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1 Introduction

The Ricci flow equation, and its various modifications, arouse in the physics and mathe-
matics literature almost simultaneously for different reasons. Let us discuss these briefly
before we introduce our new flow. Friedan [1, 2] studied the extensions of a non-linear,
2-dimensional sigma model from a homogenous space to a compact Riemannian manifold
M. In the non-linear sigma model setting, the Riemannian metric gij appears as a coupling
“constant”; and in quantum field theory, like every other parameter in the theory, it “runs”
with the renormalization scale Λ. The continuum limit is achieved for Λ → ∞, so Λ−1

should be considered as a short-distance cut-off. Then, there is the so-called β function,
which in this case, is a tensor to be computed in perturbation theory. To understand the
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results of the first and second-order perturbation theory, let us write the action of the
non-linear sigma model in 2 + ϵ dimensions:

S[ϕi] := Λϵ

2

∫
d2+ϵx T−1gij(ϕk)∂µϕi∂µϕj , (1.1)

where T is the temperature, and T−1gij(ϕk) is the positive-definite metric on (the target
manifold) M which is assumed to be of a finite-dimensional Riemannian manifold. In
quantum field theory, the running of the metric coupling, as one changes the renormaliza-
tion scale, appears as a vector field in the infinite-dimensional space of Riemannian metrics
on M; and for the model (1.1), at low-temperature expansion (which corresponds to loop
expansion in perturbative quantum field theory), one has [1, 2]

βij(Λ) := −Λ−1 ∂

∂Λ−1

(
T−1gij(Λ)

)
= −ϵT−1gij + Rij +

T

2 RipqrRj
pqr +O(T 2). (1.2)

In the ϵ → 0 limit, at the lowest order, and defining t := log Λ, and T = −2, one arrives at
the Ricci-flow equation

∂tgij = −2Rij . (1.3)

Independently, this equation was introduced by Hamilton [3] to deform metrics along their
Ricci tensor on a given manifold, especially a 3-manifold to prove the Poincaré conjec-
ture about S3: that is every simply connected, closed 3-manifold is homeomorphic to S3.
Hamilton achieved a great deal with the Ricci flow technique: he proved the short-time
existence of the flow for any initial metric and classified closed 3-manifolds with positive
Ricci curvature. But the final proof of the Poincaré conjecture and the more general
Thurston’s uniformization conjecture [4] about 3 manifolds was given, rather famously, by
Perelman [5, 6] who used a non-minimally coupled scalar-tensor action to derive a modi-
fied version of Ricci-flow and surgery techniques. For a detailed exposition of these papers,
see [7].

From the physics point of view, Ricci flow or some geometric flow of the type

∂tgij = Φij , (1.4)

where Φij is some tensor built on the metric tensor and its derivatives is a great tool to
understand the transitions between the saddle points (i.e those metrics satisfying Φij = 0)
of a gravity theory. If the flow equation comes from the Euclidean action of the theory,
these transitions will most probably correspond to some quantum mechanical effects in the
Lorentzian version of the theory. Therefore, understanding these flows is quite important:
for this reason in [8] using the third order Cotton tensor, which is an obstruction to confor-
mal flatness in 3 dimensions, was used to define the Cotton flow and the model geometries
under this flow were studied. The discussion was extended in [9] where a refinement on
the definition of Cotton solitons was given.

The K-flow that we shall introduce in this work is based on a physical model of
gravity that emerged in [10, 11] and has been extensively studied in the literature as the
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first example of a non-linearly massive gravity theory [12, 13] albeit in 2 + 1 dimensions.
The action of the model is given (in the Lorentzian signature) as

S[g] := − 1
κ2

∫
d3x

√
−g

(
R − 2Λ0 +

1
M2 K

)
, K := RµνRµν − 3

8R2, (1.5)

of which the source-free field equations are

Gµν + Λ0gµν − 1
2M2 Kµν = 0. (1.6)

Λ0 and M are the bare cosmological constant and the mass parameter; and the K-tensor
reads

Kµν = 2□Rµν − 1
2 (∇µ∇µ + gµν□)R + 4RµανβRαβ − 3

2RRµν − gµνK, (1.7)

with the trace K = gµνKµν , and □ := gµν∇µ∇ν .
Unlike the 3-dimensional Einstein’s gravity based on the Einstein-Hilbert action, the

theory is locally non-trivial: it has a massive spin-2 graviton (and no other degrees of
freedom) with the mass around its (anti)-de Sitter background given as

m2
g = M2 − Λ

2 , Λ = 2M2

−1±

√
1− Λ0

M2

 . (1.8)

Of course, in addition to the perturbative sector, the theory also has many non-perturbative
solutions, such as black holes, solitons, etc. So it is a rather rich theory of gravity that
deservedly attracted a lot of attention in physics. If one drops the Ricci scalar and the
bare cosmological constant in the action, one arrives at the purely quadratic theory with
a single massless degree of freedom [13, 14].

SK := − 1
M2κ2

∫
d3x

√
−g

(
RµνRµν − 3

8R2
)

. (1.9)

As it sometimes happens, this action, before it appeared as a model of 3D gravity, was
studied in the mathematics literature [15] from a different vantage point which we shall
discuss briefly below. From the physical point of view, at short distances (at the so-called
ultra-violet regime), higher curvature theories are much better behaved. Therefore, in what
follows, we shall build a geometric flow which will be a gradient flow of the Riemannian
version (that is with a positive-definite metric) of the action (1.9).

Before we move on, let us state our conventions: we will have to work in both local
coordinates, orthonormal frame, and in the index-free form of the tensors. Therefore we
will not shy away from calling the index-free Riemann tensor as Riem and the Ricci tensor
as Ric. In the coordinate-adapted basis, we shall use the indices i, j, k, l . . ., while in the
orthonormal basis, we shall use the indices a, b, c, . . .. We will always work with positive-
definite Riemannian metric and our sign convention for the Riemann tensor follows from
[∇i,∇j ]wk = Rijk

lwl, and the Ricci tensor is Rij := Rk
ikj .
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1.1 The K-flow

Let M be a 3-dimensional Riemannian manifold with a (positive definite) metric g on it;
and let us introduce a deformation parameter t, not a coordinate on the manifold, akin
to the renormalization group parameter introduced above; and let K be the symmetric K

tensor whose components in local coordinates are given as the negative of (1.7). Then the
K-flow is defined as1

∂tg(t) = αK(t) g(t = 0) = g0, (1.10)

where α is a constant later to be specified. The flow of the inverse metric easily follows as
∂tg−1(t) = −αK−1(t). The K-tensor is slightly cumbersome, it is better to split it into two
parts as it was introduced in [16]. For this purpose let us introduce some local coordinates
and define two relevant tensors:

Cij := η kl
i ∇kSlj Sij := Rij −

1
4gijR, (1.11)

where the Cij is the Cotton tensor and Sij is the Schouten tensor, while ηikl is the com-
pletely anti-symmetric tensor. Using these, we define a traceless, 3D Bach-like tensor as

Hij := 1
2η kl

i ∇kClj +
1
2η kl

j ∇kCli = 3Sk
iSkj − gijSklS

kl −∆Sij +∇i∇jS, (1.12)

where ∆ = gij∇i∇j = ∇i∇i, S = R/4 and the trace part of K as

Jij := 1
2η kl

i η mn
j SkmSln = Sk

iSkj − SSij +
1
2gij(S2 − SklS

kl). (1.13)

Therefore we have

Kij = 2Jij + 2Hij , K = 2J = 3
8R2 − RijRij . (1.14)

Important remark: let us repeat that this Kij is negative of the Kµν given in (1.7). From
now on, we will work with (1.14).

We will study the flows of model geometries in the orthonormal frame. To define our
tensor K in the orthonormal frame, we first define the J and H one-forms as

Ja = 1
2ϵa

bc ⋆ (Sb ∧ Sc) Ha = ⋆D ⋆ Ca, (1.15)

where Sa is the Schouten one-form and ⋆Ca is the Cotton one-form; and the star denotes
the Hodge dual as usual. More explicitly, we have the following: let wa

b be the connection
one-forms, and D := d+ω∧ be the covariant derivative one-form such that Dea = 0. Then
the curvature 2-form reads Ra

b := dωa
b + ωa

c ∧ ωc
b = Dωa

b, from which follows the
1For all intents and purposes, we can envisage a one-parameter family of Riemannian manifolds

(M(t), g(t)), and the flow smoothly deforms one such member to an infinitesimally close one as the “time”
t evolves. With this vantage point, one can see M(t) as a spacelike hypersurface in a spacetime with t

being the time dimension, and the evolution is the flow equation instead of the usual hyperbolic equation
coming from Einstein’s equation.
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Geometry Metric Rij Kij

R3 ds2 = dx2 + dy2 + dz2 Rij = 0 Kij = 0
S3 ds2 = dx2 + sin2 xdy2 + (dz + cosx dy)2 Rij = 1

2gij Kij = 1
32gij

H3 ds2 = 1
x2 (dx2 + dy2 + dz2) Rij = −2gij Kij = 1

2gij

S2 × R ds2 = dx2 + sin2 x dy2 + dz2 R11 = 1, R22 = sin2 x K11 = −1
2 , K22 = − sin2 x

2 , K33 = 1
2

H2 × R ds2 = 1
x2 (dx2 + dy2) + dz2 R11 = R22 = − 1

x2 K11 = K22 = − 1
2x2 , K33 = 1

2

Sol ds2 = e2zdx2 + e−2zdy2 + dz2 R33 = −2 K11 = K22 = 5
2e2z, K33 = −15

2

Nil ds2 = dx2 + dy2 + (dz + x dy)2 R11 = −1
2 , R22 = x2−1

2 , K11 = −63
32 , K22 = 21

32
(
5x2 − 3

)
,

R33 = 1
2 , R23 = x

2 K33 = 105
32 , K23 = 105x

32

SL(2,R) ds2 = 1
x2 (dx2 + dy2) + (dz + 1

xdy)2 R11 = − 3
2x2 , R22 = − 1

x2 , K11 = − 159
32x2 , K22 = 41

16x2 ,

R23 = 1
2x , R33 = 1

2 K23 = 241
32x , K33 = 241

32

Table 1. A list of Thurston geometries and their Ricci and the K curvatures.

Rici-one form Rica := ιbR
b

a by interior product; and the scalar curvature R := ιaRica.
The Schouten one-form (in 3D) then is defined as Sa := Rica − 1

4Rea, from which follows
the Cotton 2-form Ca = DSa. Then we have the K one-form:

Ka := ϵa
bc ⋆ (Sb ∧ Sc) + 2 ⋆ D ⋆ Ca, (1.16)

and the K flow equation is
∂te

a = αKa. (1.17)

In the table 1, we give a list of the homogenous geometries and their Ricci and Kij tensors.2
From this table, it should be clear to the reader that working in these coordinate forms,
generically, would not yield autonomous differential equations for most of the geometries.
Therefore, following similar works in the Ricci flow [17–19], and the Cotton flow [8], we
will work in the Milnor frame [20] in which one obtains autonomous nonlinear ODEs. We
remark that although there are eight geometries in the table as in Thurston’s geometrization
conjecture, from classification of Milnor one more unimodular simply-connected Lie group,
Ĩsom(R2) appears which collapses to the same maximally symmetric geometry of R3.

2 The short-time Existence of the K-Flow

Before we move on to the study of model geometries we would like to discuss the existence
of the flow. The procedure we will follow was suggested by DeTurck [21] in giving concise
proof of the short-time existence of the Ricci flow. As an evolutionary partial differential
equation, Ricci flow is not strictly parabolic. DeTurck used the method of principal symbols
of linear differential operators to prove the short-time existence of the Ricci flow. We will
follow the same procedure which amounts to evaluating the tensor for small perturbations.
All of the high-frequency, short-wavelength modes are expected to diffuse for a parabolic
equation. For that purpose, the linearized version of the K-tensor around a flat background
is sufficient. But, first, for the sake of generality, let us find the linearized version of this
tensor about a generic background geometry that is not necessarily flat.

