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tries of asymptotically Anti de-Sitter (AdS4) black holes with magnetic fluxes that admit
embedding in 11d on Sasaki-Einstein (SE7) manifolds, which renders them of holographic
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allows us to establish the general form of the gravitational blocks in gauged 4d N = 2
supergravity with charged scalars and massive vectors. Holographically, our results provide
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Introduction and main results

The study of supersymmetric AdS solutions arising as brane constructions in string/M-

theory and the parallel progress in exact gauge theory calculations on curved manifolds

have greatly increased the detailed understanding of the holographic duality, [1]. Recent

research efforts have been focused on the possibility of branes wrapping orbifolds such

as the complex weighted projective space ¥ = WCP.

n—,n4’

or spindle, specified by two

co-prime positive integers ni. The first solutions of the type AdSs x 3 were analysed in



5d supergravity and interpreted in IIB theory as the near-horizon of D3 branes wrapping
the spindle, [2]. Soon after, accelerating black holes in AdSy were shown to exhibit spindle
horizons, corresponding to a full 11d solution of M2 branes wrapping spindles, [3]. Various
generalizations followed these initial constructions, such as [4—24] that were all focused on
spindles or related disks, [25-33], in truncations of the maximal supergravities admitting
AdS vacuum, and their field theory duals. See also [34, 35].

It is also natural to start looking at theories of less supersymmetry, allowing for more
general classes of internal manifolds. The lower-dimensional supergravity truncations in
these cases feature the addition of charged hypermultiplet scalars and massive vectors,
rendering the analysis of the BPS solutions technically more challenging. Still, the first
example of such solutions with magnetic fluxes appeared in [16] and they have been
generalized to other models in [21-23]. In the present work we focus on completing this
task in the 4d setting, considering the consistent truncations of [36] to N' = 2 supergravity
with AdS4 vacuum on homogeneous SE; spaces. More precisely, we focus on the cases
of the SE7 spaces @' and M 11! which in practice contain the spindle solutions for all
other homogeneous spaces in [36] as discussed below. The spindle black holes we discover
have vanishing electric charges and angular momentum and share some features with the
spherical BPS black holes in these models considered in [37], but they no longer allow for
an analytic form of the solution even for the near-horizon geometry. Our analysis is very
similar to [21], where spindle horizons were studied in the N = 2 AdS4xS” vacuum of 11d,
corresponding to a massive deformation of ABJM theory, [38], (mABJM). We also come
back to it in view of the gravitational blocks we discuss next. Note that we limit ourselves
to analysis of the near-horizon region and do not discuss the complete flow toward the
asymptotic AdS,; vacuum that is also only possible numerically, [37].! We expect that the
horizons we construct here are part of black hole geometries with non-vanishing acceleration
parameter as in [3].

A related recent development is the construction of gravitational blocks in [42], where
it was shown that the on-shell action and entropy of the BPS black holes can be recovered
from simpler building blocks defined by supergravity data. Although initially constructed
for various black holes with regular spherical horizons in AdS, and AdSs, [43-48], there
is evidence that the gravitational blocks can be used to derive the on-shell action of all
BPS backgrounds with fixed points, [49-53]. Consequently, this logic was successfully
applied to spindly constructions of various types and dimensions in [4, 10, 20, 22, 23, 54, 55].
In our present analysis we utilize the gravitational block picture in order to bring more
transparency into the structure of the solutions we discover, since we find that these basic
building blocks provide an analytic description of BPS equations that require numerical
integration. In the same time, our results allow us to uncover the gravitational block
construction for theories with charged hypermultiplet scalars and corresponding massive
vectors, which was so far only considered for simpler solutions in [56, 57].

The main logic behind constructing the gravitational blocks in presence of abelian
charged hypermultiplets is in its essence rather straightforward. In the language of 4d

!See also [39] for uplifts and [40, 41] for numeric solutions of thermal black holes in these theories.



N = 2 gauged supergravity, the theory in the presence of ny vector multiplets and ng
hypermultiplets is defined by the respective scalar manifolds in the two sectors and the
choice of their symmetries (in the abelian case only of the hypermultiplet scalar manifold)
to be gauged. There are (ny + 1) U(1) fundamental gauge fields Af, I = 0,1,..ny that
can be used to gauge the isometries (in a priori arbitrary linear combinations) and thus
charge the corresponding scalars. Via supersymmetry, it turns out that this process leads to
gauging the R-symmetry of the theory, i.e. the gravitini also become charged under another
particular linear combination of the U(1) vectors. One then has a number of “massive”
vectors (labeled here by index «/) that appear in scalar covariant derivatives, that we can
denote generally? as A” = (,, 1AL and the R-symmetry vector A% = £;Al, where the
coefficients (, s and {; are in general functions of the hypermultiplet scalars. The BPS
conditions set the corresponding scalars to particular constants (in a model-dependent
way that we later discuss explicitly) such that we can consider ¢, ; and & to be a set of
constants that are uniquely fixed by the details of the hypermultiplet sector. On the other
hand, the vector multiplet scalar manifold is defined by the so-called prepotential, F(X7),
a homogeneous function of degree 2 of the sections X! that determine the complex scalars
in a unique way.

As shown in [4, 10], the gravitational block construction of the on-shell action of black
holes with spindle horizons (defined by the co-prime integers n_,n, ) is simply given by?

1
ir  + 1 Iy I I
el (F¢! +enl) = oF(p! —enl)) | (1.1)

I7(p,e;ne) =
where Gx‘}) the Newton constant and n’ the respective magnetic fluxes through the spindle.
Supersymmetry further dictates that

ny +on_
nflogml = 41— = (¢ml =0, (1.2)
nyn_—
where o = +1 reflects the Killing spinor orientation at the two poles of the spindle and is
called twist and anti-twist, respectively. The black hole entropy function is then given as a

Legendre transform of the on-shell action,

S%(q, J, 0, 6n1) = (' ar+eJ) = I7(p, ;ne) + MErp" = 527 € = 2) + p* Car’

(1.3)
where, in order to recover the entropy in terms of the conserved charges, one needs to

[
26

extremize the above functional with respect to the fugacities ¢! and e conjugate respectively
to the conserved electric charges q; and angular momentum J,

Sgn—shell(Q7 ‘];ni) = SU(QD J, SBI’ € nﬂ:) ’ 8¢1,ESU’@I,€ = 8)\##150‘@[75 =0. (1‘4)

ZNote that here we only discuss the so-called electric gauging, i.e. we only use the fundamental gauge fields
and not their duals. The latter correspond to magnetic gauging and are generally allowed in supergravity. It
turns out all the models we consider here allow for a symplectic frame where the gauging can be purely
electric, see [37]. We give more comments about the general dyonic gauging in the discussion section.

3See section 6 for the definition of a single gravitational block and its relation with the holographic free
energy on the three-sphere.



Note that this is a constrained extremization due to the appearance of the Lagrange
multipliers A, u®. Apart from matching the on-shell Bekestein-Hawking entropy of the
solutions we discover, we also show that the values of the vector multiplet scalars at the
poles of the spindle are precisely related to the extremal values @’ and €.* The novel feature
of hypermultiplet gauging is that each massive multiplet contributes with an extra constraint
(Ca, 1ol = 0) effectively enforcing the decrease of the number of flavour symmetries, i.e.
unconstrained U(1) vectors. These constraints can be understood from the supersymmetry-
preserving Higgs mechanism that takes place at the poles of the spindle, [58, 59].

Finally, let us mention that the solutions we discuss here are holographically dual to
3d gauge theories, see [60, 61], on S! x . Recently their partition functions, called spindle
indices, were defined for both the twist and the anti-twist choices above, o = +1, [62]. We
expect further work to reveal the large N expressions of the dual theories we consider here,
and so the present results should be immediately comparable similarly to the spherical
black holes, [63, 64]. We should mention that the gravitational block description allows
for a general discussion of both signs for ¢ but so far we have only found fully consistent
solutions only in the anti-twist class. We also stress that the A/ = 2 supergravity language
used above does not distinguish between different types of abelian vector multiplets, which
can be considered as flavour symmetries in addition to the R-symmetry. However, from a
higher-dimensional point of view and holographic standpoint, these flavour symmetries can
be divided into two main classes, called mesonic and baryonic following the definition in [65].
We are going to see that our analysis features mesonic symmetries in the mABJM case,
which are immediately translatable in field theory, while the Q11! and M 11! cases exhibit
only baryonic symmetries which are at present not properly understood holographically.”
These features are entirely due to the available four-dimensional supergravity truncations.
An alternative possibility, discussed towards the end, was put forward in [54, 55, 65, 67-69]
that consider the gravitational blocks directly in 10/11d.

The rest of this paper is organized as follows. In section 2 (and more technically in
appendix A) we elaborate on the supergravity theory. In section 3 we write down the
ansatz for background solutions and the corresponding BPS equations (with more details
in appendix B). In section 4 we discuss the explicit solutions, providing analytic results
in the minimal truncation and numeric data for the more general solutions. In section 5

L1 which relates straightforwardly to the previous

we discuss more briefly the case of M!
solutions. In section 6, which can also be read in isolation from the rest, we discuss in detail
the construction of gravitational blocks and their match with the explicit solutions. We
finish the main body of this work with a list of open questions in section 7. In addition,
for the benefit of the interested reader, we have included a complementary Mathematica
notebook with the present submission, containing details on the numerical solutions and
gravitational block matching and allowing one to change explicitly the various solution

parameters and magnetic fluxes.

