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1 Introduction

The AdS/CFT correspondence predicts that some gravitational systems in asymptotically
AdS spacetimes describe quantum phenomena in strongly coupled field theories [1–3]. Along
with that, the application of the AdS/CFT to condensed matter systems has also been
investigated in recent years [4–8]. Nevertheless, no one knows if there is a real material
which has its gravitational dual in our world. The discovery of such a material will make
it possible to experiment with classical or even quantum gravity in table-top experiment.
Thus, it is reasonable to propose a tool which can be used to determine whether the material
has the gravitational dual.

One of the main tools proposed so far is the application of the optical imaging to
materials [9–15]. Let us consider a material processed to a sphere (S1 or S2) and put a local
source on it. If the material is holographic, the response to the source can be computed by
the classical wave which propagates over the bulk spacetime emergent inside the sphere.
Thus if we looked into the bulk with our eyes, we would see the image of the source created
by the gravitational lens. Here, the optical imaging is a mathematical operation similar to
the Fourier transformation, whose role is to provide the image that our eyes would see. By
using this, we can take a black hole image just as the Event Horizon Telescope [16, 17] did,
or can catch a signal of the emergence of the pure AdS geometry.

From the viewpoint of the eikonal approximation, the above idea came from the question
as to how null-geodesic congruences going from the boundary to boundary can be seen
holographically. In this paper, we rather focus on making each null geodesic, and retrieving
it on the boundary. (See [18] for the creation of the timelike geodesic.) We prepare a source
parameterized by its frequency and wavenumbers, and see that it generates a wave packet
going along a null-geodesic orbit. As shown in [19, 20], localized states in the AdS bulk can
be realized by applying nonlocal operators to states in the dual quantum field theory (QFT).
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We will provides an explicit way to create such sates by using external sources in QFT as
has been done in [18].

Since the technique allows us to shoot null geodesics at will, we are to obtain another
way of confirming spacetime emergence. Once the source is turned on, a wave packet
propagates inside the bulk and it will not come back to the boundary for a while. On
the boundary, the expectation value of the corresponding operator will stay quiet during
that time. Then it will suddenly stand up when the geodesic reaches the boundary. The
phenomenon happening on the boundary is so unique that it can be a signal in searching
holographic materials. Besides, all we have to do is just to measure the time lapse ∆t from
the source is turned on until the response stands up. For example, if the bulk is the pure
AdS, any null geodesic reaches the boundary with ∆t = πL, where L is the AdS radius, or
if the system is sufficiently thermal and there exists a black hole, ∆t experiences a rapid
increase and divergence according to the change of a wavenumber of the source.

Note that such a specific temperature dependence of the “time-lag” will not occur
in usual weakly coupled theories. Let us for example suppose a material governed by a
free scalar theory where the source J couples to the scalar field. As there is no thermal
correction to the retarded Green’s function in this theory, the linear response to J never
depends on the temperature. Even when we add a weak interaction term to the theory, the
Green’s function would not experience the drastic temperature dependence of the time-lag
as seen in holographic materials.

The organization of this paper is as follows. We first study the characteristic of ∆t in
section 2 for the pure AdS3,4 and Schwarzschild-AdS4. Next, in section 3, we introduce
the source, which we show generates a wave packet along a null geodesic. Here we will
also check the above expectant behavior of the response function. Section 4 is devoted
for summary and discussions. In appendix A, the details of our numerical computation is
explained. In appendix B, for the pure AdS3, we analytically solve the equation of motion
appearing in section 3.

2 Null geodesics in asymptotically AdS geometries

Once the null geodesic is created in the AdS bulk spacetime, we can probe the bulk geometry
and extract some information about the bulk metric. For example, when there is a black
hole in the bulk, the null geodesic is strongly bent and goes around the black hole (see
figure 1(b)). If the parameter of the null geodesic is fine-tuned, it can circle around the
black hole infinitely. The surface on which the null geodesic can orbit for infinite times is
called the photon surface. We demonstrate that the evidence of the existence of the photon
surface can be obtained by observing the time lapse ∆t between the injection and arrival of
the null geodesic at the AdS boundary.

We consider the Bañados-Teitelboim-Zanelli (BTZ) and Schwarzschild-AdS4 (Sch-AdS4)
spacetimes:

ds2 =−f(r)dt2 +f(r)−1dr2 +r2dΩ2
d−1, dΩ2

1 = dφ2, dΩ2
2 = dθ2 +sin2 θdφ2. (2.1)
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Here dΩ2
d−1 is the standard metric of the unit sphere Sd−1, and we consider d = 2 or 3. The

function f(r) is given by

f(r) = r2 − r2
h

L2 (d = 2) , f(r) = 1 + r2

L2 −
rh(1 + r2

h/L
2)

r
(d = 3) , (2.2)

where r = rh is the locus of the event horizon and L is the AdS radius. Using the
spherical symmetry, we can put any geodesic on the equatorial plane, θ = π/2, without
loss of generality. In terms of t and φ, time-translation symmetry and axisymmetry of the
spacetimes yield two conserved quantities along null geodesics. Then, for a null geodesic,
these conservation laws and the null condition provide

f(r)ṫ = Ω, r2φ̇ = M, 0 = −f(r)ṫ2 + f(r)−1ṙ2 + r2φ̇2, (2.3)

where the dot denotes the derivative by an affine parameter λ. Conserved quantities Ω
and M correspond to the energy and angular momentum of the null geodesic, respectively.
Eliminating ṫ and φ̇ from the above equations and rescaling the affine parameter as λ→ λ/M ,
we obtain

