizations of all Rn and D2Rn operators. However, we do not

rule out D4Rn operators at NMHV level. In fact, we explicitly construct an NMHV

superamplitude satisfying all requirements for a linearized supersymmetric completion of

D4R6. An overview of our results is provided in figure 1. We discuss these results further

in section 7.

In the remainder of this section we outline the consequences for candidate countert-

erms. Counterterms for the possible UV divergences of N = 8 supergravity must be local,

supersymmetric operators with SU(8)R symmetry.1 Our method tests whether operators

can have a linearized supersymmetrization: if an operator fails the test, it can be excluded

as a candidate counterterm for the first divergence in N = 8 supergravity. On the other

1It was shown in [26, 27] that the SU(8) R-symmetry is non-anomalous.
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hand, if an operator passes the tests we cannot state whether it actually appears in the

perturbation expansion. Further information — perhaps from explicit loop calculations or

additional symmetries such as E7,7(R) — will be required to decide this question.

Previously most analyses have focused on potential divergences in 4-particle amplitudes

(see, however, [13]). With our new approach we address two types of questions:

1. Suppose it is shown that the 4-point L-loop amplitude is UV finite. Does this suffice

to rule out UV divergences in all L-loop amplitudes? In gravity, the naive power

counting of higher-point amplitudes is the same as for the 4-point amplitudes, since

every bosonic vertex in the classical action is quadratic in momenta. Hence it requires

a separate analysis to establish finiteness for all n-point amplitudes at a given loop

order. For example, at the 5-loop level, finiteness of the 4-point amplitude would

eliminate D4R4 as a counterterm. But without further information one cannot ex-

clude higher-point amplitudes whose divergences generate independent counterterms

such as D2R5 and R6. We provide such an analysis.

In sections 3 and 4, we show that for L-loop n-point amplitudes with n > 4 no

independent SUSY candidate counterterms exist for n > L − 3 at the MHV level2

and for n > L− 1 at the NMHV level.

2. Can there be independent SUSY candidate counterterms without a leading pure

graviton contribution? Clearly the operators listed in figure 1 all give rise to matrix

elements whose external states are all gravitons. So the question is whether there

could be other independent counterterms,for example “above the Rn diagonal” in

the chart. Such operators could not contribute at the MHV level, since all such

amplitudes are proportional to the pure-graviton amplitude. But beyond the MHV

level this is more subtle. We explain why and address this point in section 6. In

particular, we show that no SUSY operators “above the Rn diagonal” in figure 1

exist at the NMHV level. Beyond the NMHV level, such independent SUSY invariants

may exist, but we propose a lower bound on their mass dimension. If the conjectured

bound is true, operators “above the Rn diagonal” cannot appear at loop order L < 7.

It is a direct consequence of our results that no supersymmetrizations of D2kRn with

n > 4 exist for loop levels L < 7. If the conjectured bound on the mass dimension

of beyond-NMHV operators holds, then the only independent counterterms for L < 7 are

the supersymmetrizations of the 4-graviton operators D2kR4. Earlier work [13] pointed out

that no higher-point supersymmetric operators are constructible as subsuperspace integrals

in harmonic superspace.

At the 7-loop level, we rule out all MHV candidate counterterms, except D8R4. At the

NMHV level our analysis rules out D2R7 and R8. However, we find that an independent

linearized supersymmetrization of D4R6 exists. Thus it is a candidate counterterm for

a 7-loop divergence in 6-point NMHV amplitudes. It would be interesting to extend our

analysis beyond the MHV and NMHV levels. This would facilitate an analysis of the

2This bound was also noted in [28, 29].
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N2MHV matrix elements of the 7-loop R8 operator and test our conjecture that for L < 7

no SUSY operators exist above the diagonal in figure 1.

Note: The work presented here has some overlap with an approach by Kallosh and

Rube [28–30], but there are important differences in both the methods and results. For

example, motivated by a light-cone gauge approach, refs. [28–30] impose a certain locality

requirement on the superamplitude. We, more conservatively, only impose locality on the

matrix elements it produces. It is the latter property that is directly implied if a gauge

invariant local counterterm D2kRn + . . . exists.

2 A matrix element approach to counterterms

We discuss counterterms in section 2.1 before introducing the matrix element method in

section 2.2. We explain in section 2.3 how full permutation symmetry of the superamplitude

allows us to devise a simple test of locality.

2.1 Local counterterms

We begin by describing some facts about candidate counterterms in the perturbative ex-

pansion of N = 8 supergravity. Naive power counting indicates that loop amplitudes in

gravity are divergent. Calculations are generally done using dimensional regularization. In

this framework one is concerned with possible 1/ǫ poles in on-shell amplitudes. If such poles

occur they can be canceled by local counterterms constructed from the classical fields of

the theory. Since the gravitational coupling is dimensionful, the loop order determines the

mass dimension of the counterterm. For example, the dimension 2(n+ k) operator D2kRn

is a candidate counterterm for n-graviton amplitudes at loop order L = n + k − 1. The

graviton operator D2kRn can only appear as a counterterm3 if it can be supersymmetrized.

Our discussion of counterterms pertains directly to the lowest-point amplitude at the

lowest loop level L for which divergences actually occur in the perturbative S-matrix of

N = 8 supergravity. We emphasize this point because the nonlinear supersymmetric

completion of D2kRn may require terms that are higher order in the Riemann tensor, such

asD2k−2Rn+1, in addition to terms involving other fields of the N = 8 multiplet. A relevant

example is the N = 4 SYM operator D2F 4+F 5, which appears in the α′-expansion of open

string tree amplitudes [13]. The 4-point local matrix elements of this operator satisfy the

N = 4 SUSY Ward identities, but the individual local 5-point matrix elements of the F 5

contribution do not. This is consistent because the 5-point matrix elements of the complete

operator are actually not local. They contain contributions from pole diagrams involving

the 4-point vertex in D2F 4 and the 3-point vertex of the classical action in addition to the

5-point local terms from both D2F 4 and F 5. In N = 8 supergravity, it is possible that

the completion of a candidate counterterm D4R4 contains such dependent D2R5 and R6

3There appears to be very little information available about the specific component form of the su-

perspace counterterms discussed in the literature. The component expansions of R
4 and F

4 have been

constructed in [31] through quadratic order in fermions in 10 dimensions. Concerning R
4 in 4 dimensions,

see [32, 33], and in 11 dimensions [34].
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terms.4 The D2R5 and R6 terms ruled out by our methods are independent structures that

satisfy linearized N = 8 SUSY. Similarly, D10R4 may contain dependent D8R5, while the

admissible D8R5 listed in figure 1 is an independent linearized invariant. When we consider

the counterterm of the first divergence in the theory, this issue of lower-point operators

does not arise.

2.2 The method

In our approach we focus directly on general local n-point matrix elements of D2kRn + . . . ,

with arbitrary sets of particles of the N = 8 theory, namely mn(pi, hi), i = 1, . . . , n,

where pi and hi denote the 4-momentum and helicity of the ith particle. We use the

spinor-helicity formalism in which momenta and polarizations are encoded in spinors |i〉
and |i]. For n ≥ 4, local matrix elements mn are polynomials in angle and square brackets;

uncanceled brackets 〈ij〉 or [kl] cannot occur in the denominator of any matrix element.

Details of this argument are given in appendix A.

“Little group scaling” [24] requires

mn(. . . , ti|i〉, t−1
i |i], . . . ) = t−2hi

i mn(. . . , |i〉, |i], . . . ) (2.1)

for each particle i. This determines that the number of factors ai of the angle spinor |i〉
minus the number of factors si of the square spinor |i] for each particle in mn is ai − si =

−2hi. Helicity scaling weights and overall dimension provide important constraints on the

structure of the local matrix elements obtained from a candidate counterterm.

In some cases, these constraints determine the matrix element completely. A well

known example is the R4 4-graviton matrix element m4(1
−, 2−, 3+, 4+), which has overall

dimension 8 and spinor content |1〉4, |2〉4, |3]4, |4]4 , which follows from the helicity weights

−2hi = +4, +4, −4, −4 . The only local expression that carries the correct dimension and

weights is

m4(1
−, 2−, 3+, 4+) = 〈12〉4[34]4 . (2.2)

This form also appears, for example, in [36]. The better known [32, 33] form

m4(1
−, 2−, 3+, 4+) = s t uM tree

4 = s t u
〈12〉8[12]

〈12〉〈13〉〈14〉〈23〉〈24〉〈34〉2 (2.3)

appears to be non-polynomial in spinor brackets, but it can be shown to be equal to the

first expression using momentum conservation.