“Interestingly, the limit n— = n4 = 1 is smooth and recovers the results for spherical horizons, [42],
where again both the entropy and the scalars at the horizon can be recovered via extremization.
®See e.g. section 4.4 of [66] for a concise and clear discussion on this issue.



2 The supergravity model

We consider gauged N = 2 supergravity obtained from the dimensional reduction of eleven-
dimensional supergravity on Q"' manifold with 3 vector multiplets and a prepotential
given by

F=-2iVX0X1X2X3 (2.1)

and further details on the hypermultiplet gauging presented in appendix A. For the purposes
of finding spindle horizons with magnetic fluxes only, in the appendix we perform a
further truncation setting the axionic part of the vector multiplet scalars and two of the
hypermultiplet scalars to zero. The remaining bosonic field content we consider here is the
metric, four U(1) gauge fields, A’, I = 0,...,3, three real scalars from the vector multiplets,
u;, 1 = 1,2,3 and two real scalars from the so-called universal hypermultiplet, (¢,c). We

have mostly plus signature. The bosonic Lagrangian of the truncation is

1 3 1
-1 4 2
e L = 5R — ;@Lui@“ui — 0,00" ¢ — 1€ ®D,oDV o — g*V
o [62u1+2u2+21L3 F'L?VFO,LLI/ + €2u1 —2ug—2u3 F;VFI,U,Z/
+ e—2u1+2u2—2u3F5VF2uu 4 €—2u1—2u2+2ugF3VF3uy} ’ (22)

where

Do =do + g (egA” — 24" — 247 - 24%) , (2.3)

and ey > 0 is an arbitrary Freund-Rubin parameter. The scalar potential is given by

= () () -

where the superpotential is
1 —U1—UQ—U: 2¢ 20 ( 2u1+2u 2uo+2us 2uz+2u
W:Ze 17Uz 3(8—606 + 2e <e 1TaU2 | goU2TAUs | plU3 1)) (2.5)

The R-symmetry vector field, the massive vector field, and the two Betti vector fields are
given by, respectively,

AR = 4/2A4°,

A™ =2 (eoAO 94l — 242 2A3) ,

AB = 43 (AL 247 4 A7)

AB2 = 41/3 (A1 - A7) . (2.6)



We present the supersymmetry variations of fermionic fields. The gravitino, gaugino
and hyperino variations reduce to, respectively,®

2V, — By — Wy, + 4iH,uA" [e = 0,
{ayum“ + g0y, W + 0y, Hu,/y‘“’} e=0,

|:8#¢’Yu + 98¢W + ;8¢Bu’yu:| e=0, (27)

where we define

HMV _ 1 (eul+ug+u3FM—V0 + eu1—u2—u3FM—V1 + €_u1+u2_u3Fl;/2 + e_ul_u2+u3Fl;/3> ’
22
1
By = —4v/2g A% + 562¢Dﬂa. (2.8)

The scalar potential has a supersymmetric vacuum at, [37],

3/4
2u; _ €0 —2¢ _ €0 L :1<60) 2.9
e 5 G adsi = 5 | : (2.9)
whereas the scalar o is a flat direction and gets eaten by the massive vector A™ as usual
in the Higgs mechanism, [58]. The vacuum uplifts to the AdS; x Q11! solution of eleven-
dimensional supergravity and is dual to the flavored ABJM theories, [60, 61]. The radius of
the AdSy is given by

2 _
Liags, = TV, (2.10)

where V, is the value of the scalar potential at the vacuum.”

The consistent truncation of eleven-dimensional supergravity on M '!! manifold readily

71?]‘

follows from the truncation on Q! manifold by identifying the scalar and gauge fields by

uz =uy, A3 =A% (2.11)

Note that there is one Betti vector in the truncation from (2.6), corresponding to a baryonic
symmetry holographically. The AdS; x M1
is dual to 3d SCFTs studied in [70]. By setting all gauge fields and corresponding scalars

solution of eleven-dimensional supergravity

equal, the truncation further reduces to minimal gauged supergravity, see appendix A. This
is also the relevant truncation for all other homogeneous SE7 manifolds in [36] as they only
exhibit massive vectors and no additional baryonic symmetries.

From the AdS/CFT correspondence, the free energy of pure AdS, with an asymptotic

boundary of S? is given by,®

L2
Fos = —AdSs (2.12)
26

SHere we directly use Dirac spinors €, which can be constructed from the Weyl spinors €4 in the standard
N = 2 supergravity conventions, see appendix A.

"Note that in (2.9) and, as indicated, in some of the latter sections we fix g = 1 for simplicity.

8We also show how to derive this formula from the gravitational block construction in section 6.



where G%) is the four-dimensional Newton’s constant. For the solutions of AdSs X Y where
Y is a seven-dimensional Einstein space with N units of fluxes, the holographic free energy
is, [71],

276

Fgs = N3/, |
5° 27vol(Y)’

(2.13)

where the metric on Y is normalized to be R;; = 6g;;. Thus we obtain the holographic free
energy of ABJM and 3d SCFTs dual to AdSy x QY and AdS,; x M111| respectively,

4
FABIM — %fo/?, vol(S7) = % ;
1, 4 !
R T a@uiz) =
. 16 9’
]::é\/gll 17, _ Wgnl/QNg/Q ’ VOl(Ml’l’l/Zn) — 127;n , (214)

where the free energy of flavored ABJM dual to AdS; x Q%! was calculated in [72, 73]
and for 3d SCFTs dual to AdS,; x MYt in [74, 75].

3 AdS, ansatz

This section, as well as the next one, follows the main outline and logic of [16] and [21] for
a simpler comparison.

We first consider the metric and the gauge fields,

ds® = e?Vdsig, + f2dy* + h*d2?,
Al = aldz, (3.1)

where AdSs is a unit radius metric on AdS, and V, f, h, and a!, I =0,...,3, as well as
the scalar fields ¢, u; are functions of y-coordinate only. In order to avoid partial differential
equations from the equations of motion for the gauge fields, the scalar field o is given by
o = 0z where ¢ is constant. Hence, we find

B,dx* = B.dz, (3.2)

where B, is again a function of the y-coordinate only.

We introduce an orthonormal frame,
e*=e’e", e? = fdy, e3 = hdz, (3.3)

where € is an orthonormal frame on dsidSQ. In the frame coordinates, the field strengths
are given by

Ely= 0 (o) (3.4)



From the gauge field equations we find the following integrals of motion,

1
2V 2u1—2uz—2 1 —2u1+2u2—2 2\ _
_ﬁe (6 ul—2uz U3F23 _ e 2u1t2u2 U3F23) — 5F1 ,
1 _ _ o —
_ \/iew (e 2u1+2u2 2u3F223 _ e 2w 2u2+2u3F233) = En,,
1 9y — 9y
_ﬁeQV (6 2u1 2u2+2uaF233 _ Q2ui—2up 2u3F213) — EFB ’ (3‘5)
as well as
1 () o —
_ \/§€2V 62u1+2u2+2u3 F203 + 762111 2uo 2u3F213 — gRl ,
1 e _ _
o €2V €2u1+2u2+2u3F203 1+ Ze 2u1+2us ZU3F223 — ((:R2 ,
V2 2
1 €0 _9ui—
_EGQV 62u1+2u2+2u3F203 + 56 2uq 2u2+2u3F233 — 5R3 , (36)
with

!/
(222t gl ) = Voge?V fh'e* D.o, (3.7)

where £f, and Eg, are constant. Among the six integrals of motion in (3.5) and (3.6), three
of them are independent.

3.1 BPS equations

We employ the gamma matrix decomposition

’Ym:Fm®0-37 722[2@0.17 732[2@02, (3-8)
where I'"™ are two-dimensional gamma matrices and ¢* the Pauli matrices. The spinors are
given by

E=1YRX. (3.9)
The two-dimensional spinor satisfies
1
Dy = §ml“mw, (3.10)

where k = £1 fixes the chirality.

The resulting BPS equations are discussed in detail in appendix B, where the angular
parameter £ is used to parametrize the Killing spinor projection that is required by the
ansatz, see (B.6)—(B.7). For the general case of sin{ # 0, the complete BPS equations are
obtained in the appendix and are given by

fE =2gWeosé + ke,
W' = gWsin€,
fﬁlu; = —g0,,Wsin¢,

-1, _ _96¢W
Joe = sin¢ ’
fl};; = sirllf (Re—v cos& + gW (1 + cos? f) ) ) (3.11)



with two constraints,
(s — B.)siné = —2gWhcosé — khe™ ",
gOgW cos& = %8¢Bz sinéh L. (3.12)
The field strengths of gauge fields are given by

1
Ou; Haz = —zgﬁuiWcosf,
1 1
Hys = —gW cos& — mev. (3.13)

These BPS equations are consistent with the equations of motion from the Lagrangian
in (2.2) given in appendix A.