ṙ2 + V (r) = 1
m2 , V (r) = f(r)

r2 , (2.4)

where we have introduced the specific angular momentum (i.e., the angular momentum per
unit energy) as

m = M

Ω . (2.5)

Typical profiles of the effective potential is shown in figure 1(a). For BTZ (d = 2),
the effective potential has no local maximum and any null geodesic falls into the black
hole. For Sch-AdS4 (d = 3), the effective potential has the maximum value Vmax. For
1/L2 < 1/m2 < Vmax, the null geodesic injected from the AdS boundary bounces back
by the potential barrier and returns again to the AdS boundary. For 1/m2 = Vmax, the
unstable circular orbit on the photon sphere is realized. Solving eq. (2.3) for a given m, we
obtain an orbit of the null geodesic. Figure 1(b) shows a null orbit when we tune the value
of m so that 1/m2 is close to (but smaller than) Vmax. In figure 1(b), we have introduced
“Cartesian” coordinates of the horizontal and vertical axes (x, y) as

x = r√
r2 + L2

cosφ , y = r√
r2 + L2

sinφ , (2.6)

in order to compactify the AdS space, where the AdS boundary is located at x2 + y2 = 1.
Equations (2.3) can be rewritten into

dt
dr = r

f(r)
√
r2 −m2f(r)

,
dφ
dr = m

r
√
r2 −m2f(r)

. (2.7)

Let rmin be the maximum root of r2 −m2f(r), that is, V (rmin) = 1/m2. Then, the time
and the angle of the geodesic coming back to the boundary are

∆t = 2
∫ ∞
rmin

r dr
f(r)

√
r2 −m2f(r)

, ∆φ = 2
∫ ∞
rmin

m dr
r
√
r2 −m2f(r)

. (2.8)
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Figure 1. (a) Typical profiles of the effective potential for the BTZ (d = 2) and Sch-AdS4 (d = 3)
with rh = 0.3. (b) Orbit of the null geodesic in the Sch-AdS4 with L = 1 and rh = 0.3. The
specific angular momentum is m = 0.647459. The horizontal and vertical axes are x and y defined
in eq. (2.6).

For the pure AdS, the metric is given by f(r) = (r2 + L2)/L2. In this case, regardless of
the dimension and m ∈ (−L,L), we have ∆t = L∆φ = πL. For the Schwarzschild-AdS4,
the integrals (2.8) can numerically be computed. Figure 2 shows ∆t and ∆φ as functions of
m for L = 1 and rh = 0.193. As m approaches a critical value m∗ ≡ 1/

√
Vmax, ∆t and ∆φ

diverge. This divergence originates from the existence of the photon surface: Since the null
geodesic wanders around the photon surface, it takes long time to arrive at the boundary.

In section 3, we will study a source that generates one null geodesic. As was mentioned
in section 1, the response 〈O〉J to the source J stands when the geodesic arrives at the
boundary. The source J contains the parameter m (see section 3), and figure 2 shows when
and where we get the pulse of 〈O〉J with m fixed. In our strategy, we do not need to process
the data of 〈O〉J , or even to care about the value of 〈O〉J itself. All we need is the behavior
of (∆t,∆φ). If we always find (∆t,∆φ) = (π, π) at low temperature, then that is a strong
evidence of the material having the pure AdS as its dual spacetime. If at high temperature
(∆t,∆φ) grows up to diverge as m approaches a certain value m∗, below which no pulse is
detected, then the material will be dual to a black hole spacetime. Those behaviors cannot
be expected without knowing the emergent spacetime, because m is, in J , nothing but the
ratio of the wavenumber to the frequency, as we will see below. Besides as mentioned in
section 1, the time-lag in weakly coupled theories would not change so drastically as the
holographic one caused by the appearance or disappearance of the bulk black hole.

3 The source to generate a null geodesic

We have already seen that, if a material is dual to an asymptotically AdS spacetime, null
geodesics in the bulk let a boundary operator behave peculiarly. To use this in searching
holographic materials, we have to develop a way to create null geodesics in the bulk by
operating the boundary. Here we use, as an example, a massless scalar field and demonstrate
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Figure 2. The plots of ∆t and ∆φ for Schwarzschild-AdS4. The parameters are set as L = 1,
rh = 0.193. The solid lines (orange) are the m-dependence of ∆t and ∆φ, the horizontal dashed
lines (green) are those for the pure AdS, π, and the vertical dashed lines (blue) are the threshold of
m, below which the geodesic falls into the black hole. When ∆φ is larger than 2π, that means the
geodesic has turned around the black hole more than once.

it. The same method works for other fields with mass or spin, as long as the frequency of
the source is kept sufficiently larger than the mass (because if so, the eikonal approximation
is valid).