2See [9] for a similar table where the Cotton tensors of the Thurston geometries were given.
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2.1 Variation of the K-Tensor about a Background

We vary our metric g in around a background as g = ḡ+h, where ḡ is the background and
h is the variation, so that

gij = ḡij + hij , gij = ḡij − hij +O(h2). (2.1)

We raise and lower indices by ḡ and take the variation up to the second order. δ(gij) = hij

and δ(gij) = −hij . Then we have the following variations for the terms that do not involve
derivatives of the curvatures

δ(Γi
jk) = 1

2 ḡil(−∇̄lhjk + ∇̄jhkl + ∇̄khjl),

δ(Rij) = 1
2(−∇̄2hij + ∇̄k∇̄jhk

i + ∇̄k∇̄ih
k

j − ∇̄i∇̄jh),

δ(R) = −hklR̄kl + ∇̄k∇̄lh
kl − ∇̄2h,

δ(Sk
iSkj) = −hklR̄kiR̄lj + δ(Rki)R̄k

j + δ(Rkj)R̄k
i −

1
2δ(Rij)R̄ − 1

2δ(R)R̄ij ,

+1
8δ(R)ḡijR̄ + 1

16hijR̄2,

δ(SSij) = 1
4δ(Rij)R̄ + 1

4δ(R)R̄ij −
1
8δ(R)ḡijR̄ − 1

16hijR̄2,

δ
(
gij(Skl)2

)
= 2δ(Rkl)ḡijR̄kl − 1

2δ(Rkl)ḡklḡijR̄ − 1
8δ(R)ḡijR̄,

+1
2hklḡijR̄klR̄ − 2hknḡijR̄klR̄

l
n + hij(R̄kl)2 − 5

16hijR̄2

δ(gijS2) = 1
8δ(R)ḡijR̄ + 1

16hijR̄2. (2.2)

The terms that involve the derivatives of the curvatures vary as

δ(∇i∇jS) = ∇̄i∇̄jδ(S)− 1
8(∇̄ih

k
j + ∇̄jh k

i − ∇̄khij)∇̄kR̄,

δ(∇2Sij) = ∇̄2δ(Sij)− hkl∇̄k∇̄lS̄ij +
1
2(∇̄

k∇̄lhki − ∇̄k∇̄ih
kl − ∇̄2hl

i)Slj

+1
2(∇̄

k∇̄lhkj − ∇̄k∇̄jhkl − ∇̄2hl
j)Sli +

1
2(∇̄

kh − 2∇̄lh
kl)∇̄kS̄ij

+(∇̄khl
i − ∇̄lhk

i − ∇̄ih
kl)∇̄lS̄kj + (∇̄khl

j − ∇̄lhk
j − ∇̄jhkl)∇̄lS̄ki. (2.3)

– 6 –
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Finally, collecting all the pieces and suppressing the bar over the background tensors for
notational simplicity, one finds the variation of the K tensor as

δ(Kij) = ∆2hij −∆∇k∇ih
k

j −∆∇k∇jh k
i + 1

2∇i∇j∇k∇lh
kl +∆∇i∇jh

−1
2∇i∇j∆h + 1

2gij(∆∇k∇lh
kl −∆2h) + gij(6hklR n

k Rln − 13
4 hklRklR)

+gij

(
3Rkl(∆hkl −∇n∇khln −∇n∇lhkn +∇k∇lh) + 13

4 R(∇k∇lh
kl −∆h)

)

+gij

(
−1
2∆(hklRkl)−

1
2∇kR∇lh

kl + 1
4∇kR∇kh − 1

2hkl∇k∇lR

)
−1
2∇i∇j(hklRkl) +

9
2Rij(∆h −∇k∇lh

kl)

+Rik(3∇l∇khlj − 3∆h k
j + 5∇l∇jh k

l − 4∇j∇kh) + i ↔ j

+9
4(∆hij −∇k∇ih

k
j −∇k∇jh k

i +∇i∇jh) + 2∇kRij∇lh
kl −∇kRij∇kh

+2∇kRil(∇kh l
j −∇lh k

j +∇jhkl) + i ↔ j

+1
4∇kR(∇khij −∇ih

k
j −∇jh k

i ) + 2hkl∇k∇lRij +
1
2hij∆R

−3hijRklR
kl + 9

2RijRklh
kl − 8RikRjlh

kl + 13
8 hijR2. (2.4)

The above computation was about a generic background space, let us consider the case for
an Einstein (maximally symmetric in 3D) space for which R̄ij = 2Λḡij

δ(Kij) = ∆2hij −∆∇k∇ih
k

j −∆∇k∇jh k
i + 1

2∇i∇j∇k∇lh
kl +∆∇i∇jh

−1
2∇i∇j∆h + 1

2gij(∆∇k∇lh
kl −∆2h) + gijΛ

(
−3
2∇k∇lh

kl + 1
2∆h + 3Λh

)
+Λ

(5
2∇

k∇ihjk + 5
2∇

k∇jhik + 3
2∆hij −

7
2∇i∇jh

)
− 19

2 Λ2hij . (2.5)

Thus the variation of the K tensor is dominated by the fourth-order derivatives of the
perturbation. In the case of a flat background, Λ = 0, we get the linearized version of the
K tensor (KL

ij), namely

KL
ij = ∆2hij −∆∇k∇ih

k
j −∆∇k∇jh k

i + 1
2∇i∇j∇k∇lh

kl +∆∇i∇jh

−1
2∇i∇j∆h + 1

2gij

(
∆∇k∇lh

kl −∆2h
)

. (2.6)

In the jargon of physics, in the transverse (i.e. ∇ih
ij = 0) and the traceless (i.e. h = 0)

gauge, in Cartesian coordinates, we just have KL
ij = (∂k∂k)2 hij which is a bi-laplacian

operator. This suggests that we have a fourth-order elliptic operator; but to show this
properly, let us calculate the principal symbol.

– 7 –
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2.2 The principal symbol of the relevant operator

Using (2.6), we define

[D(Kg(h))]ij := 1
2∇i∇j∇k∇lh

kl + gmn

(
gpq∇m∇n∇p∇qhij −∇m∇n∇k∇ih

k
j

−∇m∇n∇k∇jh k
i +∇m∇n∇i∇jh − 1

2∇i∇j∇m∇nh

+1
2gij

(
∇m∇n∇k∇lh

kl − gpq∇m∇n∇p∇qh
))

. (2.7)

Let ζ ∈ C∞(T ∗M) be a covector. The principal symbol of the linear differential operator
D(Kg) is the bundle homomorphism that is obtained by replacing the covariant derivative
∇k by a covector ζk. Hence we have

[
σ̂[D(Kg)](ζ)(h)

]
ij

= 1
2ζiζjζkζlh

kl + gmn

(
gpqζmζnζpζqhij − ζmζnζkζih

k
j

−ζmζnζkζjh k
i + ζmζnζiζjh − 1

2ζiζjζmζnh +

+1
2gij(ζmζnζkζlh

kl − gpqζmζnζpζqh)
)

. (2.8)

Then for all covectors ζ ̸= 0 and for all hij ̸= 0 we find the inner product:

⟨σ̂[D(Kg)](ζ)(h), h⟩ = 1
2ζiζjζkζlh

klhij + gmn

(
gpqζmζnζpζqhij − ζmζnζkζih

k
j

−ζmζnζkζjh k
i + ζmζnζiζjh − 1

2ζiζjζmζnh

+1
2gij(ζmζnζkζlh

kl − gpqζmζnζpζqh)
)

hij . (2.9)

It is easy to see that for hij = ζiζj , which is a pure gauge mode, the above equation vanishes,
showing that the operator is not elliptic. To obtain an elliptic operator, devoid of these
zero modes, we commute the covariant derivatives in the linearized K tensor. Whenever
we commute the covariant derivatives, we obtain the Riemann tensor, that is

∆∇k∇ih
k

j = ∆∇i∇kh k
j +∆Riem · h. (2.10)

Since the only contribution to the principal symbol comes from the highest order deriva-
tives, we can commute derivatives with ease to obtain

[D(Kg(h))]ij = ∆2hij +
1
2gij(∆∇k∇lh

kl −∆2h)

+∇i

(
−∇k∆h k

j + 1
4∇j∇k∇lh

kl + 1
4∇j∆h

)
+∇j

(
−∇k∆h k

i + 1
4∇i∇k∇lh

kl + 1
4∇i∆h

)
, (2.11)
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which suggests that we define the following one-form

Vj := −∇k∆h k
j + 1

4∇j∇k∇lh
kl + 1

4∇j∆h, (2.12)

in terms of which one has

[D(Kg(h))]ij = ∆2hij +
1
2gij(∆∇k∇lh

kl −∆2h) +∇iVj +∇jVi. (2.13)

We can express the one-form Vj as

Vj = 1
2∇

k [D(Ricg)(h)]jk − gjkgmn∆ [D(Γg)(h)]kmn , (2.14)

where
[D(Ricg)] : C∞(S2T ∗M) → C∞(S2T ∗M) (2.15)

denotes the linearization of the Ricci tensor, S2 refers to symmetric two tensors; and

[D(Γg)] : C∞(S2T ∗M) → C∞(S2T ∗M× TM) (2.16)

denotes the linearization of the Levi-Civita connection. The connection is not a tensor,
but we may define a vector field W as the difference of two connections, the one being the
background connection, then W k := gmn(Γk

mn − Γ̃k
mn) is a tensor. Let us express (2.14) in

a different form as
Vj = 1

2∇
k [D(Ricg)(h)]jk −∆Wj . (2.17)

By the same reasoning, we can write

[D(Ricg)(h)]jk = −1
2∆hjk + 1

2(∇j Ṽk +∇kṼj), (2.18)

where
Ṽj = gjkgmn[D(Γg)(h)]kmn. (2.19)

Again, we may define W k as the difference between two connections to be a vector field.
What we finally have is

Vj = 1
4∇

k(−∆hjk +∇jWk +∇kWj)−∆Wj

= −1
4∇

k∆hjk + 1
4∇

k∇jWk − 3
4∆Wj . (2.20)

We once more write the linearized K-tensor but call back +W terms to the equation

[D(Kg(h))]ij = ∆2hij +
1
2gij(∆∇k∇lh

kl −∆2h)− 1
4
(
∇i∇k∆hjk +∇j∇k∆hik

)
+1
4
(
−∇i∇j∆h + 2∇i∇j∇k∇lh

kl
)
− 3

4∆(∇iWj +∇jWi). (2.21)

We expect to cancel the contributions from −∆W terms which are of fourth-order deriva-
tives of the metric, so that linearized K tensor is an elliptic operator, more properly a
bi-laplacian. As deTurck did, we can define a one-parameter family of diffeomorphisms

– 9 –



J
H
E
P
1
0
(
2
0
2
3
)
1
1
4

ϕt induced by the vector field W (t) which is the generator of the integral curves induced
by ϕt since we consider compact manifolds; and for compact manifolds vector fields and
integral curves are complete. Then for the contributions from W terms, we can write
∇iWj +∇jWi = (LW g)ij that is the Lie derivative of the metric g(t) with respect to the
vector field W (t). By this construction, the linearized tensor reads

[D(Kg(h))]ij = ∆2hij +
1
2gij(∆∇k∇lh

kl −∆2h)− 1
4(∇i∇k∆hjk +∇j∇k∆hik)

+1
4
(
−∇i∇j∆h + 2∇i∇j∇k∇lh

kl
)
− 3

4∆(LW g)ij . (2.22)

To break the diffeomorphisms we may use two constructions. The first construction is to
use the Lie derivative of the connections, we define the connection as being the difference
of two connections again so that it is a tensor also. Now we have

LWΓk
ij = ∇i∇jW k + R k

ilj W l. (2.23)

On the other hand, since the Lie derivative of a vector field with respect to itself vanishes
we can write

LW

(
gkmΓl

km

)
= LW (gkm)Γl

km + gkmLWΓl
km = 0

= −2Γl
km∇kW m +∆W l + R l

n W n,

∆W l = 2Γl
km∇kW m − R l

n W n,

∆∇iWj = ∇igjl∆W l = ∇i(2gjlΓl
km∇kW m)−∇i(RnjW n). (2.24)

For the principal symbol, we need only the highest-order derivatives, so that no contribution
comes from the lower-order terms. Then the principal symbol becomes

σ̂ [D(K)] (ζ)(h)ij = |ζ|2|ζ|2hij +
|ζ|2

2 gij

(
ζkζlh

kl − |ζ|2h
)

−|ζ|2

4
(
ζiζ

khjk + ζjζkhik

)
+ ζiζj

4
(
−|ζ|2h + 2ζkζlh

kl
)

. (2.25)

Choosing the problematic gauge mode hij = ζiζj , we have

⟨σ̂[D(K)](ζ)(h), h⟩ = 3
4 |ζ|

2|ζ|2|ζ|2|ζ|2 ̸= 0. (2.26)

Therefore D(K) is an elliptic operator, and we conclude that the unspecified constant α in
the flow equation must be chosen to be negative so that the flow is diffusive as expected,
and by rescaling t we may set α = −1. [Note that if we had taken the form of the K-tensor
as given in (1.7), then we should have set α = +1.]