The requirement that a candidate field theory counterterm is invariant under N = 8

supersymmetry translates into the statement that the matrix elements obtained from them

satisfy SUSY Ward identities. To facilitate the Ward identity analysis, we work with

superamplitudes, containing Grassmann bookkeeping variables ηia, a = 1, . . . , 8.

The MHV sector is particularly simple because there each SUSY counterterm has only

one independent matrix element. We are free to take this to be the n-graviton matrix

element mn(− − + · · ·+) (which is shorthand for mn(1−, 2−, 3+, . . . , n+)). The n-particle

4Stieberger [35] has studied (non-local) 5- and 6-point matrix elements of D
2k

R
4 from the expansion of

the string amplitude.
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superamplitude representing the counterterm is a 16th order Grassmann polynomial, which

then takes the form [24]

CMHV
n = δ(16)

(

∑

i

|i〉ηai

)mn(−− + · · ·+)

〈12〉8 . (2.4)

Note that the matrix element mn(−−+ · · ·+) must be bose symmetric under exchange of

helicity spinors for the two negative helicity particles and for any pair of positive helicity

particles. The superamplitude must have full Sn permutation symmetry, and so must the

ratio mn(−−+ · · ·+)/〈12〉8 . Specific matrix elements for any MHV process in the theory

are obtained by applying Grassmann derivatives of order 16 as described in [37].

The analysis extends to the NMHV level where we study potential D2kRn counterterms

for n ≥ 6. The NMHV superamplitude is a Grassmann polynomial of order 24. We use the

manifestly SUSY and R-symmetry invariant representations recently derived in [25], which

express superamplitudes as sums that involve several independent basis matrix elements.

For each of these basis elements one needs a local expression with the correct little group

scaling properties.

Our general strategy to study linearized counterterms is a two step procedure:

1. For each basis matrix element, write down the most general polynomial in spinor

brackets consistent with particle exchange symmetries, helicity weight −2hi for each

particle and fixed total mass dimension. Use these general local basis matrix elements

to construct a general ansatz for the superamplitude.

2. In the second step, we either exclude a counterterm or construct its most general

matrix elements compatible with SUSY:

• To rule out the existence of a counterterm:

Show that at least one matrix element computed from the general superampli-

tude ansatz is non-local. To show this, we demonstrate that the matrix element

has a pole under a complex on-shell deformation of the external momenta.

• To construct a candidate counterterm:

Verify that a fully Sn permutation-symmetric superamplitude exists within the

ansatz. It will be shown below in section 2.3 that permutation symmetry to-

gether with locality of the basis matrix elements guarantees that all matrix

elements produced are local.

Since the SUSY Ward identities used in the superamplitude construction of [25] are

those obtained from the lowest order transformation rules of the fields of N = 8 supergrav-

ity, any independent candidate counterterm that satisfies our requirements is established

only at the linearized level.

2.3 From permutation symmetry to locality

In this section, we show that any superamplitude with local basis matrix elements and full

permutation symmetry produces local matrix elements for any process.

– 7 –
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We first consider the special case of MHV superamplitudes. Any pole in a matrix

element computed from the MHV superamplitude CMHV
n in (2.4) with local basis matrix

element mn(− − + · · ·+) can only arise from the factor 1/〈12〉8. However, if a matrix

element computed from a permutation symmetric CMHV
n had a pole in 〈12〉, then CMHV

n

would also produce a permuted matrix element with a pole in, say, 〈34〉. But poles in

〈34〉 are manifestly absent in CMHV
n . So we conclude that any matrix element computed

from a permutation-symmetric MHV superamplitude CMHV
n with local basis matrix element

mn(− − + · · ·+) is local.

This argument immediately generalizes beyond the MHV level. To see this, consider

the manifestly SUSY and R-invariant n-point superamplitude of [25] at the NKMHV level.

For the current argument, most details of the construction of [25] are not needed. We

simply note that the NKMHV superamplitude requires several basis matrix elements m(j)

and takes the schematic form5

CNKMHV
n =

∑

j

m(j)X(j) . (2.5)

The X(j) are SUSY and SU(8)R invariant Grassmann polynomials of order 8(K+2). Each

of them includes the factor δ(16)(
∑

i |i〉ηai), which also appeared in (2.4). With local basis

matrix elements inserted, this superamplitude has the structure

CNKMHV
n =

manifestly local

[n-3, n-2]8K〈n-1, n〉8 . (2.6)

For any choice of local basis matrix elements, this superamplitude can only have poles

in [n-3, n-2] and 〈n-1, n〉. It cannot give rise to poles in other angle and square brackets,

such as [12] or 〈34〉. Therefore, if the superamplitude is permutation invariant, all matrix

elements obtained from it cannot have poles in any spinor brackets. They must be local.

Verifying permutation symmetry is thus a crucial step in the construction of candidate

counterterms. Let us explain how permutation symmetry can be checked in practice.

Consider two renditions of a superamplitude, F and F̃ , which differ by a permutation of

the momentum labels in their basis elements and X-polynomials. If the superamplitude is

permutation symmetric then the two renditions are equal, so we write

∑

j

m(j)X(j) = F = F̃ =
∑

j

m̃(j)X̃(j) . (2.7)

If the basis elements m̃(j) of F̃ are projected out correctly from F , then the equality (2.7)

holds because the basis matrix elements uniquely determine the superamplitude. To

test (2.7) we therefore apply the Grassmann derivative D̃(i) appropriate to the particle

states of a particular basis element m̃(i) and obtain

∑

j

aijm
(j) = D̃(i)F = D̃(i)F̃ = m̃(i). (2.8)

5Readers can look ahead to eqs. (4.1) and (4.2) for the precise form of the 6-point NMHV superamplitude.
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Generically all basis elements of F contribute to the sum on the left side. However, if the

sum reproduces m̃(i) for all i, then F and F̃ are consistent and therefore equal. It is a

straightforward and systematic procedure to verify (2.7) for all basis elements. For full

permutation symmetry, one has to repeat the above check for a set of permutations that

generates the group Sn.

On the other hand, checking locality directly is much more difficult. In principle one

would have to explicitly compute the matrix elements for each possible process (not just

permuted basis processes) and verify locality. The above argument allows us to circumvent

this lengthy procedure. This will be important in the explicit construction of the D4R6

candidate counterterm in section 5.

3 Candidate MHV counterterms

3.1 The R4 counterterm

It is well known that the operator R4 + . . . is compatible with linearized N = 8 supersym-

metry [11, 38]. However, 3-loop calculations [1] show that it does not actually appear in

the perturbative S-matrix. To demonstrate how our methods work in the simplest context,

we show that R4 passes the tests required of a candidate counterterm (although it is a can-

didate which has lost the election). The superamplitude of this counterterm is obtained

by inserting the basis matrix element m4(−− ++) = 〈12〉4[34]4 into (2.4),

CMHV
R4 = δ(16)

(

∑

i

|i〉ηai

) [34]4

〈12〉4 . (3.1)

Note that the ratio [34]4/〈12〉4 has full S4 permutation symmetry, which can be easily

verified using momentum conservation

〈yx〉[xz] = −
∑

i6=x,y,z

〈yi〉[iz] . (3.2)

All individual matrix elements obtained by differentiation of (3.1) must be local, and thus

expressible as polynomials in spinor brackets. This follows immediately from the permu-

tation symmetry of (3.1), as we argued in section 2.3, but we now illustrate this property

explicitly. Consider, for example, the 4-graviton matrix element m4(++−−) with negative

helicities on lines 3 and 4. We find

m4(+ + −−) =

[ 8
∏

a=1

∂

∂η3a

∂

∂η4a

]

CMHV
R4 = 〈34〉8 × [34]4

〈12〉4 = 〈34〉4[12]4 . (3.3)

The singular denominator cancels in the last step because s12 = s34. This form is clearly

local and correctly reproduces m4(− − ++) with permuted momenta (1, 2) ↔ (3, 4). Us-

ing momentum conservation in the more general form (3.2) one can show that all matrix

elements computed from CMHV
R4 are local, just as the general argument of section 2.3 guar-

anteed.
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3.2 No D2R4 counterterm

It is known that D2R4 is not an allowed candidate counterterm in N = 8 supergrav-

ity [13]. Let us show how this fact follows from our method. To start we consider the

possible local expressions of dimension 10 for the matrix element m4(− − ++). The

helicity weights |1〉4, |2〉4, |3]4, |4]4 account for 8 powers of momenta, so we have to in-

clude two arbitrary spinor pairs |q〉[q| and |q′〉[q′|. We let q, q′ run over 1, 2, 3, 4 and in

each case construct all possible spinor contractions consistent with bose symmetry 1 ↔ 2

and 3 ↔ 4. Schouten relations and momentum conservation relate the five terms found

in this way, and there is only one independent local expression. Thus up to an over-

all constant, m4(− − ++) = 〈12〉5[12][34]4 = s (s t uM tree
4 ). In the previous section, we

showed that (s t uM tree
4 )/〈12〉8 is local and fully symmetric by itself. The superamplitude

δ(16)(. . . )m4(− − ++)/〈12〉8 must be fully symmetric in order to correctly reproduce per-

muted matrix elements. Symmetrizing our expression above gives a factor of s+ t+u = 0.