As a model of the bulk theory, let us consider the following scalar theory on an
asymptotically AdS spacetime:

I = −1
2

∫
dd+1x

√
−g gµν∇µΦ∇νΦ, (3.1)

where ∇µ denotes the covariant derivative associated with the metric gµν . Near the AdS
boundary, the scalar field behaves as

Φ(t, r,Θd−1) = J(t,Θd−1) + 〈O(t,Θd−1)〉J
rd

+ · · · , (3.2)

where Θd−1 denote standard spherical coordinates on Sd−1 such as Θ1 = φ and Θ2 = (θ, φ)
in (2.1). In the AdS/CFT, J corresponds to the source coupling to the scalar operator
O [21]. The response to the source J appears at the sub-leading term in the asymptotic
expansion of the bulk field. In the gravity side, the function J is just the boundary condition
at the infinity. We assume that the scalar field is initially trivial, Φ|t=−∞ = 0, and create
the null geodesic choosing the functional profile of J appropriately.

To understand the relation between fields and null geodesics, let us consider the eikonal
approximation of the scalar field. We put

Φ = a(x)eiS(x) , (3.3)

and assume that the phase S(x) is a highly oscillatory function, i.e, ∇µS(x) is sufficiently
large. Then the equation of motion for the scalar field, ∇µ∇µΦ = 0, is reduced to
∇µS∇µS = 0 in the leading order. Introducing the (d+ 1)-momentum as

kµ = ∇µS , (3.4)
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we have the null condition kµkµ = 0. In addition, applying ∇ν to this and using ∇ν∇µS =
∇µ∇νS, we also obtain the geodesic equation kν∇νkµ = 0. From eq. (3.4), we find that
the null geodesic with energy −kt = Ω and angular momentum kφ = M corresponds to the
scalar field whose phase is given by

S(x) ∼ −Ωt+Mφ . (3.5)

Moreover, since the spacetime admits the time-translational and axial Killing vectors,
(∂/∂t)µ and (∂/∂φ)µ, such a scalar field with the above phase form Φ ∼ eiS(x) becomes a
single eigenmode, satisfying L∂tΦ = −iΩΦ and L∂φΦ = iMΦ. Here Lξ is the Lie derivative
with respect to a Killing vector ξ. Note that the larger Ω is, the more valid the eikonal
approximation is, in general.

On the basis of the above analysis in the eikonal approximation, we propose a source
on the AdS boundary to create a wave packet along the null geodesic in the asymptotically
AdS spacetime as

d= 2 : J(t,φ) = 1
2πσtσφ

exp
[
−iΩt+ iMφ− t2

2σ2
t

− L
2φ2

2σ2
φ

]
, (3.6)

d= 3 : J(t, θ,φ) = 1
(2π)3/2σtσθσφ

exp
[
−iΩt+ iMφ− t2

2σ2
t

− L
2(θ−π/2)2

2σ2
θ

− L
2φ2

2σ2
φ

]
. (3.7)

When the spacetime is spherically symmetric, geodesics of our interest are those moving
on the equatorial plane θ = π/2. Thus, we have considered the momentum only along
φ-direction.

The above source function typically has the frequency Ω and wavenumber M along
φ-direction. Thus, we can expect that the bulk field generated by the above boundary
condition has the phase as in eq. (3.5) and almost becomes a single eigenmode with the
frequency Ω and the angular momentumM . Furthermore, to obtain a localized configuration
of the scalar field, the amplitude of the source should be localized along time and angular
directions. We need conditions σt, σθ, σφ � `curv to sufficiently localize the scalar field in
the bulk, where `curv is the curvature scale of the bulk spacetime. This is typically given by
`curv ∼ L in our setup. Meanwhile, in the frequency domain, the source function has the
width ∼ 1/σt around Ω. The bulk field should be almost a single mode with the frequency
∼ Ω and the angular momentum ∼M . The condition that the scalar field is localized in the
momentum space is given by 1/σt � Ω. Similarly, we also have 1/σθ, 1/σφ � Ω = M/m,
where m is the specific angular momentum as in (2.5). Therefore, the conditions for
parameters in the source are summarized as

1
`curv

� 1
σt
,

1
σθ
,

1
σφ
� Ω . (3.8)

For a given m, if we take a sufficiently large Ω under the above conditions, we can obtain a
wave packet that is localized in both the real and momentum spaces. Because a typical
deviation of the angular momentum is given by ∆M ∼ L/σφ, a deviation of the specific
angular momentum m becomes ∆m ∼ L/σφΩ. Thus, the above condition σφΩ� 1 implies
that the deviation of the specific angular momentum is so small.
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AdS3 (m = 0.4, M = 40, Ω = 100, σt = σφ = 0.1)

t = π/4 t = π/3 t = π/2 t = 5π/6

BTZ (rh = 0.3, m = 0.6, M = 30, Ω = 50, σt = 0.3, σφ = 0.1)

t = 0.90 t = 1.65 t = 2.40 t = 3.15
Figure 3. Wave packets in AdS3 and BTZ spacetime generated by the source (3.6). The horizontal
and vertical axes are x and y defined in eq. (2.6). The darker the color is, the larger the absolute
value of the scalar field is. The AdS radius is set L = 1, and the other parameters are displayed
above. The red curves are geodesic orbits specified by m = M/Ω.