Another construction of the short-time existence and uniqueness was given in [22];3 and
we simply follow the results therein for the benefit of the reader. Consider two Riemannian

3We were not aware of this work when we submitted the first version of our paper to the arXiv; we duly
thank J.D. Streets for letting us know about his work.

– 10 –



J
H
E
P
1
0
(
2
0
2
3
)
1
1
4

metrics g(t) and ḡ(t) with ϕ∗
t g(t) = ḡ(t), and ϕt a one-parameter family of diffeomorphisms

induced by the vector field V (t) = −3
4∆W (t) so that

∂ϕt(x)
∂t

= −V
(
ϕt(x), g(t), t

)
,

ϕt(0) = idM . (2.27)

The vector field W k can be written as

−W k =
(
(ϕ−1

t )∗ḡ
)mn

(−Γk
mn + Γ̃k

mn) = (∆ḡ(t),g̃ϕt)k, (2.28)

where g̃ is a fixed background metric on the manifold, and ∆ḡ(t),g̃ϕt is the harmonic map
Laplacian with respect to the domain metric ḡ and the codomain metric g̃ which can be
computed by using the equation for the Christoffel symbol of the pullback metric

−gαβΓ(g)γ
αβ = (ϕ∗g)ij

(
∂2ϕγ

∂xi∂xj
− Γk

ij(ϕ∗g)∂ϕγ

∂xk

)
, (2.29)

as given in [19]. Since the vector field V is a Laplacian of the vector field W , we need to
relate the Laplacians with respect to the two metrics g and ḡ acting on the one-form W ,
and one can show that the two Laplacians differ by third-order derivatives of the map ϕ at
the highest order

∆gW = ∆ḡW +O(∂3ϕ). (2.30)

By using equation (2.30), we may write an ODE for the diffeomorphisms in terms of ḡ(t) as

∂ϕt(x)
∂t

= L(ϕt(x), ḡ(t), t),

ϕt(0) = idM , (2.31)

where L is a fourth-order parabolic operator, a bi-laplacian for ϕt with solutions existing
at least for a short time if ḡ(t) exists which is the solution of the initial value problem

∂tḡ(t) = −K(ḡ(t)) ḡ(0) = g0. (2.32)

If ḡ(t) exists, then g(t) = (ϕt)∗ḡ(t) is a solution of the gauge-fixed flow

∂tg(t) = −K(g(t)) + LV g(t) g(0) = g0, (2.33)

which can be computed as follows

∂

∂t
ḡ(t) = ∂

∂t
(ϕ∗

t g(t)) = ∂

∂s

∣∣∣∣
s=0

ϕ∗
t+sg(t + s) = ϕ∗

t

∂

∂s

∣∣∣∣
s=0

g(t + s) + ∂

∂s

∣∣∣∣
s=0

ϕ∗
t+sg(t)

= ϕ∗
t (−K[g(t)]) + ϕ∗

tLV (t)g(t) +
∂

∂s

∣∣∣∣
s=0

((
ϕ−1

t ◦ ϕt+s

)∗
ϕ∗

t g(t)
)

= −K[ϕ∗
t g(t)] + ϕ∗

t

(
LV (t)g(t)

)
− L(ϕ−1

t )∗V (t)ϕ
∗
t g(t)

= −K[ḡ(t)]. (2.34)
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The gauge-fixed flow (2.33) is elliptic, it has a bi-laplacian symbol, so will have solutions
at least for a short time. Then ḡ(t) exits and solves the K-flow (2.32).

Let us assume that ḡ1(t) and ḡ2(t) are two solutions of the K-flow (2.32) on a common
time interval with ϕ1(t) and ϕ2(t) being the solutions of the flow (2.31) with respect to the
domain metrics ḡ1(t) and ḡ2(t) respectively, and the codomain metric g̃. Then

gi(t) = ((ϕi)t)∗ḡi(t), i = 1, 2,

are solutions of the gauge-fixed flow (2.33). Since g1(0) = g2(0) and (2.33) have unique
solutions, then g1(t) = g2(t) as long as both exist. The flow of ϕ(t) can also be written in
terms of g(t) as in (2.27). Since g1(t) = g2(t) on a common time interval, ϕ1(t) = ϕ2(t)
on a common time interval as well which then implies ḡ1(t) = ḡ2(t) and the uniqueness of
ḡi(t) is inherited by the equivalence of (2.27) and (2.31).

3 Gradient flow and Entropy Formulation of the flow

As alluded to in the Introduction section, the flow is related to the quadratic part of the
new massive gravity theory. Let us now show that the action of the theory is non-decreasing
along the flow, hence it can be considered as an entropy.

S = −
∫
M

d3x
√

g

(3
8R2 − RijRij

)
= −

∫
M

d3x
√

gK, (3.1)

where M is a closed 3-manifold, so we can drop the boundary terms after integration by
parts. By taking its variation with respect to the metric we obtain

δgS = −
∫
M

d3x
√

g(Kij)δgij =
∫
M

d3x
√

gKijKij , (3.2)

where we used δgij = −Kij . Thus the action is a non-decreasing functional of time, as we
would require from an entropy functional. If we were to consider infinitesimal diffeomor-
phisms and scalings δgij = ∇iXj +∇jXi + λ(x)gij , then we would find

δS = −
∫
M

d3x
√

gλK, (3.3)

which shows that diffeomorphisms are symmetries but the scalings are not. See appendix D
where the transformation properties of the K tensor under conformal scalings were worked
out. Note also that we have used the Bianchi Identity ∇iK

ij = 0 which is valid for all
smooth metrics.

The functional (3.1) has been thoroughly studied by Gursky and Viaclovsky [15], and
here we follow their main results for definitions and theorems.

Let H denote the set of smooth Riemannian metrics on a compact manifold M and let
H1 be the set of smooth Riemannian metrics that keep the volume constant, set to 1. A
real-valued functional on H1, is called a Riemannian functional F , if it is invariant under
the action of the diffeomorphism group, that is F (g) = F (ϕ∗g) for g ∈ C∞(S2T ∗M) and ϕ

is an element of the diffeomorphism group. Every Riemannian functional (constructed from
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a polynomial of the Riemann curvature tensor Riem) is differentiable. Then the differential
of F is defined as

d

dt

∣∣∣∣
t=0

F (g + th) = F
′
g · h =

∫
M

g(h,∇F )dµ, (3.4)

where ∇F is called the gradient of F and it is a symmetric two tensor and a polynomial
of Riemann curvature tensor Riem and its first two covariant derivatives ∇∇Riem. The
gradient of a Riemannian functional is covariantly conserved; it defines a vector field on H1
and this vector field satisfies an integrability condition. For the action (3.1), the gradient
is the tensor Kij .

3.1 Results of Gursky and Viaclovsky [15]

In [15], the authors consider the negative of the action (3.1), and call it F2 so F2 = −S =∫
dµK. We state here their results in the context of compact three-dimensional manifolds,

with the restriction that the volume is kept fixed, that is we consider S |H1 .
If K > 0, then the sectional curvatures of g at a point are all positive or all negative.

Now consider two cases.

1. A metric g with F2 > 0 (S < 0) is critical for F2 |H1 (S |H1) if and only if g has
constant sectional curvatures, strictly positive or negative. This condition is called
ellipticity, and respectively critical points are called elliptic critical points. Then
elliptic critical points of S are of constant curvature.

2. A metric g with F2 = 0 (S = 0) is critical for F2 |H1 (S |H1) if and only if g has
constant sectional curvature. This condition is called degenerate ellipticity. In this
case, it is possible that the curvature changes sign.

For both cases, a metric is critical if and only if it has constant sectional curvatures, so
constant curvature. A Riemannian metric on a 3-dimensional manifold is Einstein if and
only if it has constant sectional, hence critical metrics are Einstein metrics.;4 Moreover, if
a 3-dimensional manifold admits a constant sectional curvature metric, then its universal
cover is diffeomorphic to R3 or S3. Constant curvature metrics put a condition on the trace
K. Since, for a constant curvature metric Ric = 1

3Rg, then K = 1
24R2 ≥ 0 (−K ≤ 0). If

g is critical for S |H1 , then K is a constant.

• If S < 0, then K > 0, or (−K < 0). The scalar curvature R can be positive or
negative, but constant.

• If S = 0, then K = 0 and R ≤ 0 and g is conformally flat.

Finally, for F2 < 0 (S > 0), there are critical metrics that are called non-elliptic
critical points. In [15], one such example on S3 is given, which is the orthonormal frame
metric.

In conclusion for S ≤ 0, such that K ≥ 0, the elliptic critical points of S are either
constant curvature metrics, positive or negative, or just conformally flat metrics. Thus

4In 3 dimensions, the relation between the Riemann curvature tensor and the Einstein tensor is as
Rµανβ = 1

4 ϵµασϵνβρGσρ.
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under the K-Flow, any topological constant curvature manifold will approach the geometric
manifold with the standard metric. For S ≥ 0, it is possible to find critical metrics but a
complete classification is not possible. For example for R3 we know that K = 0, and under
the flow the geometry does not change, it is still flat, but it is trivial.

4 Some solutions of the K-flow

4.1 Einstein solutions

In this part of our work, we discuss some specific solutions to the flow. We start with an
Einstein manifold, a smooth manifold that admits an Einstein metric gij such that the Ricci
tensor is simply Rij = 2Λgij where Λ is just a constant. If initially Rij(x, 0) = 2Λgij(x, 0)
for all x ∈ M , then

R(x, 0) = 6Λ, Sij(x, 0) = 1
2Λgij(x, 0), Kij(x, 0) = 1

2Λ
2gij(x, 0). (4.1)

Let us consider the 3-cases separately.

1. Consider the Λ = 0 case, that is initially the metric is Ricci-flat (or a Milnor frame
metric). Then Kij(x, 0) = 0 and so we have a stationary solution of the flow.

2. For Λ > 0, initially the scalar curvature is positive, and the metric will shrink under
the flow. To see this, we may set

gij(x, t) = a2(t)gij(x, 0) (4.2)

for some smooth function a(t). Then the relevant tensors and geometric objects read

gij(x, t) = a−2(t)gij(x, 0), Γk
ij(x, t) = Γk

ij(x, 0), Rk
ilj(x, t) = Rk

ilj(x, 0),
Rij(x, t) = Rij(x, 0), R(x, t) = a−2(t)R(x, 0), Sij(x, t) = Sij(x, 0),

Kij(x, t) = a−2(t)Kij(x, 0) = 1
2Λ

2a−2gij(x, 0). (4.3)

Therefore, the flow equation becomes

∂t(a2(t)gij(x, 0)) = −1
2a−2Λ2gij(x, 0), (4.4)

with the solution
a4(t) = a4

0 − Λ2t. (4.5)

The metric gij(x, t) will shrink to a point in a finite time t = a4
0/Λ2, the rate of decay

depends on the parameters a0 and Λ. But eventually, the scalar curvature becomes
infinite.

3. For Λ < 0, that is for an initially negative scalar curvature Einstein metric, the flow
equation would be exactly as in the second case above, since K is proportional to Λ2

term. Thus, the metric gij(x, t) shrinks and the scalar curvature becomes negatively
infinite in a finite amount of time.
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4.2 Ancient solutions

Consider the three dimensional round sphere with the standard metric gcan, and one pa-
rameter family of conformally equivalent metrics g(t) = r2(t)gcan, then g(t) is a solution of
the flow if

∂tg(t) = 2r(t)dr(t)
dt

gcan = −K[g(t)] = −r−2

2 (t)gcan, (4.6)

with the solution
r(t) = (r4

0 − t)1/4. (4.7)

Hence this solution exists for (S3, g(t)) in the time interval (−∞, T ) where T is the sin-
gularity time T = r4

0, hence an ancient solution. This is an example of the second case
above.