Thus kinematics excludes D2R4 as a candidate counterterm.

3.3 No Rn MHV counterterms for any n ≥ 5

We consider a potential counterterm Rn + . . . of dimension 2n and study its n-point MHV

matrix elements. Helicity scalings require a net count of the spinors |1〉4, |2〉4 and |i]4,
i = 3, . . . , n. With these weights, the total dimension 2n is saturated, so the basis matrix

element in (2.4) must take the form

mn(− − + · · ·+) = 〈12〉4fn(|3], |4], . . . |n]) . (3.4)

The function fn is an order 2n − 4 polynomial in square brackets, and depends only on

square spinors |i] for positive helicity gravitons, i.e. i ≥ 3. The structure (3.4) was also

found in [30, 36, 39].

The basis matrix element is local, but we must test whether all other matrix elements

obtained by differentiation of (2.4) are also local. We project out the n-graviton matrix

element with the negative helicity gravitons on lines 3 and 4:

mn(+ + −− + · · ·+) =
〈34〉8
〈12〉4 fn(|3], |4], . . . |n]) . (3.5)

We now show that the non-locality in 〈12〉 does not cancel for n ≥ 5. To do this we

introduce a complex variable z and evaluate (3.5) using the shifted spinors

|i〉 → |̂i〉 = |i〉 + zci|ξ〉 , i = 1, 2, 5 ,
∑

i

ci|i] = 0 , (3.6)

and all other angle spinors and all square spinors unshifted.6 The quantity |ξ〉 is an

arbitrary reference spinor. The shift affects only the denominator in (3.5), so the right-

hand side has an uncanceled 4th order pole in z. This is inconsistent with the requirement

that mn(++−−+ · · ·+) is local. Hence this rules out any Rn MHV counterterms for n ≥ 5.

6This type of “holomorphic” shift was proposed in [40], and used in [41, 42], to facilitate the proof of

the CSW recursion relations [43].
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For n = 4, we found above that the apparent pole in 〈12〉 cancels after an appropriate

use of momentum conservation, rendering m4(+ + −−) local. It is instructive to see why

the shift argument above breaks down in this case. Under a holomorphic shift, the shifted

spinors must satisfy the momentum conservation condition
∑

i ci|i] = 0, so this type of shift

cannot be implemented for less than 3 lines. It is impossible to construct a holomorphic

shift that shifts the denominator, but leaves invariant the numerator ofm4(++−−) in (3.3).

The shift argument is therefore only valid for n ≥ 5.

3.4 No D2Rn, D4Rn, or D6Rn MHV counterterms for n ≥ 5

We now apply the same shift argument to exclude counterterms of the formD2kRn for n ≥ 5

and k < 4. Such dimension 2(k + n) counterterms could arise from ultraviolet divergences

of n-particle supergravity amplitudes at loop order L = n + k − 1. Scaling symmetries

require that the n-graviton matrix element mn(−−++ · · ·+) of this counterterm is a local

polynomial with the net spinor count |1〉4, |2〉4 and |i]4 for i = 3, . . . , n. These spinors

comprise 2n powers of momenta, so we must include 2k pairs |qi〉[qi| with zero net scaling

to match the total dimension. Thus mn(−−++ · · ·+) consists of 4+k angle brackets and

2(n − 2) + k square brackets.

If acceptable as a counterterm, the superamplitude

CMHV
D2kRn = δ(16)

(

∑

i

|i〉ηai

) mn(− − + + · · ·+)

〈12〉8 (3.7)

must produce local matrix elements for any choice of external particles. To test this, we

examine the permuted n-graviton matrix element mn(+ + − − + · · ·+). The appropriate

η derivative applied to (3.7) produces the matrix element

mn(+ + −− + · · ·+) =
〈34〉8
〈12〉8 mn(−− + + · · ·+) . (3.8)

Let us again act with the shift (3.6) on the angle spinors |1〉, |2〉 and |5〉 in this matrix

element. The factor 〈34〉8/〈1̂2̂〉8 has an 8th order pole in the z-plane. The matrix element

mn(−−+ + · · ·+) on the right-hand side of (3.8) contains 4 + k angle brackets. Thus, for

k < 4 the numerator is at most a 7th order polynomial in z. This is insufficient to cancel

the 8th order pole in the denominator, so the permuted matrix element mn(++−−+ · · ·+)

cannot be local. We conclude that the potential MHV counterterm D2kRn, n ≥ 5, can-

not exist when k < 4, or, equivalently, at loop order n < L − 3. (This bound was also

given in [28, 29].)

3.5 Candidate MHV counterterms D2kRn for k ≥ 4

We now demonstrate that D2kRn is not excluded for k ≥ 4. Specifically, we show that

there are local matrix elements that satisfy all our constraints. For the basis element

mn(− − + + · · ·+), scaling properties and overall dimension can now be satisfied, for

example, by polynomials of the form 〈12〉8(rest), where the “rest” is still polynomial in

angle and square spinors. Since the pole in the denominator of (3.8) is directly canceled

by the factor 〈12〉8, such polynomials always produce local matrix elements.
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In particular, for k = 4 — i.e. D8Rn — an example of a superamplitude can be written

down explicitly. This requires a square bracket polynomial that is fully symmetric under

exchanges of any two momenta and has each square spinor appearing precisely 4 times.

There are two obvious choices:

mn(−− + + · · ·+)

〈12〉8 = c1
(

[12]2[23]2 · · · [n1]2+perms
)

+c2
(

([12][34] · · · [n−1, n])4+perms
)

.

(3.9)

The second term only exists if n is even, but the first is valid for all n.7 For n = 6 the

two terms are independent, and there are no other independent contributions. For n = 4

these two terms are linearly dependent through the Schouten identity. Other structures

become available as k becomes sufficiently large; we will encounter this for n = 4 in the

following section.

3.6 D2kR4 counterterms

With the exception ofD2R4, which is excluded by kinematics, our analysis does not rule out

candidate counterterms D2kR4. Instead our locality and symmetry constraints determine

a unique superamplitude for k ≤ 5, i.e. L ≤ 8. For L ≥ 9 more than one structure is

available. As explained, our method constructs a symmetric function m4(−− ++)/〈12〉8,
where m4(−−++) is local and has dimension 2k+ 8 and the correct scaling weights. The

expressions in terms of spinor brackets are converted to polynomials in s, t, and u. These

are listed in table 1 for 0 ≤ k ≤ 7, i.e. L = 3, . . . , 9.

One may compare these results to the α′-expansion of the closed string 4-graviton

Virasoro-Shapiro amplitude

M4 =
Γ(1 + α′

4 s)Γ(1 + α′

4 t)Γ(1 + α′

4 u)

Γ(1 − α′

4 s)Γ(1 − α′

4 t)Γ(1 − α′

4 u)
MSUGRA tree

4 . (3.10)

Since there are no free parameters in string theory, the matrix elements it determines for

the operators D2kR4 are necessarily unique: they correspond to choosing the arbitrary

constants in the field theory results to be specific combinations of ζ-functions. These

constants are listed in table 1.

The α′ expansion of (3.10) was studied in the papers [44], and the first appearance of

two independent structures in D12R4 was noted [45]. The expansion has also been studied

recently in [35]. Our analysis of polynomials in spinor brackets shows that these structures

are the most general ones compatible with SUSY Ward identities and locality. In field

theory the coefficients of these two structures are unfixed, while string theory selects a

particular linear combination.