Based on the idea, we numerically or analytically solve the equation of motion, ∇µ∇µΦ =
0, not taking the eikonal approximation. Hereafter, we will take the unit of L = 1 in our
actual calculations. The numerical method is summarized in appendix A. In the case of
AdS3, we solved the equation analytically, and the process is shown in appendix B. The
results of d = 2 (pure AdS3 and BTZ) are shown in figure 3. The upper panels are for the
pure AdS3 and the lower panels are for BTZ with rh = 0.3. Parameters in the source are
set as M = 40, Ω = 100, σt = 0.4, σφ = 0.1 for pure AdS3 and rh = 0.3, M = 30, Ω = 50,
σt = 0.3, σφ = 0.1 for BTZ. Trajectories of null geodesics with specific angular-momentum
m = M/Ω = 0.4 (pure AdS3) and m = 0.3 (BTZ) are shown by the red curves. We see
that wave packets are generated by the boundary condition (3.6) and they move along the
trajectories of null geodesics. For BTZ, the wave packet approaches the event horizon as we
can expect from the analysis in section 2: any null geodesics fall into the BTZ black hole.
On the other hand, for AdS3, the wave packet arrives at the antipodal point of the AdS
boundary. When the wave packet arrives at the AdS boundary, we would get the pulse of
the response function 〈O〉J . This indicates that, under the Hawking-Page transition [22],
which in d = 2 is the transition between the BTZ and pure AdS, we observe the pulse of
〈O〉J only in the low temperature phase.

– 7 –
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Schwarzschild-AdS4 (rh = 0.3, m = 0.83, M = 50, Ω = 60, σt = 0.2, σθ = σφ = 0.1)

t = 1 t = 2 t = 3

t = 4 t = 5 t = 6
Figure 4. The wave packet in Schwarzschild-AdS4 generated by the source (3.7). Only equatorial
plane θ = π/2 is displayed. The horizontal and vertical axes are x and y defined in eq. (2.6). The
darker the color is, the larger the absolute value of the scalar field is. The AdS radius is set L = 1,
and the other parameters are displayed above. The red curves are geodesic orbits specified by
m = M/Ω. The blue curves are represent geodesic orbits after the bounce at the AdS boundary.

The results of d = 3 (Sch-AdS4) are shown in figure 4. Parameters are rh = 0.3,M = 50,
Ω = 60, σt = 0.2, and σθ = σφ = 0.1. Trajectories of null geodesics with m = M/Ω = 0.83
are shown by the red and blue curves. The blue curves represent geodesics after the bounce
at the AdS boundary. We see again that the wave packet moves along the trajectories of
null geodesics. Unlike the BTZ, the wave packet can reach the AdS boundary depending on
parameters. When the wave packet arrives at the AdS boundary, we would get the pulse of
the response function 〈O〉J at t = ∆t and φ = ∆φ. Our prediction of (∆t,∆φ) by using null
geodesic is shown in figure 2. If we observe the divergence of ∆t and ∆φ, it is an evidence
of the existence of the photon sphere in the bulk.

Finally, let us check the expectant behavior of the response function in the boundary
theory. Figure 5(a) shows response on the boundary 〈O〉J in the case of the AdS3 when we
provide the source J given by eq. (3.6) at around (t, φ) ∼ (0, 0). The computation is again
shown in appendix B. As we have expected, the response suddenly stands up just at the
time the geodesic reaches the boundary, while it stays quiet at other times. We can also see
that it again becomes large at (t, φ) ∼ (2π, 0), and this is because the wave packet comes
back to φ = 0, after bouncing at the antipodal point. Figure 5(b) shows the response in
the case of the Sch-AdS4. The source J is given by eq. (3.7) (see appendix A). We only
display the response after applying the source, t ≥ 5σt. The dots in the figure represent
values of (t, φ) at which the null geodesic arrives at the boundary: the red and blue dots

– 8 –
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(b) Sch-AdS4

Figure 5. Response functions in the case of the (a) AdS3 and (b) Sch-AdS4. It suddenly stands
up at around t ∼ π and φ ∼ π for the AdS3, as expected. For the Sch-AdS4, the red and blue
dots represent (t, φ) at which the geodesic reached the boundary at the first and second times,
respectively. Note that the left and right vertical lines should be identified, due to the periodicity of
the φ-direction. Same parameters are used as in figures 3 and 4.

correspond to the first and second arrivals. The response suddenly stands up at around the
red dot as is the case with the AdS3, while it has a longer tail comparing to the case of the
AdS3. This would be because of the diffusion of the wave packet of the bulk scalar field
and a tidal disruption by the bulk black hole. Since tidal disruptions are caused by the
Weyl curvature of spacetimes in general, such a long tail of the response on the boundary
might be a sign that a nontrivial dual geometry exists.