4.3 The model geometries under K-flow

In this part, we will study the properties of the geometries under the flow. Since the K-
tensor is not traceless we can not set the volume to a constant value say 1, in other words,
the volume is not preserved under the flow. We could of course write a traceless form
of the tensor and work with this traceless tensor in which case we could set the volume
to 1. However in this case the action/entropy would vanish. Thus we do not consider a
normalized flow. We start with the Non-Bianchi classes for which we use the coordinate
frame and then move to Bianchi classes and study them in the orthonormal frame.

4.3.1 Non-Bianchi classes

Now we work on the so-called Non-Bianchi Classes whose metrics in the coordinate basis
are simple enough to yield exact integration of the flow equations. Thus we study their
flows on a coordinate basis.

1. The geometry of H3 with the metric g = a(t)gH3

The metrics of the geometries in this class are of the above form where gH3 is the
metric of H3 with a smooth function a(t). In the basis {dx, dy, dz} the components
of the Ricci tensor and the curvature scalar can be computed directly for the metric

g = a(t)
x2 (dx2 + dy2 + dz2). (4.8)

One has ∂xgij = −2aδij/x3 as the only non-zero derivatives of the components of the
metric. Therefore the non-zero Christoffel symbols are

Γx
xx = Γy

xy = Γz
xz = −1

x
, Γx

yy = Γx
zz = 1

x
, (4.9)

which lead to

Rij = − 2
x2 δij , R = −6

a
, Kij = 1

2ax2 δij , K = 3
2a2 , (4.10)

the flow yields

a2(t) = a2
0 − t. (4.11)
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In this case, all three dimensions shrink with t1/2 and the scalar curvature becomes
negative infinite while the trace K also becomes positive infinite in a finite amount
of time.

2. The geometry of H2 × R with the metric g = a(t)gR + b(t)gH2

The metrics of the geometries in this class are of the above form where gR is the
metric of R, and gH2 is the metric of the hyperbolic plane with smooth functions a(t)
and b(t) respectively.
In the basis {dx, dθ, sinh θdϕ} , the metric reads

g = a(t)dx2 + b(t)(dθ2 + sinh2 θd2ϕ), (4.12)

from which one computes ∂θgϕϕ = 2a sinh θ cosh θ which is the only non-zero deriva-
tive of the components of the metric. The non-zero Christoffel symbols are

Γθ
ϕϕ = − sinh θ cosh θ, Γϕ

ϕθ = Γϕ
θϕ = cosh θ

sinh θ
, (4.13)

yielding
Rxx = 0, Rθθ = −1, Rϕϕ = − sinh2 θ, R = −2

b
, (4.14)

and

K11 = a

2b2 , K22 = − 1
2b

, K33 = −sinh2 θ

2b
K = − 1

2b2 . (4.15)

Finally, the flow equations read:

∂ta = − a

2b2 , ∂tb = 1
2b

, (4.16)

which can be directly integrated

b2(t) = b2
0 + t, a(t) = a0b0√

b2
0 + t

. (4.17)

From these solutions, one can see that, for large times, while the hyperbolic plane
expands linearly with t1/2, R shrinks with t−1/2 giving a pancake degeneracy to the
geometry. The scalar curvature vanishes with t−1/2. The trace K also vanishes.

3. The geometry of S2 × R with the metric g = a(t)gR + b(t)gS2

The metrics of the geometries in this class are of the above form where gR is the
metric of R and gS2 is the metric of the two-sphere with smooth functions a(t) and
b(t) respectively. In the basis, {dx, dθ, sin θdϕ}, the metric is

g = a(t)dx2 + b(t)(dθ2 + sin2 θd2ϕ), (4.18)

and ∂θgϕϕ = 2b sin θ cos θ is the only non-zero derivative of the components of the
metric. One has

Γθ
ϕϕ = − sin θ cos θ, Γϕ

ϕθ = Γϕ
θϕ = cos θ

sin θ
, (4.19)
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Figure 1. The behavior of both H2 × R and S2 × R geometries under the flow is plotted. The
vertical axis represents the dimensions a, b. The horizontal axis represents the parameter of the
flow t.

yielding
Rxx = 0, Rθθ = 1, Rϕϕ = sin2 θ, R = 2

b
. (4.20)

Then we find

K11 = a

2b2 , K22 = − 1
2b

, K33 = −sin2 θ

2b
, K = −1

2b2 . (4.21)

The flow equations yield the same equations we obtained for the previous H2×R case.
Thus for large times, the two-sphere expands linearly with t1/2, and R shrinks with
t−1/2. The scalar curvature vanishes as t−1/2. It is interesting that S3 and H3 shrink
to a point, but S2 and H2, on the other hand, expand, in the K-flow in contrast to
the case in Ricci flow. Ricci flow gives shrinking solution for all Sn and expanding
solution for all Hn, independent of the number of dimensions.

4.3.2 The Bianchi class geometries: orthonormal frame calculations

We now consider the geometries known as the Bianchi classes and describe their behavior
under the flow. We have to find the K-tensor (or more properly the K one-form) in the
orthonormal frame. This is a straightforward but rather tedious computation. Therefore
we delegate the bulk of this computation to appendix A and introduce here the essentials
needed to write down the coupled non-linear ODEs coming from the flow.

We now introduce the Milnor frame and compute the relevant geometrical quantities
there. Let g be a left-invariant metric on the unimodular, simply connected Lie group G,
then there exists a left-invariant orthogonal frame F = {Fi}, the Milnor frame, such that:

[Fi, Fj ] = Cij
kFk, (4.22)

where C k
ij are the structure constants uniquely defined for each Lie algebra of the Lie

groups that we shall consider. Let ∇ be a uniquely defined connection satisfying the
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identities:

∇XY −∇Y X = [X, Y ],
⟨∇XY, Z⟩+ ⟨Y,∇XZ⟩ = 0,

⟨∇XY, Z⟩ = 1
2
(
⟨[X, Y ], Z⟩ − ⟨[Y, Z], X⟩+ ⟨[Z, X], Y ⟩

)
, (4.23)

where ⟨Y, Z⟩ denotes the inner product and X, Y, Z are vector fields. In an orthonormal
coframe {Ei} , where [Ei, Ej ] = D k

ij Ek, one has

⟨∇EiEj , Ek⟩ = ⟨[Ei, Ej ], Ek⟩ =
1
2
(
Dij

k − Djk
i + Dki

j
)

. (4.24)

Hence ∇EiEj = ∑
k

1
2
(
D k

ij − D i
jk + D j

ki

)
Ek. ∇EiEj = −∇Ej Ei and ∇EiEi = 0 which

follows also from the properties of the structure constants. Conventionally one writes the
algebra explicitly as

[F1, F2] = νF3, [F2, F3] = λF1, [F3, F1] = µF2, (4.25)

where µ, ν, λ ∈ {−1, 0, 1} are the structure constants. In this frame, then the metric g can
be written as:

g = a(t)ω1 ⊗ ω1 + b(t)ω2 ⊗ ω2 + c(t)ω3 ⊗ ω3, (4.26)

where
{
ω1, ω2, ω3} are the dual basis one-forms to the orthogonal basis {F1, F2, F3} , that

is ωi(Fj) = δi
j . Let then the dual basis one-forms to the orthonormal basis {E1, E2, E3}

be
{
e1, e2, e3}. In this orthonormal coframe, the metric takes the form:

g = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3, (4.27)

where the relations between these bases are:

e1 =
√

aω1, e2 =
√

bω2, e3 =
√

cω3, (4.28)

and since ei(Ej) = δi
j we have,

E1 = F1√
a

, E2 = F2√
b
, E3 = F3√

c
. (4.29)
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As it is given in appendix A, one finds the K one-forms in the orthonormal frame as

K1 = −1
32a2b2c2

(
− 105a4λ4 + 60a3bλ3µ + 60a3cλ3ν + 2a2b2λ2µ2 − 20a2bcλ2µν

+2a2c2λ2ν2 − 20ab3λµ3 + 20ab2cλµ2ν + 20abc2λµν2 − 20ac3λν3 + 63b4µ4

−60b3cµ3ν − 6b2c2µ2ν2 − 60bc3µν3 + 63c4ν4
)

e1, (4.30)

K2 = −1
32a2b2c2

(
63a4λ4 − 20a3bλ3µ − 60a3cλ3ν + 2a2b2λ2µ2 + 20a2bcλ2µν

−6a2c2λ2ν2 + 60ab3λµ3 − 20ab2cλµ2ν + 20abc2λµν2 − 60ac3λν3 − 105b4µ4

+60b3cµ3ν + 2b2c2µ2ν2 − 20bc3µν3 + 63c4ν4
)

e2, (4.31)

K3 = −1
32a2b2c2

(
63a4λ4 − 60a3bλ3µ − 20a3cλ3ν − 6a2b2λ2µ2 + 20a2bcλ2µν

+2a2c2λ2ν2 − 60ab3λµ3 + 20ab2cλµ2ν − 20abc2λµν2 + 60ac3λν3

+63b4µ4 − 20b3cµ3ν + 2b2c2µ2ν2 + 60bc3µν3 − 105c4ν4
)

e3. (4.32)

Then using the flow equation ∂te
a = −Ka, we have the following coupled nonlinear ODEs:

da

dt
= a

16a2b2c2

(
− 105a4λ4 + 60a3bλ3µ + 60a3cλ3ν + 2a2b2λ2µ2 − 20a2bcλ2µν

+2a2c2λ2ν2 − 20ab3λµ3 + 20ab2cλµ2ν + 20abc2λµν2 − 20ac3λν3 + 63b4µ4

−60b3cµ3ν − 6b2c2µ2ν2 − 60bc3µν3 + 63c4ν4
)

, (4.33)

db

dt
= b

16a2b2c2

(
63a4λ4 − 20a3bλ3µ − 60a3cλ3ν + 2a2b2λ2µ2 + 20a2bcλ2µν

−6a2c2λ2ν2 + 60ab3λµ3 − 20ab2cλµ2ν + 20abc2λµν2 − 60ac3λν3 − 105b4µ4

+60b3cµ3ν + 2b2c2µ2ν2 − 20bc3µν3 + 63c4ν4
)

, (4.34)

dc

dt
= c

16a2b2c2

(
63a4λ4 − 60a3bλ3µ − 20a3cλ3ν − 6a2b2λ2µ2 + 20a2bcλ2µν

+2a2c2λ2ν2 − 60ab3λµ3 + 20ab2cλµ2ν − 20abc2λµν2 + 60ac3λν3

+63b4µ4 − 20b3cµ3ν + 2b2c2µ2ν2 + 60bc3µν3 − 105c4ν4
)

. (4.35)

1. The geometry of R+R+R with the structure constants λ = 0, µ = 0, ν = 0
The metric of these geometries are flat, with zero curvature, and since all the flow
equations vanish they do not change under the flow. They are fixed points of the
flow.