4 Candidate NMHV counterterms

Superamplitudes in the NMHV sector of N = 8 supergravity are Grassmann polynomials

of order 24 in the variables ηia. To study potential counterterms we use the superampli-

tude representations recently derived in [25]. This construction guarantees that individual

7The first term was also identified in [28, 29].
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loop counterterm fk(s, t, u) cL in string theory ((α′/4)L suppressed)

3 R4 c0 c0 = 2ζ(3)

4 D2R4 excluded absent

5 D4R4 c2 (s2 + t2 + u2) c2 = −ζ(5)
6 D6R4 c3 s t u c3 = 2ζ(3)2

7 D8R4 c4 (s2 + t2 + u2)2 c4 = 1
2ζ(7)

8 D10R4 c5 s t u (s2 + t2 + u2) c5 = 2ζ(3)ζ(5)

9 D12R4 c6s
2t2u2+c′6(s

3t3+t3u3+u3s3) c6 =−4
3(ζ(3)3 + 5ζ(9)) , c′6 = 2ζ(9)

Table 1. Matrix elements m4(−−++) = Atree×s t u×fk(s, t, u) of D2kR4 for 0 ≤ k ≤ 6. In N = 8

supergravity these are matrix elements of candidate counterterms for loop levels L = 3, . . . , 9.

matrix elements, obtained by Grassmann differentiation, are related by the appropriate

SUSY Ward identities. Since the Ward identities are under control, we can proceed to

study whether all NMHV matrix elements for a fixed number n of external particles can

be local functions, i.e. polynomials, in the spinor brackets 〈ij〉, [kl].

In this section we rule out Rn and D2Rn NMHV counterterms by a shift argument

similar to that used at the MHV level in section 3. The NMHV bound is weaker than in

the MHV sector where we also ruled out independent D4Rn and D6Rn counterterms.

4.1 No R6 and D2R6 NMHV counterterms

The 6-point superamplitude of [25] requires the input of 5 independent basis matrix ele-

ments, specifically the 6-graviton matrix element m6(−+ + +−−), and four other matrix

elements in which the first two particles are pairs of gravitini, graviphotons, graviphotini,

and scalars:

CNMHV
6 =

{

m6(− + + + −−) X 11111111 + m6(ψ
−ψ+ + + −−)X(11111112)

+m6(v
−v+ + + −−)X(11111122) + m6(χ

−χ+ + + −−)X(11111222)

+
1

2
m6(φ

1234φ5678 + + −−)X(11112222)

}

+ (1 ↔ 2) . (4.1)

The polynomials Xijklpquv are the 24th order SUSY invariant Grassmann polynomials

Xijklpquv = δ(16)
(

∑

i

|i〉ηai

) mi,n-3,n-2;1 mj,n-3,n-2;2 · · · mv,n-3,n-2;8

[n− 3, n − 2]8〈n− 1, n〉8 ,

mijk,a ≡ [ij]ηka + [jk]ηia + [ki]ηja .

(4.2)

The parentheses in the polynomials X(...) in (4.1) indicate symmetrization in the positions

of the labels 1, 2. For example, X(11111112) = X11111112 +X11111121 + . . . . Each polynomial

X(...) in (4.1) is SUSY and R-symmetry invariant. It is the action of the Q̃a and Qa SUSY

generators that permits us to ‘standardize’ the basis, so that all basis matrix elements

contain 2 positive and 2 negative helicitity gravitons [25]. In (4.1), these have been chosen

as lines 3,4 and 5,6, respectively. This means that all X-polynomials contain the factor

1/([34]〈56〉)8 .
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If D2kR6 has a supersymmetrization, there is a corresponding superamplitude of the

form (4.1) that generates its 6-point matrix elements. Each basis matrix element must be

a local expression of mass dimension 2(k + 6), so the total number of angle and square

spinors is
∑

i(ai + si) = 4(k + 6). The difference is determined by the sum of the helicity

weights, hence
∑

i(ai − si) = −2
∑

i hi = 0 for any basis element of (4.1). Thus each basis

matrix element is a product of 6 + k angle and 6 + k square brackets.8

Using a suitable complex shift, we now show that (when k = 0, 1) the potential pole

factor 1/〈56〉8 cannot cancel in the permuted 6-graviton matrix element m6(− − + + +−)

obtained from the superamplitude (4.1). We project out m6(− − + + +−) from the su-

peramplitude by applying the Grassmann derivatives associated with the negative helicity

graviton lines,

m6(−− + + +−) =

[

∏

i=1,2,6

8
∏

a=1

∂

∂ηia

]

CNMHV
6 . (4.3)

All basis matrix elements in (4.1) contribute. To simplify notation, we denote the basis

matrix element in (4.1) whose X-polynomial is labeled by (8 − j) 1’s and j 2’s by m(j).

Thus m(0) = m6(− + + + −−), m(1) = m6(ψ
−ψ+ + + − −), m(6) = m6(v

+v− + + − −),

etc; the last example is in the 1 ↔ 2 exchanged part of (4.1). With some attention one can

see that the Grassmann differentiations in (4.3) produce a coefficient of 〈26〉8−j〈16〉j/〈56〉8
for the basis matrix element m(j). Thus we obtain

m6(−− + + +−) =
1

〈56〉8
8

∑

j=0

(

8

j

)

〈26〉8−j〈16〉j m(j) . (4.4)

The eight angle brackets in the numerator come from derivatives of the Grassmann δ(16)

in the X-polynomials (4.2). The factor 1/[34]8 in (4.1) cancels in (4.4) because differenti-

ation of the mijk,a polynomials produces compensating factors in all terms. The binomial

coefficients appear because of the symmetrization of labels in the X-polynomials.

Consider now the effect of a holomorphic 3-line shift of angle spinors as in (3.6), but

acting on the spinors |3〉, |4〉, and |5〉. Spinor brackets 〈q q′〉 are invariant under this shift

unless they involve at least one spinor from the set |3〉, |4〉, |5〉. Shifted brackets are linear

in z. The denominator of (4.4) has an 8th order pole in z, but the brackets 〈26〉 and 〈12〉 in

the numerator do not shift. The only potential z dependence in the numerator comes from

the 6 + k spinor brackets in the basis matrix elements m(j). The pole cannot cancel in any

linear combination of basis elements if they contain fewer than 8 shifted angle brackets.

Thus the counterterm is ruled out if 6 + k < 8; hence for k = 0, 1 .

One may suspect that there could be supersymmetric operators of dimension 12 (like

R6) or 14 (like D2R6) that do not have a leading pure-graviton component. m6(−−+++−)

vanishes in this case, and the above shift argument would be void. In section 6 we will

show that no such operators exist.

The conclusion is that potential R6 and D2R6 NMHV level counterterms cannot exist.

Our argument does not show whether k = 1 is an actual upper bound for ruling out

8Although we need this information only for basis matrix elements, it is also correct for all other NMHV

6-point matrix elements.
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candidate NMHV D2kR6 counterterms, or simply the place where the shift argument above

breaks down. We will show that it is the actual bound by constructing a candidate D4R6

counterterm in section 5.

4.2 No Rn and D2Rn NMHV counterterms for n ≥ 6

We now generalize the analysis of the previous section to all n ≥ 6. The superamplitude

of a D2kRn NMHV counterterm takes the general form [25]

CNMHV
n =

∑

j

m(j)X(j) . (4.5)

The sum includes all n-point basis matrix elements m(j) of the form mn(· · ·++−−). Here

the last 4 particles are the standardized graviton states we have discussed, and the · · ·
indicate states of n − 4 particles of the N = 8 theory such that the overall configuration

is NMHV. The X(j) are symmetrizations of the polynomial Xijklpquv defined in (4.2) with

1 ≤ i ≤ j ≤ . . . ≤ v ≤ n − 4. Dimensional analysis, little group scaling and locality

determine that the m(j) are polynomials of order 6+k in angle brackets and order 2n+k−6

in square brackets.

To test locality, we compute a non-basis matrix element with three positive helicity

graviton lines from this superamplitude. The result takes the form

mn(· · · + + + −) =
1

〈n -1, n〉8
∑

j

f(j)

(

〈1n〉, 〈2n〉, . . . , 〈n-4, n〉
)

m(j) , (4.6)

where the f(j)’s are some polynomials of total degree 8 in the indicated angle brackets.

This polynomial arises from the differentiation of the Grassmann delta function in the X(j)

and, crucially, it therefore does not contain any angle spinors from the positive helicity

graviton lines n− 3, n− 2, and n− 1.

We now perform a holomorphic 3-line shift (3.6) of the three positive helicity lines

n − 3, n − 2, and n − 1. The shifted denominator has an 8th order pole in z. In the

numerator, the f(j) are invariant under the shift because they all only depend on unshifted

angle brackets. The m(j) contain 6 + k angle brackets and are therefore at most O(z6+k)

under the shift. Again the 8th order pole cannot be canceled for k ≤ 1.