3.2 Integrals of motion

There is an integral of the BPS equations,
he™V = ksin€, (3.14)

where k is a constant. Thus at the poles of the spindle solutions at h = 0, we have sin§ = 0.
From (3.11) and (3.12) we find

¢=—k"'(s—B.)(c7f), (3.15)
with two constraints in (3.12) to be
(s—B,) = —k{ZgWeV cos§ + Iﬁ} ,

1
gOgW cos§ = ik_le_vﬁquz. (3.16)

From the field strengths in (3.13), we find expressions of the integrals of motion to be
2— €0 HeVQQUI e U1 —u2—u3 ,

4
2 _460 HeveQUQ e U1 —uz—u3 ,

2 _460 ke e2us et Tu2TUs (3.17)

Er, =€V {496‘/ cos& + ke cosh (ug + u?,)} —

Er, = €Y {496‘/ cos§ + ke'? cosh (ug + ul)} -

Ery = eV {4gev cos & + ke cosh (u; + ug)} —
and

Er, = ke¥ e sinh (u — uz)

Ep, = ke’ e sinh (up — u3) |

Er, = eV e sinh (uz — uy) . (3.18)

9Note that accidentally, when ep = 2, they reduce to the corresponding expressions from the mass-deformed
ABJM in [21].



3.3 Boundary conditions for spindle solutions

We can choose the conformal gauge,

f=—e", (3.19)
in order to have the metric of the form,
ds® = €2V dsQAd52 +ds%| | (3.20)
where the metric on a spindle, X is
ds%, = dy* + k*sin® £d2* . (3.21)

The spindle solutions have two poles at y = yn s with deficit angles of 27 (1 — L) We

nN,s
set the period of the azimuthal angle, z, to be

Az =2r. (3.22)

3.3.1 Analysis of the BPS equations

We analyze the BPS equations for the spindle solutions. At the poles, y = yn,g, as
ksiné — 0, we obtain cos{ — +1 if k # 0. Hence, we have cosén,g = (—1)'V5 with
tns € {0,1}. We select yy < ys and y € [yn,ys|. We make an assumption that the
deficit angles at the poles are 27 (1 — ﬁ) with ny ¢ > 1. Then we require the metric to

have | (ksin€)'|ns = ——. From the symmetry of BPS equations in (B.32) and (3.14), we

nN,s "

further choose
h <0, & ksing <0. (3.23)

Then we obtain (ksin¢)" |y < 0 and (ksin&)’|s > 0. Thus, we impose

(ksin¢)' | _ (D In=0,lg=1 3.24
N,S — nNs ) N = Uyisg=1. ( )

There are two distinct classes of spindle solutions, the twist and the anti-twist
classes, [11]. The spinors are of the same chirality at the poles for the twist solutions
and opposite chiralities for the anti-twist solutions,

cosé|ys = (—1)s; Twist: (tn,ts) =(1,1) or (0,0),
Anti-Twist:  (tn,ts) = (1,0) or (0,1). (3.25)
As we have (ksin¢) = +cos& (s — B,) from the BPS equation in (3.15), we find

1
(S _ Bz) |N,S — WS(_UZN,S-HN,S-H ] (3.26)

We consider the flux quantization for R-symmetry flux. From (2.8) we have —gFf =
dB+d (%e%’Da). At the poles, as ¢ = 0 unless Do = 0, the second term on the right hand

~10 -



side of F does not contribute to the flux quantization. Then, we find the R-symmetry
flux quantized to be

! ! nx(=1)'S + ng(~1)"
— | gFR = 7/ —dB) = : 2
2 /Eg 21 Jx ( ) nNNg (3.27)

We have 0,B = ¢?**D,o. Once again, as ¢ = 0 unless Do = 0 at the poles, we find
0pB. = 0 at the poles. From the constraint in (3.16) we also find 9y = 0 at the poles.
Hence, we have

a(sz’N,S = 8¢W|N7S =0. (3.28)

We further assume that the hypermultiplet scalars, (¢, o), are non-vanishing at the
poles and we find

(ﬁ‘N,(b‘S#O, = DZU‘NZDZU‘S:(). (3.29)
Thus, we find that the flux charging ¢ should vanish,
1 0 1 2 3\ _ ys _
%/E\@g (eoF” = 2F" = 2F? — 2F%) = (Do) |15, = 0. (3.30)
From (3.29) and the second equation in (3.28) we obtain

-2 -2 —2ug €0 _2y;—2us—2u: — U1 —ug —us
(e Ul f g7 oU2 78 . —m M1 Tou2 u3>‘ =0, = Wysg=2e"""""|yg.
N,S

2
(3.31)

)

We introduce quantities,
M(l) = —29€Ve_u1—u2—u3 , M(Q) = —ZM(I) + M(Ql) COS&, (332)

where M1y < 0. We eliminate V' by the first equation in (3.16) and eliminate cos § by (3.25).
Then the integrals of motion are given by

— €o K 2u; 1 2u1+2us+2u
gRi = _EQM(UG + ;M(Q)e 1 2 3 (333)
where we have

1 1

M = (-1 tN.S lN,S
&y 2( ) 2kny s ’

1 1 3K

Moy = g™ g (U™ — g S D (334

Lastly, we eliminate one of the scalar fields, w;, say us, by the condition on the left hand
side of (3.31). Thus we have three independent integrals of motion in terms of two scalar
fields, u; and us. As the integrals of motion are constant and have identical values at the
poles, we find three algebraic constraints with four unknowns, (u1y,u1s, uan, uss),

Er, (uin,uaN) = Er, (15, u2s) ,
Er, (u1N, u2N) = ER, (15, u2s) ,
Ery (uiN, uaN) = ER, (U5, u2s) - (3.35)

In the next subsection, we find additional constraints to fix all the values of the fields at
the poles.

- 11 -



3.3.2 Fluxes

In appendix B, the field strengths are expressed in terms of the scalar fields, metric functions,
the angle, £, and constant, k,

/ !/
Fy. = (d') = (70}, (3.36)
where we define
1
70 = \ﬁgk;ev cosEe M1TUZTUS
1
M = ﬁgk‘ev cos Eetatuztus
1
Z?) = —gke cos fett U2 tus
737 £
1
I0) = —_gkeY cos et U3 3.37
VoL 3 (3.37)
The fluxes are solely determined by the data at the poles,
24 1

= FI = 7,15, . 3.38
B 27r/29 oTil3, (3.38)

From (2.6) we define R-symmetry, massive vector and two Betti vector fluxes, respec-
tively,

Tg|n.s = 4210 |y g,

Iomlns = V2 (eOZ(O) — 27 — 27 _ 2I(S)> IN.S s

T, |ns = 4V2 (T = 27 + TO) |y g,

T, |ns = 4V2 (T0 = 229) |y . (3.39)
Employing (3.37) and (3.31), we obtain

9Ir|n,s = 4V2970 |y g
= 4gke" cos e U2 IN,s

= —2kMp(-1)"™sH |y g, (3.40)

0Tmln.s = V29 (eoT® — 220 — 270 — 27))

N,S
— gkev COSf (eoe—m—w—u:s _ 2€_u1+u2+u3 _ 2€U1—U2+U3 _ Qem-i-w—u:a) ’N,S

— gkev COS§6U1+U2+U3 (60672u172u272'ug _ 2672“1 _ 267211,2 o 2672’M3> ‘N,S — 07

(3.41)

where we employed (3.31). Then we recover the R-symmetry flux quantization, (3.27), and
the vanishing of the flux of massive vector field, (3.30), respectively,
ny(=1)% +ng(—1)~
9Ir|} = 1) (=1) ,
nnns
9Tl =0. (3.42)
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The fluxes of two Betti vector fields are

B
B _ gIs, v = 4V2g (I(l) _97(2) +I(3)> 15
nnns
= 4gkeV cos & (e—u1+u2+u3 — Qeur—uztuz | eu1+u2—u3) ’]5\‘[

= 2k My (—1)!s (62“2”“3 _ 9ePurt2us | 62“1”“2) 1%, (3.43)

P, _ s _ (1) 3)\ S
= g7, =429 (I -1
nNnNg 92 1% fg( )|N

= dgkeY cos¢ (e_u1+u2+u3 _ eU1+U2—U3) K
S
N

= 2 My)(—1)Ns (2t — gZmt2ua) |3 (3.44)

where pp, and pg, are integers. The expressions of k and one of the scalar fields, u;, which
was not fixed in (3.35) is determined by these two constraints.

Summary of the constraints to determine all the boundary conditions. We
summarize the constraints obtained to determine all the boundary conditions. By solving
seven associated equations, the left hand side of (3.31), (3.35), (3.43), and (3.44), we can
determine the values of the scalar fields, w1, usg, us, at the north and south poles and also
the constant, £, in terms of ny g, tn,s, PB,, and pg,. Then the values of the metric function,
V, at the poles are determined from the definition of My in (3.32). This fixes all the
boundary conditions except the hyper scalar field, ¢, which will be chosen when constructing
the solutions explicitly. However, the constraint equations are quite complicated and it
appears to be not easy to solve them.