Ka = 0, K = 0.
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2. The geometry of SU(2): with the structure constants λ = 1, µ = 1, ν = 1
or λ = −1, µ = −1, ν = −1

For this geometry the flow equations are

da

dt
= a

16a2b2c2

(
− 105a4 + 60a3b + 60a3c + 2a2b2 − 20a2bc + 2a2c2 − 20ab3

+20ab2c + 20abc2 − 20ac3 + 63b4 − 60b3c − 6b2c2 − 60bc3 + 63c4
)
,

db

dt
= b

16a2b2c2

(
63a4 − 20a3b − 60a3c + 2a2b2 + 20a2bc − 6a2c2 + 60ab3

−20ab2c + 20abc2 − 60ac3 − 105b4 + 60b3c + 2b2c2 − 20bc3 + 63c4
)
,

dc

dt
= c

16a2b2c2

(
63a4 − 60a3b − 20a3c − 6a2b2 + 20a2bc + 2a2c2 − 60ab3

+20ab2c − 20abc2 + 60ac3 + 63b4 − 20b3c + 2b2c2 + 60bc3 − 105c4
)
. (4.36)

The first observation is that these equations are all symmetric in a, b, and c: i.e. the
interchange of them would not change the equations. In the case of a(t) = b(t) = c(t),
the flow equations become rather simple and analytically solvable:

da

dt
= − 1

16a
a2(t) = −1

8 t + a2
0. (4.37)

Thus if initially, one has a0 = b0 = c0, or at some point of the flow t = τ , if aτ =
bτ = cτ , namely once the metric reaches the metric of the round sphere, the geometry
shrinks to a point in a finite time. On the other hand, when a(t) ̸= b(t) ̸= c(t), it
is not possible to solve the equations analytically, so to make some estimates about
their behaviors, let us investigate the differences between the flow equations:

d(a−b)
dt

= (a−b)
16a2b2c2

(
−105a4−108a3b+60a3c−86a2b2+100a2bc+2a2c2

−108ab3+100ab2c+28abc2−20ac3−105b4+60b3c+2b2c2−20bc3+63c4
)
,

d(b−c)
dt

= (b−c)
16a2b2c2

(
63a4−20a3b−20a3c+2a2b2+28a2bc+2a2c2+60ab3

+100ab2c+100abc2+60ac3−105b4−108b3c−86b2c2−108bc3−105c4
)
,

d(a−c)
dt

= (a−c)
16a2b2c2

(
−105a4+60a3b−108a3c+2a2b2+100a2bc−86a2c2

−20ab3+28ab2c+100abc2−108ac3+63b4−20b3c+2b2c2+60bc3−105c4
)
.

(4.38)

From the symmetry of the flow equations, we can assume without loss of generality
that initially a0 ≥ b0 ≥ c0. If at t = τ , aτ = bτ , and similarly for some t = τ

′ ,
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bτ ′ = cτ ′ , then one gets

d(a − b)
dt

∣∣∣∣
τ
= (a − b)

16a2b2c2

(
− 105a4 − 108a3b + 60a3c − 86a2b2 + 100a2bc

+2a2c2 − 108ab3 + 100ab2c + 28abc2 − 20ac3 − 105b4

+60b3c + 2b2c2 − 20bc3 + 63c4
)
,

d(b − c)
dt

∣∣∣∣
τ ′

= (b − c)
16a2b2c2

(
63a4 − 20a3b − 20a3c + 2a2b2 + 28a2bc

+2a2c2 + 60ab3 + 100ab2c + 100abc2 + 60ac3 − 105b4

−108b3c − 86b2c2 − 108bc3 − 105c4
)
. (4.39)

The first equation says that during the flow, the flow between the functions a and
b stops at t = τ ; and the second equation says that the flow between the functions
b and c stops at t = τ

′ . Therefore if, initially, we have a0 ≥ b0 ≥ c0, then for all
t ≥ 0, one has a ≥ b ≥ c until they reach exactly the same values. Now, assuming
a ≥ b ≥ c for all t, we want to show that c is a non-decreasing function to the point
where all three dimensions become equal. To deal with the negative terms, we write
−60a3b−60ab3 = 30(a−b)2(a2−b2)−30a4−30b4 and −6a2b2 = 3(a2−b2)2−3a4−3b4.
Then one gets

dc

dt
= c

16a2b2c2

(
10a4 + 20a2bc + 2a2c2 + 20ab2c + 60ac3 + 2b2c2 + 60bc3

+10b4 + 3(a2 − b2)2 + 30(a − b)2(a2 − b2)− 20abc2 − 105c4
)
. (4.40)

The last two negative terms are smaller than the other terms since a ≥ b ≥ c. Hence,
c ≥ c0 and so a ≥ b ≥ c ≥ c0. We can put a lower bound for c using the leading term:

dc

dt
= 10a4c

16a2b2c2 , c
dc

dt
= 5a2

8b2 ≥ 5
8,

c2(t) ≥ 5
4 t + c2

0. (4.41)

Similarly, we can show that a is non increasing so that we have a0 ≥ a ≥ b ≥ c ≥ c0.
Now we can use this condition for the flow of a − c: we see that

(a0 − c0)e
− 137

16a2
0

t
≥ (a − c) ≥ (a0 − c0)e

− 137
16c2

0
t
. (4.42)

Therefore a − c vanishes exponentially and similar results follow for others. Hence
we conclude that the metric approaches the metric of the round sphere and then the
geometry shrinks to a point.
Now let us investigate the behavior of the scalar curvature:

R = 1
2abc

(
−a2 + 2ab + 2ac − b2 + 2bc − c2

)
. (4.43)

Once the geometry reaches the round sphere, the curvature scalar becomes R = 3
2a

and shrinking of the sphere continues; and the scalar curvature becomes singular; it
goes to positive infinity. One can of course avoid this singularity by normalizing the
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Figure 2. The behavior of the SU(2) = S3 geometry under the flow. The vertical axis represents
the dimensions a, b, c. The horizontal axis represents the parameter of the flow t. Three dimensions
approach each other and then vanish in the unnormalized flow, while they attain the same fixed
value for the volume normalized flow.

flow. We will not do that here, but for the sake of understanding what goes on in the
normalized (fixed volume) flow, let us just note this case as an example. If we had
normalized the flow, then one of the equations would look like

da

dt
= a

6a2b2c2

(
− 42a4 + 25a3b + 25a3c + a2b2 − 10a2bc + a2c2 − 5ab3

+5ab2c + 5abc2 − 5ac3 + 21b4 − 20b3c − 2b2c2 − 20bc3 + 21c4
)
, (4.44)

and we have similar equations for b and c by interchanging with a. In this case, the
geometry would reach the round sphere in a finite time and stay there. The scalar
curvature then would be R = 3/2a. Figure 2 shows the behavior of the geometry
under the flow (we have done the numerical integrations using a Matlab code).

When three dimensions become equal we can look at what happens to the trace K

which appears as the integrand of the entropy:

K = 1
32a2b2c2

(
− 21a4 + 20a3b + 20a3c + 2a2b2 − 20a2bc

+2a2c2 + 20ab3 − 20ab2c − 20abc2 + 20ac3 − 21b4

+20b3c + 2b2c2 + 20bc3 − 21c4
)
= 3

32a2 . (4.45)

K first attains a constant value, then as a vanishes, it goes to positive infinity.

For the rest of the Bianchi class geometries we state here the results and show the
computations in appendix B. The geometries of S̃L(2, R) and Nil generate a pancake
degeneracy. The Geometry of Ĩsom(R2) generates a flat geometry. The geometry of Sol

generates a cigar degeneracy.
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5 Solitons of the K-flow

Fixed points of the flow equations are called solitons. The first kind of solitons of the K-
flow is the Ricci flat metrics for which the Ricci tensor vanishes. In three dimensions these
are just flat spaces. Under a constant scaling defined as g̃ij = Λgij , the K tensor picks up
a Λ−1 term so scalings are not symmetries of the flow as we have noted before. The second
kind of symmetry we may discuss is diffeomorphism. Letting ϕt be a one-parameter family
of diffeomorphisms on the manifold M generated by a vector field X such that ϕ0 = idM
and ∂tϕt = −X(t) and a family of metrics

ϕ∗
t g(t) = ḡ(t), g(0) = g0 = ḡ(0). (5.1)

If ḡ(t) is the solution of the K-flow (2.32), then g(t) is a solution of the gauge-fixed
flow (2.33) by (2.34). In other words g(t) is also a solution of the flow with ∂tgij =
−Kij +∇iXj +∇jXi where we used the definition of the Lie derivative of the metric. We
said that a flat metric is a solution of the flow since Kij = 0 which we may call a steady
soliton. If g is an Einstein metric (Rij = 2Λgij), then Kij = 1

2Λ2gij and a conformal Killing
vector field LXg = 1

2Λ2g would give a soliton solution for an Einstein metric. We set the
pair (g, X) as a soliton of the flow; therefore for a soliton ∇iXj + ∇jXi − Kij = 0. Are
there any such solutions? To answer this question, we start with the square of the Lie
derivative of the metric [9]

| LXg |2= −∆(XkXk) + 2Xk∆Xk − 2∇k(X l∇lX
k) + 2Xk∇k∇lX

l + 2XkX lRkl, (5.2)

and we also have 2∇kXk−K = 0 and ∆Xk+∇k∇lX
l+RklX

l = 0 = ∆Xk+ 1
2∇kK+RklX

l

from the trace and divergence of the soliton equation. Then the square of the Lie derivative
of the metric reads

| LXg |2= −∆(XkXk)− 2∇k(X l∇lX
k). (5.3)

When we integrate over a compact manifold without boundary, we obtain∫
M

dµ | LXg |2= 0. (5.4)

Apparently, only a Killing vector field solves this equation. Then soliton equation gives a
trivial soliton Kij = 0. In the case of G-invariant metrics, the left-invariant vector fields
are Killing and are generators of diffeomorphisms, in fact, isometries, and the associated
integral curves are geodesics of the manifold. Steady solitons of the flow, flat metrics, flow
on the geodesics.

From previous discussions, Einstein metrics are critical points of the action, and so
of the flow. We should emphasize that Einstein metrics as critical points of the quadratic
part of the NMG action are found from purely variational methods in [15]. As it stands
we cannot require a general solution of the flow to vanish at the variations of the metric.
Hence we conclude that Einstein metrics are critical points, but not solitons of the flow.
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6 Conclusions

We have defined a geometric flow exclusive to 3-dimensional Riemannian manifolds. The
flow is motivated by both pure differential geometry and physics. Compared to the Ricci
flow, the K flow is a higher-order flow, as the relevant tensor involves the laplacian of the
Ricci tensor at the leading order. Despite being a higher-order non-linear PDE, we were
able to show that the relevant operator is a fourth-order elliptic operator using the deTuck
trick and establishing the short-time existence problem. The fast modes (short wavelength
perturbations) are all diffused just as in the case of the Ricci flow. From the physics point of
view, the relevant K-tensor can be thought to arise from the short distance (ultra-violate
regime) of the new massive gravity for which the Ricci tensor (or the Einstein tensor)
becomes an irrelevant operator [10], or one can directly consider the quadratic theory as
the gravity theory as was done in [14]. From a mathematical point of view, what we called
“the entropy” of the flow was studied in [15] in the context of characterizing 3-dimensional
space forms. We have made use of the results of [15] in section III where we gave a gradient
formulation of the flow.

Ricci flow and various related flows bore much fruit in mathematics as is already well
known from the works of Hamilton and Perelman that we alluded to in the introduction.
But these remarkable works, and in general works on geometric flows have not yet found
their deserved interest in the physics literature. We believe this state of affairs is transient:
there are a great deal of potential applications of geometric flows in gravity, quantum
gravity, and field theory. The crucial link is the following: Ricci flow, or some nice geometric
flow, could arise as a renormalization group flow in a non-linear sigma model. For example
when one says that Einstein’s theory arises from string theory, one means the following:
at low energies, the worldsheet renormalization group flow in string theory gives rise to
the Ricci flow (with some additional fields) in the target space. And, because in the world
sheet, Weyl symmetry cannot be anomalous, one sets the beta function (that is running of
the couplings which is the metric of the target space) to zero. So instead of a flow in string
theory, one has the critical points of the flow which are at the lowest order, and setting
all the fields except the metric to vanish, to the Ricci flat metrics. Of course, as we shall
mention below, in the context of Euclidean gravity, Ricci flow could still be useful as the
natural path connecting the critical (or saddle) points.

Let us give some examples from the recent literature of the use of geometric flows.
In [23] a modified Ricci flow with Maxwell-Chern-Simons terms and additional fields, in-
spired by string theory was studied within the context of the 3D uniformization theorem.
In [24], to find inequalities in General Relativity regarding the evolution of the area of a
surface and the enclosed Hawking mass, Ricci flow was employed. In [8, 9] Cotton flow
was studied to understand the flow of homogenous geometries. 100% Cotton flow arises as
the high energy limit of the Horava gravity [25] and the topologically massive gravity [26]
which were studied in [27, 28] and [29] respectively. In [30], Ricci flow was used to study
the transitions between saddle points of the four-dimensional Euclidean gravity. Ricci flow
appears as a gradient flow between the possible saddle points. Of course, there could be
many such saddle points, but once a boundary topology is introduced, one can handle a

– 24 –



J
H
E
P
1
0
(
2
0
2
3
)
1
1
4

few saddle points. In the work, the boundary was taken to be S1 × S2, and with this
boundary, there are 3 saddle points. In [31] a nice compilation of possible applications of
the Ricci flow in physics was given. Recently, in [32] a topological non-relativistic quantum
gravity was defined in which the Ricci flow equation appears as the localization formula in
the path integral that defines the theory.