4 Summary and discussions

We have devised a source to generate a wave packet propagating along a null geodesic inside
the bulk, and verified that it works for several geometries, AdS3, BTZ and Sch-AdS4. In
the gravity side, the wave packet propagates in the bulk for a while and then reaches the
AdS boundary. When the wave packet arrive at the AdS boundary, we observe the pulse
of the response 〈O〉J . This is a natural behaviour of the null geodesic in AdS but gives
a peculiar prediction in the boundary theory: the response appears with a time lag and
uniquely depends on the temperature. If there is a photon sphere in the bulk, the time lag
can be infinite. If this behaviour is detected against a quantum material in our world, that
is a strong evidence of the material being holographic.

Collecting the data of (∆t,∆θ) for other typical geometries in the AdS/CFT would
also be useful. For example, it is known that holographic materials may exist among
high-temperature superconductors. Such materials, though their existence has not yet been
confirmed, are called holographic superconductor. In the dual spacetime of a holographic
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superconductor, a complex scalar field forms so-called “scalar hair” surrounding the AdS
black hole, which will affect the orbits of null geodesics realized by the wave packets we
have studied in section 3.

The optical imaging to materials has been studied in [9, 10]. They proposed that the
holographic image of the AdS bulk can be constructed by the Fourier transformation of the
response function with a window function on the boundary theory. The optical imaging for
the null geodesic created in this paper is an interesting future direction. By the imaging,
we would be able to determine the incident angle of the null geodesic to the AdS boundary.
Whereas the broad sources containing various angular momenta were used in [9, 10], our
source has been highly localized even in the momentum space. Thus, we would obtain a
spot-like image deflected by gravitational potential in the bulk.

In this paper, we have simply employed the Gaussian form of wave packets and the
probe approximation in which the scalar field does not affect the background spacetimes.
As mentioned, for our purpose we should require a wave packet to be sufficiently localized
in both the real and momentum spaces, so that we take σ/`� 1 and σΩ� 1 for a typical
curvature scale of the spacetime, `, and typical frequency and width of the wave packet, Ω
and σ, respectively. As long as these conditions are sufficiently satisfied, our results are
robust, independent of the form of wave packets. If the wave packet has a broader form in
the real space, it will be affected by the tidal force originating from the Weyl curvature and
will be disrupted. Moreover, if the wave packet has a broader form in the momentum space,
it corresponds to containing null geodesics in various directions and will disperse in the bulk.
As a result, the responses on the boundary will be blurred and in order to resolve them one
should perform the imaging. If we take into account of gravitational backreaction beyond the
probe approximation, that is, Gd+1|Φ|2 ∼ 1 for (d+ 1)-dimensional gravitational constant
Gd+1, various phenomena will occur depending on parameters. When the total energy of a
wave packet is comparable with that of a background black hole, Gd+1Ω2σ2|Φ|2 ∼ (rh/σ)d−2,
the wave packet of the scalar field can radiate gravitational waves. They may provide
another probe of the boundary theory as observable corresponding to the bulk gravitational
field. When the energy density becomes extremely high, Gd+1Ω2σ2|Φ|2 & 1, the self-gravity
of the scalar fields can cause gravitational collapse. In that case a small black hole rather
than the wave packet of the scalar field would be wandering in the bulk.

In the cases of the holographic material, when we provide the source proposed in this
paper, we can ideally observe no response of the corresponding one-point function while
the null geodesic is wandering inside the bulk. However, since the total energy of the
system should be conserved, the material has been excited in spite of no response of the
one-point function. Observing multi-point functions (two-point, three-point, and so on) on
the boundary may allow us to probe null geodesics deep inside the bulk.
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Note added. Just after our preprint was posted, the independent work [23] appeared,
which studies CFT states corresponding to the wave packet in the AdS bulk.

A Numerical detail

We explain the numerical method to solve the time evolution of the scalar field in asymp-
totically AdS spacetimes (2.1). Here, we focus only on the scalar field in Sch-AdS4 for
concreteness. We can easily apply the same technique to the BTZ spacetime. Decomposing
the scalar field as Φ =

∑
l,m clmϕl(t, x)Ylm(θ, φ) by the spherical harmonics, we have the

wave equation in (1 + 1) dimensions as[
−∂2

t + ∂2
x + 2f(r)

r
∂x −

l(l + 1)f(r)
r2

]
ϕl(t, x) = 0 , (A.1)

where we have introduced the tortoise coordinate

x =
∫ r

∞

dr′

f(r′) . (A.2)

In this coordinate the AdS boundary and the event horizon are located at x = 0 and
x = −∞, respectively. We further introduce double null coordinates as

u = (t− t0)− x
2 , v = (t− t0) + x

2 , (A.3)

where t0(< 0) denotes an initial time. Note that the origin of (u, v) lies on t = t0 and x = 0.
Then, eq. (A.1) is written as[

−∂u∂v + f(r)
r

(∂v − ∂u)− l(l + 1)f(r)
r2

]
ϕl(u, v) = 0 . (A.4)

We discretize coordinates (u, v) as in figure 6. For instance, let us focus on points N, E, W,
S, and C in the figure. The scalar field ϕl and its derivatives at the point C are written as1

∂u∂vϕl = ϕNl − ϕEl − ϕWl + ϕSl
h2 , ∂uϕl = ϕNl − ϕEl + ϕWl − ϕSl

2h ,

∂vϕl = ϕNl + ϕEl − ϕWl − ϕSl
2h , ϕl = ϕNl + ϕSl

2 .