As in the n = 6 case, one may worry that there could be NMHV operators whose

matrix elements mn(· · · + + + −) vanish for any assignment of the first n − 4 external

states · · · . This would invalidate the above shift argument. In section 6 we will show that

no such operators exist.

We conclude that there are no independent supersymmetrizations of Rn or D2Rn at

the NMHV level for n ≥ 6.

5 Matrix elements of a D
4
R

6 NMHV operator

In this section, we construct an explicit permutation symmetric superamplitude for the

NMHV operator D4R6 to demonstrate that it is not excluded. We use the represen-

tation (4.1) for the NMHV 6-point superamplitude, so the only input needed are the 5
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independent basis matrix elements. These matrix elements must be local and have mass

dimension 16. A direct approach to construct these matrix elements was unworkable for

Mathematica, and instead we devised a method to construct the N = 8 superamplitude

from the product of N = 4 gauge theory superamplitudes.9 We describe the construction

in section 5.1 before turning to its practical implementation in sections 5.2 and 5.3.

5.1 Gravity from (gauge theory)2

Let F and F̃ be NMHV n-particle N = 4 SYM theory superamplitudes. Suppose that they

are SU(4)R invariant and are annihilated by the N = 4 SUSY charges, Q̃AF = QAF= 0. As

superamplitudes for color-ordered amplitudes, F and F̃ have dihedral (cyclic and reflection)

symmetry. However, we would like to use them in a gravity construction, so we impose full

Sn permutation symmetry and use the designation F sym and F̃ sym.

Now consider the product CNMHV = F sym ×F̃ sym where the SU(4)R-symmetry indices

of F sym are A = 1, 2, 3, 4 and those of F̃ sym are Ã = 5, 6, 7, 8. The N = 8 SUSY charges

split accordingly, hence CNMHV is annihilated by the full set of N = 8 SUSY generators.

By construction, it is also permutation symmetric, so the only property it lacks is the full

SU(8)R symmetry; it only has SU(4)R × SU(4)R due to the particular split of the eight

SU(8)R indices. However, if we sum over all (8 choose 4)=70 embeddings of SU(4)×SU(4)

into SU(8), then the resulting Grassmann polynomial

CNMHV =
∑

70 embeddings

(±)F sym × F̃ sym (5.1)

can easily be shown to have the full SU(8)R-symmetry. Here, the (±) sign is the signature of

the permutation that brings the embedding (A, Ã) into the canonical order (1, . . . , 8). We

note that if ∆1 and ∆2 are the mass dimensions of the basis matrix elements of F sym and

F̃ sym, then the mass dimension of the matrix elements generated by CNMHV will be ∆1+∆2.

In our specific application, we want ∆1 + ∆2 = 16 for the NMHV matrix elements of

D4R6. Possible gauge theory operators are F 6, D2F 6 and D4F 6 whose matrix elements

have dimension 6, 8 and 10. We find that (FNMHV
F 6 )sym vanishes,10 so the only possibility

is

CNMHV
D4R6 =

∑

35 embeddings

(

FNMHV
D2F 6

)sym ×
(

F̃NMHV
D2F 6

)sym
. (5.2)

Here, we only need to sum over 35=(8 choose 4)/2 embeddings, because the same super-

amplitude is used for both SU(4)R factors, and the 70 original embeddings then match

up pairwise. In the following subsection we construct (FNMHV
D2F 6 )sym and in section 5.3 we

extract the five basis matrix elements of CNMHV
D4R6 from (5.2). As a consistency check, we

have explicitly verified that the result for CNMHV
D4R6 correctly reproduces all permuted basis

matrix elements.

9This is not the same as the KLT relations [46] for tree amplitudes.
10For example, helicity weights uniquely fix the dimension 6 basis matrix element a6(−+ + +−−) to be

〈23〉〈34〉〈42〉[15][56][61], whose symmetrization in, for instance, 5 and 6 vanishes.
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5.2 D2F 6 in N = 4 SYM

The superamplitude (FNMHV
D2F 6 )sym has a basis expansion of the form [25]

(FNMHV
D2F 6 )sym = a(0)

sym X(1111) + a(1)
sym X(1112) + a(2)

sym X(1122) + (1 ↔ 2) ,

with Xijkl ≡ δ(8)
(

6
∑

i=1

|i〉ηia

) mi34;1 mj34,2 mk34,3 ml34,4

[34]4〈56〉4 .
(5.3)

The 3 basis matrix elements involve the gluons (denoted by + and −), gluinos (Aa

and Aabc), and scalars Aab of N = 4 SYM theory. The superscripts are SU(4)R sym-

metry indices. In (5.3) we use the shorthand notation a
(0)
sym = a6(− + + + −−)sym,

a
(1)
sym = a6(A

123A4 + + −−)sym, and a
(2)
sym = a6(A

12A34 + + −−)sym.

The construction of a
(0)
sym proceeds as follows. We (let Mathematica) construct all

possible local angle/square bracket contractions of dimension 8 compatible with the scaling

weights. We find 177 such local terms, but when we impose bose/fermi symmetry of

identical particles, only 9 terms survive. However, several of these are dependent through

Schouten and momentum conservation. This leaves only 3 independent terms with the

correct symmetries, and we express a
(0)
sym as a general linear combination of those. A similar

construction is carried out for a
(1)
sym and a

(2)
sym, as summarized in table 2. With these three

local basis matrix elements we now have an ansatz for the superamplitude (FNMHV
D2F 6 )sym.

Requiring that it has full permutation symmetry fixes all parameters in the basis elements.

This gives the result

a(0)
sym = a6(−+++−−)sym =

∑

mi,pi

[p1p3]〈m1m3〉[p2p3]〈m2m3〉〈m1|m2+m3|p1]〈m2|p1+p3|p2] .

(5.4)

The sum on mi and pi is over all permutations of 1, 5, 6 and 2, 3, 4, respectively. The

expressions for a
(1)
sym and a

(2)
sym are more complicated; they are given in appendix B.

As an example of the conditions arising from requiring permutation symmetry, consider

the “alternating helicity” matrix element a6(− + − + −+)sym, whose external particle

assignments are related to the basis matrix element a6(− + + + −−)sym by exchange of

lines 3 ↔ 6. From the superamplitude we find

a6(− + − + −+)sym =

[

∏

i=1,3,5

4
∏

a=1

∂

∂ηia

]

(FNMHV
D2F 6 )sym (5.5)

=
〈5|1+3|4]4
〈56〉4[34]4 a(0)

sym − 4
〈5|1+3|4]3〈15〉[24]

〈56〉4[34]4 a(1)
sym + 6

〈5|1+3|4]2〈15〉2[24]2
〈56〉4[34]4 a(2)

sym + · · ·

Although not obvious, the sum on the right-hand side turns out to be exactly of the

form (5.4), but this time the sum over mi is over all permutations of 1, 3, 5, and the sum

over pi is over all permutations of 2, 4, 6. Therefore this non-basis matrix element with

permuted external lines is simply given by the corresponding momentum permutation of

the basis matrix element, as required (cf. section 2.3).
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(a) (b) (c) (d)

Impose: little grp bose/fermi Schouten
& mom.cons. conj. perm. sym.

a
(0)
sym = a6(− + + + −−)sym 177 9 3 even→2 }

→ 1a
(1)
sym = a6(A

123A4 + + −−)sym 684 166 24 odd→14

a
(2)
sym = a6(A

12A34 + + −−)sym 1115 189 24 even→15

Table 2. Construction of basis matrix elements a
(i)
sym for D2F 6. In the columns we list how many

terms are left after the constraint in the column caption is imposed. In column (a), we construct all

local matrix elements with the correct little group scalings. In column (b), the bose/fermi exchange

symmetries imposed on a
(0)
sym are the permutations P(1, 5, 6) and P(2, 3, 4). For a

(1)
sym they are P(3, 4)

and P(5, 6), which are also imposed on a
(2)
sym in addition to P(1, 2). Column (c) lists how many of

the terms in column (b) are independent with respect to Schouten and momentum conservation.

All terms selected by SUSY are conjugation even/odd as stated in column (d). Conjugation odd

(even) here means that the terms (do not) change sign when angle/square brackets are exchanged

and {1 ↔ 2, 3 ↔ 5, 4 ↔ 6}. Column (d) lists how many of the terms in column (c) have this

conjugation structure. Permutation symmetry selects a unique linear combination of the terms

given in column (d). These then determine a unique result for the superamplitude (FNMHV
D2F 6 )sym

(up to an overall constant). Of the 2 conjugation-even terms for a
(0)
sym only one actually contributes,

namely the one given in (5.4). The terms needed for a
(1)
sym and a

(2)
sym are listed in appendix B.