Even though we are not able to solve for the boundary conditions in terms of ny g,
tn.s, pB,, and pp, analytically, if we choose numerical values of ny s, tns, ps,, and pg,,
the constraints can be solved to determine all the boundary conditions. For instance, in the
anti-twist class, for the choice of

nN:47 nS:L pBlzlu p32:27
gzla ’{:_‘_1’ 60:27 (345)

we find the boundary conditions to be

e?MIN ~ (.174581 , e?"1s ~ 0.0768503,
e?U2N 0 (0.418164, €225 5 (.411234,
e?U3N 2~ 1.5639, €235~ 1.98408,
k ~ —0.683914. (3.46)

In this way, without finding analytic expression of the Bekenstein-Hawking entropy, we can
determine numerical value for each choice of nyg, tn s, ps,, and pg,. Furthermore, we
will be able to construct the solutions explicitly numerically, see below and in the attached
Mathematica file.
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3.3.3 The Bekenstein-Hawking entropy

The AdSs x 3 solution would be the horizon of a presumed black hole which asymptotes to
the AdS; x Q11! vacuum of M-theory. We calculate the Bekenstein-Hawking entropy of
the presumed black hole solution.

From the AdS/CFT dictionary, (2.12) and (2.14), the four-dimensional Newton’s

constant is 3/
1 1
— = ( 6 ) 16 norz, (3.47)

0¥ \eo/ 33
Then the two-dimensional Newton’s constant is given by
—1 4 —1 Ys
(6R) =(6V) a: / \fhldy . (3.48)
YN
Employing the BPS equations, we find
k
fh=ke" fsin¢ = +E (eQV cos 5)/ . (3.49)

Thus the Bekenstein-hawking entropy is solely expressed by the data at the poles,
1 6\%? 16 k s
SBH = —57 = () —WN3/292 (—> [62‘/ COSE]
el €o 3v3 K N
( 6 )3/2 16N3/2k
€ 3v/3k

« <411M(21) s e2ust2uzs+2uss (_1)ts _ iM(21)|N 62u1N+2U2N+2u3N(_1)tN) ., (3.50)

€0

where we expressed the Bekenstein-Hawking entropy in terms of M.

As we can determine the numerical values of the boundary conditions for each choice
of nns, tn,s, PB,, and pg,, we can find the numerical value of the Bekenstein-Hawking
entropy as well. For instance, for the choice of (3.45), the Bekenstein-Hawking entropy is
given by Spn ~ 0.127521N3/2.

Furthermore, when there is no flavor charges, pg, = pp, = 0, we perform a non-trivial
check that the numerical value of the Bekenstein-Hawking entropy precisely matches the
value obtained from the formula given in (4.7) for the solutions from minimal gauged super-
gravity.

4 Solving the BPS equations

4.1 Analytic solutions for minimal gauged supergravity

In minimal gauged supergravity associated with the AdSy x Q%! vacuum, utilizing the
class of AdS, x ¥ solutions in [3], we find solutions in the anti-twist class to the BPS
equations in (3.11), (3.12) and (3.13). We set ey = 6 as in appendix A.3. The scalar fields
take the value at the AdSy x QY1 vacuum,

3/4
qu _ [0 —26 _ €0 I :1<60> 41
e 5 e R adsi = 5 | - (4.1)
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The metric and the gauge field are given by

Ly, qa(y) -
2
ds = 27‘92 l 4 AdSQ (y) + 700d2’ 5

A0:A1:A2:A3:—{CM (1—) } (4.2)

29
and we have
2y —
siné = — qu) , cos{ = ﬁ#. (4.3)
Yy Yy

Note that for the overall factor in the metric, we have Lid&l = ﬁ for the AdS, x Q11!
vacuum from (2.9). The quartic function is given by

q(y) = y* — 4y* + day — a®, (4.4)

and the constants are

n2 —n,

n% + nk

\/n%—l—n?\, (45)

V2ngnn

We set ng > ny. For the two middle roots of q(y), v € [yn,ys], we find

a =
co =

yn =—1++V1+a, ys=1—+v1—-a. (4.6)

The Bekenstein-Hawking entropy is calculated to give

\/Z/nS—FnN nS—i—nN 7TLAdS

SBH

ngNN 4G( )
\/§ n5+nN nS+”N 1 QL1
v SFQ (4.7)
N 2

where we employed (2.9) and (2.12) and .7-"Q = ?ji’rfN?’/Q (2.14), is the free energy of
flavored ABJM theory.

4.2 Numerical solutions for pg,,pn, # 0

In section 3.3, although we were not able to find the analytic expressions of the boundary
conditions, we were able to determine the numerical values of the boundary conditions for
each choice of ny g, tn,s, PB,, and pp,. Employing these results for the boundary conditions,
we can numerically construct AdS; x ¥ solutions in the anti-twist class by solving the
BPS equations.!'?

A5 we do not know the analytic expressions of the boundary conditions, we could not exclude the
existence of solutions in the twist class. However, we were not able to find any boundary conditions for
numerical solutions in the twist class. In fact, we found solutions with the Bekenstein-Hawking entropy
matching the result of gravitational block calculations. However, the scalar fields of the solutions were
not real.
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Figure 1. A representative AdSs x ¥ x Qb1 solution in the anti-twist class for ny =4, ng =1,
ps, = 1 and pp, = 2 in the range of y = [yn,ys] =~ [0,3.96758]. The metric functions, e (Blue)
and h (Orange), are on the left. The scalar fields, u; (Blue), ug (Orange), uz (Green), and ¢ (Red)
are on the right. Note that h vanishes at the poles.

In order to solve the BPS equations numerically, we start the integration at y = yn
and we choose yy = 0. At the poles we have sin{ = 0. We scan over the initial value of
¢ at y = yn in search of a solution for which we have sin¢ = 0 in a finite range, i.e., at
y = yg. If we find compact spindle solution, our boundary conditions guarantee the fluxes
to be properly quantized.

We numerically perform the Bekenstein-Hawking entropy integral in section 3.3.3 and
the result matches the Bekenstein-Hawking entropy in (3.50) with the numerical accuracy
of order 1073. We present a representative solution in figure 1 for the choice in (3.45) in
the range of y = [yn,ys] =~ [0,3.96758]. The scalar field, ¢, takes the values, ¢|n =~ 0.5025
and ¢|g ~ 0.223216, at the poles. Note that h vanishes at the poles.

There appears to be constraints on the parameter space of ny s, tn.s, p5,, and pg,.
However, without the analytic expressions of the boundary conditions, it is not easy to
specify the constraints.

5 Spindle black holes in AdS, x M1

L1 In this section,

So far we have constructed the spindle black hole solutions in AdSy x Q'
we consider the spindle black holes in AdS; x MbU1L,

The consistent truncation of eleven-dimensional supergravity on M1 manifold is
obtained from the truncation on Q%! manifold by identifying the scalar and gauge fields
by

_ 3 _ 42
u3z = u2, A°=A s (5.1)

and all the action, equations of motion, BPS equations, and constraints for the boundary
conditions follow from this accordingly. Note that there is one Betti vector in the truncation
from (2.6).

We present a representative solution numerically. For the choice of the parameters,

nN:47 nS:17 p31:17
gzla ’{:_‘_17 60:2a (52)
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Figure 2. A representative AdSy x ¥ x M1 solution in the anti-twist class for ny = 4, ng = 1,
pg, = 1 in the range of y = [yn, ys] = [0,4.06741]. The metric functions, ¥ (Blue) and h (Orange),
are on the left. The scalar fields, u; (Blue), uz (Orange), and ¢ (Green) are on the right. Note that
h vanishes at the poles.

we find the boundary conditions to be

2N 2 (0.49043 , e?"1s ~~ (.436592,
e?U2N x5 ().774299 e?U25 ~ (.926937 ,
k ~ —0.725009 . (5.3)

We present numerical solutions in figure 2. The scalar field, ¢, takes the values, ¢|n ~ 0.561
and ¢|g ~ 0.575978, at the poles. Due to (2.12) and (2.14), the formula for Bekenstein-
Hawking entropy in (3.50) should be multiplied by 4/3. Then the Bekenstein-Hawking
entropy is calculated from (3.50) and also from numerically integrating the numerical
solutions and they match precisely with the numerical accuracy of order 1072, For the
choice of (5.2), the Bekenstein-Hawking entropy is given by Spy ~ 0.319973N?/2,

6 Gravitational blocks

In this section, we briefly introduce the entropy functions from gluing gravitational blocks and
show that extremization of entropy function correctly reproduces the Bekenstein-Hawking
entropy and the scalar values at the poles of the spindle black holes we constructed.
The main logic was already outlined in the introduction, see (1.1)—(1.4). Here we are
going to extend the discussion by starting with a single gravitational block, defined in [42],!!
im F(XxT)

X1 e)= — 1

where F' is the prepotential defining the vector multiplet scalar manifold, [42], and € can be
understood geometrically as an 2-deformation parameter at each fixed point of the canonical
isometry on a given background, [49, 50]. The on-shell action of a 4d BPS background My

"Here we use slightly different conventions and notations for the fugacities ¢, €.
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with positive Euler number xg(My4) > 0 corresponding to the number of fixed points, is
then given by the general gluing formula

xE(Ma)
]:8M4 (907 6) = Z O(s) B(X(Is)a 6(5)) ) (62)

s=1

where the corresponding identifications of €, X'(¢!,€), and the relative sign o at each
different fixed point s, together with one overall constraint on the fugacities coming from
supersymmetry, are known as a gluing rule and depend on the particular background.