(A.5)

where ϕN,E,W,Sl are values of the scalar field at N, E, W, and S and h is the step size. The
above discretization is the second order accuracy in h. Substituting the above expressions
into eq. (A.4), we have the equation to determine ϕNl from ϕE,W,Sl . Thus, once we give
data of the scalar field at the initial surface (v = 0) and the AdS boundary (u = v), we can
determine the dynamics of the scalar field in their domain of dependence. At the initial
surface, we set ϕl|v=0 = 0. At the AdS boundary, we impose

ϕl|u=v = 1
(2π)1/2σt

exp
[
−iΩt− t2

2σ2
t

]
w(t) , (A.6)

1We found that the other discretization ϕl = (ϕEl + ϕWl )/2 causes the numerical instability for the scalar
field in the Sch-AdS4. For the BTZ spacetime, both choice was numerically stable.
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Figure 6. Discretization of the 2-dimensional spacetime spanned by (u, v)-coordinates.

where we assume σt � |t0| to be ϕl|u=v ' 0 at the initial time t = t0. In our actual
numerical calculation, we have introduced the window function w(t) defined by

w(t) =

sin2
(
π(t−t1)
t2−t1

)
(t1 < t < t2)

0 (otherwise)
, (A.7)

in order that the source function has compact support. We set t1 = −5σt and t2 = 5σt.
As shown in figure 7, we find the nice convergence of numerical results as h → 0. From
numerical solutions of ϕl, we obtain the solution in the position space as

Φ(t, r, θ, φ) =
∞∑
l=0

l∑
m=−l

clm ϕl(t, x)Ylm(θ, φ) , (A.8)

where clm is a constant. To realize the boundary condition (3.7), we choose the constant
coefficient clm as

clm = 1
2πσθσφ

∫ 2π

0
dφ

∫ 1

−1
d cos θ exp

[
iMφ− (θ − π/2)2

2σ2
θ

− φ2

2σ2
φ

]
Y ∗lm(θ, φ)

'
√

2l + 1
4π

(l − |m|)!
(l + |m|)!

(l + |m| − 1)!!
(l − |m|)!!

× exp
[
−σ

2
θ

2

(
l(l + 1)−m2 + 1

2

)
−
σ2
φ

2 (m−M)2
]
.

(A.9)

At the second equality, we have used σθ, σφ � 1.
After applying the source (t > t2), the numerical solution can be expanded as

ϕ = p3(v)(u− v)3 + p4(v)(u− v)4 + · · · . (A.10)

Fitting the numerical solution by the fourth order polynomial in u − v near the AdS
boundary, we obtain p3(v). The response is then computed as 〈O〉J = −p3(v).
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/ h2

Figure 7. Convergence check of the numerical calculation. [Left] |ϕl| is plotted as a function of t
for fixed x = −1 (r = 0.748) and l = 50. Other parameters are same as in figure 4. The size of the
mesh is varied as h = 0.004 (purple), 0.002 (green), 0.001 (light blue), 0.0005 (orange). [Right] |ϕl|
is plotted as a function of h for fixed x = −1 and t = t0 = 2.2. The baseline of the vertical axis is
taken as an offset value C = 6.825. This clearly exhibits quadratic convergence.

B Analytic computation in AdS3

Here, on the background of AdS3, we analytically solve the equation of motion of (3.1),

1√
−g

∂µ
(√
−ggµν∂νΦ

)
= 0, (B.1)

with the boundary condition based on the GKPW dictionary

Φ(t,∞, φ) = J(t, φ), (B.2)

where J is given in (3.6). We set L = 1 in this appendix.
We first write Φ as

Φ(t, r, φ) = 1
(2π)2

∞∑
n=−∞

∫
dω e−iωt+inφfω,n(r), (B.3)

and plug this into (B.1):

d2

dr2 fω,n(r) + 3r2 + 1
r2 + 1

d

dr
fω,n(r) +

[
ω2

(r2 + 1)2 −
n2

r2(r2 + 1)

]
fω,n(r) = 0. (B.4)

Two independent solutions for (B.4) are given as

ξnF

(
ω + n

2 ,−ω − n2 , 1 + n, ξ2
)
, ξ−nF

(
ω − n

2 ,−ω + n

2 , 1− n, ξ2
)
, (B.5)

where F is the hypergeometric function and ξ := r/
√
r2 + 1. Since the wave should not

diverge at r = 0 (or ξ = 0), we adopt the following as fω,n:

fω,n(r) = Cω,nξ
|n|F

(
ω + |n|

2 ,−ω − |n|2 , 1 + |n|, ξ2
)
. (B.6)

Here Cω,n is a constant which may depend on ω and n.
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The solution we have now is

Φ(t, r, φ) = 1
(2π)2

∞∑
n=−∞

∫
dω e−iωt+inφCω,nξ|n|F

(
ω + |n|

2 ,−ω − |n|2 , 1 + |n|, ξ2
)
. (B.7)

To determine Cω,n, we use (B.2), which turns out to be

1
(2π)2

∞∑
n=−∞

∫
dω Cω,nΓ(|n|+1)e−iωt+inφ

Γ
(
1+ |n|−ω2

)
Γ
(
1+ |n|+ω2

) = 1
2πσtσφ

exp
[
−iΩt+ iMφ− t2

2σ2
t

− φ2

2σ2
φ

]
.