In summary, we have found that (FNMHV
D2F 6 )sym, with the basis elements described above,

is an S6 permutation symmetric, SUSY and R-symmetry invariant superamplitude that

produces local matrix elements associated with a linearly supersymmetrizedD2F 6 operator

of N = 4 SYM. We now use it to construct the superamplitude for the local matrix elements

of a linearly supersymmetrized D4R6 operator in N = 8 supergravity.

5.3 NMHV D4R6 counterterm

We obtain the superamplitude (CNMHV
D4R6 )sym as a product of gauge theory factors

(FNMHV
D2F 6 )sym using (5.2). The sum over the 35 different embeddings of SU(4)R ×SU(4)R ⊂

SU(8)R gives

CNMHV
D4R6 = m(0) X(11111111) +m(1) X(11111112) +m(2) X(11111122) +m(3) X(11111222)

+
1

2
m(4) X(11112222) + (1 ↔ 2) ,

(5.6)

where

m(0) = m6(− + + + −−) = 35 [a(0)
sym]2 ,

m(1) = m6(A
1234567A8 + + −−) = 35 a(0)

sym a
(1)
sym ,

m(2) = m6(A
123456A78 + + −−) = 15 a(0)

sym a
(2)
sym + 20[a(1)

sym]2 ,

m(3) = m6(A
12345A678 + + −−) = 5 a(0)

sym a
(3)
sym + 30 a(1)

sym a
(2)
sym ,

m(4) = m6(A
1234A5678 + + −−) = a(0)

sym a
(4)
sym + 16 a(1)

sym a(3)
sym + 18[a(2)

sym]2 .

(5.7)
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The a
(i)
sym with i = 0, 1, 2 were constructed in the previous section, while a

(3)
sym = a

(1)
sym|1↔2

and a
(4)
sym = a

(0)
sym|1↔2.

The numerical coefficients in (5.7) are combinatorial factors from the particular ways

the gravity X-polynomials are assembled from products of the ones in gauge theory. For

example, X(11111111) can only arise as X(11111111) = X(1111)X̃(1111) , and in each of the 35

embeddings the coefficient is the same, namely [a
(0)
sym]2. This explains whym(0) = 35 [a

(0)
sym]2.

Less trivially, consider m(2). Its polynomial X(11111122) can arise in three different ways.

In (6 choose 2)=15 of the 35 embeddings of SU(4)R × SU(4)R ⊂ SU(8)R, it will come

from either X(1111)X̃(1122) or X(1122)X̃(1111); these both have coefficient a
(0)
sym a

(2)
sym. In the

remaining (6 choose 3)=20 cases it comes from X(1112)X̃(1112) which has coefficient [a
(1)
sym]2.

This accounts for the coefficients 15 and 20 in the third line of (5.7).

We have explicitly verified that CNMHV
D4R6 defined in this way is a SUSY invariant, R-

invariant, and permutation invariant superamplitude. All matrix elements obtained from

it are local polynomials of dimension 16. So the SUSY and locality requirements for the

matrix elements of a D4R6 counterterm are satisfied.

The product construction we have outlined provides one superamplitude with the prop-

erties of a candidate D4R6 NMHV counterterm. There may be other independent candi-

dates. It turns out that the single soft scalar limit of the above basis element m(4) does

not vanish, so the corresponding operator is not E7,7(R) invariant. However, if there are

also other independent D4R6 structures available, there may be a linear combination that

does exhibit the low energy theorems expected of an E7,7(R)-invariant counterterm.

6 Counterterms with vanishing pure-graviton matrix elements?

Heretofore, the main focus of our work has been the supersymmetrization of gravitational

operators D2kRn. At MHV level, all supersymmetric operators are of this form because any

MHV operator must have a non-vanishing n-graviton matrix element mn(−−+ · · ·+). This

is obvious from its superamplitude (2.4). Beyond the MHV level, however, the situation is

more subtle. For example, could an n-scalar NKMHV counterterm, schematically D2kφn,

have a supersymmetrization that does not include a purely gravitational operator? Such

an operator could for example “live” above the “Rn diagonal” in the chart of figure 1; or it

could hide as an independent operator on or below the diagonal. We study such operators

in this section.

The manifestly supersymmetric NKMHV superamplitude [25] can be expressed in

terms of basis matrix elements that all involve at least four gravitons + +−−. Therefore,

any operator with an independent supersymmetrization must include a component of the

schematic form D2kR4 Φn−4, where Φn−4 denotes any n − 4 fields of the theory. Such an

operator has mass dimension ∆ ≥ 8. As a consequence, no such independent operator

exists at the 1- and 2-loop levels for which ∆ = 4 and 6, but a separate analysis is required

for L ≥ 3. We now address this point at the NMHV level.

In section 4 we ruled out independent supersymmetrizations of Rn and D2Rn at the

NMHV level. We can write the exclusion statement as a bound on the mass dimension
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∆ = 2(n + k):

∄ indep. NMHV SUSY operators with ∆ < 2n+ 4 . (6.1)

We will now prove that this bound not only governs putative supersymmetrizations of

D2kRn, but holds in general for any NMHV operator.

Let us begin with the simplest case, namely n = 6. Recall that we proved the non-

existence of supersymmetrizations of R6 and D2R6 in section 4.1 by exposing a non-locality

in the matrix elementmn(−−+++−) through a shift argument. This shift argument would

become vacuous if the graviton matrix element mn(−−+ + +−) vanished. We show now

that if the pure graviton matrix elements vanish, then the entire 6-point NMHV superam-

plitude must vanish.11 We use the representation (4.4) for m6(−−+++−), which follows

from (4.1), as well as the analogous representations for other inequivalent permutations of

the 6 lines. Each such equation expresses a particular permuted 6-graviton amplitude as

a linear combination of basis elements m(j), which are kept arbitrary. Now suppose that

all permuted 6-graviton matrix elements, including m(0) and m(8), vanish. The rank of the

resulting linear system reveals that no non-trivial solution for m(1),m(2), . . . ,m(7) exists.

Thus no independent supersymmetric 6-point counterterms with vanishing all-graviton

matrix elements exists, and hence the bound (6.1) holds for n = 6.

A similar result holds for n > 6. The validity of the shift argument applied to (4.6)

breaks down if all matrix elements mn(· · ·+++ −) vanish. The · · · denote n−4 particles

of the theory consistent with mn(· · ·+++−) being NMHV. As above, we can show that the

entire NMHV superamplitude vanishes in this case. For n = 7, . . . , 12, we verified this using

the same strategy as in the n = 6 case, but applied to the linear system obtained from (4.6)

and its permutations. Again the result is valid for any NMHV superamplitude, independent

of dimension and locality. For n > 12, all basis matrix elements necessarily contain (at

least) three positive and one negative helicity graviton [25], so the superamplitude vanishes

trivially if the matrix elements in this class vanish.

We conclude that the bound (6.1) holds for general operators, not just for supersym-

metrizations of D2kRn. While there can be (linearly) supersymmetric NMHV operators

that have vanishing n-graviton matrix elements for n > 6, none of them can possibly live

above the D4Rn “line” in figure 1.

We suspect, but have not proven, that a generalization of the above NMHV result

holds at the NKMHV level. We can assume K ≤ n/2 − 2 because an NKMHV n-point

superamplitude with K > n/2 − 2 can be treated as anti-N(n-4-K)MHV. We suspect that,

just as at the NMHV level, a non-vanishing NKMHV superamplitude must have at least

one non-vanishing matrix element of the form mn(· · · + + + −). Here the · · · represent

arbitrary n − 4 states consistent with the NKMHV level. If this is indeed the case, a

holomorphic three-line shift (3.6) of lines n-3, n-2, n-1 on this matrix element reveals that

it is non-local if the basis matrix elements of the NKMHV superamplitude contain less

than 8 angle brackets. The number of angle brackets in an NKMHV basis matrix element

11This result is a direct consequence of the basis expansion (4.1) and holds for basis elements of any

dimension, whether local or non-local.
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is ∆/2 − n+ 4 + 2K. We are thus led to conjecture that

conjecture: ∄ indep. NKMHV SUSY operators with ∆ < 2n+ 8 − 4K for n > 4 . (6.2)

Combining K ≤ n/2 − 2 with the bound (6.2) it follows that no independent dimension

∆ < 16 supersymmetric operator exists whose leading matrix element appears beyond

n = 4 points. Thus, if the conjecture (6.2) holds, a UV finite 4-point amplitude implies

finiteness of all higher point amplitudes at the same loop level for L < 7.