Apart from the spindle rules that we come to shortly, for illustrative and notational
purposes let us describe the simplest case of Euclidean AdS,; with round S boundary
exhibiting a single fixed point. The corresponding on-shell action Fgs is precisely equal to
the free energy of the dual theories on the round three-sphere discussed in section 2. Using
the gluing rule in [50],'? we find

Fos(p) = B(XT =2p e =1) = —= F(¢'), (6.3)

under the constraint £;¢! = 2, where in the latter equality we used the homogeneity of
the prepotential.!> The extremization of the above functional with respect to ¢! is the
supergravity equivalent of the so-called F-extremization, [73, 76], and the on-shell value
matches with (2.12) as we show below for the models of interest.

Unlike the simple example above, black holes with spindle horizons correspond to
xe = 2 and therefore have two fixed points that are situated precisely at the horizon that we
have discussed, at the centre of the AdSs factor and the two conical singularities (or poles) of
3. The gluing rules in this case feature the topological numbers of the spindle, as well as the
magnetic fluxes of the particular background, as discussed in [4, 10]. We have implemented
this procedure to arrive at formulae (1.1)—(1.4), where we used the notation 17 := Fg, .,
the relative sign between the two blocks reflecting the way supersymmetry is preserved, [11].
In absence of electric charges and angular momentum, the Bekenstein-Hawking entropy is
then obtained by extremizing the off-shell entropy function,

S (p,eny,n_) = _SCZEZ‘)e (F (goI —i—enI) —oF (apI — enI) ) . (6.4)
N

Notice again that we have ¢ = +1 and o = —1 for twist and anti-twist solutions, respec-
tively. 14 The BPS condition on the U(1) R-symmetry magnetic flux through the spindle is
given by

1 _
nR:—/dARzinJr—an : (6.5)
2r Jx nin_

12This rule was proven to hold off-shell in the presence of vector multiplets and arbitrary higher-derivative
terms in [51] including supersymmetry-preserving squashing of the sphere.

13A5s discussed in the introduction and implemented below, each massive vector will add more constraints.

1411 this section we deal with o = +1. This should be not confused with the hypermultiplet scalar field,
o, in the previous sections.

~ 18 —



where ny and n_ are the orbifold numbers of spindle. The variables ¢! via the corresponding
R-symmetry direction satisfy the corresponding BPS constraint,

R ny —on—

® e=2. (6.6)

nyn—

The analogous BPS constraints for the massive vector fluxes n” and corresponding variables

P
extremizations of (6.3) and (6.4) for the models of interest, starting from minimal super-

™ instead set both of them to zero. We move to implement explicitly the constrained

gravity and the STU model dual to ABJM theory and moving to the novel cases with
massive vectors of mABJM and Q%! and ML,

6.1 The STU model and minimal gauged supergravity

Let us illustrate how the gravitational block procedure works in the simplest possible case.
We take the example of the pure gauged STU model (without any hypermultiplets and
therefore no massive vectors) dual to ABJM theory, the prepotential is given by

F=—2iVXOX1X2X3 (6.7)

and the constant gauging parameters'® &y = &1 = & = &3 = 1 define the R-symmetry vector
field
At = A% ¢ AL 4 A% 4 A3, (6.8)

This choice of normalization for the Fayet-Iliopoulos parameters £; sets the AdSy scale of
this model to Laqs, = 1/v/2.
Let us first evaluate the three-sphere free energy in this model, (6.3), which gives

™
FgPM(e) = —y V00l 9?e?, (6.9)

Gy

under the constraint Z?:o @l = 2. Tt is easy to extremize the above formula, finding
simply @' = 1/2 for all I, which corresponds to the superconformal point (with no massive
deformations) of ABJM theory. We therefore find

™ @ L2AdS4

ABJM .__ ABJM/ -\ _ —

as anticipated in (2.12). This in turn relates to the gauge group rank of ABJM via (2.14).

Writing the full spindle entropy function for the ABJM model can be done straightfor-
wardly starting from (6.4), but performing the actual extremization does not seem feasible
analytically in the general case. It is also out of the scope of the present work to perform
the match with the known explicit solutions, and therefore we just limit ourselves to the
case of minimal gauged supergravity setting to zero all flavour charges. For the solutions of

O =n! =n2 =n3, the twist condition, (6.5), gives

minimal gauge supergravity, n =n
dnyn_ :

5Everywhere in this section we choose g = 1 for simplicity.
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and, for p = ¥ = ! = p? = p3, we find from (6.6),

Ny — ON_ 1
_ ==, 12
7 dnin_ 73 (6.12)
We choose o = —1 for the entropy function,
_ T
ST (eny,n_) = —— ( (o +en)” + (p — en)z) = (@2 + 62112) ,  (6.13)

4Gy € _QG%)E

with ¢ and n given above in terms of € and ny. The entropy function is extremized at the

value of ¢,
-+ \/ETLFTL,

)
/ 2 2
ng +nZ

and only the lower sign gives positive entropy. We thus recover positive value of the

€

(6.14)

Bekenstein-Hawking entropy of the spindle solution in minimal supergravity,

2 2
V2 4 0% — (g A ) FAPIM (6.15)

2n+n,

S™ (Enypon-) =

as confirmed by direct evaluation of the entropy, [3].

Comparing the explicit form of (6.3) and (6.4), one can see that the minimal gauged
supergravity limit of every model will satisfy the same universal relation as (6.15), with the
corresponding Fgs, as also confirmed by the explicit solution in section 4.1.

6.2 Mass-deformed ABJM

The spindle black hole solutions from mass-deformed ABJM were obtained in [21].1°
The model is the same as ABJM as described right above, apart from the presence of
hypermultiplet gauging and in turn one massive vector. The prepotential is therefore given
by

F=-2ivVXOX1X2X3, (6.16)

and the R-symmetry and massive vector are given, respectively, by
AR = A0 AV A2 A3, Am=A0— Al - A% A3 (6.17)

which corresponds to §g = &1 =& =&3 =1 and (p = —(; = —(2 = —(3 = 1 in the notation
of the introductory section. This choice sets the AdSy scale of the model to Lids4 =2/ 3v2,
see [21].

We can directly apply the massive vector constraint on the level of the prepotential,
setting the corresponding X™ = (; X! to zero, obtaining an effective prepotential

F=-20VXOXIX2X3 = FT= 2i /(X1 + X2+ X3)X1X2X3, (6.18)

which can be used in the gravitational blocks.

163ee also [77] for black holes with the horizons of AdS2 x ¥4 in this model where ¥, is a Riemann surface
with genus, g.
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We first evaluate the three-sphere free energy in this model, (6.3), which gives

m
FmABIM () — o \/((p1 + @2 + @P)plp2p8 (6.19)
N

under the constraint Z?:l @' = 1. It is easy to extremize the above formula, finding simply
@' = 1/3 for all 4, which corresponds to the superconformal point of massive ABJM theory.
We therefore find

. m T WLA2A
FUABIM _ FmABIM () _ — (‘134, (6.20)
3V3GW 26

as anticipated in (2.12). Since the ABJM and mABJM models come from compactification
on the same manifold, S, it follows that their respective Newton constants are equal, such
that

S\f
We have thus established the well-known relation between the free energies of ABJM and
massive ABJM from the gravitational block picture.
Now we consider the spindle entropy function, given by (6.4). As we have n™ = (;n! =0
such that n® 4+ n! 4+ n2 +n3 = 2(n! + n? 4 n3), the twist condition (6.5) reduces to

3
= =X - - 6.22
N (622
and the constraint in (6.6) gives
3
Zgoi Ty (6.23)
= 2nyn_
We choose 0 = —1 and find for the entropy function
— _ A off (i I off (i I
S™(pyesnyng,n_) = 8G53)6 (F (cp +en ) + F ((p en )), (6.24)

using (6.18). Extremizing this entropy function with the constraints in (6.22) and (6.23),
we can obtain the Bekenstein-Hawking entropy. Due to the complexity of equations we
could not obtain analytic expression. However, any set of specific choices of spindle numbers
and fluxes allows for a direct numeric solutions that can be readily compared with the
explicit solutions and successfully matched, see the attached Mathematica file. The precise
match requires the following identification of the parameters in [21],
nN=ny, ng=n_, ni% = —% (nl —n2) , n;i% = —\}g (nl—l—n2—2n3> . (6.25)
Furthermore, the value of the scalar fields at the poles can be matched with the extremal
values of the fugacities,

el +nle 54,
= =€ ’Na
1+€/TL+
LI 6.26
1+€/n_ € |57 ( . )

and permutations of {1,2, 3}.
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6.3 Q"' and M1

In the case of the Q11! we discussed at length here, we start with the same prepotential as
in ABJM theory,
F=-2ivVXOX1X2X3, (6.27)

but a different R-symmetry and massive vector fields

AR =42A°, A" = V2 (egA” — 24" — 247 — 24%) | (6.28)

that corresponds to & = 4v/2,6 =& =& =0, and (o = V2e0, (1 =G = (3 = —2V2 in
the notation of the introductory section. As discussed in section 2, the AdS length scale in
this case is given by Lid&l = \/% /4V/63.