(B.8)

By Fourier-transforming this with σt, σφ � 1, we have

Cω,n =
Γ
(
1 + |n|−ω

2

)
Γ
(
1 + |n|+ω

2

)
Γ(|n|+ 1) exp

[
−σ

2
t

2 (ω − Ω)2 −
σ2
φ

2 (n−M)2
]
, (B.9)

and hence the solution is finally

Φ(t, r, φ) = 1
(2π)2

∞∑
n=−∞

∫
dω e−iωt+inφξ|n|F

(
ω + |n|

2 ,−ω − |n|2 , 1 + |n|, ξ2
)

×
Γ
(
1 + |n|−ω

2

)
Γ
(
1 + |n|+ω

2

)
Γ(|n|+ 1) exp

[
−σ

2
t

2 (ω − Ω)2 −
σ2
φ

2 (n−M)2
]
. (B.10)

In the solution, there are first order poles along the real axis of ω, at ω = ±(2k + |n|)
(k = 1, 2, · · · ). To perform the integration, we slightly move them down to the imaginary
direction, adding −i0. This corresponds to adopting a boundary condition that φ vanishes
in the past, t < 0. Therefore, from the residue theorem, we obtain

Φ(t, r, φ) = −2πi
∞∑

n=−∞

∞∑
k=1

∑
s=±1

exp
[
−σ

2
t

2
(
(2k + |n|)s− Ω

)2
−
σ2
φ

2 (n−M)2
]

× e−is(|n|+2k)t+inφ(−1)k (|n|+ k + 1)!
|n|!k! ξ|n|F (|n|+ k,−k, 1 + |n|, ξ2). (B.11)

Let us read the response function on the boundary theory. The asymptotic form of the
above solution is,

Φ(t, r, φ) = −2πi
∞∑

n=−∞

∞∑
k=1

∑
s=±1

exp
[
−σ

2
t

2
(
(2k + |n|)s− Ω

)2
−
σ2
φ

2 (n−M)2
]

× e−is(|n|+2k)t+inφ(|n|+ k + 1)(|n|+ k)(1− ξ) + · · · . (B.12)

Usually in the AdS3, O(1) or O(r−2 ln r) terms from non-normalizable modes appear in the
asymptotic expression, but this time no such terms appear. This is because picking up poles
in (B.10) is equivalent to expanding the solution in terms of normalizable modes, which
physically means that the source on the boundary is soon turned off and only normalizable
modes remain excited inside the bulk. Therefore, recalling what the GKPW dictionary
says, we regard the coefficient of (1− ξ) in (B.12) as the response function.

– 14 –



J
H
E
P
1
0
(
2
0
2
3
)
0
7
4

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Adv.
Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200] [INSPIRE].

[2] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical
string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

[3] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253
[hep-th/9802150] [INSPIRE].

[4] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant.
Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].

[5] C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42
(2009) 343001 [arXiv:0904.1975] [INSPIRE].

[6] J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy
Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].

[7] G.T. Horowitz, Introduction to Holographic Superconductors, Lect. Notes Phys. 828 (2011) 313
[arXiv:1002.1722] [INSPIRE].

[8] S. Sachdev, Condensed Matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273
[arXiv:1002.2947] [INSPIRE].

[9] K. Hashimoto, S. Kinoshita and K. Murata, Imaging black holes through the AdS/CFT
correspondence, Phys. Rev. D 101 (2020) 066018 [arXiv:1811.12617] [INSPIRE].

[10] K. Hashimoto, S. Kinoshita and K. Murata, Einstein Rings in Holography, Phys. Rev. Lett.
123 (2019) 031602 [arXiv:1906.09113] [INSPIRE].

[11] Y. Kaku, K. Murata and J. Tsujimura, Observing black holes through superconductors, JHEP
09 (2021) 138 [arXiv:2106.00304] [INSPIRE].

[12] Y. Liu et al., Holographic Einstein ring of a charged AdS black hole, JHEP 10 (2022) 189
[arXiv:2201.03161] [INSPIRE].

[13] K. Hashimoto, D. Takeda, K. Tanaka and S. Yonezawa, Spacetime-emergent ring toward
tabletop quantum gravity experiments, Phys. Rev. Res. 5 (2023) 023168 [arXiv:2211.13863]
[INSPIRE].

[14] S. Caron-Huot, Holographic cameras: an eye for the bulk, JHEP 03 (2023) 047
[arXiv:2211.11791] [INSPIRE].

[15] X.-X. Zeng, K.-J. He, J. Pu and G.-P. Li, Holographic Einstein rings of a Gauss-Bonnet AdS
black hole, arXiv:2302.03692 [INSPIRE].