7 Summary of candidate counterterms in N = 8 supergravity

In this paper we have introduced an efficient method to analyze potential counterterms

in N = 8 supergravity. It tests whether the matrix elements of a putative counterterm

operator could have a supersymmetric completion. The input is gauge invariance, locality,

supersymmetry and R-symmetry invariance, little group scalings and dimensional analysis.

We have applied it at the MHV and NMHV level, and in each case excluded a set of

operators as independent candidate counterterms.

We now summarize our work and place it in the context of results and arguments

already given in the literature. It is well-known that pure supergravity amplitudes are

finite at 1-loop [47, 48] and 2-loops [38, 49, 50]. Our analysis has shown that no higher-

point (graviton or non-graviton) SUSY operators with mass dimension ∆ < 8 exist. For

3-loops and higher:

• 3-loops. Dimensional analysis allows only R4 as a candidate pure gravity countert-

erm. Our analysis identifies the familiar unique matrix element that satisfies all

supersymmetry and locality constraints. This is not surprising, since it is well-known

that R4 is compatible with linearized supersymmetry [38]. In particular, it arises as

the leading α′-correction to the closed string 4-graviton amplitude [32, 33]. Super-

space constructions exist for this term [11]. However, the explicit demonstration [1]

that the 4-point 3-loop amplitude is UV finite means that R4 is not generated as a

counterterm in perturbative N = 8 supergravity.

• 4-loops. The potential counterterms are D2R4 and R5. It is known, and it is re-

produced in our analysis in section 3.1, that the 4-point matrix element of D2R4 is

excluded [13]. The non-existence of the D2R4 counterterm is consistent with the ex-

plicit results [4] that the 4-point 4-loop amplitude is finite. It was argued in [13, 51]

that R5 is absent. In our analysis R5 is excluded as an independent counterterm

since its matrix elements cannot be both local and satisfy the SUSY Ward identities.

• 5-loops. Our analysis shows that no independent supersymmetrization of D2R5 and

R6 exists. According to [13], harmonic (8, 2, 2) superspace allows D4R4 while string

theory arguments [52] indicate that it is not generated.

• 6-loops. We have shown that no independent supersymmetrizations of D4R5, D2R6

and R7 exist. D6R4 can be constructed in harmonic (8, 1, 1) superspace [13], but

limits of string theory indicate its absence [52].
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Our analysis proves that at loop orders L < 7 no independent supersymmetric MHV

or NMHV candidate counterterms exist for n-point amplitudes with n > 4. We have

conjectured in section 6 that this also holds for L < 7 at any NKMHV level.

• 7-loops. Howe and Lindstrom [10] constructed a linearized superspace counterterm

corresponding to D8R4, but noted that it did not respect the full E7,7(R) symmetry.

It was proposed in [16] that another superspace construction of a 7-loop E7,7(R)-

invariant counterterm might exist. Recent string theory analyses [23] zoom in on this

loop level as a likely possible first divergence.

Our analysis shows that D8R4 is the only candidate 7-loop counterterm at the MHV

level. In particular, this means that D6R5 is absent. However, we identify D4R6

as a candidate counterterm for 6-point NMHV amplitudes. In section 5 we used a

gauge theory trick to construct the needed basis matrix elements of the superam-

plitude for this counterterm. The single soft scalar limits of the resulting matrix

elements do not vanish. However, our gauge theory based construction may not have

yielded the most general counterterm. Thus we cannot make any statement whether

a supersymmetrization of D4R6 with E7,7(R) symmetry exists or not.

An independent D2R7 counterterm (MHV or NMHV) is ruled out by our analysis,

but we have not excluded the possibility of a (linearized) supersymmetrization of R8,

which would only contribute at the N2MHV level. Thus a 7-loop divergence could

appear in the 8-point N2MHV amplitude even if lower-point amplitudes at the same

loop-level are finite.

• 8-loops. Independently, Kallosh [11] and Howe and Lindstrom [10] constructed an

8-loop superspace counterterm D10R4 with full E7,7(R) invariance. We are not aware

of any approach that rules it out. In its absence, our method has identified D8R5 as

a possible independent counterterm. Higher-point counterterms are excluded at the

MHV level at this loop order, but not beyond.

• 9-loops. At loop orders L < 9, our method identified unique supersymmetric local

matrix elements for the operators D2kR4. Up to an overall constant, these therefore

agree with the α′-expansion of the 4-graviton closed string tree amplitude (see details

in section 3.6). However, at the 9-loop level, field theory allows 2 independent local

matrix elements of D12R4 that satisfy the SUSY Ward identities.12 One particular

linear combination is selected by the string amplitude [44, 45].

We commented on E7,7(R) in the above summary. E7,7(R) is a global symmetry of the

equations of motion of the classical N = 8 theory [54, 55], and it manifests itself in tree-

level amplitudes as low-energy theorems for soft-scalar limits [9, 37, 56]. In a regularization

scheme that preserves the E7,7(R) symmetry,13 on-shell matrix elements of counterterms

should obey low-energy theorems of spontaneously broken E7,7(R). One can use this as an

additional criterion to rule out candidate counterterms.
12Note that D

12
R

4 occurs as the counterterm for the 2-loop divergence in D = 11 [53].
13We are also grateful to J. Maldacena for discussions of this and related points.
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Our analysis is strictly 4-dimensional since it makes heavy use of the spinor-helicity

formalism. The study of counterterms for super Yang-Mills theory and supergravity in

dimensions D > 4 also illuminates the situation in D = 4. Perhaps one could combine our

method with the recent higher-dimensional spinor-helicity constructions [57, 58] to address

such questions.

It would be interesting to extend our method in D = 4 to study supersymmetrizations

of operators at the N2MHV level and beyond. In particular, it would be interesting to

prove our conjecture in section 6 that the mass dimension ∆ of independent NKMHV

SUSY operators is bound by ∆ < 2n + 8 − 4K. As we explained, this would imply that

the only counterterms that are available at L < 7 are supersymmetrizations of D2kR4.
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A Local matrix elements are polynomials in angle and square brackets

The n-particle matrix element of a scalar operator such as
∫

d4x ∂2kφn (with an unspecified

distribution of derivatives) must be a polynomial in the external momenta pi, i = 1, . . . n.

In the spinor-helicity formalism, the momentum pi is described by the spinor bilinear |i〉[i|,
so these matrix elements are polynomials in angle and square brackets. The analogous

property for n-point matrix elements of operators such as
∫

d4x ∂2kFn in gauge theory or
∫

d4x ∂2kRn in gravity is a little more subtle because external particles now come dressed

with polarizations. If ǫµ±(i) is the polarization vector of a gluon, we can write the po-

larization tensor of the graviton as ǫµν
± (i) = ǫµ±(i)ǫν±(i). The matrix elements are then

polynomials in the scalar products pi · pj, pi · ǫ(j) or ǫ(i) · ǫ(j).
In the spinor helicity formalism, the polarization vectors ǫµ± are bispinors of the form:

−ve helicity ǫ−(i) =
|i〉[qi|√
2 [i qi]

+ve helicity ǫ+(i) =
|i]〈q′i|√
2 〈i q′i〉

. (A.1)

Because of gauge invariance, one can choose arbitrary spinors |qi] and |q′i〉 for each

external line, subject only to the conditions [iqi] 6= 0, 〈i q′i〉 6= 0. The complete amplitude

is independent of the choice of the |qi], |q′i〉. Thus an individual term in the matrix

element, which comes from a specific Wick contraction, may have spurious poles when

the denominators of (A.1) vanish, but these poles must cancel in the full matrix element.
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Thus we reach the conclusion14 that the matrix element must be a polynomial in the

available spinor brackets 〈ij〉, [kl].