In this work, we laid the basic structure of the K-flow; and applied it to the homogenous
geometries that are potentially relevant to the spatial geometry of the universe at large
scales. Applications of the K-flow for non-homogenous geometries, such as black holes are
also of interest. Various such solutions as the critical points of this flow (i.e. those that
satisfy Kij = 0) have been found in [33] and elaborated in [34]. These are black holes
with deformed horizons (also called black flowers), static black holes, rotating black holes,
and dynamical black flowers that emit or absorb gravitons. This set of critical solutions
constitutes a potentially very useful application to the K-flow. For example, the Euclidean
version of these solutions will be the saddle points of the flow, and one can study the
transition between these solutions as was done in [30] for the Ricci flow. Moreover, K-flow
can be considered as the high energy limit of the “new massive gravity” inspired flow with
∂tgij = αKij + βGij + Λgij of which the critical points are metrics that solve the new
massive gravity [10, 11] that has been studied as a dynamical theory of gravity with a
massive spin-2 graviton in three dimensions (as opposed to the locally trivial Einstein’s
gravity in three dimensions). Many solutions of this extended theory are known which can
be studied as saddle points under the flow.

A Details of the computations

In these appendices, we give some details of the computations that we used in the text and
also compute the properties of the K-tensor under conformal transformations.

A.1 Computation of the K-tensor in orthonormal frame

We now compute the Ricci tensor and the curvature scalar following (4.29)

[E1, E2] = ν

√
c

ab
E3, [E2, E3] = λ

√
a

bc
E1, [E3, E1] = µ

√
b

ac
E2 . (A.1)

∇E1E2 = 1
2(D12

3 − D23
1 + D31

2)E3 = 1
2

ν

√
c

ab
− λ

√
a

bc
+ µ

√
b

ac

E3 . (A.2)

Therefore one obtains

∇F1F2 = 1
2

(−λa + µb + νc

c

)
F3, ∇F2F1 = 1

2

(−λa + µb − νc

c

)
F3,

∇F1F3 = 1
2

(
λa − µb − νc

b

)
F2, ∇F3F1 = 1

2

(
λa + µb − νc

b

)
F2,

∇F2F3 = 1
2

(
λa − µb + νc

a

)
F1, ∇F3F2 = 1

2

(−λa − µb + νc

a

)
F1. (A.3)
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One can find the sectional curvatures and then the components of the Ricci tensor by the
use of these equations. The usefulness of this frame is that the Ricci tensor is diagonal
which is very handy when studying the flows. The non-zero diagonal components of the
Ricci tensor in the orthonormal frame can be computed as

R11 = 1
2abc

(
λ2a2 − µ2b2 − ν2c2 + 2µνbc

)
, R22 = 1

2abc

(
−λ2a2 + µ2b2 − ν2c2 + 2λνac

)
,

R33 = 1
2abc

(
−λ2a2 − µ2b2 + ν2c2 + 2λµab

)
. (A.4)

The non-zero diagonal components of the Ricci tensor in the orthogonal frame by the
relation between two coordinates can be computed as

R11 = a

2abc

(
λ2a2 − µ2b2 − ν2c2 + 2µνbc

)
, R22 = b

2abc

(
−λ2a2 + µ2b2 − ν2c2 + 2λνac

)
,

R33 = c

2abc

(
−λ2a2 − µ2b2 + ν2c2 + 2λµab

)
. (A.5)

The scalar curvature then will be:

R = 1
2abc

(
−λ2a2 − µ2b2 − ν2c2 + 2λµab + 2λνac + 2µνbc

)
. (A.6)

We now find the connections and the curvature form:

de1 = d(
√

aω1) =
√

adω1 =
√

aλω2 ∧ ω3 =
√

a

bc
λe2 ∧ e3,

de2 = d(
√

bω2) =
√

bdω2 =
√

bµω3 ∧ ω1 =
√

b

ac
µe3 ∧ e1,

de3 = d(
√

cω3) =
√

cdω3 =
√

cνω1 ∧ ω2 =
√

c

ab
νe1 ∧ e2. (A.7)

In the orthonormal frame gab = δab, hence the metric compatibility is ∇cδab = 0 which
yields ωb

a = −ωa
b. Then one has

ω1
2 = 1

2
√

abc
(λa + µb − νc) e3, ω1

3 = 1
2
√

abc
(−λa + µb − νc) e2,

ω2
3 = 1

2
√

abc
(−λa + µb + νc) e1. (A.8)

The components of the curvature 2-form can be computed by the relation Ra
b = dωa

b +
ωa

c ∧ ωc
b . For example,

R1
2 = dω1

2 + ω1
1 ∧ ω1

2 + ω1
2 ∧ ω2

2 + ω1
3 ∧ ω3

2 = dω1
2 + ω1

3 ∧ ω3
2 , (A.9)

where

dω1
2 = 1

2
√

abc
(λa + µb − νc) de3 = 1

2
√

abc
(λa + µb − νc)

√
c

ab
νe1 ∧ e2

= ν

2ab
(λa + µb − νc) e1 ∧ e2, e (A.10)

ω1
3 ∧ ω3

2 =
( 1
2
√

abc
(−λa + µb − νc) e2

)
∧
(
− 1

2
√

abc
(−λa + µb + νc) e1

)
,

= 1
4abc

(
λ2a2 + µ2b2 − ν2c2 − 2λµab

)
e1 ∧ e2. (A.11)
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These computations lead to

R1
2 = 1

4abc

(
λ2a2 + µ2b2 − 3ν2c2 − 2λµab + 2λνac + 2µνbc

)
e1 ∧ e2,

R1
3 = 1

4abc

(
λ2a2 − 3µ2b2 + ν2c2 + 2λµab − 2λνac + 2µνbc

)
e1 ∧ e3,

R2
3 = 1

4abc

(
− 3λ2a2 + µ2b2 + ν2c2 + 2λµab + 2λνac − 2µνbc

)
e2 ∧ e3. (A.12)

Ricci 1-forms can be computed by the relation Rica = ıbR
b

a. For example

Ric1 = ı2R2
1 + ı3R3

1

= 1
4abc

(
λ2a2 + µ2b2 − 3ν2c2 − 2λµab + 2λνac + 2µνbc

)
ı2(e2 ∧ e1)

+ 1
4abc

(
λ2a2 − 3µ2b2 + ν2c2 + 2λµab − 2λνac + 2µνbc

)
ı3(e3 ∧ e1),

(A.13)

where the interior product acts as

ı2(e2 ∧ e1) = (ı2e2) ∧ e1 + (−1)1e2 ∧ (ı2e1) = e1,

ı3(e3 ∧ e1) = (ı3e3) ∧ e1 + (−1)1e3 ∧ (ı3e1) = e1. (A.14)

Hence we find Ricci 1-forms as

Ric1 = 1
2abc

(
λ2a2 − µ2b2 − ν2c2 + 2µνbc

)
e1,

Ric2 = 1
2abc

(
−λ2a2 + µ2b2 − ν2c2 + 2λνac

)
e2,

Ric3 = 1
2abc

(
−λ2a2 − µ2b2 + ν2c2 + 2λµab

)
e3. (A.15)

The curvature scalar can be computed from the equation R = ıa(Ric)a as

R = 1
2abc

(
−λ2a2 − µ2b2 − ν2c2 + 2λµab + 2λνac + 2µνbc

)
. (A.16)

Schouten one forms easily computed from the earlier results as Sa = (Ric)a−1
4Rea. Namely

S1 = 1
2abc

(
5λ2a2

4 − λaµb

2 − λaνc

2 − 3µ2b2

4 + 3µbνc

2 − 3ν2c2

4

)
,

S2 = 1
2abc

(
−3λ2a2

4 − λaµb

2 + 3λaνc

2 + 5µ2b2

4 − µbνc

2 − 3ν2c2

4

)
,

S3 = 1
2abc

(
−3λ2a2

4 + 3λaµbνc

2 − λaνc

2 − 3µ2b2

4 − µbνc

2 + 5ν2c2

4

)
. (A.17)

The Cotton 2-form is in the following form:

Ca = DSa = d
(
(Ric)a − 1

4Rea
)
+ ωa

b ∧
(
(Ric)b − 1

4Reb
)
. (A.18)
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Hence

C1 = 1
2(abc)3/2

(
− λ2a2(−2λa + µb + νc)− (µb + νc)(µb − νc)2

)
e2 ∧ e3,

C2 = 1
2(abc)3/2

(
− µ2b2(λa − 2µb + νc)− (λa + νc)(λa − νc)2

)
e3 ∧ e1,

C3 = 1
2(abc)3/2

(
− ν2c2(λa + µb − 2νc)− (λa + µb)(λa − µb)2

)
e1 ∧ e2. (A.19)

We find the Cotton one forms as the Hodge dual of the Cotton 2-forms ∗Ca and arrive at

∗C1 = 1
2(abc)3/2

(
− λ2a2(−2λa + µb + νc)− (µb + νc)(µb − νc)2

)
e1,

∗C2 = 1
2(abc)3/2

(
− µ2b2(λa − 2µb + νc)− (λa + νc)(λa − νc)2

)
e2,

∗C3 = 1
2(abc)3/2

(
− ν2c2(λa + µb − 2νc)− (λa + µb)(λa − µb)2

)
e3. (A.20)

Finally we can compute the one-forms Ja = 1
2ϵa

bc ⋆ (Sb ∧ Sc):

J1 = 1
4a2b2c2

(
9λ4a4

16 − 3λ3a3µb

4 − 3λ3a3νc

4 − 9λ2a2µ2b2

8 + 13λ2a2µbνc

4

−9λ2a2ν2c2

8 + 9λaµ3b3

4 − 9λaµ2b2νc

4 − 9λaµbν2c2

4 + 9λaν3c3

4 − 15µ4b4

16

−µ3b3νc

4 + 19µ2b2ν2c2

8 − µbν3c3

4 − 15ν4c4

16

)
e1,

J2 = 1
4a2b2c2

(
− 15λ4a4

16 + 9λ3a3µb

4 − λ3a3νc

4 − 9λ2a2µ2b2

8 − 9λ2a2µbνc

4

+19λ2a2ν2c2

8 − 3λaµ3b3

4 + 13λaµ2b2νc

4 − 9λaµbν2c2

4 − λaν3c3

4 + 9µ4b4

16

−3µ3b3νc

4 − 9µ2b2ν2c2

8 + 9µbν3c3

4 − 15ν4c4

16

)
e2,

J3 = 1
4a2b2c2

(
− 15λ4a4

16 − λ3a3µb

4 + 9λ3a3νc

4 + 19λ2a2µ2b2

8 − 9λ2a2µbνc

4

−9λ2a2ν2c2

8 − λaµ3b3

4 − 9λaµ2b2νc

4 + 13λaµbν2c2

4 − 3λaν3c3

4 − 15µ4b4

16

+9µ3b3νc

4 − 9µ2b2ν2c2

8 − 3µbν3c3

4 + 9ν4c4

16

)
e3. (A.21)
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The Ha = ⋆D ⋆ Ca one forms read:

H1 = 1
4a2b2c2

(
6λ4a4 − 3λ3a3µb − 3λ3a3νc + λ2a2µ2b2 − 2λ2a2µbνc + λ2a2ν2c2

−λaµ3b3 + λaµ2b2νc + λaµbν2c2 − λaν3c3 − 3µ4b4 + 4µ3b3νc − 2µ2b2ν2c2

+4µbν3c3 − 3ν4c4
)

e1,

H2 = 1
4a2b2c2

(
− 3λ4a4 − λ3a3µb + 4λ3a3νc + λ2a2µ2b2 + λ2a2µbνc − 2λ2a2ν2c2

−3λaµ3b3 − 2λaµ2b2νc + λaµbν2c2 + 4λaν3c3 + 6µ4b4 − 3µ3b3νc + µ2b2ν2c2

−µbν3c3 − 3ν4c4
)

e2,

H3 = 1
4a2b2c2

(
− 3λ4a4 + 4λ3a3µb − λ3a3νc − 2λ2a2µ2b2 + λ2a2µbνc + λ2a2ν2c2

+4λaµ3b3 + λaµ2b2νc − 2λaµbν2c2 − 3λaν3c3 − 3µ4b4 − µ3b3νc + µ2b2ν2c2

−3µbν3c3 + 6ν4c4
)

e3. (A.22)