[16] Event Horizon Telescope collaboration, First M87 Event Horizon Telescope Results. I.
The Shadow of the Supermassive Black Hole, Astrophys. J. Lett. 875 (2019) L1
[arXiv:1906.11238] [INSPIRE].

– 15 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/literature/451647
https://doi.org/10.1016/S0370-2693(98)00377-3
https://arxiv.org/abs/hep-th/9802109
https://inspirehep.net/literature/467202
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://inspirehep.net/literature/467400
https://doi.org/10.1088/0264-9381/26/22/224002
https://doi.org/10.1088/0264-9381/26/22/224002
https://arxiv.org/abs/0903.3246
https://inspirehep.net/literature/815772
https://doi.org/10.1088/1751-8113/42/34/343001
https://doi.org/10.1088/1751-8113/42/34/343001
https://arxiv.org/abs/0904.1975
https://inspirehep.net/literature/817857
https://doi.org/10.1155/2010/723105
https://doi.org/10.1155/2010/723105
https://arxiv.org/abs/0909.0518
https://inspirehep.net/literature/830228
https://doi.org/10.1007/978-3-642-04864-7_10
https://arxiv.org/abs/1002.1722
https://inspirehep.net/literature/845462
https://doi.org/10.1007/978-3-642-04864-7_9
https://arxiv.org/abs/1002.2947
https://inspirehep.net/literature/845935
https://doi.org/10.1103/PhysRevD.101.066018
https://arxiv.org/abs/1811.12617
https://inspirehep.net/literature/1705985
https://doi.org/10.1103/PhysRevLett.123.031602
https://doi.org/10.1103/PhysRevLett.123.031602
https://arxiv.org/abs/1906.09113
https://inspirehep.net/literature/1740889
https://doi.org/10.1007/JHEP09(2021)138
https://doi.org/10.1007/JHEP09(2021)138
https://arxiv.org/abs/2106.00304
https://inspirehep.net/literature/1866379
https://doi.org/10.1007/JHEP10(2022)189
https://arxiv.org/abs/2201.03161
https://inspirehep.net/literature/2007019
https://doi.org/10.1103/PhysRevResearch.5.023168
https://arxiv.org/abs/2211.13863
https://inspirehep.net/literature/2593409
https://doi.org/10.1007/JHEP03(2023)047
https://arxiv.org/abs/2211.11791
https://inspirehep.net/literature/2513719
https://arxiv.org/abs/2302.03692
https://inspirehep.net/literature/2630543
https://doi.org/10.3847/2041-8213/ab0ec7
https://arxiv.org/abs/1906.11238
https://inspirehep.net/literature/1729067


J
H
E
P
1
0
(
2
0
2
3
)
0
7
4

[17] Event Horizon Telescope collaboration, First Sagittarius A* Event Horizon Telescope
Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way,
Astrophys. J. Lett. 930 (2022) L12 [INSPIRE].

[18] Y. Kaku, K. Murata and J. Tsujimura, Creating stars orbiting in AdS, Phys. Rev. D 106
(2022) 026002 [arXiv:2202.07807] [INSPIRE].

[19] D. Berenstein and J. Simón, Localized states in global AdS space, Phys. Rev. D 101 (2020)
046026 [arXiv:1910.10227] [INSPIRE].

[20] D. Berenstein, Z. Li and J. Simón, ISCOs in AdS/CFT, Class. Quant. Grav. 38 (2021) 045009
[arXiv:2009.04500] [INSPIRE].

[21] I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys.
B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

[22] S.W. Hawking and D.N. Page, Thermodynamics of Black Holes in anti-De Sitter Space,
Commun. Math. Phys. 87 (1983) 577 [INSPIRE].

[23] S. Terashima, Wave Packets in AdS/CFT Correspondence, arXiv:2304.08478 [INSPIRE].

– 16 –

https://doi.org/10.3847/2041-8213/ac6674
https://inspirehep.net/literature/2080889
https://doi.org/10.1103/PhysRevD.106.026002
https://doi.org/10.1103/PhysRevD.106.026002
https://arxiv.org/abs/2202.07807
https://inspirehep.net/literature/2033986
https://doi.org/10.1103/PhysRevD.101.046026
https://doi.org/10.1103/PhysRevD.101.046026
https://arxiv.org/abs/1910.10227
https://inspirehep.net/literature/1760418
https://doi.org/10.1088/1361-6382/abcaeb
https://arxiv.org/abs/2009.04500
https://inspirehep.net/literature/1816047
https://doi.org/10.1016/S0550-3213(99)00387-9
https://doi.org/10.1016/S0550-3213(99)00387-9
https://arxiv.org/abs/hep-th/9905104
https://inspirehep.net/literature/499962
https://doi.org/10.1007/BF01208266
https://inspirehep.net/literature/181925
https://arxiv.org/abs/2304.08478
https://inspirehep.net/literature/2651880

	Introduction
	Null geodesics in asymptotically AdS geometries
	The source to generate a null geodesic
	Summary and discussions
	Numerical detail
	Analytic computation in AdS(3)