B Matrix elements of D
2
F

6

The basis matrix element a
(1)
sym = a6(A

123A4 + + − −)sym can be written as a sum of 12

terms, each of which is manifestly conjugation-odd:

a(1)
sym =

∑

p1,2∈P (3,4)

∑

m1,2∈P (5,6)

12
∑

I=1

BI (B.1)

with

B1 = +
3

2
〈1m1〉[2p1]〈1m2〉[2p2]〈2m1〉[1p1] 〈m2|1 − 2|p2] ,

B2 = −9

4
〈1m1〉2[2p1]

2〈2m2〉[1p2] 〈m2|1 − 2|p2] ,

B3 = −3

2
〈1m1〉[2p2]〈m1m2〉[p1p2]

{

〈1m1〉2[1p1][1m1] − [2p1]
2〈2m1〉〈2p1〉

}

,

B4 = −9

4
〈1m1〉[2p1]〈2m2〉[1p2]〈m1m2〉[p1p2]〈1|m1 − p1|2] ,

B5 = +
3

4
〈1m2〉[2p2]〈2m1〉[1p1]〈m1m2〉[p1p2]〈1|m1 − p1|2] ,

B6 = −15

16
〈m1m2〉2[p1p2]

2
{

〈1m1〉〈1m2〉[1m1][2m2] − [2p1][2p2]〈2p1〉〈1p2〉
}

, (B.2)

B7 = −21

16
〈m1m2〉2[p1p2]

2
{

〈1m1〉2[1m1][2m1] − [2p1]
2〈2p1〉〈1p1〉

}

,

B8 = −9

8
〈m1m2〉2[p1p2]

2
{

〈1m1〉〈2m2〉[2m1][2m2] − [2p1][1p2]〈1p1〉〈1p2〉
}

,

B9 = +
3

4
〈1m2〉2[2p2]

2〈2m1〉[1p1] 〈m1|p2 −m2|p1] ,

B10 = +
3

8
〈1m1〉[2p1]〈m1m2〉[p1p2]〈p1m2〉[m1p2] 〈m1|1 − 2|p1] ,

B11 = −3

4
〈m1m2〉2[p1p2]

2〈p1m1〉[m1p1] 〈1|m2 − p2|2] ,

B12 = +
3

8
〈1m1〉[2p1]〈m1m2〉[p1p2]

{

〈m2p2〉[p2m1]〈m1p1〉[p1p2]

−[p2m2]〈m2p1〉[p1m1]〈m1m2〉
}

.

The basis matrix element a
(2)
sym = a6(A

12A34 + + − −)sym can be written as a sum of

11 terms, each of which is manifestly conjugation-even:

a(2)
sym =

∑

s1,2∈P (1,2)

∑

p1,2∈P (3,4)

∑

m1,2∈P (5,6)

11
∑

I=1

CI (B.3)

14This argument is not valid for n = 3: special kinematics allow denominator terms, as is well known

from the 3-point Parke-Taylor formula.
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with

C1 = −7

4
〈s1m1〉[s1p1]〈s1m2〉[s1p2]〈s2m1〉[s2p1]〈s2m2〉[s2p2] ,

C2 = 〈s1m1〉[s1p1]〈s2m2〉[s2p2]
{

〈s1m2〉〈s2m1〉[s1p1][s2p2] + 〈s1m1〉〈s2m2〉[s1p2][s2p1]
}

,

C3 =
1

2
〈s1m1〉2〈s2m2〉2[s1p2]

2[s2p1]
2 ,

C4 = 3 〈m1m2〉[p1p2]〈s1m2〉[s1p2]〈s2m1〉[s2p1]
{

ss1m1
+ ss1p1

}

,

C5 =
7

4
〈m1m2〉2[p1p2]

2〈s1| p1 s2m1|s1] ,

C6 =
5

8
〈m1m2〉2[p1p2]

2
{

〈s1|m1 s2m2|s1] + 〈s1| p1 s2 p2|s1]
}

, (B.4)

C7 = −〈m1m2〉2[p1p2]
2 ss1m1

ss1p1
,

C8 = −1

4
〈m1m2〉2[p1p2]

2
{

ss1m1
ss1m2

+ ss1p1
ss1p2

}

,

C9 = −3

4
〈m1m2〉[p1p2]〈p1m2〉[m1p2]〈s1m1〉[s1p1]〈s2m1〉[s2p1] ,

C10 = −1

8
〈m1m2〉2[p1p2]

2〈p1|m1 p2m2|p1] ,

C11 =
1

4
〈m1m2〉2[p1p2]

2 sp1m1
sp2m2

.
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[43] F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory,

JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].

[44] M.B. Green, J.G. Russo and P. Vanhove, Low energy expansion of the four-particle genus-one

amplitude in type-II superstring theory, JHEP 02 (2008) 020 [arXiv:0801.0322] [SPIRES].

[45] M.B. Green, J.G. Russo and P. Vanhove, Modular properties of two-loop maximal supergravity

and connections with string theory, JHEP 07 (2008) 126 [arXiv:0807.0389] [SPIRES].

[46] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and

Open Strings, Nucl. Phys. B 269 (1986) 1 [SPIRES].

[47] G.’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Annales

Poincare Phys. Theor. A 20 (1974) 69 [SPIRES].

[48] M.T. Grisaru, P. van Nieuwenhuizen and J.A.M. Vermaseren, One Loop Renormalizability of

Pure Supergravity and of Maxwell-Einstein Theory in Extended Supergravity,

Phys. Rev. Lett. 37 (1976) 1662 [SPIRES].

[49] M.T. Grisaru, Two Loop Renormalizability of Supergravity, Phys. Lett. B 66 (1977) 75

[SPIRES].

– 27 –

http://dx.doi.org/10.1103/PhysRevD.80.105022
http://arxiv.org/abs/0903.4630
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0903.4630
http://dx.doi.org/10.1088/0264-9381/18/5/307
http://arxiv.org/abs/hep-th/0010167
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0010167
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B277,1
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B291,41
http://dx.doi.org/10.1103/PhysRevD.62.084010
http://arxiv.org/abs/hep-th/0002241
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0002241
http://arxiv.org/abs/0910.0180
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0910.0180
http://arxiv.org/abs/0808.2310
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.2310
http://dx.doi.org/10.1088/1126-6708/2008/09/063
http://arxiv.org/abs/0805.0757
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0805.0757
http://dx.doi.org/10.1103/PhysRevLett.38.527
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,38,527
http://dx.doi.org/10.1088/1126-6708/2009/02/050
http://arxiv.org/abs/0811.3417
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3417
http://dx.doi.org/10.1088/1126-6708/2005/12/003
http://arxiv.org/abs/hep-th/0508206
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0508206
http://dx.doi.org/10.1088/1126-6708/2009/04/009
http://arxiv.org/abs/0808.1720
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0808.1720
http://dx.doi.org/10.1088/1126-6708/2009/06/068
http://arxiv.org/abs/0811.3624
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.3624
http://dx.doi.org/10.1088/1126-6708/2004/09/006
http://arxiv.org/abs/hep-th/0403047
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0403047
http://dx.doi.org/10.1088/1126-6708/2008/02/020
http://arxiv.org/abs/0801.0322
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0801.0322
http://dx.doi.org/10.1088/1126-6708/2008/07/126
http://arxiv.org/abs/0807.0389
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.0389
http://dx.doi.org/10.1016/0550-3213(86)90362-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B269,1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=AHPAA,A20,69
http://dx.doi.org/10.1103/PhysRevLett.37.1662
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,37,1662
http://dx.doi.org/10.1016/0370-2693(77)90617-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B66,75


J
H
E
P
1
1
(
2
0
1
0
)
0
1
6

[50] P. van Nieuwenhuizen and C.C. Wu, On Integral Relations for Invariants Constructed from

Three Riemann Tensors and their Applications in Quantum Gravity,

J. Math. Phys. 18 (1977) 182 [SPIRES].

[51] R. Kallosh, On UV Finiteness of the Four Loop N = 8 Supergravity, JHEP 09 (2009) 116

[arXiv:0906.3495] [SPIRES].

[52] P. Vanhove, private communication.

[53] Z. Bern, L.J. Dixon, D.C. Dunbar, M. Perelstein and J.S. Rozowsky, On the relationship

between Yang-Mills theory and gravity and its implication for ultraviolet divergences,

Nucl. Phys. B 530 (1998) 401 [hep-th/9802162] [SPIRES].

[54] E. Cremmer and B. Julia, The N = 8 Supergravity Theory. 1. The Lagrangian,

Phys. Lett. B 80 (1978) 48 [SPIRES].

[55] E. Cremmer and B. Julia, The SO(8) Supergravity, Nucl. Phys. B 159 (1979) 141 [SPIRES].

[56] R. Kallosh and T. Kugo, The footprint of E7 in amplitudes of N = 8 supergravity,

JHEP 01 (2009) 072 [arXiv:0811.3414] [SPIRES].

[57] C. Cheung and D. O’Connell, Amplitudes and Spinor-Helicity in Six Dimensions,

JHEP 07 (2009) 075 [arXiv:0902.0981] [SPIRES].

[58] R. Boels, Covariant representation theory of the Poincaré algebra and some of its extensions,
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