H is indeed traceless. We finally find the K one forms to be

K1 = − 1
32a2b2c2

(
− 105a4λ4 + 60a3bλ3µ + 60a3cλ3ν + 2a2b2λ2µ2 − 20a2bcλ2µν

+ 2a2c2λ2ν2 − 20ab3λµ3 + 20ab2cλµ2ν + 20abc2λµν2 − 20ac3λν3 + 63b4µ4

− 60b3cµ3ν − 6b2c2µ2ν2 − 60bc3µν3 + 63c4ν4
)

e1,

K2 = − 1
32a2b2c2

(
63a4λ4 − 20a3bλ3µ − 60a3cλ3ν + 2a2b2λ2µ2 + 20a2bcλ2µν

− 6a2c2λ2ν2 + 60ab3λµ3 − 20ab2cλµ2ν + 20abc2λµν2 − 60ac3λν3 − 105b4µ4

+ 60b3cµ3ν + 2b2c2µ2ν2 − 20bc3µν3 + 63c4ν4
)

e2,

K3 = − 1
32a2b2c2

(
63a4λ4 − 60a3bλ3µ − 20a3cλ3ν − 6a2b2λ2µ2 + 20a2bcλ2µν

+ 2a2c2λ2ν2 − 60ab3λµ3 + 20ab2cλµ2ν − 20abc2λµν2 + 60ac3λν3

+ 63b4µ4 − 20b3cµ3ν + 2b2c2µ2ν2 + 60bc3µν3 − 105c4ν4
)

e3. (A.23)
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The trace of the K tensor turns out to be

K = 1
2a2b2c2

(
− 21λ4a4

16 + 5λ3a3µb

4 + 5λ3a3νc

4 + λ2a2µ2b2

8 − 5λ2a2µbνc

4

+λ2a2ν2c2

8 + 5λaµ3b3

4 − 5λaµ2b2νc

4 − 5λaµbν2c2

4 + 5λaν3c3

4 − 21µ4b4

16

+5µ3b3νc

4 + µ2b2ν2c2

8 + 5µbν3c3

4 − 21ν4c4

16

)
. (A.24)

Of course we could compute the trace from the Lagrangian 3
8R2 ⋆ 1− Ra ∧ ⋆Ra.

A.2 The Bianchi class geometries continued

3. The geometry of S̃L(2, R) with the structure constants λ = −1, µ =
−1, ν = 1

For this geometry the flow equations are

da

dt
= a

16a2b2c2

(
− 105a4 + 60a3b − 60a3c + 2a2b2 + 20a2bc + 2a2c2 − 20ab3

−20ab2c + 20abc2 + 20ac3 + 63b4 + 60b3c − 6b2c2 + 60bc3 + 63c4
)
,

db

dt
= b

16a2b2c2

(
63a4 − 20a3b + 60a3c + 2a2b2 − 20a2bc − 6a2c2 + 60ab3

+20ab2c + 20abc2 + 60ac3 − 105b4 − 60b3c + 2b2c2 + 20bc3 + 63c4
)
,

dc

dt
= c

16a2b2c2

(
63a4 − 60a3b + 20a3c − 6a2b2 − 20a2bc + 2a2c2 − 60ab3

−20ab2c − 20abc2 − 60ac3 + 63b4 + 20b3c + 2b2c2 − 60bc3 − 105c4
)
.(A.25)

These equations are symmetric in a and b, so we may set a0 ≥ b0. If at any t = τ ,
aτ = bτ

d(a − b)
dt

∣∣∣∣
t=τ

= a − b

16a2b2c2

(
− 105a4 − 108a3b − 60a3c − 86a2b2 − 100a2bc

+2a2c2 − 108ab3 − 100ab2c + 28abc2 + 20ac3

−105b4 − 60b3c + 2b2c2 + 20bc3 + 63c4
)
. (A.26)

Thus if initially a0 ≥ b0, then a ≥ b for all t ≥ 0. From the antisymmetry between
a and c, we assume that they behave oppositely under the flow. If at some time,
all three dimensions are equal, namely if they attain this, then the equation for a

would be
da

dt
= 159a

16 → a2(t) = a2
0 +

159
8 t. (A.27)

Therefore we conclude that a and b are increasing whereas c is a decreasing function
of t generating a pancake degeneracy under the flow. At a finite time c vanishes, and
when that happens, since a = b, the flows of all three dimensions stop. The figure 3
shows the behavior of the geometry under the flow.
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Figure 3. The behavior of the SL(2, R) geometry under the flow. The vertical axis represents the
dimensions a, b, c. The horizontal axis represents the parameter of the flow t. Two dimensions a, b

expand, while c vanishes under the flow, yielding a pancake degeneracy.

Next, let us investigate the scalar curvature.

R = 1
2abc

(
−(a − b)2 − c2 − 2c(a + b)

)
. (A.28)

As a, b approach to each other, R attains a negative constant value (−4ac− c2)/2a2c.
Then by the expansion of a, b and the vanishing of c, R vanishes. On the other hand,
the quadratic curvature invariant

K = 1
32a2b2c2

(
− 21a4 + 20a3b − 20a3c + 2a2b2 + 20a2bc + 2a2c2 + 20ab3

+20ab2c − 20abc2 − 20ac3 − 21b4 − 20b3c + 2b2c2 − 20bc3 − 21c4
)

(A.29)

attains a negative constant value K = (−16a2 − 40ac − 21c2)/32a4 when a = b; and
when c vanishes, it becomes K = −1/2a2 and stays constant.

4. The Geometry of Ĩsom(R2) with the structure constants λ = −1, µ =
−1, ν = 0

For this geometry, the flow equations are

da

dt
= a

16a2b2c2

(
− 105a4 + 60a3b + 2a2b2 − 20ab3 + 63b4

)
,

db

dt
= b

16a2b2c2

(
63a4 − 20a3b + 2a2b2 + 60ab3 − 105b4

)
,

dc

dt
= c

16a2b2c2

(
63a4 − 60a3b − 6a2b2 − 60ab3 + 63b4

)
. (A.30)

These equations are symmetric in a and b, so let us look at the difference between
these two dimensions:

d(a − b)
dt

= (a − b)
16a2b2c2

(
− 105a4 − 108a3b − 86a2b2 − 108ab3 − 105b4

)
. (A.31)
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If at some time t = τ , a = b then the flow stops. Thus if initially a0 ≥ b0 then for
all times one has a ≥ b, and this implies also that (a − b) is a decreasing function.
Moreover if ever a = b, then the flow of c stops too. Using this condition on a and
b, we can make some estimates about the behavior of the flow equations. After some
manipulations, we get

da

dt
= a

16a2b2c2

(
− 73(a4 − b4)− 2a2(a2 − b2)− 20b3(a − b)

−3(a2 − b2)(a − b)2 − 60ab3
)

≤ −15b

4c2 ,

db

dt
= b

16a2b2c2

(
53(a4 − b4) + 2b2(a2 − b2) + 60b3(a − b)

+(a2 − b2)(a − b)2 + 20ab3
)

≥ 5b2

4ac2 ,

dc

dt
= c

16a2b2c2

(
30a4 + 3(a2 − b2)2 + 3(a2 − b2)(a − b)2 + 30b4

)

≥ 15(a4 + b4)
8a2b2c

. (A.32)

Thus b and c are non-decreasing functions and a is non-increasing. We then get
a0 ≥ a ≥ b ≥ b0.

There is one conserved quantity for this geometry: for all times, one has

bc
da

dt
+ ac

db

dt
+ 2ab

3
dc

dt
= 0. (A.33)

The integrating factor for this equation is c−1/3, so by direct integration, this equation
gives abc2/3 = k where k is some positive constant. Using this equation and also the
identity (a4 + b4) = (a2 − b2)2 + 4a2b2, we find

c2(t) ≥ 15t + c2
0, (A.34)

and

1
b2

db

dt
≤ 5

4ac2 ,
1
b2 ≥ −5

2k

∫ 1
c4/3 dt, b2 ≤ 2k

−(15t + c2
0)1/3 + k′ . (A.35)

Let us calculate the differences a − c and b − c

d(a − c)
dt

= a − b

16a2b2c2

(
−105a4 − 45a3b − 43a2b2 − 63ab3

−c
(
63(a − b)3 + 192ab(a − b)

))
. (A.36)
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Figure 4. The behavior of the Isom(R2) geometry under the flow, first figure. The vertical axis
represents the dimensions a, b, c. The horizontal axis represents the parameter of the flow t. Two
dimensions a, b approach each other and stay at a constant value, c approaches to a constant value.

Therefore a − c is a non-increasing function since a0 ≥ a ≥ b ≥ b0, and all the terms
in the parenthesis are negative.

d(b − c)
dt

= a − b

16a2b2c2

(
63a3b + 43a2b2 + 45ab3 + 105b4

−c
(
63(a − b)3 + 192ab(a − b)

))
. (A.37)

We can not say much about the b − c equation: it is inconclusive because there are
negative and positive terms in the parenthesis. From two figures 4 and 5 showing
the behavior of the geometry under the flow, we see that a and b initially approach
each other and stay there, and when that happens, c also reaches a constant value,
generating a flat geometry.
The curvature scalar when a = b and c is a constant, vanishes showing that the
geometry is flat. At this point, K also vanishes.

R = 1
2abc

(−a2 + 2ab − b2) = 0, (A.38)

K = 1
32a2b2c2 (−21a4 + 20a3b + 2a2b2 + 20ab3 − 21b4) = 0. (A.39)

5. The geometry of Sol with the structure constants λ = −1, µ = 0, ν = 1

For this geometry the flow equations are
da

dt
= a

16a2b2c2

(
− 105a4 − 60a3c + 2a2c2 + 20ac3 + 63c4

)
,

db

dt
= b

16a2b2c2

(
63a4 + 60a3c − 6a2c2 + 60ac3 + 63c4

)
,

dc

dt
= c

16a2b2c2

(
63a4 + 20a3c + 2a2c2 − 60ac3 − 105c4

)
. (A.40)
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Figure 5. The behavior of the Isom(R2) geometry under the flow, second figure. The vertical axis
represents the dimensions a, b, c. The horizontal axis represents a parameter of the flow t.

These equations are symmetric in a and c so we look at the difference between these
two dimensions,

d(a − c)
dt

= − 3(a − c)
16a2b2c2

(
(a + c)2(35a2 + 6ac + 35c2)

)
. (A.41)

If at some time t = τ , a = c then the flow stops, so if initially a0 ≥ c0 then for all
times a ≥ c and this implies also that (a− c) is a non-increasing function. Using this
condition on a and c, we can make some estimates about the behavior of the flow
equations. After some manipulations, we get

da

dt
= a

16a2b2c2

(
− 80a4 − 60c(a3 − c3)− 2a2(a2 − c2)

−20a(a3 − c3)− 3(a4 − c4)
)
≤ − 5a3

b2c2 ,

db

dt
= b

16a2b2c2

(
60a4 + 60a3c + 3(a2 − c2)2 + 60ac3 + 60c4

)
≥ 15b

4a2b2c2

(
a4 + a3c + ac3 + c4

)
,

dc

dt
= c

16a2b2c2

(
63a4 + 20a3c + 2a2c2 − 60ac3 − 105c4

)
. (A.42)

Thus a is decreasing, and b is increasing, but the behavior of c is inconclusive from
this construction. We write a0 ≥ a ≥ c. There is one conserved quantity, namely

bc
da

dt
+ ac

2
3

db

dt
+ ab

dc

dt
= 0. (A.43)

The integrating factor for this equation is b−1/3 , so we have ab2/3c = k = a0b
2/3
0 c0.

From the figure 6, we see that a and c approach each other and then go to a constant
value, while b always increases generating a cigar degeneracy.
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Figure 6. The behavior of the Sol geometry under the flow. The vertical axis represents the
dimensions a, b, c. The horizontal axis represents the parameter of the flow t. Two dimensions a, c

first approach each other then shrink, b expands.