Again, we can directly apply the massive vector constraint on the level of the prepoten-
tial, setting the corresponding X™ = (; X' to zero, obtaining an effective prepotential

F=-2iVXOXIX2X3 = FT=-2\/2(X'+ X2+ X3)X1X2X?,  (6.29)

which can be used in the gravitational blocks.
We first evaluate the three-sphere free energy in this model, (6.3), which gives

1,1,1 T
F& (p) = —~@ \/%(sol + 02 + 9P plp2p3, (6.30)
GN

under the constraint ¢ = 2/eg S35, o' = 1/(2/2). It is easy to extremize the above
formula, finding simply @' = eq/(121/2) for all i, which corresponds to the superconformal
point of the flavoured ABJM theory. We therefore find

LL1 oLl 7T 63 _ FLidSZL

FELT =FL T (p) = = :
5 5 sV Gl 260

as anticipated in (2.12). This in turn relates to the gauge group rank of the flavoured
ABJM via (2.14).
Now we consider the spindle entropy function, given by (6.4). Since n™ = (;n! =0,

(6.31)

the twist condition (6.5) reduces to

3

1 ny+on_ e 1 np+4on_
0 + i 0 +
n0 — ’ W= —— - 6.32
42 nyn_ ; 2 42 mnin_ (6.32)
and the constraint in (6.6) gives
1 1 ny—on_ 5. e 1 1 ny —on_
0 + i 0 +
= + €, = — + €l . 6.33
4 22  4v2 min_ ;(’0 2 (2\/§ 42 nan_ ) ( )
We choose 0 = —1 and find for the entropy function
~ (0. ___im of (i ol off (i _ oI
ST (p,enyny,n_) = SG%) - (F (cp +en ) + F <<p en )) , (6.34)
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using (6.29). Extremizing this entropy function with the constraints in (6.32) and (6.33), we
can obtain the Bekenstein-Hawking entropy. Again we could not obtain analytic expression
of the on-shell entropy, but made sure to numerically match the results. For specific choices
of spindle numbers and fluxes with the identification of parameters reflecting (2.6),

nN=n_, ng=ng, pi:4\f2(n1—2n2+n3) , pﬁ:élﬂ(nl—n?’) ,
nyn_—

(6.35)
the Bekenstein-Hawking entropy numerically matches the result obtained from the solution
in (3.50). This can be again seen explicitly in the attached Mathematica file.

As before, the value of the scalar fields at the poles can be matched with the extremal
values of the fugacities,

42 +nle guatus|
ep 1+¢€/n_ ’
&@ _ Juatus
= e s (6.36)
eo 1+¢€/ny

and permutation of indices {1,2,3}.
Calculating the Bekenstein-Hawking entropy of spindle black holes in AdS; x M1

from the gravitational blocks readily follows from the above calculation in parallel by setting
X3 =Xx?, n® =n?, ©® = 2. (6.37)

For specific choices of spindle numbers and fluxes, the result numerically matches the
Bekenstein-Hawking entropy obtained from the solution in (3.50).

7 Discussion

There are a number of open questions and ways to extend the present work, which we hope
to explore in future. We list some of them below.

e As evident from the gravitational block form and the explicit solution ansatz, we have
allowed for both twist and anti-twist solutions to the models of interest. Unlike the
anti-twist case, on which we focused most of the discussion, we were not able to find
consistent solutions with positive entropy and scalars in the twist class. However,
we were still able to test (in the numeric approach in the attached Mathematica file)
that the on-shell answers from gravitational blocks agree with the explicit numeric
solutions. Importantly, the gravitational blocks should also hold off-shell without
any extremization, where they correspond to more general Euclidean saddles with
no Lorentzian analog, see e.g. [78]. Our checks therefore hint further at the strong
expectation that our main results, (1.1)—(1.4), hold equally well with both twist and
anti-twist.

e A natural generalization of the present results is to include electric charges and non-
vanishing angular momentum to the near-horizon solutions we have discovered. The
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gravitational block picture, (1.1)—(1.4), gives a clear prediction of how the entropy
and scalars should change with the addition of extra charges, but it would be desirable
to prove this directly from the BPS equations after a more general spacetime ansatz is
made. A related problem, also anticipated by the gravitational block construction by
setting ny =mn_ = 11in (1.1)—(1.4), is the search for rotating twisted and non-twisted
(or anti-twisted in the present language) spherical black holes that would generalize
the results of [46] and [47], respectively, to the case of charged hypermultiplet scalars
and massive vectors extending the static twisted solutions of [37].

o Another generalization is to enlarge the class of supergravity models in order to allow
for general dyonic gauging, such as the one coming from compactifications of massive
type IIA supergravity, [79]. We expect the dyonic gauging to give rise to constraints
in the gravitational blocks similar to the ones in this work based on an effective form
of the prepotential, as already implied by the twisted black holes solutions in [59, 80].

e It would be interesting to write down all present results in the language of symplectic
invariant and covariant quantities as in [46, 47|, which was partially done in [9]
for spindles in STU supergravity. The manifest symplectic covariant form of the
gravitational blocks was instead developed in [81], and we expect our results to also fit
inside this framework. The possible upshot in this approach is the higher likelihood
of finding precise analytic structures for the present solutions.

e When the solutions we construct are uplifted to eleven-dimensional supergravity, it will
fall in the class of GK geometry, [82, 83]. Thus we should note that a complementary
point of view towards the entropy function in 4d is the idea of volume extremization
of the internal manifold, put forward in e.g. [65, 67-69] for black holes and black
strings. In particular, one can translate also the gravitational block idea in terms of
the internal volume, see [53, 55]. This has the potential upshot of removing the need
for lower-dimensional truncations. It would be interesting to reproduce the present
results directly working with the SE7 data.

e A related comment concerns the implicit shortcoming of our 4d approach as relying
on the existing truncations of [36]. These truncations are aimed at keeping the
modes from non-trivial two/five-cycles such that they preserve the so-called baryonic
symmetries, but unfortunately do not keep any of the existing mesonic symmetries
associated with the isometry group. This is particularly unfortunate for the examples
of V22 and N%10 manifolds that have no baryonic symmetries and consequently one
can only embed minimal supergravity solutions in these models,'” missing out on
the detailed internal structure of these cases. The same problem is evaded for the
example of S” (mABJM) where we know the mesonic symmetries due to the existing
truncation to maximal N = 8 gauged supergravity in 4d. Similarly, it would be

17See, for example, black hole solutions with the horizons of AdSs x ¥4 in this model where X, is a
Riemann surface with genus, g. in [66, 84] and their field theory description in [85, 86]. It is automatic that
the spindle solutions in minimal supergravity presented here, see sections 4.1 and 6.1, hold in these cases.
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interesting to generalize the truncations of [36] in order to account for the additional
symmetries, see e.g. [65].
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A Consistent truncation of M-theory on Q%!

A.1 The N = 2 formalism

The consistent truncation of eleven-dimensional supergravity, [87], on seven-dimensional

Sasaki-Einstein manifolds was performed in [36]. In particular, we consider the seven-

'L which is a coset space, SU(Q)S(%JX(?])(XIfU@)_ Tt

dimensional Sasaki-Einstein manifold, Q!
has two non-trivial two-cycles and the dimensionally reduced theory contains two Betti
vector multiplets. The field theory dual to the AdS; x Q%! solutions is 3d flavored ABJM
theories, [60, 61]. The field content at the N' = 2 vacuum is as follows, [36, 41],

e The gravity multiplet contains the metric and the graviphoton,

e A massive vector multiplet contains a massive vector field with mQZidS = 12, dual
to an operator with A = 5, which has eaten the axion, o. There are also five scalar
fields with m?13,5, = (18,10,10,10,4) dual to operators with A = (6,5,5,5,4).

e Two Betti vector multiplets: each contains a massless vector field and a complex
scalar field with m2lids4 = —2 > mpr dual to operators with either A = 2,1 by the
choice of boundary conditions.