When a = c the flow equations show that a, c will eventually shrink, but are controlled
by the constant k.

da

dt
= −5a

b2 ,
db

dt
= 15

b
,

b2(t) = b2
0 + 30t, a(t) = a0b

1/3
0 b−1/3(t). (A.44)

The scalar curvature and the trace K then go to zero:

R = 1
2abc

(−a2 − 2ac − c2) = −2
b

,

K = 1
32a2b2c2

(
−21a4 − 20a3c + 2a2c2 − 20ac3 − 21c4

)
= − 5

2b2 . (A.45)

6. The geometry of Nil with the structure constants λ = −1, µ = 0, ν = 0

The flow equations for this geometry are

da

dt
= − 105a3

16b2c2 ,
db

dt
= 63a2b

16b2c2 ,
dc

dt
= 63a2c

16b2c2 . (A.46)

These equations are symmetric in b and c. There is one conserved quantity for this
geometry

6
5
1
a

da

dt
+ 1

b

db

dt
+ 1

c

dc

dt
= 0, (A.47)

hence we have a6/5bc = k = a
6/5
0 b0c0. Furthermore, we have

d

dt

(
b2c2

a2

)
= 231

8 ,
b2c2

a2 = 231
8 t + b2

0c2
0

a2
0

. (A.48)
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Figure 7. The behavior of the Nil geometry under the flow. The vertical axis represents the
dimensions a, b, c. The horizontal axis represents the parameter of the flow t. Two dimensions b, c

expand, c vanishes.

We find by integration

a(t) = a0

 b2
0c2

0
231
8 t + b2

0c2
0

a2
0


5/22

, b(t) = b0

(
a

12/5
0 c2

0

b
14/5
0

)(
231
8 t + b2

0c2
0

a2
0

)3/22

,

c(t) = c0

(
a

12/5
0 b2

0

c
14/5
0

)(
231
8 t + c2

0b2
0

a2
0

)3/22

. (A.49)

Thus while one dimension shrinks to a point for large t as ∼ t−5/22, the other two
dimensions expand with ∼ t3/22 generating a pancake degeneracy.
The scalar curvature and trace K go to zero as seen from the equations.

R = − a

2bc
= −1

2

(
231
8 t + b2

0c2
0

a2
0

)−1/2

,

K = − 21a2

32b2c2 = −21
32

(
231
8 t + b2

0c2
0

a2
0

)−1

. (A.50)

A.3 The K tensor under the flow

In this section, we examine the evolution of the basic geometric tensors and of the K tensor
itself under the K-flow. The following computations are similar to those of variations in
an orthonormal frame background. We still study these equations in normal coordinates
where at a point all partial derivatives of the metric ∂kg and Christoffel symbols Γ vanish,
but their time derivatives, ∂k∂tg and ∂tΓ do not, and we also use the covariant conservation
of g and K. We begin with the assumption that we have a time-dependent Riemannian
metric that changes in time according to the proposed flow

∂tgij(t) = αKij(t), ∂tg
ij(t) = −αKij(t). (A.51)
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The metric determinant flows as

∂tg = δg

δgij
∂tgij = ggijαKij = αgK, (A.52)

while the volume element flows as

∂tdµ = ∂t
√

gdx1 ∧ dx2 ∧ dx3 = 1
2αKdµ. (A.53)

The antisymmetric Levi-Civita tensor reads

∂tη
ijk = ∂t

ϵijk

√
g
= −1

2αKηijk. (A.54)

The Christoffel symbols flow as

∂tΓi
jk(t) = α

1
2gil (−∇lKjk +∇jKkl +∇kKjl) . (A.55)

The Riemann tensor flows as

∂tR
i
jkl(t) = ∂t∂kΓi

jl + ∂tΓi
knΓn

jl + Γi
kn∂tΓn

jl − k ⇌ l

= ∂k∂tΓi
jl − ∂l∂tΓi

jk = ∇k∂tΓi
jl −∇l∂tΓi

jk

= 1
2α
(
−∇k∇iKjl +∇k∇jK i

l +∇k∇lK
i

j

)
+1
2α
(
∇l∇iKjk −∇l∇jK i

k −∇l∇kK i
j

)
. (A.56)

The Ricci tensor flows as

∂tRij(t) = ∂tR
k

ikj(t) =
1
2α
(
−∆Kij +∇k∇iK

k
j +∇k∇jK k

i −∇i∇jK
)

= α

(
−gijSklK

kl + 3
2(S

k
i Kkj + K k

i Skj) + SKij − KSij

)
−1
2α(∆Kij +∇i∇jK). (A.57)

In the first line, we commuted the covariant derivatives and used the covariant conservation
of the K tensor, ∇kK k

i = 0. The curvature scalar flows as

∂tR(t) = ∂t(gijRij) = −αKijRij + gij∂tRij = −α
(
SklK

kl + SK +∆K
)

. (A.58)

The Schouten tensor flows as

∂tSij(t) = α

(1
4gij(−3SklK

kl + SK +∆K) + 3
2(S

k
i Kkj + K k

i Skj)− KSij

)
−1
2α(∆Kij +∇i∇jK). (A.59)

For a generic symmetric (0,2) tensor T (we set α = −1 from now on) one has

∂t∇kTij = ∂t(∂kTij − Γn
kiTnj − Γn

kjTin) = ∂k∂tTij − ∂t(Γn
kiTnj)− ∂t(Γn

kjTin)
= ∇k∂tTij − ∂t(Γn

ki)Tnj − (∂tΓn
kj)Tin, (A.60)
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and

∂t∇l∇kTij = ∂t(∂l∇kTij − Γn
lk∇nTij − Γn

li∇kTnj − Γn
lj∇kTin)

= ∇l∂t∇kTij − ∂t(Γn
lk)∇nTij − ∂t(Γn

li)∇kTnj − ∂t(Γn
lj)∇kTin

= ∇l∇k∂tTij − (∇l∂tΓn
ki)Tnj − (∇l∂tΓn

kj)Tin − ∂tΓn
ki∇lTnj

−∂tΓn
kj∇lTin − ∂tΓn

lk∇nTij − ∂tΓn
li∇kTnj − ∂tΓn

lj∇kTin. (A.61)

The 3D “Bach”-type tensor as defined in (1.12) flows as

∂tH
ij =K

2 H ij − 1
2Klmηikl∇kCmj − 1

2

(1
4∇

i∇j(−[SK] + SK +∆K) + 1
2∆

2Kij

+∆(KSij − 2SikK j
k ) + 1

4gij∆(3[SK]− SK −∆K)

+gij
(1
2Skl∆Kkl −

1
2Skl∇k∇lK − 1

2∇kS∇kK + K[SS]− 2[SKS]
)

−5
2Sik∆K j

k − 1
2S∆Kij − 3Sij [SK] + Kij [SS] + SikK ljSkl + 5SikSljKkl

−4SikS j
k K + 3SikK j

k S + 1
2Skl∇k∇lK

ij − 2Skl∇k∇iK lj + 1
2Skl∇i∇jKkl

+Skj∇k∇iK + 2∇iKkl∇kSlj − 2∇kKil∇lS
j

k −∇kSij∇kK +∇iSkj∇kK

+1
2∇

kKij∇kS −∇iKkj∇kS + Kkl∇k∇iSlj − Kkj∇k∇iS − 1
2K∇i∇jS

)
+ i ↔ j, (A.62)

where we set [SK] := SijKij , [SKS] := S j
i K k

j S l
k etc. for simplicity. This tedious

computation can be checked in various ways, one of them is to observe that, since H = 0,
∂tH = 0 follows from the above equation as expected. Similarly, the J-tensor as defined
in (1.13) flows as

∂tJ
ij =3K

2 J ij − 1
2

(
Sij

(
−9
4[SK]− 1

4SK + 3
4∆K

)
− Sik(∆K j

k +∇k∇jK)

+ gij
(9
4S[SK] + 1

4S2K − 3
4S∆K − 3[SKS] + 1

2Skl(∆Kkl +∇k∇lK)
)

+ 1
2S(∆Kij +∇i∇jK)− 3SikK j

k S + 3SikSljKkl + 3SikK ljSkl

)
+ i ↔ j, (A.63)

while its trace flows as

∂tJ = −KijJ ij + 3KJ + 3[SKS]− 3
2S[SK]− 1

2S2K + 1
2S∆K

− 1
2Sij(∆Kij +∇i∇jK). (A.64)
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Finally, we can write the flow of the K-tensor:

∂tK
ij = 3

2KKij + 2KJ ij − Klmηikl∇kCmj + Sij

4 (21[SK] + SK − 3∆K)

+gij
(
5[SKS]− 9

4S[SK]− K[SS]− 1
4S2K − 3

4∆([SK]) + 1
4∆(SK)

+3
4S∆K + 1

4∆
2K − Skl∆Kkl +

1
2∇

kS∇kK

)
− S2Kij − 8SikSljKkl

−4SikK ljSkl + 4SikS j
k K + 7

2Sik∆K j
k − 1

2S∇i∇jK − 1
2Skl∇k∇lK

ij

+2Skl∇k∇iK lj − 1
2Skl∇i∇jKkl − 2∇iKkl∇kSlj + 2∇kKil∇lS

j
k +∇kSij∇kK

−∇iSkj∇kK − 1
2∇

kKij∇kS +∇iKkj∇kS − Kkl∇k∇iSlj + Kkj∇k∇iS

+1
2K∇i∇jS − 1

2∇
2Kij + 1

4∇
i∇j([SK]− SK −∆K) + ∆(2SikK j

k − KSij)

+i ↔ j, (A.65)

and its trace

∂tK = −2KijJ ij + 3K2 + 6[SKS]− 3S[SK]− S2K + S∆K

−Sij(∆Kij +∇i∇jK). (A.66)

A.4 Conformal properties of the K tensor

Let us study the effects of a conformal mapping defined as g̃ij = e2ϕgij on the K-tensor.
To carry out this rather long computation, we make a few notes. The Levi-Civita symbol
(in 3 dimensions) ϵijk is a tensor density of weight +1. So we define ηijk = ϵijk/

√
g

as a true tensor since the metric g has weight +2. Thus the Cotton tensor defined as
Cij = ηikl∇kS j

l is not conformally invariant, but under conformal transformations, it
transforms as C̃ij = e−5ϕCij . It is possible to define a conformally invariant Cotton tensor
of weight +5/3 as C

′ij = g5/6ηikl∇kS j
l , but we will continue with the non-conformal tensor

definition. Then we write

C̃ i
j = e−3ϕC i

j , C̃ij = e−ϕCij ,

η̃ijk = e−3ϕηijk,
√

g̃ = e3ϕ√g, η̃ jk
i = e−ϕη jk

i ,

∇̃kCij = e−ϕ(∇kCij − 2Cij∇kϕ). (A.67)

Under the conformal transformations, the 3D Bach tensor (1.12) transforms as

H̃ij = e−2ϕHij − 2e−2ϕη kl
i Clj∇kϕ, (A.68)
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while the conformal transformation of the J tensor (1.13) is

J̃ij = e−2ϕJij −
e−2ϕ

2

(
gij

(
2Skl∇k∇lϕ − 2Skl∇kϕ∇lϕ − 2S∆ϕ + S∇kϕ∇kϕ

+∆ϕ∆ϕ −∆ϕ∇kϕ∇kϕ −∇k∇lϕ∇k∇lϕ + 2∇k∇lϕ∇kϕ∇lϕ

−1
2∇kϕ∇kϕ∇lϕ∇lϕ

)
+ Sij

(
2∆ϕ −∇kϕ∇kϕ

)
+ S

(
2∇i∇jϕ − 2∇iϕ∇jϕ

)
+Sik

(
−2∇j∇kϕ + 2∇jϕ∇kϕ

)
+ Sjk

(
−2∇i∇kϕ + 2∇iϕ∇kϕ

)
+∇i∇jϕ

(
−2∆ϕ +∇kϕ∇kϕ

)
+∇iϕ∇jϕ

(
2∆ϕ +∇kϕ∇kϕ

)
+2∇i∇kϕ∇k∇jϕ − 2∇i∇kϕ∇kϕ∇jϕ − 2∇j∇kϕ∇kϕ∇iϕ

)
. (A.69)

From the last two equations, one can find the conformal transformations of the Kij tensor.
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