The complete 4d N = 2 truncation on Q! in supergravity language consists of the
gravity multiplet with the aforementioned graviton and graviphoton, {g.., Ag}, 3 vector
multiplets with a vector and complex scalar, {AL, z'}, and 1 hypermultiplet (known as the
universal hypermultiplet) with four real scalars, {¢, 0,0, &}. The scalar fields from the
vector multiplets and the hypermultiplet parametrize the coset manifolds,

SU(1,1)\? SU(2,1)
) S

Mo x M = ( U() U@ < U(1))

(A1)

which is a product of special Kéhler and quaternionic manifolds, respectively.
We move to discuss in more detail these two scalar manifolds that play an important
role in writing down the BPS variations.
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Universal hypermultiplet. Here we gather the relevant quantities and specific gaugings
of the universal hypermultiplet, given by the metric Mj,. Written in terms of real coordinates,
{9, 0, £, 50}, the metric is

1 0 0 0

e |’ %€4¢~ —5e'% . 7 . : (A.2)
0 —ge’¢y 1€ (1 + %6%(50)2) —1e1%¢0¢
0 zet?gl —e19¢0¢, 1629 (1 + L% (50)2)

The isometry group, SU(2,1), has eight generators; two of these are used for gauging in the
model we consider explicitly below, generating the group, R x U(1).!® The corresponding
Killing vectors are

K =0,, k"0 =—£0p0 + €0, . (A.3)

These two isometries are gauged by a particular linear combination of the vector fields in
the theory. One defines Killing vectors with a symplectic index corresponding to each of the
full set of electric and magnetic gauge fields at our disposal. The moment maps associated
to these two Killing vectors are

PR = (o, 0, ;e%) , PV = <éoe¢, €% 1 — i ((50)2 + (50)2) e2¢> . (A4

In order to make sure the moment maps are strictly in the third direction, we can set
€0 = £y = 0 guaranteeing that V() = 0 independent of the details of the scalar manifold
for the vector multiplets. On the contrary, k® # 0 always and thus we would find a genuine
constraint on the vector multiplets from this type of gauging. Now the moment map P
remains non-zero only along the third direction,

PR = (0, 0, —;e%’) , PYM(E =g =0)=(0,0,1). (A.5)

From now on we will only discuss this third, or z, component of the moment maps. The
choice of setting €0 = & = 0 is not in itself a subtruncation to a smaller N = 2 supergravity,
but it can always be made on a given background without breaking further supersymmetry.

Note also that this way of solving the hyperscalar equations for the universal hypermul-
tiplet, by setting £€° = £y = 0 and keeping only k% non-vanishing also means that the SU(2)
connection takes a simple form,

~ 1 ~ 1
w® =e?de =0, wY = e?déy =0, w® = _§€2¢ (da + fodfo) = —562¢d0. (A.6)

The relevant part of the corresponding SU(2) curvature, defined as Q% := dw® — %exyzwy Aw?,
is therefore

1
Qi’d) = —QZU = §€2¢ . (A?)

18See e.g. [88] for a careful discussion of the isometries and the physical outcome of their gauging.
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Vector multiplets. The full model is further specified by the vector multiplet geometry,
which is given by the so-called STU model, i.e., the coset space M, above with a prepotential
given in (2.1) that defines (see below) the corresponding metric. In order to simplify the

model from the start, we assume that there are no axions, such that the three complex

1,2,3

scalar fields, z°, are real. The Lagrangian and supersymmetry variations then follow

from the choice of holomorphic sections,
xX0=1, Xt =223 X2 =231, X3 = 2122, (A.8)
leading to a Kéhler potential,
e % = 8Re[z'|Re[2%]Re[23] = 8212223, (A.9)
with quantities,
Ki=0.K =—(22) . gy=FKy=06;(22) . (A.10)

The so-called period matrix, which defines the gauge field couplings, is given by

1 2 3
N = —idiag (21z223, - - z ) , (A.11)

22237 23217 132
such that ReN = 0.

Gauging. The consistent truncation with universal hypermultiplet gauging coming from
the compactification of M-theory on Q%!, [36], features a mixed dyonic gaugings. For
simplicity we directly consider the consequent symplectic rotation to purely electric gauging
(and prepotential which we already anticipated to be (2.1)), as presented in [37]. We have
a hypermultiplet gauging,

k= (\/5 (4 VO eokR) VKR, _9\/2kR, —2\@kR) , (A.12)

with the constant, eg, an unfixed Freund-Rubin parameter, and thus we have
1
P = (\/5 (4 - 262¢€0> , % e €2¢> . (A.13)

Lagrangian and supersymmetry variations. Following the conventions of [89], the
Lagrangian, after the simplifications of taking real vector multiplet scalars and €0 = &, =0
reads 1

1 921)? 1
e L= SR+ Z ( ('z ) +(89)* + 164‘? (Do)? + ImNp, FL F' — gV, (A.14)

4 (z1)?
with the gauge covariant derivative,

Dyo = 9,0 + gAj}, (A.15)

90nly in this appendix A.1, we employ the mostly minus signature and stick to the notation and
conventions in [89].
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where we define the massive vector,
A™ =2 (eOAO —9AY — 242 2A3) : (A.16)

and I,J = 0,...,3. The scalar potential follows straightforwardly from the data given
above, and is discussed further below. The R-symmetry gauge field is essentially chosen by
the orientation of the Killing vector kY1),

AR = 4./2A° . (A.17)
The supersymmetry variations of gravitino, gaugino and hyperino are given by, respectively,

i 1
Sy = Vuea + 5 (4\/§gA2 _ 262¢VM0> o3 Bep QeK/zp,?’XIwgsABgB

2
+ 2i€K/2XIIHLA/]JFl:VJ’YV€ABEB , (A.18)

SNA = 9,21t +igel/2g (8; + K;) XTI PFo3ABep
— K2 (0; + Kj) XIIm./\/}JF,:VJ’yWeABsB , (A.19)
5o = Unan (iV,ug"y"e + 2g¢" 2k X1 e?Peg) (A.20)

and we define quantities for later convenience,

1
— K/2p3yI _ 29 26 (1,2, 3.1 2.3
W=e""P/X —4m(8 epe”” + 2e (zz +2°% —i—zz)),
1
— K/2y1 -J _ _ 1,2, 370 1p-1 272 4 33
Hyy = “ X ImN F = Wy (z 2°2°F,, + 2 F,, +2°F, += FW> .
(A.21)
A.2 Parametrizations and equations of motion
The three complex scalar fields, 2%, are often rewritten using the parametrization, 2°
2t =ib ot (A.22)
and further
vt = e2ui (A.23)
We consider the axion free case with b* = 0, as explained above.
The bosonic Lagrangian in this parametrization reads?!
“ip=Lg 3 OO ¢ — 19D o Dlo — PV
e =3 —Z ui0Mu; — 0,0 qﬁ—ze woD o —g
i=1
o {62u1+21m+21L3 FBVFO,uu + 62u1 —2us—2us3 FﬁyFlm/
+ €—2u1+2u2—2u3 FinQ,uu + 6—2u1 —2u2+2us3 FEVF&LW} ’ (A24)

2ONote that, due to the overall i factor we have inserted in the prepotential, (2.1), our parametrization is
different from the one in [36, 37], 2z = b" + iv'. The physical scalars we keep, v, are however the same.
2Here we revert to the mostly plus signature used in the main body of this work.
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with Do as in (A.15). The scalar potential is

Y — _8e2¢ <672u1 e 2uz 4 6721,&3) + (672u1+2uQ+2u3 4 e2ur—2up+2uz | eQU1+2’LL272U3>
+%e%€4¢672u172u272u3 ’ (A.25)
and it can be written as
3 2 2
V= ; (2‘2/) + (‘ZZ) —3W2, (A.26)
where the superpotential was defined above, and explicitly reads
W %e—ul—w—u;ﬁ (8 ege?® 1 262 (62u1+2u2 4 Ruatus eQU3+2u1)) _ (A.27)

We can also parametrize the two Betti vector fields in the same normalization as the
R-symmetry and massive vectors,

AR = 4/24°,

A™ =2 (eoAO 94l — 242 2A3) ,

AP = 4y/2 (A1 - 247 4 A)

AB2 = 43/2 (A1 - A%) . (A.28)

The supersymmetry variations of fermionic fields, gravitino, gaugino and hyper-
ino, (A.18), (A.19), and (A.20), reduce to, respectively,?? 23

0pua~2V,en — iBNo*?’ABeB — viua?’ABeB + 42'HW7”€ABEB ,
SN ~ 8Muw“s‘4 + gauiWUBABEB — 10y, HMV’}/‘”VGAB&“B ,

Ug ™ 6o ~ Ug A 8Ga ~ 0u67"e™ + 50, Buy"o* 51 + 90, W™ Pes (A.29)

where we have

1
_ Fuz-tuz -0 —us—uz -1 | —uibuz—uz p—2 | —ui—uptus -3
H‘“’__Q\/i (em uetus ol 4 euzmus ol 4 pmuitu—us o2 | gt s UBF;w) :
1
B, = —4V2gA) + §e2¢DHJ. (A.30)

The anti-self-dual part of the field strengths are given by

= % (FT—ixFT). (A.31)

221n order to bring the hyperino variation to exhibit a free SU(2) index, we make use of the identity
UnarUSE = %huv(sAB + %indgAB, see [90].

Z3In terms of the complex scalar fields, 2%, the gaugino variation reduces to

1

SNA _
4 (2%)

Oz e + g0, Wo*Pep —id,i Hyy" e Pep .
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We express F~! in terms of F~17,

_ L s (512, =34 =56  =—T8
0_ ~ _—uj—uz—u3
F0= e (F +F L F 4T )
-1 —uitustus (12 34 5556 T8
Fl= 75° (F F F > 4+F ) ,
_ | —=—12  —=-34 —-56 —=—T8
2 _ U —uz2+u3 (__ —
P2 = e ( F4+F F4+F ) ,
_ 1 _ —=—12  —=-34  —=-56 —=-T8
3 _ urtuz—u3z [ _ —
P = e (-F FY4F ™ +F "), (A.32)
where we introduce
—=-12 ——34 —=-56 —=—78
F,~ = —40,H,, , F,, =-40u,Hyu , F,,~ =-40uHyu F,, =4H,, .
(A.33)
To make a direct connection to the solutions and parametrization in [21], we can also
introduce a complex Dirac spinor, e, instead of the Weyl spinors, 4,
e=¢g) +&2. (A.34)
The gravitino, gaugino and hyperino variations reduce to, respectively,
(29,0 — iBy — Wy, + 4iH,A" [e =0,
{8,&”1'7# + g0, W + iauiH;w'YW} €e=0,
1
[8,%]5’}/“ + gOW + 2%3,/}/“] e=0. (A.35)

We present the equations of motion from the Lagrangian in (A.24). The Einstein
equations are

1 1
Rﬂu_iRguu + QQVQMV -2 (T;?u + T;% + Tﬁg + Tﬁg) - 564¢TZI/
—62(u1+u2+u3)Tﬁ0 _ 62(u1*u2*u3)T£j1 _ 672(“41*U2+U3)T;L4V2 _ B*Q(U1+UQ*U3)T;L3 =0,

(A.36)
where the energy-momentum tensors are
T, = 0,X0,X — %gﬂ,,apxapx,
T4 =g Fl Rl — ingprFfPU, (A.37)
and X denotes a scalar field. The Maxwell equations are
d, (\/jgez(u1+u2+U3)F0W) + %ﬁﬁe4¢g“”Dya —0,
1y <\/Tge2(“1_“2_“3)F1’“’> —V2y/=ge**¢" Do =0,
a, (\/jge—Q(ul—uerug)FQW) _ \/5\/jge4¢guuDyg —0,
B, (V=ge 2t F) /3 /=ge"g Do = 0. (A.38)
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The scalar field equations are

1 g> oY
- Yy _9 9
\/jgau (V=99 0u1) 2 0wy

+ 62(u1+uz+ug)F3VFOuV + €2(u1 _“2_“3)F;VF1“”

o 6—2(u1—u2+u3)F3VF2uV _ 6—2(u1+u2—u3)ijF3uV =0 ’

1 g> oY
. Va2 _9 9
\/jgau (V=99"0,u2) 2 Oug

+ 62(u1+uz+ug)F3VFOuV o €2(u1 _U2_U3)F;}VF1MV

+ 6_2(u1_u2+u3)F3VF2MV o 6—2(u1+u2—u3)F3VF3MV =0 ’

1 g> oY
- Yy 117 _9 9v
V=9 On (V=99 0,us) 2 OJug

+ 62(u1+ug+ug)F3VFOuV o e2(u1 _u2_u3)Fl}VFle

- e—2(u1—ug+u3)F3VF2/u/ + 6—2(u1+ug—u3)ijF3;w -0 7 (A39)
and 2
1 g-ov 1,
——0, (vV—gg"™ — L _Ze*DyoDPo=0. A4
\/jgau ( gg &,¢) 5 99 26 woDVo =0 (A.40)

A.3 Truncation to minimal gauged supergravity

There is a truncation to minimal gauged supergravity. We have the scalar fields to be at
their values of the AdS,; x QY1 vacuum and impose the gauge fields to be

3/4
N R T
€ 6 5 € 6 5 AdSy 9 6 )
A=A = Al = 42 = 43, (A.41)
where in the latter equation we set eg = 6. We find
1
e 1L = SR+ 129 — 4F,,, F* (A.42)

where F' = dA. When we have g =1/2 and F' — 1/ (2\/5) F, it reduces to the action of
minimal gauged supergravity with the normalization employed in [3].

B Derivation of the BPS equations

We consider the metric and the gauge fields,

ds* = e*Vdsiqgs, + f2dy* + h?dz?,

Al =aldz, (B.1)
where V, f, h, and a!, I =0,...,3, are functions of coordinate, y. The gamma matrices
are chosen to be

A =T"® o3, Y =1,®0t, ¥ =1,Q0%, (B.2)
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and the spinors,
e=1®x, (B.3)

where I'"" are two-dimensional gamma matrices. The two-dimensional spinor satisfies
1
Dy = §HFm¢, (B.4)

where kK = +1.

For the AdSs directions, the gravitino variations reduce to
[—i (/ie_v + 4H23) S V’f_lfyﬂ e =gWe. (B.5)
It reduces to a projection condition,
[z’ cos &v%3 + sin 572} €=c¢, (B.6)
where £ is introduced,
—ke”V — 4Hy3 = gW cos€ V' f~l = gW cos€. (B.7)
A solution of the projection condition is
e=ci'n, =iy, (B.8)

From (B.7) we have 9,¢ = 0. The spinors have definite chirality with respect to v?* at
é‘ = 07 Tr?
E=0m, v3e = +ie. (B.9)

For the y direction, the gravitino variation reduces to
Lo, 1 v\ .3
On— V' + 5 (946 + 8fHa + rfeV) % n =0, (B.10)
where (B.7) was employed. For the z direction, we have

[Qaz — iBytif ' cos & — 4iHashsin €

+(f—1h’ sin & — gWh + 4Hash cos g)ﬂn =0. (B.11)

We require a? + a3 = 0 if we have (a; + iagy®) n = 0. Thus from (B.10) and (B.11) we
find

n=c"en, (B.12)

where 79 is independent of y, z, and s is constant. We find

8y£ + 8fHoz + I{fe_v =0,
(s — B.)+ f~ W cos€& — 4Hyshsiné =0,
fI sin€ — gWh + 4Hoghcos€ = 0. (B.13)
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Hence, we obtain

fIW = gWhsin€ — (s — B.) cos €,

hHyz = %gthos{ + % (s — B,)sin&,
and, from the first equation in (B.7), we find

(s — B.)siné = —2gWhcosé — khe™ ",
and hence

Hys = —ichosé — %/ie_v,
f_18y§ = 2gW cos& + ke V.

For ¢ # 0 we solve for (s — B,) and find

!/

h
f’lﬁ sin€ = ke™V cos € + gW (1 + cos? f) .
The gaugino variation reduces, in a similar manner, to
f) + gd, Wsiné =0,

and
g0y, W cos & + 40, Ho3 = 0.

The hyperino variation reduces to

f¢ sing + goW =0,
1
gOW cos§ — §8¢Bz sinéh™1 =0.

Summary. For £ # 0, the complete BPS equations are given by

e = 2gW cos€ + ke,
f*1V’ = gWsing,

f_lu; = —g0,,Wsing,
g = — 9%

sin¢

/

h
f_lﬁ sin€ = ke™V cos& + gW (1 + cos? 5) ,

with two constraints,

(s — B.)siné = —2gWhcos€ — khe™ ",

1
gOW cos§ = §8¢BZ sinéh L.
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The field strengths of gauge fields are given by
1
8uiH23 = _Zgauiwcosg )

1 1
Hys = _ZQW cos§ — Zne_v. (B.23)

The BPS equations are consistent with the equations of motion from the Lagrangian.
There is also a relation,

3
W = —gfsin€ |3 (0, W)+

i=1

1
E (8¢W)2 ) (B.24)

and the superpotential is monotonic along the BPS flow if the sign of fsin ¢ is not changing.
There is an integral of the BPS equations,

he™V = ksin€, (B.25)
where k is a constant. We eliminate h with the integral of motion and obtain
[ =~k (s—B.)e ",
V' = gWsiné&,
fll = —g0, Wsin¢,

-1 /_798¢W
iy = -2l (B.26)

with two constraints,

(s—B,) =—k (QQWeV cos& + K) ,

1
gOgW cos§ = ik:_le_v&sz. (B.27)

From the definition of B,, we obtain
9B, = e**D,o . (B.28)

For ¢ # 0, from the second equation in (B.27), we obtain
2gkeV 0sW
D,o = 29%¢ o cos& (B.29)
e

and the right hand side is independent of ¢. By differentiating (B.29), we obtain fluxes
expressed by

/ '
Fy. = (a") = (), (B.30)
where we introduce
1
7O = —_gke" cos e v
\/§ )
1
IW = —_gke cos e trtuatus
\/5 )
1
Z®?) = —gke" cos et Tu2tus
\/i )
1
AS— Egk‘ev cos feUrTuz—us (B.31)
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A symmetry of the BPS equations is
h — —h, z = —z, (B.32)

if B, + —B,, s — —s,al = —a’, k— —k and Fi; — —FJ;. The frame is invariant under
the transformation. By this symmetry we fix h < 0 in the main text.
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